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Abstract—The aim of the present study was to analyze
resting-state brain activity in patients with Parkinson’s
disease (PD), a degenerative disorder of the nervous system.
Magnetoencephalography (MEG) signals were recorded with
a 151-channel whole-head radial gradiometer MEG system in
18 early-stage untreated PD patients and 20 age-matched
control subjects. Artifact-free epochs of 4 s (1250 samples)
were analyzed with Lempel–Ziv complexity (LZC), applying
two- and three-symbol sequence conversion methods. The
results showed that MEG signals from PD patients are less
complex than control subjects’ recordings. We found signif-
icant group differences (p-values <0.01) for the 10 major
cortical areas analyzed (e.g., bilateral frontal, central, tem-
poral, parietal, and occipital regions). In addition, using
receiver-operating characteristic curves with a leave-one-out
cross-validation procedure, a classification accuracy of
81.58% was obtained. In order to investigate the best
combination of LZC results for classification purposes, a
forward stepwise linear discriminant analysis with leave-one
out cross-validation was employed. LZC results (three-
symbol sequence conversion) from right parietal and tempo-
ral brain regions were automatically selected by the model.
With this procedure, an accuracy of 84.21% (77.78%
sensitivity, 90.0% specificity) was achieved. Our findings
demonstrate the usefulness of LZC to detect an abnormal
type of dynamics associated with PD.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurolog-
ical disorder that can cause significant disability and a
reduction in the quality of life. Neuropathologic fea-
tures are the presence of Lewy bodies in the residual
dopaminergic neurons and a reduction of dopaminer-
gic neurons in the substantia nigra.26 PD affects
approximately 1% of the population over 60 years of
age, becoming an important medical as well as social
problem.26 The four cardinal symptoms are resting
tremor, bradykinesia, rigidity, and loss of postural
reflexes.17 A large number of patients also suffer from
autonomic, cognitive, and psychiatric disturbances.24

The gold-standard criterion for diagnosis is the path-
ological confirmation of the Lewy body on autopsy,
but the clinical diagnosis is usually based on the
patient history and physical examination. The presence
of a combination of cardinal motor features and
response to dopaminergic therapy are characteristic
signs of PD.17Despite careful examination, the accuracy
of clinical diagnosis is only around 80–90%.15,16 Hence,
new approaches are needed to improve PD detection.

Nowadays, magnetoencephalography (MEG) and
electroencephalography (EEG) recordings are not
routinely used as clinical diagnostic procedures in PD.
Nevertheless, some studies have demonstrated that the
analyses of brain signals could help physicians in the
diagnosis of this disorder.32 Both EEG and MEG are
non-invasive techniques that record the electromag-
netic fields produced by brain activity with good tem-
poral resolution. EEG and MEG signals are generated
by synchronous oscillations of pyramidal neurons.
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However, they reflect slightly different characteristics,
since EEG is sensitive to all primary currents and
MEG is only affected by current flows oriented parallel
to the scalp.13 In addition, MEG technology offers
some advantages over EEG. For instance, magnetic
fields are not distorted by the resistive properties of the
skull.13 Furthermore, EEG signals are strongly influ-
enced by a wide variety of factors, such as distance
between sensors, electrode location, reference point, or
conducting substance between skin and electrode. On
the other hand, MEG signals are very sensitive to
external artifacts. Superconducting quantum interfer-
ence devices (SQUIDs) and a magnetically shielded
room are necessary to detect the weak magnetic signals
generated by the brain.

Several studies have focused on spectral analysis of
spontaneous EEG/MEG activity in PD patients. The
most common alteration in PD is generalized slowing
of brain activity.3,20,29,34,35 PD patients showed a
power decrease at the EEG beta band and an increase
at the theta band.34 In another study,29 the patients
presented diffuse slowing of their quantitative EEG
(qEEG) when compared with age-matched controls.
Finally, MEG studies also showed that PD is associ-
ated with a slowing of resting state oscillatory brain
activity.3,20,35 Stoffers et al.35 not only confirmed pre-
viously reported slowing, but for the first time made
clear that these changes already occurred in the first
clinical stages of PD in untreated patients. As an
alternative to spectral analyses, some research studies
have focused on the application of linear connectivity
measures to explore the functional interactions
between brain regions. Silberstein et al.30 observed that
EEG coherence in the beta band was correlated with
the severity of parkinsonism (in the OFF state) in
advanced stage PD patients considered for deep brain
stimulation.

Nonlinear measures have also offered valuable
information to study the changes that PD produces
into the patients’ brains.32 Using correlation dimension
(D2), Stam et al.33,34 suggested that PD is characterized
by a complexity decrease in comparison with control
subjects. In addition, demented patients had lower
largest Lyapunov exponent than PD group.33 On the
other hand, PD patients showed higher dimensionality
than controls during performance of complex motor
tasks, indicating more complex EEG time series.25

Finally, Anninos et al.2 studied the MEG activity in
PD, concluding that external magnetic stimulation
might help in the management of idiopathic PD. In
sum, D2 is the nonlinear measure most widely used for
characterizing EEG/MEG recordings in PD, in spite of
its drawbacks from a signal-processing point of view.
First, D2 requires the signals to be stationary and
noise free, something that cannot be achieved for

physiological data. Moreover, long time series are
necessary to obtain meaningful results.6 Therefore,
there is a need for other nonlinear methods to enable a
proper analysis of the electromagnetic brain activity in
PD. For instance, synchronization likelihood, a non-
linear measure of functional connectivity, revealed
significant differences in the MEG background activity
between demented and non-demented PD patients.4

Using the same measure, Stoffers et al.36 concluded
that increased resting-state cortico-cortical functional
connectivity in the 8–10 Hz alpha range is a feature of
PD from the earliest clinical stages. Finally, Pezard
et al.27 described higher localized entropy in the EEG
of L-Dopa naive PD patients.

The present study is a new approach to explore the
potential of nonlinear methods to characterize MEG
rhythms in PD. Particularly, the so-called Lempel–Ziv
complexity (LZC) was used.22 LZC is a complexity
measure for finite sequences related to the number of
distinct substrings and the rate of their occurrence
along the sequence.22 LZC has been previously applied
to MEG recordings to evaluate the complexity altera-
tions produced by different pathological states, such as
mild cognitive impairment,8 Alzheimer’s disease,10,11,14

major depressive disorder,23 and attention-deficit/
hyperactivity disorder.9 To our knowledge, this is the
first time that this method is applied to study the brain
activity in PD. The objective of the present study was
to analyze the MEG background activity in PD
patients to detect the presence of abnormal brain
dynamics associated with this disorder. Based on the
above-mentioned EEG studies,33,34 we hypothesized
that there would be a pattern of reduced LZC values in
PD patients, in comparison with control subjects.

MATERIALS AND METHODS

MEG Recording

The signals were acquired with a 151-channel
whole-head radial gradiometer MEG system (CTF
Systems Inc., Port Coquitlam, BC, Canada) placed in a
magnetically shielded room. The subjects were seated
in a chair, in a relaxed state and with their eyes closed.
They were asked to stay awake and to avoid making
movements. For each subject, MEG registration was
performed with a 312.5 Hz sampling frequency, using
a hardware band-pass filter of 0.25–125 Hz. For each
subject, 12 artifact-free epochs of 4 s (1250 data points)
were selected by an experienced technician who was
blind to the patients’ diagnosis. Subsequently, these
epochs were filtered using a Finite Impulse Response
(FIR) band-pass filter with a Hamming window and
cut-off frequencies at 0.5 and 45 Hz.

GÓMEZ et al.2936



Subjects

For the present study, we analyzed MEG signals
obtained in 18 recently diagnosed PD patients (12 men
and 6 women) with a mean age of 59.67 ± 7.99 years
(mean ± SD), never treated with anti-Parkinson
medication and with a subjective disease duration of
less than 2 years. They were recruited from the out-
patient clinic for movement disorders at the VU Uni-
versity Medical Center (Amsterdam, the Netherlands).
The control group consisted of 20 age-matched control
subjects without past or present neurological disorders
(11 men and 9 women; mean age = 59.40 ± 7.46).
This group was composed of spouses of the patients as
well as other healthy volunteers. The difference in the
mean age of both populations was not statistically
significant (p-value = 0.91). Cognitive status was
screened in both groups using six tasks from the
Cambridge Neuropsychological Test Automated Bat-
tery (CANTAB Eclipse 2.0, Cambridge Cognition,
Cambridge, UK) and two tasks from the Vienna Test
System version 6.0 (Dr. G. Shuhfried GmbH, Mödl-
ing, Austria). Before the MEG recording, all subjects
gave written informed consent for the participation in
this research study. The medical ethical committee of
the VU University Medical Center approved the study
protocol.

Lempel–Ziv Complexity

LZC is a measure for sequences of finite length
suggested by Lempel and Ziv22 in 1976. Later, Kaspar
and Schuster19 presented a computer program that
determined the LZC using only two simple operations:
to copy and to insert. This program is an appropriate
measure of complexity in Kolmogorov sense as well as
in a statistical sense.39 LZC assigns higher values to
more complex data. Previous studies have shown that
this measure mainly depends on the bandwidth of the
signal spectrum, although a slight dependence on the
sequence probability density function was also
found.1,7 In addition, LZC could be interpreted as a
harmonic variability metric.1 This measure has already
been applied in many different areas, including the
analysis of biomedical signals, such as EEG record-
ings,38 MEG signals,10 or DNA sequences.12

LZC analysis is based on a coarse-graining of the
measurements, and so the MEG time series must be
transformed into a finite symbol sequence before esti-
mating its complexity. In this study, we have used two
different sequence conversion methods:

� 0–1 sequence conversion. The median value is
estimated as a threshold Td, as partitioning
about this value is robust to outliers.28 By
comparison with the threshold, the original

time series X = x(1), x(2),…,x(N) is converted
into a 0–1 sequence P = s(1), s(2),…,s(N),
where s(i) = 0 if x(i)<Td and s(i) = 1 if
x(i) ‡ Td.

38

� 0–1–2 sequence conversion. For each of the
MEG epochs, the median xm, maximum xmax,
and minimum xmin are calculated. Two thresh-
olds are obtained: Td1 = xm 2 |xmin|/16 and
Td2 = xm + |xmax|/16. Then, the original time
series X is converted into a 0–1–2 sequence
P = s(1), s(2),…,s(N), where s(i) = 0 if x(i) £
Td1, s(i) = 1 if Td1 < x(i)<Td2 and s(i) = 2 if
x(i) ‡ Td2.

38

Afterward, the new string P is scanned from left to
right, and a complexity counter c(N) is increased by
one unit every time a new subsequence of consecutive
characters is encountered in the scanning process. The
detailed algorithm for the measure of the LZC is the
following38:

� Let S and Q denote two sub-sequences of the
original sequence P, and SQ be the concatena-
tion of S and Q, while SQp is a string derived
from SQ after its last character is deleted
(p means the operation to delete the last char-
acter).
� Let v(SQp) denote the vocabulary of all differ-

ent substrings of SQp.
� At the beginning, the complexity counter

c(N) = 1, S = s(1), Q = s(2), SQ = s(1), s(2),
and SQp = s(1).
� In general, suppose that S = s(1), s(2),…,s(r),

Q = s(r + 1) and, therefore, SQp = s(1),
s(2),…,s(r). If Q 2 v(SQp), then Q is a subse-
quence of SQp, not a new sequence.
� If S does not change and renew Q to be

s(r + 1), s(r + 2), then judge if Q belongs to
v(SQp) or not.
� The previous two steps are repeated until Q

does not belong to v(SQp). Now Q = s(r + 1),
s(r + 2),…,s(r + i) is not a subsequence of
SQp = s(1), s(2),…,s(r + i 2 1), and so in-
crease the counter by one.
� Thereafter, S and Q are combined and renewed

to be s(1), s(2),…,s(r + i), and s(r + i + 1),
respectively.
� Repeat the previous steps until Q is the last

character. At this time, the number of different
substrings is c(N), the measure of complexity.

In order to obtain a complexity measure which is
independent of the sequence length, c(N) should be
normalized. The upper limit of c(n) is given by
b(n) = N/loga(N), and c(N) can be normalized via
b(N): C(N) = c(N)/b(N).22 The normalized LZC,
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C(N), reflects the emerging rate of new patterns along
with the sequence.38 To ensure that defect-related
features will be included for the complexity calcula-
tion, a minimum data length needs to be considered.37

Therefore, the effect of the data length on LZC was
analyzed for the MEG epochs. These analyses showed
that the complexity values decline quickly at the
beginning and become stable from 1000 data points.
For this reason, C(n) can be viewed as independent of
number of samples for epoch lengths higher than 1000
data points. As an example, Fig. 1 illustrates one curve
of the complexity values versus the data length for a
MEG recording. Thus, an epoch length of 1250 (4 s of
recording) was used in our study for the complexity
measure.

Statistical Analysis

Initially, a descriptive analysis was performed to
explore the distribution for the LZC values. Mann–
Whitney U-tests were used to evaluate the differences
between PD patients and controls. In order to address
the problem of multiple comparisons, a Bonferroni
correction was applied to p-values. Bonferroni-
adjusted p-values are just the normal p-values multi-
plied by the number of outcomes being tested.

In addition to these statistical analyses, notched
boxplots were used for visualizing the distributions of
the LZC values averaged over the major cortical areas
(frontal, central, temporal, parietal, and occipital) on
the left and right sides of the brain. A boxplot is a
graphical representation that provides a visual sum-
mary of several characteristics of a data distribution.
Moreover, receiver operating characteristic (ROC)
curves were used to assess the ability of LZC to dis-
criminate PD patients from control subjects in the 10
aforementioned brain regions. A ROC curve summa-
rizes the performance of a two-class classifier across
the range of possible thresholds. It is a graphical

representation of the trade-offs between sensitivity and
specificity. Sensitivity is the true positive rate whereas
specificity is equal to the true negative rate. Accuracy is
the percentage of subjects (PD patients and controls)
correctly recognized. A leave-one-out cross-validation
procedure was used to calculate sensitivity, specificity,
and accuracy values. In the leave-one-out method, the
data from one subject are excluded from the training
set one at a time and then classified on the basis of the
threshold calculated with the data from the remaining
subjects. The leave-one-out cross-validation procedure
provides a nearly unbiased estimate of the true error
rate of the classification procedure.31

Finally, a forward stepwise linear discriminant
analysis (LDA) with a leave-one-out cross-validation
scheme was performed to investigate group classifica-
tion combining LZC results across the 10 brain
regions. This forward stepwise LDA starts with a
model that does not include any variable. Then, a
forward selection procedure is applied to automatically
select the first independent variable that will be intro-
duced into the model. This variable is characterized by
its ability to separate the categories as much as possi-
ble. Then, the stepwise LDA chooses the variable that
provides a greater discriminatory ability than others
when used in conjunction with the previous one. This
procedure is repeated until either the measure is
(locally) maximized or the improvement due to the
addition of other independent variable falls below
some critical value. Results were shown in terms of
sensitivity (i.e., proportion of PD patients correctly
classified), specificity (i.e., percentage of healthy sub-
jects properly identified), and accuracy (i.e., total
fraction of subjects well classified). This statistical
analysis was performed using SPSS software (version
15.0; SPSS Inc, Chicago, IL).

RESULTS

Channel-By-Channel Analysis

In a first stage, complexity analyses were carried out
separately for each MEG channel. We have used LZC
algorithm to quantify the complexity in MEG time
series of 1250 samples. Lempel–Ziv algorithm was
applied to each epoch. Then, the 12 epochs corre-
sponding to each channel were averaged, obtaining a
complexity value per channel and subject. Figures 2
and 3 summarize the average LZC values estimated for
PD patients and control subjects at all MEG channels
for 0–1 and 0–1–2 sequence conversions, respectively.
PD patients displayed lower LZC values than control
subjects for all the MEG channels both with the binary
as well as the three-symbol sequence conversion. With
the binary conversion, mean values obtained wereFIGURE 1. Effect of the epoch length on the C(n) value.
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0.4809 ± 0.0269 for controls and 0.4326 ± 0.0299
(mean ± SD) for PD patients. Using three-symbol
sequence conversion, we obtained mean values of
0.4572 ± 0.0228 for the control group, and 0.4162 ±

0.0245 for the PD group. These results suggest that the
complexity, in the sense of a number of new sub-
sequences in the data, is lower in PD patients’ MEGs
than in control subjects. Moreover, differences were
statistically significant for several channels placed at
parietal, occipital, and temporal regions (Bonferroni-
adjusted p-values <0.05).

Regional Analysis

In a second stage, we grouped the MEG channels
into 10 cortical regions (frontal, central, temporal,
parietal, and occipital areas at the right and left sides
of the brain) to explore the differences between PD
patients and controls. Graphical summaries of the
distributions are depicted in Figs. 4 and 5, which show
the corresponding boxplots at each brain region for
sequence conversions of two and three symbols. From
visual inspection of the plot, it becomes evident that
differences in regional LZC values between PD
patients and controls subjects were statistically signif-
icant, as boxplot notches do not overlap. Numerical
testing confirmed PD patients having lower LZC val-
ues than controls for all brain areas examined for both
sequence conversions. Bonferroni-adjusted p-values
are displayed in corresponding figures.

ROC curves with a leave-one-out cross-validation
procedure were used for evaluating the ability of LZC
to distinguish PD patients from the control subjects in
the aforementioned brain regions. The area under the
ROC curve (AUC) indicates the probability that a
randomly selected PD patient has a LZC value lower
than a randomly chosen control subject. Sensitivity,
specificity, accuracy, and AUC values obtained with

both sequence conversions at each region are displayed
in Tables 1 and 2.

Stepwise LDA

A forward, stepwise LDA with a leave-one-out
cross-validation procedure was used for investigating
the best combination of LZC results to classify PD
patients and healthy controls. The first variable to
enter the model was LZC with three-symbol conver-
sion at the right parietal brain region. In the next step,
LZC with 0–1–2 sequence conversion at the right
temporal area was added to the model used by the
stepwise LDA to classify the subjects. The remaining
LZC results were left out of the model, since they were
linearly related to the variables that had already been
included into the model and provided no additional
information. This LDA model achieved an accuracy of
84.21% (77.78% sensitivity; 90.0% specificity).

DISCUSSION AND CONCLUSIONS

In this study, we analyzed the MEG resting-state
activity of 18 early-stage, drug-naive PD patients and
20 controls by means of LZC. It was revealed that
early-stage PD patients have lower complexity values
than controls for all MEG channels. Moreover, sig-
nificant statistical group differences were found for
the 10 major cortical areas (p-values <0.05, Mann–
Whitney U-test with Bonferroni correction). Our
findings support the notion that brains affected by PD
show less complex activity.

Previous studies have documented that PD involves
an overall loss of complexity in the electromagnetic
background activity.33,34 In the first study mentioned,
D2 values in PD patients’ EEGs were lower than
in controls, but higher than in demented patients.34

FIGURE 2. Sensor layouts showing the distribution of the LZC values (0–1 sequence conversion) at both groups and the
corresponding Bonferroni-adjusted p-values.
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The second one explored nonlinearity of EEG signals
from the same three subjects groups.33 Demented
patients had significantly lower D2 and lower largest
Lyapunov exponent compared to controls, whereas

largest Lyapunov was higher in PD patients than in
demented ones.33 These studies are in agreement with
our results, supporting the notion that PD is charac-
terized by a EEG/MEG complexity decrease.

FIGURE 3. Sensor layouts showing the distribution of the LZC values (0–1–2 sequence conversion) at both groups and the
corresponding Bonferroni-adjusted p-values.

FIGURE 4. Notched boxplots displaying the distribution of LZC values (0–1 sequence conversion) for each brain area.
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More recent studies have applied other measures to
study PD-related changes in the MEG background
activity. Stoffers et al.35 showed extensive changes in
oscillatory brain activity in PD patients relative to
controls, which included widespread increases in theta

and alpha power as well as overall decreases in beta
and gamma power. In a subsequent study assessing
functional connectivity, a global increase in alpha1
synchronization was found in untreated PD patients
compared with control subjects.36 In line with our

FIGURE 5. Notched boxplots displaying the distribution of LZC values (0–1–2 sequence conversion) for each brain area.

TABLE 1. Sensitivity, specificity, accuracy, and AUC values obtained with LZC (0–1 sequence conversion) for each region.

Cortical area Sensitivity (%) Specificity (%) Accuracy (%) AUC

Left central 83.33 75.00 78.95 0.8444

Left frontal 72.22 55.00 63.16 0.8306

Left occipital 61.11 65.00 63.16 0.7972

Left parietal 77.78 75.00 76.32 0.8778

Left temporal 77.78 80.00 78.95 0.8694

Right central 77.78 75.00 76.32 0.8417

Right frontal 72.22 70.00 71.05 0.7833

Right occipital 77.78 65.00 71.05 0.7861

Right parietal 66.67 80.00 73.68 0.8861

Right temporal 72.22 80.00 76.32 0.8500

MEG Complexity Analysis in Parkinson 2941



current study, both studies demonstrate that PD-
related changes are quite diffuse rather than limited to
specific brain regions.35,36

The methodology applied in this study is a novel
approach to analyze the changes in brain activity
caused by PD. LZC offers some distinct advantages
over classical complexity measures. First of all, LZC is
an easy and fast method to estimate the time series
complexity, as only two simple mathematical opera-
tions are needed for its calculation: sequence compar-
ison and number accumulation. Moreover, the median
value used as threshold is robust to outliers.28 In
addition, it can be applied to any time series, irre-
spective of whether their origin is stochastic or deter-
ministic.38 Therefore, only those differences between
activity patterns that are found to discriminate
between PD and control conditions are considered.
Nevertheless, the limitations of this measure should
also be taken into consideration. Most importantly,
LZC is based on a coarse-grained measure of the
recordings.38 The MEG data were transformed into a
pattern of a few symbols, only two (0–1) and three
(0–1–2) in our study. Thus, it is possible that some
information from the signal that might have been lost
with these symbol conversions could have been
retained using more symbols.

ROC curves were used for assessing the potential of
using LZC values at different brain regions to classify
PD patients and age-matched control subjects. Our
study shows that LZC may be a suitable method to
differentiate the MEG activity from PD patients and
control subjects. The highest accuracy (81.57%) was
obtained at the right temporal area using LZC with a
sequence conversion of three symbols. In addition, we
wanted to assess whether LZC values from different
brain areas could provide complementary information.
We applied a forward stepwise LDA with a leave-one-
out cross-validation procedure, which automatically
selected LZC results (0–1–2 conversion) from right
parietal and temporal areas. With this LDA model,
an accuracy of 84.21% (77.78% sensitivity, 90.0%

specificity) was reached. The accuracy increase is quite
low (only 2.64%) compared to values obtained with
ROC curves at individual brain regions. This is
because LZC results from different brain areas are
highly correlated. For this reason, LDA modeling does
not provide a significant advantage over ROC curves.
Although it would be great to compare these values
with others obtained in previous studies, this research
study is, to our knowledge, the first that uses brain
signals for classification purposes between controls and
PD patients. Nevertheless, the obtained accuracy sug-
gests that nonlinear analyses of the brain activity might
be a useful tool to aid physicians in the diagnosis of
PD. On the other hand, the decreased complexity is not
specific of PD, and it also appears in other neurode-
generative diseases, such as vascular dementia,18 mild
cognitive impairment,8 and Alzheimer’s disease.10,11,14

Thus, the findings of this study should be regarded as
preliminary and require replication in a larger patient
population, including patients with other diagnoses,
before any conclusion can be made about the clinical
diagnostic value of this measure.

Some potential confounding factors have to be
considered. First, a loss of physiological complexity
often accompanies aging.21 However, in the present
study, the groups were matched for age, and so the
significantly reduced complexity is likely to be a dis-
ease-related phenomenon. Second, the current study
was carried out during a resting-state eyes-closed
condition. In a previous study, Cassidy and Brown5

suggested that a visuomotor tracking task might
increase the discrimination between controls and PD
patients. Another study revealed that a central reduc-
tion of EEG complexity during motor tasks, which is
normally present in healthy individuals, is absent in
PD.25 In any case, our results suggest that MEG
resting-state background activity could be useful in
differentiating PD patients from elderly controls.

In summary, this research work presents the LZC as
a novel method to study MEG background activity in
PD patients. It was demonstrated that PD patients

TABLE 2. Sensitivity, specificity, accuracy, and AUC values obtained with LZC (0–1–2 sequence conversion) for each region.

Cortical area Sensitivity (%) Specificity (%) Accuracy (%) AUC

Left central 77.78 75.00 76.32 0.8361

Left frontal 72.22 60.00 65.79 0.8279

Left occipital 61.11 65.00 63.16 0.7972

Left parietal 77.78 70.00 73.68 0.8778

Left temporal 77.78 70.00 73.68 0.8778

Right central 72.22 75.00 73.68 0.8528

Right frontal 66.67 65.00 65.79 0.7861

Right occipital 72.22 70.00 71.05 0.8111

Right parietal 77.78 80.00 78.95 0.8833

Right temporal 77.78 85.00 81.58 0.8444
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show widespread decreases in LZC compared with
control subjects. Moreover, an accuracy of 84.21%
was achieved in the classification between the two
groups using a LDA model with a leave-one-out cross-
validation procedure. Our findings show the usefulness
of LZC to detect changes in the dynamic behavior of
brains injured by PD. The complexity changes in PD
could be related to the presence of early, subtle cog-
nitive deficits.
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