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Abstract Three founder mutations in BRCA1 and BRCA2

contribute to the risk of hereditary breast and ovarian

cancer in Ashkenazi Jews (AJ). They are observed at

increased frequency in the AJ compared to other BRCA

mutations in Caucasian non-Jews (CNJ). Several authors

have proposed that elevated allele frequencies in the
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surrounding genomic regions reflect adaptive or balancing

selection. Such proposals predict long-range linkage dis-

equilibrium (LD) resulting from a selective sweep,

although genetic drift in a founder population may also act

to create long-distance LD. To date, few studies have used

the tools of statistical genomics to examine the likelihood

of long-range LD at a deleterious locus in a population that

faced a genetic bottleneck. We studied the genotypes of

hundreds of women from a large international consortium

of BRCA1 and BRCA2 mutation carriers and found that AJ

women exhibited long-range haplotypes compared to CNJ

women. More than 50% of the AJ chromosomes with the

BRCA1 185delAG mutation share an identical 2.1 Mb

haplotype and nearly 16% of AJ chromosomes carrying the

BRCA2 6174delT mutation share a 1.4 Mb haplotype.

Simulations based on the best inference of Ashkenazi

population demography indicate that long-range haplotypes

are expected in the context of a genome-wide survey. Our

results are consistent with the hypothesis that a local bot-

tleneck effect from population size constriction events
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could by chance have resulted in the large haplotype blocks

observed at high frequency in the BRCA1 and BRCA2

regions of Ashkenazi Jews.

Abbreviations

AJ Ashkenazi Jews

CIMBA Consortium of Investigators of Modifiers of

BRCA1 and BRCA2

CNJ Caucasian non-Jews

LD Linkage disequilibrium

MAF Minor allele frequency

MJ Median joining

PCA Principal components analysis

SNP Single nucleotide polymorphism

IBD Identity by descent

Introduction

Mutations in the BRCA1 and BRCA2 genes contribute to

risk of hereditary breast and ovarian cancers. Three founder

mutations in these two genes (BRCA1 185delAG, BRCA1

5382insC, and BRCA2 6174delT) are observed at a rela-

tively high frequency (*2% in total) in the general Ash-

kenazi Jewish population (Struewing et al. 1997; Tonin
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et al. 1996) compared with the occurrence of BRCA

mutations in the general population. In one study, 10.3% of

Ashkenazi women with invasive breast cancer, unselected

for family history, were carriers of one of the founder

mutations (King et al. 2003).

Recombination, genetic drift and natural selection all act

to shape the landscape of pairwise allelic associations, or

linkage disequilibrium, in a genomic region. Associations

will occur by chance in small populations due to random

changes in allele frequencies (Hartl and Clark 2007). When

a specific combination of alleles is beneficial for survival,

natural selection may increase the frequency of this hap-

lotype, thereby increasing levels of allelic association.

Applying the rationale of this model in reverse, if a region

is found to have exceptionally long-range haplotypes, then

this observation increases the likelihood that the region has

undergone recent positive selection (Sabeti et al. 2002;

Voight et al. 2006). There are several examples in literature

of this type of extended haplotype structure in regions

known to be influenced by natural selection. Deficiencies in

glucose-6-phosphate dehydrogenase (G6PD) levels cause

several blood disorders, but confer resistance to severe
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malaria. The G6PD A allele, defined by two nonsynony-

mous changes in the coding region of the G6PD gene, is

found on a conserved haplotype spanning more than

1.6 Mb (Saunders et al. 2005). Tishkoff et al. (Tishkoff

et al. 2007) identified three single nucleotide polymor-

phisms (SNPs) in the minichromosome maintenance 6

(MCM6) gene that are associated with the lactase persis-

tence phenotype. In that research, individuals homozygous

for the C-14010 allele exhibited a region of haplotype

homozygosity of average length 1.8 Mb, whereas individ-

uals homozygous for the G-14010 allele exhibited only a

1.8kb region of homozygosity (Tishkoff et al. 2007).

Although these studies provide examples of long haplo-

types consistent with positive selection, population genet-

ics theory and data from Drosophila melanogaster (which

also underwent an out-of-Africa bottleneck with humans)

show that bottlenecked demographics can also result in

focused regions of the genome having an apparently short

coalescence time. The latter strongly resemble long shared

haplotypes (Haddrill et al. 2005). Contrasting the merits of

natural selection versus neutral explanations for long hap-

lotypes must be done with caution, if the population is

known to have faced a demographic history with a

bottleneck. In capsule, that is the take-home message from

the work presented herein.

For more than 30 years, numerous authors have asser-

ted that the AJ diseases are a consequence of adaptive

evolution. In 2000, without doing a formal analysis, but on

the basis of estimates of the the time of common ancestry

of alleles of BRCA1 and BRCA2, Slatkin and Rannala

(Slatkin and Rannala 2000) concluded that these two

genes were likely to have been under selection in AJ. In

addition, BRCA1 was suggested to be a target of adaptive

evolution along the human and chimpanzee lineages on

the basis of now uncorroborated Hardy–Weinberg statis-

tics (Huttley et al. 2000). More recently, in a very con-

troversial review article, Cochran, Hardy and Harpending

(Cochran et al. 2006) made a series of arguments that

intelligence was being selected for through variation in the

homologous recombination pathway, specifically through

the function of BRCA1 and BRCA2 founder mutations.

Then, through the study of a recent small series of 85

Ashkenazi women, the BRCA1 185delAG and 5382insC

mutations were seen to occur on the two most common

haplotypes, found on 15 and 29% of chromosomes,

respectively (Pereira et al. 2007). We examined a *2 Mb

S. Hodgson

Clinical Genetics Department, St Georges Hospital, University

of London, London, UK

P. J. Morrison

Northern Ireland Regional Genetics Centre, Belfast City

Hospital, Belfast, UK

M. Porteous

South East of Scotland Regional Genetics Service, Western

General Hospital, Edinburgh, UK

L. Walker

Oxford Regional Genetics Service, Churchill Hospital, Oxford,

UK

M. T. Rogers

All Wales Medical Genetics Services, University Hospital of

Wales, Cardiff, UK

L. E. Side

North East Thames Regional Genetics Service, Great Ormond

Street Hospital for Children NHS Trust, London, UK

A. K. Godwin

Department of Pathology and Laboratory, University of Kansas

Medical Center, Kansas City, KS, USA

R. K. Schmutzler � B. Wappenschmidt

University Hospital of Cologne, Cologne, Germany

L. Venat-Bouvet

Department of Medical Oncology, Centre Hospitalier

Universitaire Dupuytren, Limoges, France

D. Stoppa-Lyonnet

INSERM U509, Service de Génétique Oncologique, Institut
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region around BRCA1 or BRCA2 in hundreds of AJ

women to determine if the 185delAG, 5382insC and

6174delT founder mutations were carried on common

haplotypes and to attempt to disentangle the effects of

demography and natural selection in this genomic region.

Approximately, 16% of Ashkenazi chromosomes con-

taining the BRCA2-TCCGAAGA allele that is used here as

a surrogate for the 6174delT mutation share a long-range

haplotype extending more than 1.4 Mb and over half of

women with the 185delAG mutation core haplotype share

an identical haplotype extending over the entire 2.1 Mb

region examined. In contrast, chromosomes carrying

alternative core haplotypes showed much shorter haplo-

type sharing. The data gathered from the study of BRCA1

haplotypes are analogous: of the chromosomes sharing the

major 17-SNP BRCA1 haplotype in the CNJ women,

approximately 5.8% share a 1.27-Mb haplotype and only

3.3% share an identical 2.1-Mb haplotype. Multiple pro-

cesses including positive assortative mating (or endog-

amy), positive selection and a population bottleneck would

affect patterns of allelic association and lead to regions of

extended linkage disequilibrium. None of the predicted

departures from Hardy–Weinberg equilibrium allele fre-

quencies associated with non-random mating was

observed and therefore this hypothesis was dismissed.

Through simulation, we show that the observed extended

haplotypes can occur by genetic drift alone given that a

population bottleneck has occurred.

Materials and methods

Subjects and genotyping

Subjects included 372 Ashkenazi Jewish (AJ) women and

1,441 Caucasian, non-Jewish (CNJ) women sampled for a

BRCA2 modifier locus study(Gaudet et al. 2010) within

The Consortium of Investigators of Modifiers of BRCA1/2

(Chenevix-Trench et al. 2007). The AJ group consisted of

317 self-reported AJ women and 55 additional women with

the 6174delT founder mutation. These women were

included despite the fact that they did not indicate AJ

heritage, because this mutation is rarely observed outside

the AJ population (Struewing et al. 1999). In addition, a

principal components analysis (PCA) demonstrates that

these 55 women cluster with women self-reported as AJ

(data not shown). All women had deleterious mutations in

BRCA2 and were genotyped on the Affymetrix Genome-

Wide Human SNP Array 6.0 platform. SNPs and individ-

uals were filtered based on the method recently discussed

in detail (Gaudet et al. 2010). We extracted a *2.1-Mb

region surrounding BRCA2 consisting of 1,402 SNPs to

investigate LD patterns and haplotype structure.

Subjects from the Consortium of Investigators of Mod-

ifiers of BRCA1 and BRCA2 (CIMBA) harboring delete-

rious BRCA1 mutations (Antoniou et al. 2010) included

316 and 297 women with the AJ founder 185delAG and

5382insC mutations, respectively, and 2,186 women with

other mutations (designated CNJ for future reference).

DNA samples from these women were genotyped on the

Illumina Infinium 610 K array platform. For more infor-

mation on the study subjects and genotyping (including

quality control) see Antoniou et al. (2010).

Linkage disequilibrium and core haplotype

Linkage disequilibrium (LD) among pairs of markers and

LD block boundaries were estimated from genotype data

using the program Haploview (Barrett et al. 2005). The

program’s default parameters were used except that the

minor allele frequency cutoff was set to 0.05.

The core BRCA2 haplotype, at which we looked for

extended homozygosity, is an LD block consisting of 8

SNPs: rs543304, rs206081, rs4942448, rs11571700,

rs11571725, rs4942485, rs206146 and rs15869. The block

spans approximately 60 kb within the gene.

The core 17-SNP BRCA1 haplotypes for AJ and the CNJ

women spansapproximately 274 and257 kb, respectively, and

consists of the following SNPs: rs382571 (only in AJ core),

rs9911630, rs11657053, rs8176273, rs8176265, rs1799966,

rs3737559 (only in CNJ core), rs1060915, rs16942, rs799917,

rs16940, rs799923, rs9646417, rs11651341, rs4534897,

rs4793234, rs11657004 and rs9912203.

Haplotype estimation

Haplotypes for all subjects were estimated using SNPHAP

(Clayton, http://www-gene.cimr.cam.ac.uk/clayton/software).

SNP positions and chromosomes that could not be unam-

biguously phased were excluded from analysis.

Extended haplotype structure

Markers that were uninformative for LD analysis

(MAF\0.05) were removed from the estimated haplotypes.

To determine a consensus haplotype and the extent of

haplotype structure, we walked SNP by SNP to the left and

right of the core haplotype independently. Chromosomes

carrying the consensus haplotype were carried forward and

the rest were filtered out. SNPs that filtered more than 20%

of the remaining chromosomes were considered ‘‘wobble’’

positions and any allele was permitted at these sites. We

determined the left- and right-hand border of the extended

haplotype as either (1) the position before a 10-SNP win-

dow consisting of five or more wobble positions or (2) the

position where less than 20% of the chromosomes share the

690 Hum Genet (2011) 130:685–699
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extended haplotype, whichever was closest to the core

haplotype. We performed this analysis for the chromo-

somes carrying the BRCA2-TCCGAGGA and those car-

rying other alleles separately. The same was done for the

BRCA1 cohort data; chromosomes from individuals with

the 185delAG mutation carrying the BRCA1-GGAGAG

GGAGGAGGGGA were analyzed separately from those

carrying a different haplotype. We also examined the

extended haplotype homozygosity, a measure designed to

quantify the decay of association between a core haplotype

and other alleles, with the program Sweep (Sabeti et al.

2002).

Simulations

The program msHOT (Hellenthal and Stephens 2007) was

used to generate population samples based on both the

one-bottleneck and two-bottleneck models of Slatkin

(Slatkin 2004). msHOT can take a specific recombination

landscape. We specified the local recombination rates (in

cM/Mb) for the 2.1 Mb region surrounding BRCA2 fol-

lowing the estimates of Myers et al. (Myers et al. 2005).

The msHOT code for the single bottleneck model can be

found in Appendix A. The size of the largest haplotype

block from each sample was retained if it exceeded

715 kb, and from the counts of these mutation-drift

recombination samples, we obtained the chance of

recovering large haplotype blocks by drift in this demo-

graphic scenario.

Core haplotype figures

These were generated using the hplot2 perl script written

by Xiaoquan Wen and generously provided by him and

Sridhar Kudaravalli from the University of Chicago.

Population differentiation metrics

F-statistics and Hardy–Weinberg measures were calculated

using the tools developed by Stefanov et al. (Stefanov et al.

2008).

Principal components analysis (PCA)

Principal components analysis was performed using the

smartpca program within the EIGENSOFT suite (Price

et al. 2006).

Haplotype network diagrams

These were drawn using the median joining (MJ) algorithm

as implemented in Network 4.5.1.6., released 31 December

2009 from Fluxus-Engineering.

Tajima’s D calculation

This was performed using the R-script kindly supplied by

Christopher Carlson for his publication on genome-wide

characterization (Carlson et al. 2005).

Results

We examined a region of approximately 2 Mb surrounding

BRCA1 or BRCA2 to explore the linkage disequilibrium

(LD) patterns and haplotype structure and to determine

whether these regions exhibit signatures of natural selec-

tion. Genotype data for two separate cohorts of women

carrying deleterious BRCA1 or BRCA2 mutations were

used to estimate pairwise LD. The BRCA2 cohort included

372 Ashkenazi Jewish (AJ) women consisting of 317 self-

reported Ashkenazi and 55 women who self-reported as

Caucasian non-Jews, but carried the AJ founder 6174delT

mutation. The BRCA1 cohort included 316 and 297 women

with AJ founder 185delAG and 5382insC mutations,

respectively. The BRCA2 gene is located in a region of

high LD, and the major haplotype for the LD block span-

ning 60 kb of the gene (TCCGAAGA) is found on 55% of

chromosomes. We hypothesized that this was a surrogate

for the 6174delT mutation, and therefore used it as the core

for determining the extent of haplotype structure in the

region (Fig. 1). SNPHAP, an Expectation Maximization

algorithm haplotype estimation program, was used to

generate haplotypes from the genotype data of all 1,402

SNPs from this genomic region. Uninformative markers

were removed from the haplotypes, and the remaining 545

SNPs were analyzed. A total of 412 chromosomes repre-

senting 328 women carried the BRCA2-TCCGAAGA

haplotype including 8 of the 13 women who did not indi-

cate that they were of Ashkenazi descent. We separately

examined the extended haplotype structure for chromo-

somes with the BRCA2-TCCGAAGA allele and for those

chromosomes with other alleles. A total of 18% of the 412

chromosomes carrying the BRCA2-TCCGAAGA allele

shared a haplotype extending more than 1.4 Mb, while

chromosomes with other alleles shared a haplotype

approximately half that length (715 kb) (Fig. 2a). A similar

pattern was observed when examining women with the

BRCA1 185delAG mutation. Approximately, half of the

chromosomes carried the major 20-SNP haplotype

(GGAGAGGGGAGGAAGGGGAG) for the LD block

extending across the gene (Supplementary Fig. 1) and, of

those, 51.9% shared an identical 2.1-Mb haplotype sur-

rounding BRCA1.

To assess the significance of this extended haplotype, we

need to evaluate how unlikely it is to have such a large

haplotype given the other haplotypes in the region and the
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demographic history of Ashkenazim. The general strategy

was to produce simulated data sets from a population

whose history of bottlenecks and growth matched the his-

torical record of Ashkenazim, and to use these simulations

to determine how often haplotypes as long as those

observed occur by purely neutral processes. We performed

coalescent-based simulations using the popular simulation

program msHOT (Hellenthal and Stephens 2007; Hudson

2002) and a set of demographic parameters matching the

founding population size and expansion derived from other

genetic data (Slatkin 2004). We considered a 2-Mb win-

dow, with a recombination landscape for the BRCA2 region

of chromosome 13 based on the Myers et al. (Myers et al.

2005) genetic map of humans. It required 1250 realizations

of the simulation to produce a common haplotype block of

715 kb (equal to the length of the haplotype observed on

AJ chromosomes without the 6174delT surrogate allele),

suggesting that the observation of a haplotype block of this

size may be unlikely. However, the correct question is not

whether a long haplotype in this particular region will be

found by chance; it is rather to ask whether a 1.4-Mb

haplotype will be found among some subset of individuals

given that others share a 715-kb haplotype. The existence

of the 715-kb haplotype indicates that this is a region of the

genome that has fairly shallow common ancestry (a recent

coalescence time). Given that the region has a recent

coalescence, we then ask whether there might also be even

longer haplotypes in the sample. The simulations show that

conditional on the sample having a 715-kb haplotype

block, it is not at all unlikely that a 1.4-Mb haplotype block

is present, associated with the alternative allele and shared

by more than 18% of the chromosomes. In addition, at least

5% of chromosomes share a common haplotype across the

2.1-Mb region in more than 30% of simulated data sets. In

summary, long-range haplotype structure is not unlikely to

occur by purely neutral processes in this region of the

genome, given what we know about the demography of the

population and the structure of the genetic variation in this

region of the genome, suggesting that the Ashkenazi bot-

tleneck drove this region to have a recent coalescence.

We next performed the same analysis on 1,441 Cauca-

sian, non-Jewish (CNJ) women from the BRCA2 cohort

and 2,186 CNJ women from the BRCA1 cohort. We found

no evidence of an extended haplotype in CNJ samples

across either BRCA2 or BRCA1. A haplotype nearly five

times shorter (*326 kb) than that observed in the Ash-

kenazi women is observed in 10% of chromosomes car-

rying the BRCA2-TCCGAAGA allele and a 60-kb

haplotype is observed in 18% of chromosomes carrying

other core haplotypes (Fig. 2b). Of the chromosomes

sharing the major 20-SNP BRCA1 haplotype (AACAGA-

GAAGAGAGAAAAGG) in the CNJ women, approxi-

mately 5.8% share a 1.27-Mb haplotype and only 3.3%

share an identical 2.1-Mb haplotype. While this suggests

that some extended haplotype structure exists in CNJ

individuals in these two regions, it is to a much lesser

extent than that observed in AJ individuals.

There are multiple explanations for the discrepancy

between Ashkenazi and CNJ haplotype structure. The core

haplotype, which is seen on more than half of the chro-

mosomes studied, may be a surrogate for the 6174delT

mutation. This mutation is estimated to have arisen only 29

generations ago (Neuhausen et al. 1998), and hence, there

is a higher likelihood for the persistence of the haplotype,

resulting in the observed haplotype homozygosity. In light

of the recombination landscape, which includes several

hotspots (Supplementary Fig. 1), this is unlikely to be the

cause of the observed haplotype structure. Alternatively,

a

b

Fig. 1 Linkage disequilibrium across a 570-kb region in 372

Ashkenazi women. a Haploview output showing LD blocks across

region. Black block represents the core haplotype. b Haplotypes

estimated using SNPHAP for each of the LD blocks. Haplotypes

observed in at least 1% of chromosomes are shown in order of

frequency (most frequent first)
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the haplotype structure observed might be a result of

endogamy in the Ashkenazi population (i.e., marrying

within one’s own ethnic group, social class, etc.). This

selective mating practice would cause a loss of genetic

variation and an increase in the extent of LD (Gibson et al.

2006). Under endogamy, one would expect that Ashkenazi

individuals will exhibit positive values of the inbreeding

coefficient FIS (Weir and Cockerham 1984), reflecting

a heterozygote deficiency relative to Hardy–Weinberg

equilibrium expectations. Contrary to what would be

expected under endogamy and inbreeding, a large propor-

tion of SNPs in the region encompassing BRCA2 have

Fig. 2 Extended haplotype structure observed in (a) 372 Ashkenazi

women across a 2.1-Mb region and (b) 1441 Caucasian, non-Jewish

women across an 805-kb region. Each row represents an individual.

Tick marks show SNP locations, red triangles mark the boundaries of

the 8-SNP core BRCA2 haplotype, and blue triangles mark the

boundaries of the (a) 1.4 Mb extended haplotype and (b) 715 kb

extended haplotype in the AJ and CNJ, respectively. Long horizontal

red lines represent the core haplotype, while interruptions in that

haplotype observed in the data by the presence of frequent alternative

alleles are colored in green
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significantly negative FIS (FIS \ mean ? 3 SD., Supple-

mentary Fig. 2) compared with the rest of chromosome 13.

Of course, the excess of heterozygotes for the long hap-

lotype is to be expected, as most homozygotes at these loci

are likely to be prenatally lethal. Natural selection in the AJ

population could also result in the observed pattern of

haplotype structure. To investigate this possibility, we first

looked at the population differentiation (as measured by

FST) between AJ and CNJ individuals. The region sur-

rounding BRCA2 shows a pronounced level of differenti-

ation compared with the remainder of chromosome 13

(Fig. 3a) and compared to the rest of the genome (data not

shown). Although extreme FST values (compared to a

genome-wide distribution) have been used to detect natural

selection (Akey et al. 2002), our observation is most likely

caused by an inherent bias in the ascertainment of our

samples. The individuals in the cohort used in this analysis

were specifically chosen because they had a mutation in

their BRCA2 gene. The mutation spectrum observed in AJ

women is inherently different from that observed in CNJ

and therefore the increased FST is due to skewed ascer-

tainment rather than true population differentiation. We

observe the same effect on chromosome 17 in a cohort of

women harboring BRCA1 mutations (Fig. 3b). However, if

we look at FST among an independent cohort of randomly

ascertained Ashkenazi individuals and the HapMap CEU

(Olshen et al. 2008), we observe no increase in values in

the BRCA1 or the BRCA2 region, nor do we see an increase

in the BRCA1 region in the BRCA2 cohort (data not

shown).

A skew in the allele frequency spectrum (quantified with

Tajima’s D statistic) can also be used to find regions under

natural selection. Both demographic and selection events

can result in non-zero D values, but demographic effects

should be observed across the whole genome. We used the

method implemented by Carlson et al. (Carlson et al. 2005)

to calculate D values in 100-kb sliding windows. By

comparing the value of Tajima’s D in windows across the

BRCA2 region with the distribution across the entire gen-

ome, we can determine whether this region is truly

exceptional. Tajima’s D values across the entire genome

range from -1.82 to 6.58 with a mean value of 3.07

(Fig. 4). Of the 201 windows across the region of interest,

0 fall below the 5th percentile (D = 1.081) and 3 fall

above the 95th percentile (D = 4.786) of the genome-wide

distribution suggesting that this region is not an outlier.

The skew of the genome-wide distribution toward positive

values is consistent with a recent population bottleneck.

This is an empirical confirmation of the simulations—the

past demography of the Ashkenazi has resulted in many

genomic regions with a recent coalescence and unusual

differentiation from the CNJ population (Olshen et al.

2008; Ostrer 2001).

Discussion

A number of genetic diseases are more frequent in Ash-

kenazi Jews than in other populations. In 1978, two classic

papers independently explored the elevated frequency of

a

b

Fig. 3 Population differentiation among Ashkenazi and CNJ women.

a FST between 372 Ashkenazi and 1,441 Caucasian, non-Jewish

women across chromosome 13. b FST between 613 Ashkenazi

(carriers of the 185delAG and 5382insC founder mutations) and 2,186

Caucasian, non-Jewish (carriers of non-founder mutations) women

across chromosome 17. The peaks of FST occur in the region

surrounding BRCA2 and BRCA1 in (a) and (b), respectively,

represented by the black boxes

Fig. 4 Genome-wide distribution of Tajima’s D in 372 AJ women.

D statistics were estimated for 100-kb sliding windows
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Tay Sach’s disease in the AJ population using the same

statistical analysis, but came to two different conclusions:

One group argued that genetic drift is unlikely to have

produced the observed gene frequency (Chakravarti and

Chakraborty 1978); while the other group suggested that

historical bottlenecks and genetic drift could explain the

frequency (Wagener et al. 1978). In an accompanying

editorial, Ewens (Ewens 1978) concluded that ascertain-

ment bias and different assumptions about effective pop-

ulation size of the AJ affected the calculations. While we

did not specifically assign the effective population size, our

simulation parameters are based on the best inference of

historical Ashkenazi population demography [Slatkin

(2004)]. In addition, we explored the impact of ascertain-

ment bias on our conclusions by examining FST deviations

in the unbiased Olshen et al. sample of AJ in the BRCA1

and BRCA2 regions, and found no significant increase in

FST. We also examined the BRCA2 mutation carriers in the

instant study for significant FST deviation in the BRCA1

region and found none. Finally, our previous work (Olshen

et al. 2008) searched for evidence of long haplotypes

throughout the genomes of randomly ascertained AJ and

the HapMap CEU and found a similar pattern: extended

haplotypes were absent, or present to a much lesser extent,

in the CEU just like the CNJ in the present study.

BRCA1 and BRCA2 founder mutations are observed at a

higher frequency in Ashkenazi Jews compared to mutations

in other populations. We found long-range haplotype

structure in a high percentage of AJ chromosomes carrying

one of the three BRCA1 or BRCA2 founder mutations. We

considered three competing hypotheses for the origin of

this extended haplotype. The first, which we quickly

excluded, was endogamy and/or positive assortative mat-

ing. If there were positive assortative mating for traits

conferred by this genomic region, this would inflate the

homozygosity, reduce the effect of recombination and

potentially give rise to an extended haplotype. This

hypothesis was rejected because none of the predictions

regarding departures from Hardy–Weinberg frequencies

were met.

The second hypothesis was that positive natural selec-

tion could have driven up the frequency of a specific

haplotype. The fact that simulations under a neutral model

with random drift (and a founder effect) can generate

haplotype blocks of this size does not prove that natural

selection did not occur. However, we do know that the

demography of the Ashkenazi was different from CNJs,

and that other regions of the genome also show elevated

FST. It would seem that invoking natural selection for every

region of the genome that appears differentiated is not the

most parsimonious solution.

The third hypothesis was that there was a local bot-

tleneck effect from a population size constriction, and this

resulted, by chance in this demographic scenario, in a

a b

Fig. 5 Haplotype network results from analyzing the eight SNPs that

make up the core BRCA2 haplotype. Diagrams constructed using

haplotypes observed at a frequency of at least 1% are labeled. The

dark gray sphere (H1) represents the core haplotype. a Network for

AJ chromosomes. b Network for CNJ chromosomes. Frequency of

each haplotype can be found in Supplementary Table 1. The size of

each sphere is proportional to its frequency in the sample
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large haplotype block at high frequency in the BRCA2

region. This would agree with the global analysis by

Atzmon, et al. (Atzmon et al. 2010), who showed that

IBD sharing of chromosomal segments across the entire

genome in AJ individuals was consistent with a severe

population bottleneck followed by expansion. This

explanation was also consistent with several objective

attributes of our data: (1) Local reductions in variation are

expected when a population goes through a bottleneck

(Haddrill et al. 2005) and the BRCA2 region is not at all

exceptional with respect to the distortion in its site fre-

quency spectrum, as measured by Tajima’s D. (2) The

haplotype network diagrams of both the Ashkenazi and

CNJ demonstrated that the 6174delT mutation arose on

the major Caucasian haplotype (Fig. 5). This is consistent

with previous reports of very recent ascendancy of the

deleterious mutation to high frequency in the AJ (Neu-

hausen et al. 1998).

One of the more compelling arguments against the

hypothesis that genetic drift and founder effects explain all

the AJ and CNJ genetic differences is that it is unlikely for

common genetic diseases to cluster in so few pathways if

drift were the only force acting on allele frequencies. But in

the absence of a mechanism by which BRCA1 and BRCA2

variants might have been selectively favored in the Ash-

kenazi, the most satisfactory explanation of the unusual

haplotype pattern in this region remains random genetic

drift and a founder effect. The hypothesis that disabling

homologous recombination positively influences cortical

differentiation (Cochran et al. 2006) is without foundation,

and a recent report that BRCA2 mutation in AJ is a con-

sequence of selection, on the basis of iHS tool application

(Bray et al. 2010) is, in our view, a misinterpretation. The

observation that other recent populations (e.g., BRCA2

999del5 mutation in Icelanders) manifest different founder

mutations (Thorlacius et al. 1997) is consistent with our

simulations and, while the above hypotheses are not

mutually exclusive, a population bottleneck remains the

most parsimonious explanation for the observed haplotype

pattern.

Acknowledgments This work was supported in part by federal

funds from the Intramural Research Program of the National Institutes

of Health, National Cancer Institute, Center for Cancer Research. We

also acknowledge the support of the Starr Foundation, the Breast

Cancer Research Foundation and the Sabin Family Fund. The content

of this publication does not necessarily reflect the views of the

Department of Health and Human Services nor does its mention of

trade names, commercial products or organizations imply endorse-

ment by the US government. The authors wish to thank Dr. Colm

O’hUigin, who provided valuable comments on an early version of

this manuscript.

UKFOCR was supported by a project grant from CRUK to Paul

Pharoah. We thank Paul Pharoah, Simon Gayther, Susan Ramus,

Carole Pye and Patricia Harrington for their contributions toward the

UKFOCR.

The GEMO study (Cancer Genetics Network ‘‘Groupe Génétique

et Cancer’’, Fédération Nationale des Centres de Lutte Contre le

Cancer, France) is supported by the Ligue National Contre le Cancer;

Association for International Cancer Research Grant (AICR-07-

0454); and the Association ‘‘Le cancer du sein, parlons-en!’’ Award.

We wish to thank all the GEMO collaborating groups for their

contribution to this study. GEMO Collaborating Centers are: Coor-

dinating Centres, Unité Mixte de Génétique Constitutionnelle des

Cancers Fréquents, Centre Hospitalier Universitaire de Lyon/Centre
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Appendix A—msHOT command

/mshot 412 1 -r 1.0 2087508 -s 545 -v 30 46440 55764

92.72 94074 101467 172.87 116262 120708 84.46 158286

166715 60.34 188386 195853 69.08 203508 207586 27.50

408508 419950 23.61 425890 436582 14.86 531508

540447 22.26 661931 673793 120.99 770385 780441

29.47 815508 819627 29.47 824410 832053 71.03 896479

899758 92.66 907490 914508 66.72 927238 930508 5.91

951526 958508 33.76 967928 979794 50.26 996275
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999508 107.56 1084508 1088508 28.62 1091504 1098508

126.14 1616508 1619571 340.72 1621508 1627508 15.09

1660329 1663531 623.28 1675309 1679508 35.42

1686508 1706508 5.02 1850331 1854508 65.25 1883508

1887508 237.76 1962482 1967508 38.82 2055476

2087508 53.91 -G 2355557.4 -eG 0.0000018 0.0000571

-eN 0.0000018 0.095.
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