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Abstract. The spectral properties of two products AB and BA of
possibly unbounded operators A and B in a Banach space are consid-
ered. The results are applied in the comparison of local spectral prop-
erties of the operators T [∗]T and TT [∗] in a Krein space. It is shown
that under the assumption that both operators T [∗]T and TT [∗] have
non-empty resolvent sets, the operator T [∗]T is locally definitizable if
and only if TT [∗] is. In this context the critical points of both operators
are compared.
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1. Introduction

In the paper [15] three conditions on a closed and densely defined operator
T in a Krein space K were considered:
(t1) T [∗]T and TT [∗] are selfadjoint operators in K;
(t2) T [∗]T and TT [∗] have non-empty resolvent sets;
(t3) T [∗]T is definitizable.
Under these conditions it was shown that also TT [∗] is definitizable, and
the spectral properties of the operators T [∗]T and TT [∗] were compared. In
particular, it was shown, that if (t1)–(t3) are satisfied, then the non-zero
spectra, as well as the non-zero singular and the non-zero regular critical
points, respectively, of T [∗]T and TT [∗] coincide. On the other hand, there
were given counterexamples, showing that for the point zero the same will
not be true.
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The present contribution can be regarded as a continuation of the paper
[15], although it also contains some more general results which we consider
to be of independent interest. The paper consists of two sections. In the first
one we consider the spectra of the products AB and BA of two arbitrary
linear operators A and B acting between Banach spaces. We give a simple
proof of a theorem from [5], saying that the non-zero spectra of AB and BA
are equal, provided the resolvent sets of AB and BA are non-empty. As a
by-product we establish some estimates on the norms of the resolvents of AB
and BA. Moreover, we show that not only the non-zero spectra of AB and
BA coincide, but also the most prevalent types of spectra.

The second part of the paper is devoted to the situation when A = T is
a closed, densely defined operator in a Krein space and B = T [∗] is its Krein
space adjoint. The first of our main objectives is to show that (t2) implies (t1)
and is accomplished in Theorem 3.1. Our main tool here is a Banach-space
result from [6]. Our second aim is to prove analogues of central results of [15]
assuming—instead of (t3)—that the operator T [∗]T is only definitizable over
a subset Ω of C (see Definition 3.8). First, we provide a natural correspon-
dence between the sign types of the spectra of T [∗]T and TT [∗] (Proposition
3.7). Later on, this fact is used in the proof of Theorem 3.9. This theorem
states that under condition (t2) the operator T [∗]T is definitizable over a set
Ω if and only if TT [∗] is. This was proved already in [15] for Ω = C, since
definitizability over C is equivalent to definitizability. However, in the pres-
ent situation we cannot use the technique of definitizing polynomials as in
[15]. Instead, we have to tackle the problem by comparing the local sign type
properties of the spectra of T [∗]T and TT [∗]. In this setting we also prove the
equality of the sets on non-zero critical points of T [∗]T and TT [∗] (Theorem
3.10), which also has its analogue in [15]. The following simple example shows
that all these generalizations are substantial, i.e. locally definitizable but not
definitizable operators of the form T [∗]T do exist.

Example 1. Let (Tn)∞
n=0 be a bounded sequences of linear operators in C

2,

and let the fundamental symmetry J0 =
(

0 1
1 0

)
determine the indefinite

inner product on C
2. Suppose additionally, that for each n ∈ N the operator

T
[∗]
n Tn (and thus also TnT

[∗]
n ) has exactly one (real) eigenvalue λn and that

the sequence (λn)∞
n=1 is strictly decreasing to zero1. In the space �2(C2) we

consider the operator T and the fundamental symmetry J , defined by

T =
∞⊕

n=1

Tn, J =
∞⊕

n=1

J0.

Then the operators T [∗]T and TT [∗] are given by

T [∗]T =
∞⊕

n=1

T [∗]
n Tn and TT [∗] =

∞⊕
n=1

TnT [∗]
n

1 E.g. Tn =

(
1/n 0
0 1/n

)
Un with any Un satisfying U

[∗]
n = U−1

n .
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and they satisfy (t1) and (t2) as bounded operators. Note that the alge-
braic eigenspace of each of the operators T [∗]T and TT [∗] corresponding
to the eigenvalue λn (n ∈ N) is two-dimensional and indefinite. Therefore,
both operators are (locally) definitizable over C \ {0}, but not definitizable
(over C).

For a history of the problem of comparing the operators T [∗]T and TT [∗]

and its relation with indefinite polar decompositions we refer the reader to
the papers [15,16]. At this point we only mention that the finite dimen-
sional instance has found a complete solution in terms of canonical forms,
see [14,16].

2. On the Pair of Operators AB and BA in Banach Spaces

We start this section by recalling some definitions and notions concerning
the spectrum of a linear operator. Let X be a Banach space. The algebra of
all bounded linear operators T : X → X will be denoted by L(X ). Let T
be a linear operator in X with domain domT ⊂ X . By ρ(T ) we denote the
resolvent set of T which is the set of all points λ ∈ C for which the operator
T − λ : dom T → X is bijective and (T − λ)−1 ∈ L(X ). Note that accord-
ing to this definition of ρ(T ) the operator T is closed if its resolvent set is
non-empty. The spectrum of T is defined by σ(T ) := C \ ρ(T ). We define the
point spectrum σp(T ) as the set of eigenvalues of T .

Throughout this section we assume that X and Y are Banach spaces, A
is a closed and densely defined operator acting from dom A ⊂ X to Y, and B
is a closed and densely defined operator acting from dom B ⊂ Y to X . Note
that the following lemma is based on linear algebra only.

Lemma 2.1. For n ∈ N and λ ∈ C \ {0} the operator A maps ker((BA−λ)n)
bijectively onto ker((AB − λ)n). In particular, we have

σp(BA) \ {0} = σp(AB) \ {0}.

Proof. We prove the statement for n = 1 only, the case of arbitrary n fol-
lows by induction. Let λ ∈ C \ {0} and let x ∈ ker(BA − λ). Then from
BAx = λx we conclude that BAx ∈ dom A and ABAx = λAx. Hence,
Ax ∈ ker(AB − λ). It is now easy to check, that λ−1B| ker(AB − λ) is the
inverse of A| ker(BA − λ). �

The following lemma is a simple consequence of the closed graph theo-
rem.

Lemma 2.2. If the operators B and AB are closed then B is AB-bounded2,
i.e. there exists c > 0 such that

‖Bx‖ ≤ c(‖ABx‖ + ‖x‖), x ∈ dom(AB).

2 This relation is also sometimes called domination of B by AB.
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The first statement of the theorem below [Eq. (2.1)] has already been
proved by Hardt and Mennicken in [6] with the use of an operator matrix
construction. However, we present a different proof, which is necessary to
obtain the estimate (2.4) playing an important role in the second part of the
paper.

Theorem 2.3. Assume that the resolvent sets ρ(AB) and ρ(BA) of the oper-
ators AB and BA are non-empty. Then we have

σ(AB) \ {0} = σ(BA) \ {0}. (2.1)

Moreover, for λ ∈ ρ(AB) \ {0} and μ ∈ ρ(BA) the following connection
between the resolvents of AB and BA holds:

(BA − λ)−1 = λ−1[B(AB − λ)−1A − I] (2.2)
= λ−1

(
μ + (λ − μ)B(AB − λ)−1A

)
(BA − μ)−1. (2.3)

Consequently, there exists a constant C > 0, which depends on A and B only,
such that for λ, μ ∈ ρ(BA), λ �= 0, the following inequality is satisfied

‖(BA − λ)−1‖ ≤ CM1(λ)M2(μ)
|λ| (|μ| + |λ − μ| (2 + |λ|)(2 + |μ|)) , (2.4)

with M1(λ) := max{1, ‖(AB −λ)−1‖} and M2(μ) := max{1, ‖(BA−μ)−1‖}.

Proof. Let λ∈ρ(AB)\{0}. By (BA − λ)−1 we denote the inverse of BA − λ
which exists due to Lemma 2.1 and maps ran(BA − λ) bijectively onto
dom(BA). Consider the operator Rλ : dom A → X , defined by

Rλx := λ−1[B(AB − λ)−1Ax − x], x ∈ dom A.

For x ∈ dom A we obtain

ARλx = λ−1[(AB − λ + λ)(AB − λ)−1Ax − Ax] = (AB − λ)−1Ax ∈ dom B

and hence

(BA − λ)Rλx = x.

In particular,

dom A ⊂ ran(BA − λ) (2.5)

and

Rλ = (BA − λ)−1|dom A. (2.6)

Choose μ in the resolvent set of BA. Using (2.5) and (2.6) we obtain for
x ∈ ran(BA − λ)

(BA − λ)−1x = (BA − μ)−1x + (λ − μ)Rλ (BA − μ)−1x

= μλ−1(BA−μ)−1x

+(λ − μ)λ−1 [B(AB − λ)−1] [A(BA − μ)−1]x. (2.7)

Since the operators B(AB − λ)−1 and A(BA − μ)−1 are bounded due to the
closed graph theorem, (BA − λ)−1 is bounded as well. Since it is also closed
and densely defined by (2.5), we obtain λ ∈ ρ(BA), which proves (2.1). The
formulas (2.2) and (2.3) now follow from (2.6) and (2.7), respectively.
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Observe that by Lemma 2.2 and the triangle inequality,

‖B(AB−λ)−1‖≤c1

(
‖(AB − λ)−1‖+‖AB(AB−λ)−1‖

)
≤c1M1(λ)(2 + |λ|).

Interchanging the roles of A and B we obtain for μ ∈ ρ(BA)

‖A(BA − μ)−1‖ ≤ c2M2(μ)(2 + |μ|).
Now, it is easy to see that these estimates, together with (2.3), imply (2.4)
with C := max{1, c1c2}. �

For a proof of the following proposition see [5, Remark 2.5] and [6,
Corollary 1.7].

Proposition 2.4. Let ρ(AB) and ρ(BA) be non-empty. Then AB and BA are
densely defined. Moreover, we have

(AB)′ = B′A′ and (BA)′ = A′B′,

where ′ denotes the Banach space adjoint of densely defined linear operators
in X or in Y or between these spaces. In consequence, if X and Y are Hilbert
spaces, then

(AB)∗ = B∗A∗ and (BA)∗ = A∗B∗.

Let T be a closed and densely defined linear operator in a Banach space
X . The approximative point spectrum σap(T ) of T is the set of all complex
numbers λ for which there exists a sequence (xn)∞

n=0 ⊂ dom T with ‖xn‖ = 1
and (T −λ)xn → 0 as n → ∞. Obviously, σap(T ) is a subset of the spectrum
of T . Note that

λ /∈ σap(T ) ⇐⇒ ker(T − λ) = {0} and ran(T − λ) is closed.

The continuous spectrum σc(T ) and the residual spectrum σr(T ) of T are
defined as usual. The operator T is called upper (lower) semi-Fredholm
if ran T is closed and ker T is finite-dimensional (resp. ran T is finite-
codimensional). The operator T is called Fredholm if it is both upper and
lower semi-Fredholm. Note that T is upper (lower) semi-Fredholm if and
only if T ′ is lower (resp. upper) semi-Fredholm. The essential spectrum of T
is defined by

σess(T ) := {λ ∈ C : T − λ is not Fredholm }.

Theorem 2.5. Let ρ(AB) and ρ(BA) be non-empty. Then for λ ∈ C \ {0} the
following statements hold:

(i) ran(AB − λ) is closed if and only if ran(BA − λ) is closed;
(ii) ran(AB − λ) is dense in Y if and only if ran(BA − λ) is dense in X ;
(iii) AB − λ is upper semi-Fredholm if and only if BA − λ is upper semi-

Fredholm;
(iv) AB − λ is lower semi-Fredholm if and only if BA − λ is lower semi-

Fredholm.
In consequence,

σap(AB) \ {0} = σap(BA) \ {0}, σc(AB) \ {0} = σc(BA) \ {0},
σr(AB) \ {0} = σr(BA) \ {0}, σess(AB) \ {0} = σess(BA) \ {0} .
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Proof. Obviously, it is sufficient to prove only one of the implications in each
of the points (i)–(iv).

(i) Assume that ran(BA − λ) is not closed. Then there exists a sequence
(xn)∞

n=0 ⊂ dom(BA) with3

dist (xn, ker(BA − λ)) = 1 and (BA − λ)xn → 0 as n → ∞. (2.8)

Fix μ ∈ ρ(BA) \ {0, λ} and set

yn := (λ − μ)(BA − μ)−1xn.

Then yn ∈ dom((BA)2) for every n ∈ N and

(BA − λ)yn = (λ − μ)
(
xn + (μ − λ)(BA − μ)−1xn

)
= (λ − μ)(xn − yn).

(2.9)

On the other hand, we have

(BA − λ)yn = (λ − μ)(BA − μ)−1(BA − λ)xn → 0 as n → ∞. (2.10)

Consequently, ‖xn − yn‖ → 0 as n → ∞. Furthermore, (2.9) gives

BA(BA − λ)yn = (λ − μ)BA(xn − yn),

which also tends to zero as n → ∞, by (2.8) and (2.10). By Lemma 2.2 we
have

(AB − λ)Ayn = A(BA − λ)yn → 0 as n → ∞. (2.11)

Now we show that

lim inf
n→∞ dist (Ayn, ker(AB − λ)) > 0, (2.12)

which will prove that ran(AB − λ) is not closed. Let us suppose that (2.12)
is not true. Without loss of generality we can assume that

dist (Ayn, ker(AB − λ)) → 0 as n → ∞. (2.13)

From (2.9) and (2.11) we obtain

Axn − Ayn =
1

λ − μ
(AB − λ)Ayn → 0,

and consequently [cf. (2.13)] dist(Axn, ker(AB − λ)) → 0 as n → ∞. This
implies that there exists a sequence (un)∞

n=0 ⊂ ker(AB − λ) with ‖Axn −
un‖ → 0 as n → ∞. Since

(BA − λ)B(AB − μ)−1un = B(AB − λ)(AB − μ)−1un = 0,

we have B(AB −μ)−1un ∈ ker(BA−λ). As B(AB −μ)−1 is bounded we get

dist
(
B(AB − μ)−1Axn, ker(BA − λ)

)
→ 0 with n → ∞.

3 Indeed, consider the quotient Banach space X/ ker(BA − λ) and the injective operator
C that maps the equivalence class f + ker(BA − λ) (f ∈ dom(BA)) to (BA − λ)f . Then,

the range of BA − λ coincides with the range of C and the latter is closed if and only if C
is bounded from below.
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In view of

B(AB − μ)−1Axn = BA(BA − μ)−1xn

= xn + μ(BA − μ)−1xn = xn − yn +
λ

λ − μ
yn

together with ‖xn − yn‖ → 0 as n → ∞ we conclude that

dist (xn, ker(BA − λ)) → 0 as n → ∞,

which is a contradiction to (2.8).
(ii) Let ran(AB − λ) be dense in Y and let x ∈ dom A be arbitrary. We

will show that x ∈ ran(BA − λ), which will finish the proof of (ii).
By assumption there exists a sequence (vn)∞

n=0 ⊂ dom(AB) such that
(AB − λ)vn → Ax as n → ∞. Fix μ ∈ ρ(BA) \ {0}. We show now that
(BA − λ)un → x as n → ∞ where

un := λ−1(BA − μ)−1 ((λ − μ)Bvn + μx) ∈ dom(BA).

To obtain this, observe first that for every u ∈ dom A we have

(BA − μ)−1u = Rμu := μ−1
(
B(AB − μ)−1Au − u

)
(see Theorem 2.3). Thus

(BA − λ)(BA − μ)−1u = BA(BA − μ)−1u − λ(BA − μ)−1u

= B(AB − μ)−1Au − λ

μ

(
B(AB − μ)−1Au − u

)

=
1
μ

(
(μ − λ)B(AB − μ)−1Au + λu

)
.

Substituting u := un (n ∈ N) above and using the fact that RμB ⊂ B(AB −
μ)−1 we obtain

(BA − λ)un =
1

λμ

(
(μ − λ)B(AB − μ)−1A + λ

)
((λ − μ)Bvn + μx)

= x +
λ − μ

λμ

(
(μ − λ)B(AB − μ)−1ABvn + λBvn

−μB(AB − μ)−1Ax
)

= x +
λ − μ

λμ

(
μB(AB − μ)−1(ABvn − Ax) − λμRμBvn

)

= x +
λ − μ

λ
B(AB − μ)−1 ((AB − λ)vn − Ax) ,

which tends to x as n → ∞, since B(AB − μ)−1 is bounded.
Point (iii) is an easy consequence of (i) and Lemma 2.1. To see that (iv)

holds suppose that AB − λ is lower semi-Fredhom. Then (AB − λ)′ is upper
semi-Fredholm. On the other hand the latter operator equals B′A′ − λ, cf.
Proposition 2.4. Since ρ(B′A′) = ρ(AB) �= ∅ and ρ(A′B′) = ρ(BA) �= ∅

we conclude that A′B′ − λ is upper semi-Fredholm. Consequently, BA − λ
is lower semi-Fredholm. The remainder of the theorem follows directly from
(i)–(iv) and Lemma 2.1. �
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3. Local Spectral Properties of T [∗]T and TT [∗]

For an introduction to Krein spaces and operators acting therein we refer to
the monographs [1] and [4] and also to [10]. Throughout this section (K, [· , ·])
will be a Krein space and ‖ · ‖ will be a Banach space norm on K, such that
the indefinite inner product is continuous with respect ‖ · ‖. All such norms
are equivalent and the calculations below do not depend on the choice of one
of these norms.

In what follows T stands for a closed, densely defined linear operator
in K. The adjoint of T with respect to the indefinite inner product [· , ·] will
be denoted by T [∗]. Observe that if T [∗]T ∈ L(K) then T ∈ L(K) as well, by
the closed graph theorem. Let us also note that the operator T [∗]T is sym-
metric, although not necessarily densely defined, cf. [15, Section 3]. This was
a reason for introducing in [15] the additional assumptions (t1)–(t3), quoted
in the introduction, on the operator T . It turns out that assuming (t1) is not
necessary.

Theorem 3.1. If T satisfies (t2) then it satisfies (t1) as well.

Proof. Note that if the resolvent sets of both T [∗]T and TT [∗] are non-empty,
then the domain of T [∗]T is dense in K, by Proposition 2.4. Let J be any
fundamental symmetry of the Krein space and let A∗ denote the adjoint
of a densely defined operator A in the Hilbert space (K, [J ·, ·]). Then from
A[∗] = JA∗J and Proposition 2.4 it follows that

(T [∗]T )[∗] = J(T [∗]T )∗J = JT ∗(T [∗])∗J = (JT ∗J)
(
J(T [∗])∗J

)
= T [∗]T.

Similarly, (TT [∗])[∗] = TT [∗]. �

Recall that a well-known sufficient condition for selfadjointness of a sym-
metric operator in a Krein space is that both λ and λ belong to its resolvent
set for some λ ∈ C. Theorem 3.1 provides another sufficient condition for
selfadjointness of T [∗]T . The example below shows that (t1) and (t2) are not
equivalent.

Example 2. In the following we use the abbreviations

L2 := L2(−1, 1), L2
+ := L2(0, 1), L2

− := L2(−1, 0)

and

AC := AC([−1, 1]), AC+ := AC([0, 1]), AC− := AC([−1, 0]),

where AC(I) denotes the set of all absolutely continuous functions on the
interval I. The Hilbert space scalar product on L2 will be denoted by (· , ·).
Let J be the operator of multiplication by sgn(x) in L2, i.e.

(Jf)(x) := sgn(x)f(x), f ∈ L2, x ∈ (−1, 1).

The inner product [· , ·] := (J ·, ·) is then a Krein space inner product on L2.
Let the operator T be defined as follows: Tf := f ′, f ∈ dom T , where

dom T := {f ∈ L2 : f ∈ AC, f ′ ∈ L2} = H1(−1, 1).
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The adjoint of T in L2 is then given by T ∗f := −f ′, f ∈ dom T ∗, where

dom T ∗ = {f ∈ dom T : f(−1) = f(1) = 0},

see, e.g. [9, Example V.3.14]. We identify L2 with the cartesian product
L2

+ ×L2
− and write every f ∈ L2 as a pair (f+, f−) with f± ∈ L2

±. A straight-
forward calculation shows that the domains of T [∗]T and TT [∗] are given
by

dom T [∗]T = {(f+, f−) ∈ L2 : f± ∈ AC±, f ′
± ∈ AC±, f ′′

± ∈ L2
±

f−(0) = f+(0), −f ′
−(0) = f ′

+(0),

f ′
−(−1) = f ′

+(1) = 0}

and

dom TT [∗] = {(f+, f−) ∈ L2 : f± ∈ AC±, f ′
± ∈ AC±, f ′′

± ∈ L2
±

−f−(0) = f+(0), f ′
−(0) = f ′

+(0),
f−(−1) = f+(1) = 0}.

Moreover, we have T [∗]Tf = −f ′′ for f ∈ dom T [∗]T and TT [∗]f = −f ′′ for
f ∈ dom TT [∗].

Let λ ∈ C \ {0} and let
√

λ be any square root of λ. For x ∈ [−1, 1] we
define the functions

f(x) := cos(
√

λ) cos(
√

λx) + sin(
√

λ) sgn(x) sin(
√

λx)

and

g(x) := sin(
√

λ) sgn(x) cos(
√

λx) − cos(
√

λ) sin(
√

λx).

It is not difficult to see that f ∈ dom T [∗]T, g ∈ dom TT [∗] and that T [∗]Tf =
λf, TT [∗]g = λg. Moreover, one easily verifies that also λ = 0 is an eigenvalue
of both operators, so that

σ(T [∗]T ) = σp(T [∗]T ) = C and σ(TT [∗]) = σp(TT [∗]) = C.

Hence, (t2) fails to hold.
Let us show that (t1) is satisfied. To this end it suffices to prove that

JT [∗]T and TT [∗]J are selfadjoint in (L2, (· , ·)). Let p(x) := sgn(x), x ∈
[−1, 1]. We have

dom JT [∗]T = {f ∈ L2 : f, pf ′ ∈ AC, (pf ′)′ ∈ L2, (pf ′)(±1) = 0},

dom TT [∗]J = {f ∈ L2 : f, pf ′ ∈ AC, (pf ′)′ ∈ L2, f(±1) = 0},

JT [∗]Tf = −(pf ′)′ for f ∈ dom JT [∗]T and TT [∗]Jf = (−pf ′)′ for f ∈
dom TT [∗]J . Hence, these operators are ordinary Sturm–Liouville operators
on [−1, 1] with von Neumann and Dirichlet boundary conditions, respectively.
Such operators are known to be selfadjoint in L2.

We formulate Theorem 2.3 explicitly for the operators T and T [∗] as a
separate result.
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Theorem 3.2. Assume that (t2) holds. Then we have

σ(T [∗]T ) \ {0} = σ(TT [∗]) \ {0},

and there exists a constant C > 0 depending on T only, such that for λ, μ ∈
ρ(T [∗]T ), λ �= 0, the following inequality holds

‖(T [∗]T − λ)−1‖ ≤ CM1(λ)M2(μ)
|λ| (|μ| + |λ − μ| (2 + |λ|)(2 + |μ|)) , (3.1)

where M1(λ) := max{1, ‖(TT [∗] − λ)−1‖} and M2(μ) := max{1, ‖(T [∗]T −
μ)−1‖}.

Remark 3.3. It is not clear whether the condition (t1), weaker then (t2),
implies that the non-zero spectra of T [∗]T and TT [∗] coincide. In view of
Theorem 3.2 we can formulate this question as the following open problem:

Is it possible that (t1) holds and ρ(T [∗]T ) = ∅, while ρ(TT [∗]) �=
∅?

Corollary 3.4. Assume that (t2) is satisfied and that zero belongs to ρ(T [∗]T )∩
σ(TT [∗]). Then zero is a pole of order one of the resolvent of TT [∗].

Proof. It follows from Theorem 3.2 that zero is an isolated spectral point of
TT [∗] and therefore an isolated singularity of the resolvent of TT [∗]. Applying
the estimate (3.1) for λ in a deleted neighborhood of zero we see that it is a
pole of order one. �

It is well-known that the real spectrum of a definitizable selfadjoint
operator in a Krein space decomposes into spectral points of positive and
negative type and a finite set of critical points (see [10]). There are four ways
to distinguish between these three classes of spectral points:
(1) via definitizing polynomials,
(2) via the spectral function,
(3) via the functional calculus,
(4) via approximate eigensequences.

Suppose for example that a selfadjoint operator A in the Krein space (K, [· , ·])
can be decomposed into a direct [· , ·]-orthogonal sum A = A1 [�]A2 of a def-
initizable operator A1 and a selfadjoint operator A2. Furthermore, suppose
that a compact interval Δ is of positive type with respect to A1 and lies
entirely in the resolvent set of A2. Then the operator A is not definitizable
in general, but obviously it has a local spectral function on Δ and the cor-
responding spectral subspaces are Hilbert spaces with respect to the inner
product [· , ·]. Hence, it still makes sense to call the points in σ(A) ∩ Δ spec-
tral points of positive type of A. In applications such a special decomposition
of A is hardly seen to exist. Hence, the only way to identify the points in
σ(A) ∩ Δ as spectral points of positive type is the possibility (4), described
below in detail.

Definition 3.5. Let A be a selfadjoint operator in the Krein space (K, [· , ·]).
A point λ ∈ σ(A) is called a spectral point of positive (negative) type of A if
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λ ∈ σap(A) and if for every sequence (xn)∞
n=0 ⊂ dom A with ‖xn‖ = 1 and

(A − λ)xn → 0 as n → ∞ we have

lim inf
n→∞ [xn, xn] > 0

(
resp. lim sup

n→∞
[xn, xn] < 0

)
.

We denote the set of all spectral points of positive (negative) type of A by
σ++(A) [resp. σ−−(A)]. A set Δ ⊂ C is said to be of positive (negative) type
with respect to A if Δ ∩ σ(A) ⊂ σ++(A) [resp. Δ ∩ σ(A) ⊂ σ−−(A)]. If Δ
is either of positive type or of negative type with respect to A, then we say
that Δ is of definite type with respect to A.

It is well-known that for a selfadjoint operator A we have σ(A) ∩ R ⊂
σap(A). It was shown in [2,11] that σ±±(A) ⊂ R and that for a compact
interval Δ which is of positive type with respect to A there exists an open
neighborhood U in C of Δ such that

U ∩ σ(A) ∩ R ⊂ σ++(A) and U \ R ⊂ ρ(A). (3.2)

Moreover, the resolvent (A − λ)−1 for λ near Δ does not grow faster than
M/| Im λ| with some constant M > 0. This fact gives rise to a local spectral
function of A on Δ. The spectral subspaces given by this spectral function
are then Hilbert spaces with respect to the inner product [· , ·], cf. [11]. An
analogue holds for intervals of negative type with respect to A.

In [2] a larger class of spectral points of a selfadjoint operator in a
Krein space was introduced, namely the spectral points of type π+ and π−.
For example, these arise from spectral points of positive or negative type after
compact perturbations of the operator (see [2, Theorem 19]). Moreover, every
spectral point of a selfadjoint operator in a Pontryagin space with finite rank
of negativity is of type π+. The definition below is equivalent to that in [2],
cf. [2, Theorem 14]. We write xn ⇀ x as n → ∞ if the sequence (xn)∞

n=0 ⊂ K
converges weakly to some x ∈ K.

Definition 3.6. Let A be a selfadjoint operator in the Krein space (K, [· , ·]).
A point λ ∈ σ(A) is called a spectral point of type π+ (type π−) of A if
λ ∈ σap(A) and if for every sequence (xn)∞

n=0 ⊂ dom A with ‖xn‖ = 1, xn ⇀ 0
and (A − λ)xn → 0 as n → ∞ we have

lim inf
n→∞ [xn, xn] > 0

(
resp. lim sup

n→∞
[xn, xn] < 0

)
.

We denote the set of all spectral points of type π+ (type π−) of A by σπ+(A)
[resp. σπ−(A)]. A set Δ ⊂ C is said to be of type π+ (resp. type π−) with
respect to A if Δ ∩ σ(A) ⊂ σπ+(A) [resp. Δ ∩ σ(A) ⊂ σπ−(A)].

It was shown in [3] (for a weaker statement see also [2]) that if Δ is a
compact interval of type π+ with respect to the selfadjoint operator A in K
which contains an accumulation point of the resolvent set of A, then—just
as in the case of an interval of definite type—there exists a neighborhood U
of Δ in C such that (3.2) holds with σ++(A) replaced by σπ+(A). Moreover,
the set Δ ∩ (σπ+(A) \ σ++(A)) is finite. The growth of (A − λ)−1 in U \ R

can be estimated by some power of | Im λ|−1. Also in this case A possesses a
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local spectral function on Δ (with singularities). The spectral subspaces are
Pontryagin spaces with finite rank of negativity.

The following result generalizes Proposition 5.1 of [15]. By R
± we denote

the set {x ∈ R : ±x > 0}.

Proposition 3.7. Assume that (t2) is satisfied. Then the following holds:

(i) σap(T [∗]T ) \ {0} = σap(TT [∗]) \ {0},
(ii) σ±±(T [∗]T ) ∩ R

+ = σ±±(TT [∗]) ∩ R
+,

(iii) σ±±(T [∗]T ) ∩ R
− = σ∓∓(TT [∗]) ∩ R

−,
(iv) σπ±(T [∗]T ) ∩ R

+ = σπ±(TT [∗]) ∩ R
+,

(v) σπ±(T [∗]T ) ∩ R
− = σπ∓(TT [∗]) ∩ R

−.

Proof. Statement (i) is a direct consequence of Theorem 2.5. To prove (ii)
and (iii) consider λ ∈ σ++(TT [∗]) \ {0}. Then λ ∈ σap(T [∗]T ) by (i). Let
(xn)∞

n=0 ⊂ dom(T [∗]T ) be a sequence with ‖xn‖ = 1 and (T [∗]T − λ)xn → 0
as n → ∞. Then define

yn := (λ − μ)(T [∗]T − μ)−1xn ∈ dom((T [∗]T )2)

with some μ ∈ ρ(T [∗]T ) \ {0}. This sequence satisfies lim infn→∞ ‖Tyn‖ > 0
and

lim
n→∞ ‖yn − xn‖ = lim

n→∞ ‖(T [∗]T − λ)yn‖ = lim
n→∞ ‖(TT [∗] − λ)Tyn‖ = 0.

This can be seen with a very similar argumentation as in the proof of Theo-
rem 2.5 (i) (with A = T and B = T [∗]). Hence,

lim inf
n→∞ [xn, xn] = lim inf

n→∞ [yn, yn]

=
1
λ

lim inf
n→∞

(
[Tyn, T yn] − [(T [∗]T − λ)yn, yn]

)

=
1
λ

lim inf
n→∞ [Tyn, T yn],

and similarly

lim sup
n→∞

[xn, xn] =
1
λ

lim sup
n→∞

[Tyn, T yn].

Since λ ∈ σ++(TT [∗]), we have

lim sup
n→∞

[Tyn, T yn] ≥ lim inf
n→∞ [Tyn, T yn] > 0.

This shows that λ ∈ σ++(T [∗]T ) if λ > 0 and λ ∈ σ−−(T [∗]T ) if λ < 0.
To show that (iv) and (v) hold, let λ ∈ σπ+(TT [∗]) \ {0}. Then the

same argument as above applies with the additional assumption that (xn)∞
n=0

converges weakly to zero. It remains to show that (Tyn)∞
n=0 (or at least a

subsequence) converges weakly to zero. Since T (T [∗]T − μ)−1 is bounded,
(Tyn)∞

n=0 is bounded. It is therefore no restriction to assume that there exists
some v ∈ K such that Tyn ⇀ v as n → ∞. From xn ⇀ 0 and ‖yn − xn‖ → 0
we conclude that yn ⇀ 0 as n → ∞. Since T is (weakly) closed, v equals
zero. �
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In the next definition we recall the notion of locally definitizable opera-
tors. The version below is taken from [8], see also [7]. We denote the one-point
compactification of the real line and the complex plane by R and C, respec-
tively. Moreover, we set C

± := {z ∈ C : ± Im z > 0}.

Definition 3.8. Let Ω be a domain in C which is symmetric with respect to
R with Ω ∩ R �= ∅ such that Ω ∩ C

+ and Ω ∩ C
− are simply connected.

A selfadjoint operator A in K is called definitizable over Ω if the following
holds:

(i) The set σ(A)∩ (Ω \ R) does not have any accumulation points in Ω and
consists of poles of the resolvent of A.

(ii) For each closed subset Δ of Ω ∩ R there exist an open neighborhood U
of Δ in C and numbers m ≥ 1,M > 0 such that

‖(A − λ)−1‖ ≤ M
(1 + |λ|)2m−2

|Im λ|m , λ ∈ U \ R.

(iii) Each point λ ∈ Ω∩R has an open connected neighborhood Iλ in R such
that each component of Iλ \ {λ} is of definite type with respect to A.

In [8, Theorem 3.6] it was shown that a selfadjoint operator A in the
Krein space K is definitizable if and only if it is definitizable over C. The
following theorem was proved in [15] for the special case Ω = C.

Theorem 3.9. Assume that (t2) holds and let Ω be an open domain in C as
in Definition 3.8. Then T [∗]T is definitizable over Ω if and only if TT [∗] is
definitizable over Ω.

Proof. Let us assume that TT [∗] is definitizable over Ω. By Theorem 3.2 and
Proposition 3.7 the conditions (i) and (iii) in Definition 3.8 are easily seen to
be satisfied by T [∗]T . Hence, it remains to check that condition (ii) holds for
T [∗]T . Let Δ be a closed subset of Ω ∩ R. Then, as TT [∗] is definitizable over
Ω, there exist an open neighborhood U of Δ in C and numbers m ≥ 1,M > 0
such that

‖(TT [∗] − λ)−1‖ ≤ M
(1 + |λ|)2m−2

| Im λ|m (3.3)

holds for all λ ∈ U \ R. It is obviously no restriction to assume M ≥ 1.
Moreover, as the sequence (1 + |λ|)2n−2/| Im λ|n is monotonically increasing
for each λ ∈ C \ R, we may assume m ≥ 2, such that the right hand side of
(3.3) is not smaller than 1.

Fix some μ ∈ ρ(T [∗]T )\{0}. Then, by Theorem 3.2 we have for λ ∈ U\R:

‖(T [∗]T − λ)−1‖ ≤ D

|λ| (|μ| + |λ − μ| (2 + |λ|)(2 + |μ|)) M1(λ),

with

M1(λ) = max{1, ‖(TT [∗] − λ)−1‖} ≤ M
(1 + |λ|)2m−2

| Im λ|m
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and some D > 0 depending on T and μ only. Hence, with c := |μ| we obtain
for all λ ∈ U \ R that

‖(T [∗]T − λ)−1‖ ≤ const
|λ| (c + (2 + c)(c + |λ|) (2 + |λ|)) (1 + |λ|)2m−2

| Im λ|m

≤ const
|λ| (1 + (c + |λ|) (2 + |λ|)) (1 + |λ|)2m−2

| Im λ|m

≤ const
|λ|

(
1 + 2max{1, c}(1 + |λ|)2

) (1 + |λ|)2m−2

| Im λ|m

≤ const
|λ| (1 + |λ|)2 (1 + |λ|)2m−2

| Im λ|m

≤ const
(1 + |λ|)2(m+1)−2

| Im λ|m+1
,

with some const > 0 which is independent of λ. �

In the following let A be a selfadjoint operator in (K, [· , ·]) which is def-
initizable over some domain Ω. If A is unbounded and the point ∞ belongs
to Ω then we say that ∞ is a spectral point of positive (negative) type of A
if both components of I∞ \ {∞} [see Definition 3.8(iii)] are of positive (resp.
negative) type. We mention that this can also be formulated with the help
of approximate eigensequences (see [2]).

As is well-known (see e.g. [8]), the operator A possesses a local spectral
function E on Ω ∩ R. The projection E(Δ) is always a bounded selfadjoint
operator in the Krein space K and is defined for all finite unions Δ of con-
nected subsets of Ω ∩ R the endpoints of which are of definite type with
respect to A. We denote this system of sets by RΩ(A). The spectral points of
definite type of A can be characterized with the help of E: a point λ ∈ R is
a spectral point of positive (negative) type of A if and only if for some open
Δ ∈ RΩ(A) with λ ∈ Δ the space (E(Δ)K, [· , ·]) (resp. (E(Δ)K,−[· , ·])) is a
Hilbert space (cf. [8, Theorem 2.15]).

In analogy to definitizable operators we say that a point λ ∈ Ω∩σ(A)∩R

(or λ = ∞ ∈ Ω if A is unbounded) is a critical point of A if it is not a spectral
point of definite type of A. This is obviously equivalent to the fact that for
any Δ ∈ RΩ(A) with λ ∈ Δ the space (E(Δ)K, [· , ·]) is indefinite. The set of
critical points of A in Ω will be denoted by cΩ(A).

The critical point λ of A is called regular if there exists c > 0 such that
for some (and hence for any) Δ0 ∈ RΩ(A) with Δ0 ∩ cΩ(A) = {λ} we have
‖E(Δ)‖ ≤ c for all Δ ∈ RΩ(A),Δ ⊂ Δ0. If λ is not regular it is called a singu-
lar critical point. If for any Δ ∈ RΩ(A) with λ ∈ Δ the space (E(Δ)K, [· , ·])
is not a Pontryagin space, then λ is called an essential critical point of A. If
∞ ∈ Ω is a critical point then it is always essential. In [2, Theorem 26] it was
shown that a critical point λ �= ∞ is essential if and only if it is neither of
type π+ nor of type π−.

The statements (i), (ii), (iv) and (v) of the following theorem were
proved in [15] for the case that T [∗]T and TT [∗] are definitizable. It turns
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out that these results also hold when T [∗]T and TT [∗] are only definitizable
over some domain Ω.

Theorem 3.10. Assume that (t2) holds and let T [∗]T (and hence also TT [∗])
be definitizable over some domain Ω as in Definition 3.8. Then for λ ∈ R\{0}
the following statements hold:

(i) λ is a critical point of T [∗]T if and only if it is a critical point of TT [∗];
(ii) λ is a regular critical point of T [∗]T if and only if it is a regular critical

point of TT [∗];
(iii) λ is an essential critical point of T [∗]T if and only if it is an essential

critical point of TT [∗];
Moreover,
(iv) if zero is a singular critical point of T [∗]T then zero belongs to σ(TT [∗]);
(v) if infinity is a critical point of T [∗]T then infinity is of definite type with

respect to TT [∗].

Proof. The assertions (i), (iii) and (v) are immediate consequences of Prop-
osition 3.7. The proof of (ii) follows analogous lines as the proof of Theorem
4.2(iii) in [15], with the use of the local spectral function instead of the spec-
tral function of a definitizable operator. We leave the details to the reader.
Point (iv) results from the equality of non-zero spectra of T [∗]T and TT [∗]

and from the fact that an isolated point of the spectrum cannot be a singular
critical point. �

We conclude this paper with two examples. In the first one the operator
T [∗]T is easily seen to be locally definitizable, while TT [∗] has a relatively
complicated form.

Example 3. Let (K0, [· , ·]) be an infinite–dimensional Krein space and let
K = K0 × K0 with the standard product indefinite metric. Let T0 ∈ L(K0) be
such that T

[∗]
0 T0 is locally definitizable over some set Ω (see e.g. Example 1)

and let T1 ∈ L(K0) be an operator having a neutral range, which is equivalent
to T

[∗]
1 T1 = 0. Consider the operator

T =
(

T0 0
T1 0

)
∈ L(K).

Then

T [∗]T =
(

T
[∗]
0 T0 0
0 0

)
∈ L(K),

and it is clearly locally definitizable over Ω. Although the operator TT [∗] has
a more complicated form, namely

TT [∗] =

(
T0T

[∗]
0 T0T

[∗]
1

T1T
[∗]
0 T1T

[∗]
1

)
∈ L(K),

we know by Theorem 3.9 that it is locally definitizable over Ω as well.

In the following example we apply our results to a Sturm–Liouville oper-
ator with a PT -symmetric potential.
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Example 4. The notation below is taken from Example 2, but this time the
indefinite inner product on L2 given by the fundamental symmetry

J̃f := f(−x), f ∈ L2

(here and later on we will write for brevity g(−x) instead of g ◦ φ, where
φ(x) = −x). Let T be the differential operator

dom T = H1(−1, 1), T f = f ′ + qf, f ∈ dom T,

where the complex-valued function q belongs to C1([−1, 1]). Further condi-
tions on q will be given later on. Then

dom T [∗] = {f ∈ dom T : f(−1) = f(1) = 0}
and

T [∗]f = f ′ + q(−x)f, f ∈ dom T [∗].

Consequently, the operator TT [∗] is a differential operator with Dirichlet
boundary conditions:

dom TT [∗] = {f ∈ L2 : f, f ′ ∈ AC, f ′′ ∈ L2, f(−1) = f(1) = 0},

and

TT [∗]f = f ′′ + (q(−x) + q)f ′ + (−q′(−x) + q · q(−x))f, f ∈ dom TT [∗].

On the other hand

dom T [∗]T = {f ∈ L2 : f, f ′ ∈ AC, f ′′ ∈ L2, f ′(±1) + q(±1)f(±1) = 0},

T [∗]Tf = f ′′ + (q̄(−x) + q)f ′ + (q′ + q · q̄(−x))f, f ∈ dom T [∗]T.

Let us now consider functions q which satisfy the condition

q(−x) = −q(x), x ∈ [−1, 1].

In this case

TT [∗]f = f ′′ + (−q′ − q2)f.

and

T [∗]Tf = f ′′ + (q′ − q2)f.

Moreover, the potentials V1 := −q′ − q2 and V2 := q′ − q2 are PT -symmetric,
i.e. for i = 1, 2 we have

Vi(−x) = Vi(x), x ∈ [−1, 1].

Hence, the operator −TT [∗] belongs to the family of operators considered in
[12], Section 4 (cf. [13] as well). It was shown therein that the spectrum of
−TT [∗] consists of isolated eigenvalues and that—with possible exception of
a finite number of points—these eigenvalues form a real sequence which accu-
mulates to +∞ and alternates between eigenvalues of positive and negative
type. In particular, TT [∗] is definitizable over C. For simplicity let us assume
that

q(−1), q(1) ∈ R.
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Then the operator

Nf = f ′′, dom N = dom T [∗]T.

is selfadjoint in the Hilbert space L2 and hence the resolvent set of the
bounded perturbation T [∗]T of N is nonempty. By Theorem 3.9 the operator
T [∗]T is definitizable over C, the nonzero spectra of T [∗]T and TT [∗] coincide
by Theorem 3.2 and the sign types of the eigenvalues of definite type of T [∗]T
in (−∞, 0) are opposite to those of TT [∗] according to Proposition 3.7.

Acknowledgements

We would like to thank our colleagues Piotr Budzyński and Carsten Trunk for
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