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Abstract. In this paper, an integrated agent model is introduced addressing  
mutually interacting Situation Awareness and Functional State dynamics in de-
cision making. This shows how a human’s functional state, more specific a hu-
man’s exhaustion and power, can influence a human’s situation awareness, and 
in turn the decision making. The model is illustrated by a number of simulation 
scenarios.  
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1   Introduction 

An agent’s decision making in realistic situations strongly depends on the situational 
awareness of the agent; e.g., [2]. When the agent is not aware of certain aspects of the 
situation that are relevant for the actions to undertake, this may result in actions that 
are ineffective or even counter-productive. In [5] a computational agent model was 
introduced to address situational awareness. Having a sufficient extent of situation 
awareness is a good basis for effective decision making. However, in demanding 
circumstances this easily may be compromised due to longer periods with high work-
load and high levels of stress, and due to this, accumulating exhaustion leading to a 
less optimal functional state; e.g., [1], [3], [4], [10], [12]. Therefore the extent of situ-
ation awareness is not constant, but may fluctuate over time. This was not taken into 
account in the model for situation awareness presented in [5].  

The current paper addresses how situation awareness may be affected by increased 
exhaustion, and how this may lead to less optimal decision making. To this end the 
situation awareness model from [5] is integrated with a model for functional state in 
relation to exhaustion introduced in [7], and a decision model presented in [6]. The 
resulting model shows how depending on fluctuations in load, extra effort may be 
exerted, but if periods of high load have longer durations, due to the accumulated 
exhaustion the agent’s situation awareness becomes less, and the decision making less 
optimal. Moreover, the model shows how in subsequent periods of lower load recov-
ery from exhaustion takes place, and this results in higher extents of situation aware-
ness and more optimal decision making. 

The paper is structured as follows. In Section 2 a brief introduction of the back-
ground literature is presented. Section 3 summarizes the three existing models used in 
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the integrated agent model. In Section 4 it is described how the models were inte-
grated to obtain the integrated model. Section 5 shows some of the simulations that 
have been performed. Finally, Section 6 is a discussion. 

2   Theoretical Background 

In literature on workload and performance, it is often stated that in order to cope with 
situations of high task demands, people can make strategic choices [3], in order to 
protect performance degradation on the primary task. One of these choices is to in-
crease the effort contributed to the task [11]. Unfortunately, as resources are limited, 
this can only be done for a limited amount of time. Another possibility is to make a 
shift to simpler strategies within the task, resulting in less use of working memory. An 
example of this can be found in driving behavior, where car drivers reduce their driv-
ing speed when faced with higher task demands [1].  

Thus, while it can increase performance on the primary task, a reduced use of 
working memory can compromise secondary task goals, such as processing speed 
[3]. In addition, a decrease in the use of working memory can result in less attention 
available for peripheral cues [10]. Such attentional tunneling, together with less 
processing capacity available will result in a reduction of situation awareness in 
high workload conditions [2]. Finally, also decision making is affected by the con-
tribution of effort (e.g., [12]). For example, research showed that in a situation with 
time-pressure people adjust their decision making strategy to less effortful strategies 
and will take more risky decisions [9]. The importance of information on human’s 
own performance in the regulation of effort is shown in [11], where people invested 
higher levels of effort when they were informed of failure.  Also, a lack of aware-
ness of a human’s own performance (e.g. as a consequence of low effort invest-
ment) may result in an impairment of effort regulation [3]. This is confirmed by 
Matthews and Desmond [8] who found an effort reduction as a consequence of a 
reduced awareness of performance impairment with the increase of fatigue. In the 
integration of the three models (as described in Section 3 below) the above de-
scribed literature will be taken as a source of inspiration for making the connection 
between the models. 

3   The Models Used as a Point of Departure 

This section describes the three models that underlie the integrated agent model pre-
sented in this paper. First, the situation awareness model is described, followed by the 
decision making model, and finally, the model expressing the functional state. 
 

Situation Awareness Model. The model for situation awareness used is taken from 
[5]. Fig. 1 shows the main concepts of the model in the upper left box, whereby the 
white circles denote the parameters of the model, whereas the dark circles represent 
processes. For the sake of brevity, the model will merely be described on a high level. 
For more details of the model, see [5]. 
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Fig. 1. Individual models and their integration 

The essential idea behind the model (which tries to represent human situation aware-
ness as defined in the literature) is that agents form beliefs about the current situation 
in the world. They do this based upon a mental model they have which expresses 
connections between these beliefs (e.g. if I have the belief that a holds, then I also 
believe that b holds). These beliefs are present on two levels: simple beliefs, which 
express simple facts about the world, and complex belief which encompass more 
complex statements about the world, and are triggered by combinations of multiple 
simple beliefs. Each of these beliefs has a certain activation value. The process of 
forming situation awareness starts when new observations are performed by the 
agent. This is then an input for the process belief formation of current situation. In 
the process, the observations cause updated activation levels of simple beliefs. The-
reafter, the mental model is used to calculate new activation levels based upon the 
connections between beliefs. How many of such influence calculations are per-
formed depends upon the reasoning time parameter. Furthermore, the threshold pa-
rameter expresses how high the activation level of a belief should be before being 
considered in the updating process. After the reasoning time has been reached, new 
activation levels for each of the beliefs are present, representing the judgment of the 
current situation of the agent. The next step is formation of future belief, which 
makes predications of occurrences in the future (in the form of time stamped beliefs 
with a certain activation level). Given that both the current and prospected situation 
are updated, a next round of observations can be performed (referred to as observa-
tion formation), the precise observations to be performed are also derived using the 
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model. This depends upon the future beliefs (what does the agent think will happen), 
the goals (the agent focuses on important observations with respect to the goals), and 
the working memory size for observations (i.e. an agent cannot perform an infinite 
amount of observations). These observations are then performed, resulting in new 
input for the belief formation process, etcetera. 
 
Decision Making Model. Based upon a certain judgment of the world (e.g. formed 
by the models for situation awareness described in Section 3.1), the agent can decide 
on what actions to perform. This is described in the model on decision making, fol-
lowing [6]. In the model (expressed in the upper right box of Fig. 1), emotions and 
rational utility are both considered as important elements in the decision making 
process. When looking at the emotional decision making part (the process emotional 
decision making), the options that can be decided upon are weighed based upon the 
feeling of the options with respect to the goals the agent has (e.g. a fighter pilot might 
have a negative feeling with the option of returning to base due to an enemy encoun-
ter bad for the goal of defeating the enemy). Each goal is hereby attributed with a 
certain weight, and each option has an emotional score with respect to each goal. A 
weighed sum is taken for each option. The more rational part (rational decision mak-
ing) evaluated the options based upon the current situation (e.g. the complex beliefs 
such as part of the situation awareness model) and how well certain options are suited 
for this situation. Both processes result in a numerical evaluation of the options, and 
these are combined in the actual decision making process. How much each of the 
evaluations weighs depends on the rationality factor of the agent. For more details on 
the decision making model, see [6]. 
 
Functional State Model. The last model is a model representing the functional state 
of a human. A human’s functional state can be defined as the combination of cogni-
tive factors such as performance, effort and exhaustion (e.g., [4]). The model is shown 
graphically in the bottom part of Fig. 1 and presented in more detail in [7]. The model 
describes how an agent selects the amount of power to provided (i.e. how much effort 
does the agent want to put into a certain process). It is assumed that the agent strives 
for a certain performance quality. In order to achieve this quality, the agent must meet 
certain task demands. To meet these demands, the agent can input a certain power in 
the particular task at hand. This power is a combination of the basic power (po) and 
the extra power (pextra). The basic power is inspired by a critical point, which is often 
seen in literature on exercises and sports. Once an agent needs to provide power 
above this point (i.e., the agent needs to provide extra power pextra) the agent eventual-
ly will become exhausted. Once the exhaustion level reaches a certain level, the agent 
can no longer provide this additional power, and fall back to the basic power level. 

4   Integrating the Three Models 

In this Section, the three models that have been explained independently in Section 3 
are combined into one model. This then results in a full agent to determine how much 
effort to spend, derive the situation using the selected appropriate effort within  
the situation awareness model, and derive an appropriate action given the perceived 
situation. How these models are connected will be explained in Section 4.1.  
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Thereafter, the strategic reasoning which takes place in various parts of the combined 
model is explained in more detail. 

4.1   Interactions between the Models 

Fig. 1 also shows the connections between the three models. The dashed arrows are 
the links between the concepts in the different models. Starting with the model for the 
functional state of the agent determines how much power to provide, this amount of 
power is an input for a strategic component that determines how to divide this power 
across the situation awareness model and the decision making model. To be more 
precise, it determines what value to select for: 

1. The threshold in the situation awareness model (when are states considered). 
2. The reasoning time in the situation awareness model (how much time is available 

to make calculations using the mental model). 
3. The amount of working memory to be spent on observations to feed the situation 

awareness model. 
4. The rationality factor in the decision making process (are more shortcuts used or 

is there more time to make a rational choice). 

How these choices are precisely made and how these are quantified is explained in 
Section 4.2. Note that these choices are based upon the description of the relevant 
work as presented in Section 2 and are not trivial to define, especially due to the fact 
that the literature often does not describe these relationships in a very precise manner. 
The second element is to connect the situation awareness model with the decision 
making model. This combination is established by means of the complex beliefs about 
the current situation (i.e., the activation levels thereof). This judgment of the situation 
can be used to derive what options are appropriate. 

The last link between the models is the derivation of the performance quality. The 
idea is that the performance quality can be determined by means of the goals that have 
been set by the agent (which are part of both the decision making model and the situa-
tion awareness model) and the current judgment of the situation (i.e. the complex 
beliefs), i.e. the performance quality expresses in how far the current situation (at 
least he situation perceived by the agent) contributes to the current goals. Note that 
this is not an objective measure, but the judgment of the agent itself, which is used as 
a steering instrument by the agent. It is assumed that each goal has a certain activation 
level (as already explained in the individual models): 

goal_activation_level(goal, t) 

Furthermore, the complex beliefs have a certain activation value as well: 

complex_belief_activation_level(complex_belief, t) 

In order to derive the performance quality, knowledge is present in the agent which 
expresses how much a certain complex belief contributes to a certain goal: 

contributes_to_goal(complex_belief, goal, t) 

The performance quality is determined by calculating per goal in how far the current 
situation fulfills this particular goal: 

goal_contribution(complex_belief, goal, t) = complex_belief_activation_level(complex_belief, t) ⋅  
contributes_to_goal(complex_belief, goal, t) 
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Then, the maximum is taken across all complex beliefs as these already provide an 
integrated view of the whole situation. 

overall_goal_contribution(goal, t) =  
       max(goal_contribution(complex_belief1, goal, t), ....,  goal_contribution(complex_beliefn, goal, t) 

Finally, the weighed sum is taken over all the goals to derive the performance quality: 

current_performance_quality(t) = G:GOALS goal_activation_leve(G, t) ⋅ overall_goal_contribution(G, t) 

4.2   Strategic Reasoning 

Strategic reasoning takes place in two parts of the model. First of all, in the model of 
the functional state of the agent as the agent needs to determine how much power is to 
be provided. The second strategic choice takes place in the strategic division of re-
sources among the various elements that require power in the other models. Again, 
these choices made in this component are grounded within Psychology and are forma-
lizations of high-level theories found in the literature. 

4.2.1 Determining the Extra Power to be Provided 
The first step that the agent needs to take is to determine how much power it wants to 
provide in order to achieve the task at hand. How much power the agent will deliver 
mainly depends on the performance quality the agent wants to deliver (desired per-
formance quality), and the current performance quality. For the agent, the precise 
relationship between the power being provided and the performance quality is not 
crisp and clear: the agent needs to undergo a process of trying to put more power in, 
and seeing whether that results in a suitable performance quality (i.e. the current per-
formance quality is approximately equal to the desired performance quality). In case 
the agent is underperforming, it will provide more power; in case it is performing 
above the desired quality, it will tend to reduce the provided power. Essentially, the 
agent only varies the power provided in addition to the basic power level (i.e. pextra). 
How much the agent will change its power setting can be determined by means of a 
number of alternative algorithms. The simplest algorithm involves a standard in-
crease/decrease of the power with a value γ. 

pextra(t+Δt) = Pos(pextra(t) - γ⋅th(σ, desired_performance_quality(t), current_performance_quality(t))⋅Δt) 

In this formula, the function th(σ,τ,V) is a threshold function that maps the value V to 
the interval [-1,1] whereby values of V > τ result in a value greater than 0 (and vice 
versa), and a value equal to the threshold results in an evaluation to 0. An example of 
such a function is for instance: 

     th(σ, τ, V)  = (2⋅(1/(1+e-4σ(V-τ)))-1) 

The function Pos(X) evaluates to X in case X ≥ 0 and 0 otherwise. 
A second option to determine the power setting is to use a more advanced sensitivi-

ty-based approach whereby the agent takes the previously experiences influence of 
the provided power upon the performance quality into account. This can be formu-
lated by means of a mathematical equation as follows: 

pextra(t+Δt) = Pos( pextra(t) +  
β⋅(p_pq_sens(t)⋅(desired_performance_quality(t)-current_performance_quality(t))⋅Δt) 
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where 

p_pq_sens(t) = (pextra(t) - pextra(t-Δt))/ (current_performance_quality(t)-current_performance_quality(t-Δt)) 

The idea of the above equation is that the effect of a difference in additional power 
with respect to the performance quality is calculated, and this sensitivity is used to 
adapt the extra power to be provided. 

The approach mentioned above can work well, but the disadvantage is that the 
agent does not know in advance whether the power provided results in a reasonable 
performance quality. It is more a matter of trial and error. A more realistic agent 
would try a certain power in his mind, and project whether this effort would indeed be 
sufficient. This is therefore the way in which it is assumed to take place in this paper 
as well. The agent performs one fictive run of the model (thereby using an own world 
model) to see whether the intended power results in a sufficient quality. Based upon 
this the agent can still make adjustments based upon the strategies described above. 

4.2.2 Strategic Distribution of Resources 
The second strategic part about which the agent needs to reason lies within the stra-
tegic division of the resources which are spent by the agent over the various parts of 
the reasoning. More in specific, the component determines how to spread resources 
over: (1) the threshold used to update the beliefs for situation awareness, (2) the rea-
soning time within the situation awareness model, (3) the working memory available 
to perform observations, and (4) the rationality factor used in the decision making 
process. In order to facilitate the strategic reasoning process, for each of the factors a 
translation to power needs to be made. Table 1 shows a mapping from the dedicated 
values for the parameters in the model to an equivalent value which expresses the 
actual power value. 

Table 1. Mapping of model parameter values to power 

Parameter Values Power equivalents 
threshold [0,1] [max_threshold_cost, 0] 
reasoning time [0, number_of_connections] [0, number_of_connections ⋅ pow-

er_per_connection] 
working memory 
observations 

[0, ∀o:observations cost(o)] [0, ∀o:observations cost(o)] 

rationality factor [0,1] [0, full_rationality_cost] 

 
It can be seen that the threshold normally has a value between 0 and 1, whereby 

0 indicates that for all beliefs the connections should be considered whereas 1 ex-
presses that this should only be done for beliefs that are completely activated. The 
power equivalent is precisely the opposite: the higher the threshold, the less power 
it costs (since fewer connections need to be considered). The maximum cost (per-
forming all calculations) in terms of power is a constant which is called 
max_threshold_cost. The reasoning time to perform updates is expressed in the 
number of cycles that are being passed, which is limited to the number of connec-
tions. It is assumed that for each cycle (i.e. each connection that is being calculated) 
a certain power (power_per_connection) is required to obtain a mapping to a power 
value. With respect to the working memory for observations a cost value is already 
associated with each observation (in terms of power), and the maximum value is 
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simply the sum of all cost of all possible observations. Finally, for the rationality 
factor in the decision making process, a value between 0 and 1 is possible, express-
ing fully non-rational decision making (which is assumed to cost no power) and 
fully rational decision making. Full rational decision making is assumed to be asso-
ciated with a power of full_rationality_cost. 

Given that these mappings are present, the agent first of all needs to determine how 
to spread the total power it has decided to spend on the task across the various para-
meters. Currently, a simple algorithm is assumed which simply assigns fixed weights 
to the different parameters: wthreshold, wreasoning_time, wwm_observations, wrationality. Hereby, the 
sum of the weights is required to be 1. Once the total power p(t) has been derived, the 
power spent on the various aspects is calculated by a simple multiplication: 

pthreshold(t) = wthreshold⋅p(t) 
preasoning_time(t) = wreasoning_time⋅p(t) 
pwm_observations(t) = wwm_observations⋅p(t) 
prationality(t) = wrationality⋅p(t) 

In the next step, a translation of these values to an appropriate parameter value can 
take place. 

     vthreshold(t) = 1 – (pthreshold(t)/max_threshold_cost) 
     vreasoning_time = preasoning_time(t)/power_per_connection 
     vwm_observation(t) = pwm_observation(t) 
     vrationality(t) = (prationality(t)/full_rationality_cost) 

Also within the strategic component more advanced strategies can be deployed such 
as a sensitivity-based approach whereby the weight of the parameter in the weighed 
sum expressed above is determined by the sensitivity of that parameter. For the sake 
of brevity, this option has however not been explored within this paper. 

5   Simulation  

In this Section, an extensive case study is conducted to evaluate the behavior of the 
integrated model. First, the case study itself is described, followed by the results of 
the application of the model. 

5.1   Case Study Description 

In this case, the case study concerns a military scenario obtained from domain ex-
perts. In the scenario a pilot has to detect whether (enemy) contacts (i.e. other planes 
in this case) are near and if so, what kind of threat these contacts pose. As a result, the 
pilot has to decide what action to undertake. The detection of the other planes is per-
formed by means of a radar warning receiver, which can provide a number of obser-
vations, including certain intensities of beeps coming from the receiver (expressing 
for instance whether the enemy is near, or has the ability to fire a missile due to a 
locked radar), the direction of the other plane. The more detailed mental model used 
in the situation awareness model that relates these observations into judgments on the 
current situation is expressed in Appendix A1. Complex beliefs that are formed in-
volve element such as whether the plane is a possible target of a hostile attack. 

                                                           
1 http://www.cs.vu.nl/~mhoogen/sa/sa_appendix_A.pdf 
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Given that the agent is aware of the situation, there are 5 possible decisions avail-
able in this scenario: fly cap (start flying in a circle to patrol a certain dedicated area) 
beam (maneuver to prevent enemy radar detection), beam dive (beam and dive to a 
lower altitude) run (move away from the potentially hostile plane) and maintain cap 
(remain flying the cap). In order to decide upon these actions, five different goals can 
be active within the agent: fly cap (patrolling a certain area), avoid detected (avoid an 
enemy plane from detecting you), avoid track (avoid an enemy plane from tracking 
your positions), avoid lock (avoid an enemy plane from locking a radar upon you, 
resulting in the possibility of firing a missile), defeat missile (try to defeat a missile 
being fired at you). Given this scenario, two elements are set dynamically, namely the 
goals (see Section 5.1.1 on the approach used), and the world model itself (i.e. how do 
action influence, the world, and how are observations obtained from this world), pre-
sented in Section 5.1.2. 
 
5.1.1   Goals 
The activity value of each goal is determined at each point in time, taking the activity 
value of complex beliefs into account, such that the agent adjusts its goals based on 
the situation. The influences of each complex belief to the available goals are known 
to the agent beforehand: 

     influences_goal(complex_belief, goal, t) 

And the total influence of all complex beliefs to a goal is calculated by taking into 
account this influence and the activation value of all complex beliefs:  

     total_goal_influence(goal, t) = 
     CB:Complex Beliefs complex_belief_activation_level(complex_belief, t) ⋅influences_goal(complex_belief, goal, t) 

Finally, the relative activation value of each goal is calculated by dividing the to-
tal_goal_influence by the sum of the total goal influences for all goals.  
    goal_activation_level(goal, t)= (total_goal_influence(goal, t)/ (G:Goal: total_goal_influence(goal, t))*2 

 
5.1.2 World Model 
A world model has been developed to complete the cycle from actions derived by the 
agents to observations in the world. The world model has been developed in two 
parts. First of all, there is a standard development of the world (in this case the enemy 
taking the necessary steps to perform a full attack). This standard development con-
sists of a table which indicates how observations contribute to other observations (e.g. 
an observation of another pilot having a lock on the plane will contribute to the obser-
vation that a missile is fired). This consists of numbers on the interval [-1, 1] where -1 
indicates a very negative influence whereas 1 expresses a positive influence. Assume 
two observations o1 and o2 whereby the influence of o1 upon o2 is calculated. The new 
value for o2 is then calculated as follows: 

     activation_value(o2, t + Δt) = activation_value(o2, t) + 
(Pos((1- activation_value(o2, t) ⋅ activation_value(o1, t) ⋅ influence_value(o1, o2, t) +  
Neg(activation_value(o2, t) ⋅ activation_value(o1, t) ⋅ influence_value(o1, o2, t)⋅Δt 

First, a single observation is selected, after which the above equation is sequentially 
applied for each of the influencing observations, followed by the second observation 
being selected for recalculation, etcetera.  
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The agent can of course influence this standard development by means of per-
forming certain actions in the world, which is the second part of the world model. 
This expresses how actions influence observations (e.g. a dive results in a negative 
influence on an observation of a lock on the plane). This is done in an identical man-
ner as presented before for the standard development (except that it of course now 
concerns actions that influence the observations). The combination of the standard 
development with the actions then results in appropriate observation results for the 
agent.  

5.2 Simulation Settings 

In this section, some simulations are presented. First, the setting of the key values 
are presented, followed by the results. Note that due to the fact that not all details of 
the individual models have been presented, some model specific parameters for 
these models are not explained further. In all simulations that are shown, the 
weights in the strategic component were divided based upon the following weight 
values: wthreshold and wreasoning_time were both set to 0.4 and wrationality and wwm_observations 
were both 0.1. In the translation of the power values to parameter values, the fol-
lowing model settings were used: max_threshold_cost = 6, power_per_connection 
= 0.15, full_rationality_cost = 5. Furthermore, the exhaustion budget (the maxi-
mum amount of exhaustion that can build up in the functional state) has been set to 
1000 and no recovery was allowed (according to the FS model, exhaustion builds 
up with the extra power provided).  

Simulations were performed varying the basic power between 0 and 100 and the 
desired performance quality between 0.5 and 1. Graphs of simulation results are pre-
sented that best represent the integrated model behavior in Figs 2 to 6).   Fig. 2 and 3 
present simulations with a relatively high desired performance quality of 0.8. In the 
situation where the basic power is low (Fig. 2), the extra power that is contributed 
increases each point in time as the current performance quality is always lower than 
the desired PQ. After time point 32, no more extra power can be contributed because 
the maximum exhaustion budget of 1000 is reached. When the basic power is high 
(Fig. 3), this is not the case as only a low amount of Pextra needs to be contributed in 
order to achieve the desired Performance Quality.   

 

  
 

Fig. 2. Performance quality (a) and Pextra (b) with a desired PQ of 0.8 and a basic power of 20 
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Fig. 3. Performance quality (a) and Pextra (b) with a desired PQ of 0.8 and a basic power of 100 

In Fig. 4 it can be seen that when the desired performance quality is relatively low 
(i.e. 0.5), it is possible to achieve this level even though the basic power is low. Also, 
the extra power that is contributed is adjusted continuously, either downwards with 
the increase of performance quality or upwards with the decrease of performance 
quality. Fig. 5 shows the performance quality when the basic power is 100. In this 
case, no extra power needed to be contributed to achieve the desired performance 
quality of 0.5 (throughout the entire simulation, Pextra was zero).  
 

  

Fig. 4. Performance quality (a) and Pextra (b) with a desired PQ of 0.5 and a basic power of 20 

In addition, a case was simulated where the basic power was very low (Fig. 6). The 
performance quality in this case stays very high, which shows the subjectivity of 
performance. As a consequence of the low power contribution, the agent’s situation  

 

  

Fig. 5. Performance quality with a desired 
PQ of 0.5 and basic power of 100 

Fig. 6. Performance quality with a basic pow-
er of 10 
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awareness is very low, which results in a low awareness on its own performance 
qualtiy. Since this is the case, no extra power will be contributed to improve the 
agent’s situation awareness. 

6   Discussion 

In this paper, an integrated agent model was presented addressing the dynamics of 
mutually interacting situation awareness (e.g., [2]) and functional state (e.g., [1], [3], 
[4]) in decision making. By a number of simulation scenarios it was shown how a 
human’s exhaustion and power, affect situation awareness and decision making. Al-
though models exist for situation awareness or functional state separately, no models 
exist addressing the integrated process in a decision making context, as far as the 
authors know. 

The integrated agent model was developed in the context of the national project 
Smart Bandits in cooperation with the National Aerospace Laboratory (NLR), aimed 
at developing simulation-based training facilities for fighter pilots. As a next step on 
the basis of the presented model it is planned to develop a software agent that can act 
as an automated enemy fighter for a trainee. 
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