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Abstract. In social interaction between two persons usually a person displays 
understanding of the other person. This may involve both nonverbal and verbal 
elements, such as bodily expressing a similar emotion and verbally expressing 
beliefs about the other person. Such social interaction relates to an underlying 
neural mechanism based on a mirror neuron system, as known within Social 
Neuroscience. This mechanism may show different variations over time. This 
paper addresses this adaptation over time. It presents a computational model 
capable of learning social responses, based on insights from Social Neuroscience. 
The presented model may provide a basis for virtual agents in the context of 
simulation-based training of psychotherapists, gaming, or virtual stories. 
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1   Introduction 

Showing mutual empathic understanding is often considered a form of glue between 
persons within a social context. Recent developments within Social Neuroscience 
have revealed that a mechanism based on mirror neurons plays an important role in 
generating and displaying such understanding, both in nonverbal form (e.g., smiling 
in response to an observed smile) and in verbal form (e.g., attributing an emotion to 
the other person); cf. [11, 19]. Such empathic responses vary much over persons. For 
example, when for a person these responses are low or nonexistent, often the person is 
considered as ‘having some autistic traits’. Within one person such differences in 
responding may occur as well over time, in the sense of learning or unlearning to 
respond. This is the focus of this paper.  

It is often claimed that the mirroring mechanism is not (fully) present at birth, but has 
to be shaped by experiences during lifetime; for example, [3, 11, 14]. For persons (in 
particular children) with low or no social responses, it is worth while to offer them 
training sessions in imitation so that the mirror neuron system and the displayed social 
responses may improve. This indeed turns out to work, at least for the short term, as has 
been reported in, for example [7, 13]. Thus evidence is obtained that the mirror neuron 
system has a certain extent of plasticity due to some learning mechanism. In [14] it is 
argued that Hebbian learning (cf. [8, 10]) is a good candidate for such a learning 
mechanism. 
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In this paper a Hebbian learning mechanism is adopted to obtain an adaptive agent 
model showing plasticity of the agent’s mirror neuron system. The model realises 
learning (and unlearning) of social behaviour (in particular, empathic social 
responses), depending on a combination of innate personal characteristics and the 
person’s experiences over time obtained in social context. A person’s experiences 
during lifetime may concern self-generated experiences (the person’s responses to 
other persons encountered) or other-generated experiences (other persons’ responses 
to the person). By varying the combination of innate characteristics and the social 
context offering experiences, different patterns of learning and unlearning of socially 
responding to other persons are displayed. 

In Section 2 the adaptive agent model for Hebbian learning of social behaviour is 
presented. In Section 3 some simulation results are discussed, for different 
characteristics and social contexts. In Section 4 a mathematical analysis of the 
learning behaviour is made. Section 5 concludes the paper. 

2   The Adaptive Agent Model Based on Hebbian Learning  

The basic (non-adaptive) agent model (adopted from [20]) makes use of a number of 
internal states for the agent self, as indicated by the nodes in Fig. 1. A first group of 
states consists of the sensory representations of relevant external aspects: a sensory 
representation of a body state (labeled by) b, of a stimulus s, and of another agent B, 
denoted by srb, srs, srB, respectively. Related sensor states are ssb, sss, ssB, which in turn 
depend on external world states wsb, wss, wsB. Moreover, pbb and pcB,b denote 
preparation states for bodily expression of b and communication of b to agent B. 
Following [5], the preparation for bodily expression b is considered to occur as an 
emotional response on a sensed stimulus s. Feeling this emotion is based on the 
sensory representation srb of b. These b’s will be used as labels for specific emotions. 
Communication of b to B means communication that the agent self  believes that B 
feels b; for example: ‘You feel b’, where b is replaced by a word commonly used for 
the type of emotion labeled in the model by b.  

The states indicated by psc,s,b are considered control or super mirror states (cf. [11], 
pp. 200-203, [12], [16]) for context c, stimulus s and body state b; they provide 
control for the agent’s execution of (prepared) actions, such as expressing body states 
or communications, or regulation of the gaze. Here the context c can be an agent B, which can be another agent (self-other distinction), or the agent self, or c can be sens 
which denotes enhanced sensory processing sensitivity: a trait which occurs in part of 
the population, and may affect social behaviour (e.g., [1, 4]). One reason why some 
children do not obtain a sufficient amount of experiences to shape their mirror neuron 
system, is that they tend not to look at other persons due to enhanced sensory 
processing sensitivity for face expressions, in particular in the region of the eyes; e.g., 
[4, 15]. When observing the face or eyes of another person generates arousal which is 
experienced as too strong, as a form of emotion regulation the person’s own gaze 
often is taken away from the face or eyes observed; cf. [9]. Such an avoiding 
behavioural pattern based on emotion regulation may stand in the way of the 
development of the mirror neuron system. In summary, three types of super mirroring 
states may (nonexclusively) occur to exert control as follows:  
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• if a super mirror state for agent B occurs (self-other distinction), a prepared 
communication will be performed and directed to B  

• if it occurs for self, the agent will execute the related prepared actions 
• if it occurs for sens, the agent will regulate some aspects of functioning to 

compensate for enhanced sensitivity: to suppress preparation and expression of 
related bodily responses, and to adapt the gaze to avoid the stimulus s.  

 

Expressing body state b is indicated by effector state ebb, communication of b to B by ecb,B, and regulated gaze to avoid stimulus s by egs. These effector states result in a 
modified body state indicated by wsb and an adapted gaze avoiding s indicated by wgs. 

In case the stimulus s is another agent B’s body expression for b (denoted by sb,B, 
for example, a smiling face), then mirroring of this body state means that the agent 
prepares for the same body expression b; e.g., [11, 16, 19]. If this prepared body state 
is actually expressed, so that agent B can notice it, then this contributes an empathic 
nonverbal response, whereas communication of b to B is considered an empathic 
verbal response. The bodily expression of an observed feeling b together with a 
communication of b to B occurring at the same time is considered a full empathic 
response of self to B. These two elements for empathic response are in line with the 
criteria for empathy explicated in [6], p. 435 (assuming true, faithful bodily and 
verbal expression): (1) presence of an affective state in a person, (2) isomorphism of 
the person’s own and the other person’s affective state, (3) elicitation of the person’s 
affective state upon observation or imagination of the other person’s affective state, 
(4) knowledge of the person that the other person’s affective state is the source of the 
person’s own affective state.  

 

Fig. 1. Overview of the adaptive agent model 

The arrows connecting the nodes in Fig. 1 indicate the dynamical relationships 
between the states. Most of these connections have been given strength 1, but six of 
them (indicated by dotted arrows) have a dynamical strength, adapted over time 
according to Hebbian learning. Note that the graph of the model shown in Fig. 1 
shows three loops: the body loop to adapt the body, the as-if body loop to adapt the 

body loop

as-if body loop

gaze adaptation loop
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internal body representation and integrate felt emotions in preparations for responses, 
and the gaze adaptation loop. The effect of these loops is that for any new external 
situation encountered, a (numerical) approximation process takes place until the 
internal states reach an equilibrium (assuming that the external situation does not 
change too fast). However, as will be seen in Section 3, it is also possible that a 
(static) external situation leads to periodic oscillations (limit cycle behaviour).  

The connection strengths are indicated by ωij with the node labels i and j (the 
names of the nodes as indicated in Fig. 1) as subscripts. A distinction is made between 
expression states and the actual states for body and gaze. The first type of states are 
the agent’s effector states (e.g., the muscle states), whereas the body and gaze states 
result from these. The sensory representation of a body state b is not only affected by 
a corresponding sensor state (via the body loop), but also by the preparation for this 
body state (via the as-if body loop). Preparation for a verbal empathic communication 
depends on feeling a similar emotion, and adequate self-other distinction.  

Super mirroring for an agent A (self  or B) generates a state indicating on which 
agent (self-other distinction) the focus is, and whether or not to act. Super mirroring 
for enhanced sensory processing sensitivity, generates a state indicating in how far the 
stimulus induces a sensory body representation level experienced as inadequately 
high. To cover regulation to compensate for enhanced sensory processing sensitivity 
(e.g., [1]), the super mirroring state for this is the basis for three possible regulations: 
of the prepared and expressed body state, and of the gaze.  

A first way in which regulation takes place, is by a suppressing effect on 
preparation of the body state (note that the connection strength ωpssens,s,bpbb  from 
node pssens,s,b  to node pbb is taken negative). Such an effect can achieve, for example, 
that even when the agent feels the same as the other agent, an expressionless face is 
prepared. In this way a mechanism for response-focused regulation (suppression of 
the agent’s own response) to compensate for an undesired level of emotion is 
modelled; cf. [9]. Expressing a prepared body state depends on a super mirroring state 
for self and a super mirroring state for enhanced sensitivity with a suppressing effect 
(note that ωpssens,s,bebb is taken negative). This is a second way in which a mechanism 
for response-focused regulation is modelled to compensate for an undesired level of 
arousal. A third type of regulation to compensate for enhanced sensory processing 
sensitivity, a form of antecedent-focused regulation (attentional deployment) as 
described in [9], is modelled by directing the own gaze away from the stimulus. Note 
that node egs for avoiding gaze for stimulus s has activation level 1 for total avoidance 
of the stimulus s, and 0 for no avoidance (it indicates the extent of avoidance of s). To 
generate a sensor state for stimulus s, the gaze avoidance state for s is taken into 
account: it has a suppressing effect on sensing s (note that ωwgssss is taken negative). 

The model has been specified in dynamical system format (e.g., [18]) as follows. 
Here for a node label k, by ak(t) the activation level (between 0 and 1) of the node 
labeled by k at time t is denoted, by input(k) the set of node labels is denoted that 
provides input (i.e., have an incoming arrow to node k in Fig. 1), and th(W)  is a 
threshold function.  
   

        
ௗ ௔௞(௧)ௗ௧    =   [ ݄ݐ(݆݅݊ݐݑ݌(݇) ݆݇ ݆ܽ(ݐ)) െ  (1)         [ (ݐ)݇ܽ
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The parameter γ  is an update speed factor, which might differ per connection, but has 
been given a uniform value 0.8  in Section 3. The following logistic threshold function th(W) with σ > 0 a steepness and τ ≥ 0 a threshold value has been used in the 
simulations (except for the sensor states): 

  th(W) = (
ଵ1+ ௘െ( ܹ െ )  -  ଵ1+ ௘ ) / (1 - 

ଵ1+ ௘)    or   th(W) = 
ଵ1+ ௘െ( ܹ െ )   (2) 

 

The former threshold function can be approximated by the simpler latter expression 
for higher values of στ (e.g., σ  higher than 20/τ). For the sensor states for b and B the 
identity function has been used for th(W), and for the sensor state of s the update 
equation has been taken more specifically to incorporate the effect of gaze on the 
sensor state (note that the connection strength ݏݏݏݏ݃ݓ  from the world gaze state to 
the sensor state is taken negative): 

 

         
ௗ ܽݏݏݏ(௧)ௗ௧    =   [1)(ݐ)ݏݏݓܽ ݏݏݏݏݏݓ + (ݐ)ݏ݃ݓܽ ݏݏݏݏ݃ݓ) െ  (3)      [ (ݐ)ݏݏݏܽ 

 
Hebbian Learning   
The model as described above was adopted from [20]; as such it has no adaptive 
mechanisms built in. However, as put forward, for example, in [3, 11, 14] learning 
plays an important role in shaping the mirror neuron system. From a Hebbian 
perspective [10], strengthening of a connection over time may take place when both 
nodes are often active simultaneously (‘neurons that fire together wire together’). The 
principle goes back to Hebb [10], but has recently gained enhanced interest by more 
extensive empirical support (e.g., [2]), and more advanced mathematical  
formulations (e.g., [8]). In the adaptive agent model the connections that play a role 
in the mirror neuron system (i.e., the dotted arrows in Fig. 1) are adapted based on a 
Hebbian learning mechanism. More specifically, such a connection strength ω is 
adapted using the following Hebbian learning rule, taking into account a maximal 
connection strength 1, a learning rate η, and an extinction rate ζ (usually small):  

 
 ௗ݆݅(ݐ)ௗ௧  = γ [η ai(t)aj(t)(1 - ωij(t)) - ζωij(t) ] = γ [η ai(t)aj(t) - (η ai(t)aj(t) + ζ) ωij(t)]  (4) 

 
 

A similar Hebbian learning rule can be found in [8], p. 406. By the factor 1 - ωij(t) the 
learning rule keeps the level of ωij(t)  bounded by 1 (which could be replaced by any 
other positive number); Hebbian learning without such a bound usually provides 
instability. When the extinction rate is relatively low, the upward changes during 
learning are proportional to both a1(t)   and a2(t)   and maximal learning takes place 
when both are 1. Whenever one of them is 0 (or close to 0) extinction takes over, and 
ω slowly decreases (unlearning). This learning principle has been applied 
(simultaneously) to all six connections indicated by dotted arrows in Fig. 1. In 
principle, the adaptation speed factor γ, the learning rate η and extinction rate ζ, could 
be taken differently for the different dynamical relationships. In the example 
simulations discussed in Section 3 uniform values have been used: γ = 0.8, η = 0.2 
and ζ = 0.004.  
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3   Example Simulations of Learning Processes  

A number of simulation experiments have been conducted for different types of 
scenarios, using numerical software. For the examples discussed here the values for 
the threshold and steepness parameters are as shown in Table 1. Note that first the 
value 3 for sensitivity super mirroring threshold was chosen so high that no enhanced 
sensitivity occurs. The speed factor γ was set to 0.8, the learning rate η = 0.2 and 
extinction rate ζ = 0.004. The step size Δt was set to 1. All nonadapted connection 
strengths have been given value 1, except those for suppressing connections  

 

ωpssens,s,bpbb, ωpssens,s,bebb  and ωwgssss 
 

which have been given the value -1. The scenario was chosen in such a way that after 
every 100 time units another agent is encountered for a time duration of 25 units with 
a body expression that serves as stimulus. Initial values for activation levels of the 
internal states were taken 0. A first pattern, displayed in Fig. 2, is that in normal 
circumstances, assuming initial strengths of the learned connections of 0.3, the model 
is indeed able to learn the empathic responses as expected. Here (and also in Fig. 3) 
time is on the horizontal axis and activation levels at the vertical axis. 
 

 

Fig. 2. Example scenario of the Hebbian learning process  

The upper graph shows levels for body representation, body preparation, expressed 
body states and communication. The lower graph shows the learning patterns for the 
connections (the dotted arrows in Fig. 1). Note that the two connections  

ωsrb pbb    (for emotion integration)   and   ωpbbsrb   (as-if body loop)  

have the same values, as they connect the same nodes srb and pbb, and have been 
given the same initial values. Moreover, also the connections  

ωsrB psB,s,b   and ωsrs psB,s,b  
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have the same values, as in the considered scenario the input nodes for srB and srs 
have been given the same values, and also the initial values for the connections. This 
can easily be varied. In Fig. 2 it is shown that when regular social encounters take 
place, the connections involved in responding empathically are strengthened to values 
that approximate 1. Notice that due to the relatively low initial values of the 
connections chosen, for some of them first extinction dominates, but later on this 
downward trend is changing into an upward trend. Accordingly the empathic 
responses become much stronger, which is in line with the literature; e.g., [7], [13]. 

Table 1. Settings for threshold and steepness parameters 

 

How long the learned patterns will last will depend on the social context. When 
after learning the agent is isolated from any social contact, the learned social 
behaviours may vanish due to extinction. However, if a certain extent of social 
contact is offered from time to time, the learned behaviour is maintained well. This 
illustrates the importance of the social context. When zero or very low initial levels 
for the connections are given, this natural learning process does not work. However, 
as other simulations show, in such a case (simulated) imitation training sessions 
(starting with the therapist imitating the person) still have a positive effect, which is 
also lasting when an appropriate social context is available. This is confirmed by 
reports that imitation training sessions are successful; e.g., [7], [13].  

In addition to variations in social environment, circumstances may differ in other 
respects as well. From many persons with some form of autistic spectrum disorder it 
is known that they show enhanced sensory processing sensitivity; e.g., [1], [4]; this 
was also incorporated in the model. Due to this, their regulation mechanisms to avoid 
a too high level of arousal may interfere with the social behaviour and the learning 
processes. Indeed, in simulation scenarios for this case it is shown that the adaptive 
agent model shows an unlearning process: connection levels become lower instead of 
higher. This pattern is shown in Fig. 3. Here the same settings are used as in Table 1, 
except the sensitivity super mirroring threshold which was taken 1 in this case, and 
the initial values for the connection weights, which were taken 0.7. It is shown that the 
connections  

 

ωsrs pbb  (for mirroring) and  ωsrb pbb   and ωpbbsrb  (for emotion integration) 
 

are decreasing, so that the responses become lower over time. 
 

 

  
representing body state
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Fig. 3. Learning under enhanced sensory processing sensitivity 

This is due to the downregulation which, for example, leads to a gaze that after a 
short time is taken away from the stimulus, and returns after the arousal has 
decreased, after which the same pattern is repeated; this is shown in the upper graph 
(the two or three peaks per encounter). Note that the values related to super mirroring 
of and communication to another agent stay high: the downregulation as modelled 
does not have a direct effect on these processes. When downregulation is also applied 
to communication, also these connections will extinguish. When for such a case 
imitation training sessions are offered in a simulation, still the connection levels may 
be strengthened. However, these effects may not last in the natural context: as soon as 
these sessions finish, the natural processes may start to undo the learned effects. To 
maintain the learned effects for this case such training sessions may have to be 
repeated regularly.  

4   Formal Analysis  

The behaviour of the agent’s adaptation process can also be investigated by formal 
analysis, based on the specification for the connection strength ω = ωij from node i to 
node j. 

 
 

    
ௗ(௧)ௗ௧  + γ (ηai(t)aj(t) + ζ) ω(t)  = γηai(t)aj(t)            (5) 

 

This is a first-order linear differential equation with time-dependent coefficients: ai 
and aj  are functions of t which are considered unknown external input in the equation 
for ω. An analysis can be made for when equilibria occur:  

 

 
ௗ(௧)ௗ௧  = 0  ⇔   (ηaiaj  + ζ) ω = ηaiaj   ⇔   ω  = 

௔௜௔௝ 
௔௜௔௝  ା        (6) 

 

One case here is that ω = 0  and one of ai and aj is 0. When ai and aj are nonzero, (6) 
can be rewritten as (since aiaj ≤ 1):  
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ω = 1 /(1  + ζ/ηaiaj)  ≤  1 /(1  + ζ/η)            (7) 
 

 

This shows that when no extinction takes place (ζ = 0), an equilibrium for ω of 1 is 
possible, but if extinction is nonzero, only an equilibrium < 1 is possible. For 
example, when η = 0.2 and ζ = 0.004  as in Section 3, then an equilibrium value will 
be ≤ 0.98, as also shown in the example simulations.  

Further analysis can be made by obtaining an explicit analytic solution of the 
differential equation in terms of the functions ai and aj. This can be done as follows. 
Take  

 W(t) = ׬ ௧௧଴(ݑ)݆ܽ(ݑ)݅ܽ   (8)                ݑ݀
 

the accumulation of ai(t)aj(t) over time from t0 to t; then 
 

 
ௗܹ(ݐ)ௗ௧   = ai(t)aj(t)                  (9) 

 

Given this, the differential equation (5) for ω can be solved by using an integrating 
factor as follows: 

 

 

    
ௗ݁(ܹ(ݐ)+(ݐെݐబ))(௧)ௗ௧  = γηai(t)aj(t)   ݁(ௐ(௧)ା(௧ି௧0))      (10) 

 

from which it can be obtained: 
 

ω(t) = (0ݐ) ݁െ൫ܹ(ݐ)+(ݐെݐ଴)൯ +  γη ׬  ௧௧଴ ai(u)aj(u)   ݁ି൫(ௐ(௧)ିௐ(௨))ା(௧ି௨)൯du  (11) 

 

For the special case of constant aiaj= c, from (11) explicit expressions can be obtained, 
using  W(t) = c(t-t0) and W(t)-W(u) = c(t-u): 

 

׬   ௧௧଴ ai(u)aj(u)   ݁ି൫(ௐ(௧)ିௐ(௨))ା(௧ି௨)൯du =  ׬  ௧௧଴ c ݁ି൫௖ା)(௧ି௨)൯du  

  =  
ଵ

(ܿ+)) [1 -  ݁ି൫௖ା)(௧ି௧0)൯ ]         (12) 

 

Although in a simulation usually aiaj will not be constant, these expressions are still 
useful in a comparative manner. When aiaj  ≥ c on some time interval, then by 
monotonicity the above expressions (11) for ω with aiaj = c  provide a lower bound for 
ω. From these expressions it can be found that 

 
ηc /(ηc+ζ) – ω(t) = [ηc /(ηc+ζ) – ω(0)] ݁ି(ࢉା)࢚    (13) 

 
which shows the convergence rate to an equilibrium for constant aiaj= c, provides an 
upper bound for the deviation from the equilibrium. This has half-value time  

 

ln(2)/γ(ηc+ζ) = 0.7 /γ(ηc+ζ)          (14) 
 

When aiaj  ≥ c on some time interval, then by the monotonicity mentioned earlier, the 
upward trend will be at least as fast as described by this expression. For example, for 
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the settings in Section 3 with c = 0.2  this provides half-value time 20. This bound 
indeed is shown in simulations (e.g., in Figs 2 and 3) in time periods with aiaj around 
or above 0.2.  

For scenarios in which encounters with other agents alternate with periods when 
nobody is there, as in Figs 2 and 3, a fluctuating learning curve is displayed. A 
question is how the balance between the different types of episodes should be in order 
to keep the learned effects at a certain level. Given the indications (14) above a rough 
estimation can be made of how long a time duration td1 of increase should last to 
compensate a time duration td2 of decrease: 

 
 

 ݁ି(௖ା)௧ௗଵ = ݁ି௧ௗଶ      td2/td1 =  (ηc+ζ)/ζ  = 1+ηc/ζ      (15) 
 
 

For example, when η = 0.2 and ζ = 0.004, as in Section 3, for c = 0.2  this provides: td2/ td1 = 11. This means that for this case under normal circumstances around 9%  of 
the time an encounter with another agent should take place leading to aiaj  ≥ 0.2 to 
maintain the empathic responses. This indeed corresponds to what was found by 
simulation experiments varying the intensity of encounters.  

5   Discussion 

To function well in social interaction it is needed that a person displays a form of 
empathic understanding, both by nonverbal and verbal expression. Within Social 
Neuroscience it has been found how such empathic social responses relate to an 
underlying neural mechanism based on a mirror neuron system. It is often suggested 
that innate factors may play a role, but also that a mirror neuron system can only 
function after a learning process has taken place (e.g., [3], [11], [14]): the strength of 
a mirror neuron system may change over time within one person. In this paper an 
adaptive agent model was presented addressing this aspect of adaptation over time, 
based on knowledge from Social Neuroscience.  

The notion of empathic understanding taken as a point of departure is in line with 
what is formulated in [6]. The learning mechanism used is based on Hebbian learning, 
as also suggested by [14]. It is shown how under normal conditions by learning the 
empathic responses become better over time, provided that a certain amount of social 
encounters occur. The model also shows how imitation training (e.g., [7], [13]) can 
strengthen the empathic responses. Moreover, it shows that when enhanced sensory 
processing sensitivity [1] occurs (e.g., as an innate factor), the natural learning 
process is obstructed by avoidance behaviour to downregulate the dysproportional 
arousal [9].  

In [17] a computational model for a mirror neuron system for grasp actions is 
presented; learning is also incorporated, but in a biologically implausible manner, as 
also remarked in [14]. In contrast, the presented model is based on a biologically 
plausible Hebbian learning model, as also suggested by [14]. The presented agent 
model provides a basis for the implementation of virtual agents, for example, for 
simulation-based training of psychotherapists, or of human-like virtual characters.  
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