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ABSTRACT

We focus on the space Eω
c , the countable infinite power of complete Erdős

space Ec. Both spaces are universal spaces for the class of almost zero-

dimensional spaces. We prove that Eω
c has the property that it is stable

under multiplication with any complete almost zero-dimensional space.

We obtain this result as a corollary to topological characterization theo-

rems that we develop for Eω
c . We also show that σ-compacta are negligible

in Eω
c and that the space is countable dense homogeneous.

1. Introduction

All topological spaces are assumed to be separable and metrizable. An element

X of a class of topological spaces is called the stable space for that class

if for every nonempty Y in the class we have that X × Y is homeomorphic

to X . Note that a stable space for a given class, if it exists, is topologically

unique. Important examples of stable spaces are the Cantor set 2ω for the

zero-dimensional compacta, the space of irrational numbers P for the complete

zero-dimensional spaces, the Hilbert cube Q for the compact absolute retracts,

and Hilbert space �2 for the complete absolute retracts; see [4], [2], [22, §7.8],
and [26].

In [18] Paul Erdős introduced the space Ec which consists of all vectors in

the real Hilbert space �2 all of whose coordinates are elements of the convergent

sequence {0}∪{1/n : n ∈ N
}
. He proved that this space is totally disconnected,
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homeomorphic to its own square, but one-dimensional. Note that Ec is a closed

subspace of �2 and thus complete. This space is now known as complete Erdős

space.

Dijkstra, van Mill and Steprāns [15] proved that Ec is not homeomorphic to

its own countably infinite Cartesian power Eωc . This result produced solutions

to a series of problems in the literature; see [15] and [11]. Both Ec and Eωc are

universal elements of the class of almost zero-dimensional spaces. A space X

is called almost zero-dimensional if every point x ∈ X has arbitrarily small

neighbourhoods U that can be written as an intersection of clopen subsets of the

space. It was observed in [15] that Eωc is “more universal” than Ec in the sense

that every complete almost zero-dimensional space admits a closed imbedding

in Eωc but that Ec does not contain a closed copy of Eωc . This prompted Dijkstra,

van Mill and Steprāns to speculate that Eωc is the “maximal” element of the class

of almost zero-dimensional spaces. We provide conclusive evidence in support

of this idea by proving that Eωc is the stable space for the complete almost

zero-dimensional spaces. We therefore call Eωc stable complete Erdős space.

We prove the stability of Eωc by finding topological characterizations of the

space. In §4 we present an extrinsic characterization, by which we mean a char-

acterization that depends on a particular imbedding of the space in a space with

more structure, in our case the graph of a certain vector valued function, called

an ω-Lelek function. From there we proceed by finding intrinsic characteriza-

tions in §5, namely characterizations in terms of purely topological concepts

that are internal to the space. Finally, in §6 we prove the stability theorem

and we also prove that σ-compacta are negligible in Eωc and that the space is

countable dense homogeneous.

Dijkstra, van Mill and Steprāns [15] proved that the autohomeomorphism

groups of the universal Menger continua and the Sierpiński carpet are not

homeomorphic to Ec, by showing that these spaces share certain topological

properties with Eωc which Ec lacks. The main conjecture is that all these home-

omorphism groups are homeomorphic to stable complete Erdős space. We like

to think that our characterization theorems for Eωc are a step towards a possible

proof of this conjecture.
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2. Definitions and preliminaries

Let ω be the ordinal {0, 1, . . .} as usual. We let I denote the closed interval

[0, 1].

Definition 2.1: A subset A of a space X is called a C-set in X if A can be

written as an intersection of clopen subsets of X . A space is called totally

disconnected if every singleton is a C-set. A space is called almost zero-

dimensional if every point of the space has a neighbourhood basis consisting

of C-sets of the space. If Z is a set that containsX , then we say that a (separable

metric) topology T on Z witnesses the almost zero-dimensionality of X

if dim(Z,T) ≤ 0, O ∩X is open in X for each O ∈ T, and every point of X has

a neighbourhood basis in X consisting of sets that are closed in (Z,T). We will

also say that the space (Z,T) is a witness to the almost zero-dimensionality of

X .

Every zero-dimensional space is almost zero-dimensional and every almost

zero-dimensional space is totally disconnected. Almost zero-dimensionality is

clearly hereditary and preserved under products. Oversteegen and Tymchatyn

[23] have shown that every almost zero-dimensional space is at most one-dimen-

sional; see also [21, 1].

Remark 2.2: Clearly, a space X is almost zero-dimensional if and only if there

is a topology on X witnessing this fact. Let Z be a witness to the almost

zero-dimensionality of some space X and let O be open in X . Then since X

is separable metric we can write O as a union of countably many sets that are

closed in Z. So every open subset of X is Fσ in Z and every closed subset of

X is Gδ in X with respect to the witness topology.

A function ϕ : X → [−∞,∞] is called upper semi-continuous (USC) if

{x ∈ X : ϕ(x) < t} is open in X for every t ∈ R. If ϕ : X → [0,∞) is USC then

we define

(2.1) Gϕ0 = {(x, ϕ(x)) : x ∈ X and 0 < ϕ(x)}

with the topology that is inherited from X×R. According to [12, Lemma 4.11]

we have the following connection between witness topologies and USC functions;

see also Abry and Dijkstra [1, Corollary 3].
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Lemma 2.3: Let X be a space and let Z be a zero-dimensional space that

contains X as a subset (but not necessarily as a subspace). Then the following

statements are equivalent:

(1) Z is a witness to the almost zero-dimensionality of X and

(2) there exists a USC function ϕ : Z → I such that the map h : X → Gϕ0
that is defined by the rule h(x) = (x, ϕ(x)) is a homeomorphism.

Definition 2.4: Let ϕ : X → [0,∞] be a function and let X be a subset of a

metric space (Y, d). We define extY ϕ : Y → [0,∞] by

(2.2) (extY ϕ)(y) = lim
ε↘0

(sup{ϕ(z) : z ∈ X with d(z, y) < ε}) for y ∈ Y ,

where we use the convention sup ∅ = 0.

Note that the metric on Y is mentioned strictly for the sake of convenience

and that the definition of extY ϕ does not depend on the choice of d. It is easily

seen that extY ϕ is always USC, that it extends ϕ whenever ϕ is USC, and that

the graph of ϕ is dense in the graph of extY ϕ whenever X is dense in Y .

Consider now the real Hilbert space �2. This space consists of all sequences

z = (z0, z1, z2, . . . ) ∈ Rω such that
∑∞

i=0 z
2
i < ∞. The topology on �2 is

generated by the norm ‖z‖ = (
∑∞

i=0 z
2
i )

1/2. The following two spaces were

introduced by Erdős [18]: Erdős space

(2.3) E = {x ∈ �2 : xi ∈ Q for each i ∈ ω}

and complete Erdős space

(2.4) Ec = {x ∈ �2 : xi ∈ {0} ∪ {1/n : n ∈ N} for each i ∈ ω}.

Erdős showed that these spaces are one-dimensional, totally disconnected, and

homeomorphic to their own square. The topologies of E and Ec are characterized

in [10, 12] and [13], respectively. Both spaces are universal elements of the class

of almost zero-dimensional spaces; see [12, Theorem 4.15]. It is proved in [12,

Corollary 9.4] that E is homeomorphic to Eω.

If 0 < n < ω then consider [−∞,∞]n =
∏n−1
i=0 [−∞,∞]. We will represent

elements t ∈ [−∞,∞]n as follows: t = (t0, t1, . . . , tn−1) = (ti)i<n. We put

0 = (0, . . . , 0) ∈ Rn and 1 = (1, . . . , 1) ∈ Rn. We also denote [−∞,∞]ω =∏
i∈ω[−∞,∞] with analogous conventions. If 0 < n < ω then we let the

projection ξn : [−∞,∞]ω → [−∞,∞]n be given by ξn(t) = (t0, . . . , tn−1).
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Now let 0 < ν ≤ ω. We define a partial order ≤ on [−∞,∞]ν by r ≤ t if

ri ≤ ti for every i < ν. If ri < ti for every i < ν, then we put r 
 t. We extend

the arithmetic operations on R over Rν by coordinate-wise evaluation. Thus,

for instance, r + t = (ri + ti)i<ν . Similarly we define log : [0,∞]ν → [−∞,∞]ν

by log t = (log ti)i<ν , where we extended the logarithm with log 0 = −∞ and

log∞ = ∞. We will also use the absolute value |t| = (|ti|)i<ν .
Let ϕ = (ϕi)i<ν and ψ = (ψi)i<ν be functions from spaces X respectively

Y to [−∞,∞]ν . A pair (h,β) is called a homeomorphism from ϕ to ψ

if h : X → Y is a homeomorphism and β : X → (0,∞)ν is continuous such

that ψ ◦ h = β·ϕ, where · stands for coordinate-wise multiplication. Being

homeomorphic is obviously an equivalence relation for functions. We call ϕ

ν-USC if every ϕi is USC. We define

(2.5) M(ϕ) =

(
sup
x∈X

|ϕi(x)|
)
i<ν

∈ [0,∞]ν.

We will also use the notations

(2.6) Gϕ0 = {(x,ϕ(x)) : x ∈ X and 0 
 ϕ(x)}

and

(2.7) Lϕ0 = {(x, t) : x ∈ X , t ∈ [0,∞]ν , and t ≤ ϕ(x)}

both equipped with the topology inherited from X × [0,∞]ν .

Remark 2.5: If ϕ : X → [0,∞) is USC, then clearly Lϕ0 is a closed subset of

X × R. In addition, Gϕ0 = (X × (0,∞)) ∩ Lϕ0 \ ⋃∞
i=1 L

ϕ−1/i
0 is a Gδ-subset of

X×R. These observations extend obviously to ν-USC functions. It is also clear

that if ϕ and ψ are homeomorphic, then Gϕ0 is homeomorphic to Gψ0 .

Definition 2.6: Let 0 < ν ≤ ω and let ϕ : X → [0,∞)ν be ν-USC with dimX =

0 (and hence X �= ∅). We call ϕ a ν-Lelek function if Gϕ0 is dense in Lϕ0 . A

1-Lelek function is simply called a Lelek function. If 0 < n < ω, then ϕ is

a greatest n-Lelek function if ϕ is an n-Lelek function such that for every

open cover U of X there exists a refinement P that is a clopen partition of X

with the property that for each P ∈ P the restriction ϕ�P assumes a greatest

value, that is, there is a p ∈ P with ϕ(p) = M(ϕ�P ). An ω-Lelek function ψ

is called a greatest ω-Lelek function if ξn ◦ψ is a greatest n-Lelek function for

each n ∈ N.
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Remark 2.7: The following facts can be found in Lelek [20]. Lelek functions

with compact domain C exist and C must be homeomorphic to the Cantor set.

If ϕ is a Lelek function with a compactum C as domain and we identify the set

C × {0} to a point in Lϕ0 , then we obtain a Lelek fan. The end-point set of a

Lelek fan Gϕ0 is one-dimensional and topologically complete.

According to Bula and Oversteegen [5] and Charatonik [6] Lelek fans (and

their end-point sets) are topologically unique.

Remark 2.8: Let ϕ be a Lelek function with a Cantor set C as domain. Ac-

cording to Kawamura, Oversteegen and Tymchatyn [19] complete Erdős space is

homeomorphic to Gϕ0 ; see also Dijkstra [7]. Define the function ψ : Cω→ [0,∞)ω

by the rule ψ(x0, x1, . . . ) = (ϕ(x0), ϕ(x1), . . . ). It is easily verified that ψ is a

greatest ω-Lelek function. Note that Eωc is homeomorphic to Gψ0 . This is our

standard model for Eωc .

Definition 2.9: Let X be a space and let A be a collection of subsets of X . The

space X is called A-cohesive if every point of the space has a neighbourhood

that does not contain nonempty clopen subsets of any element of A. If a space

X is {X}-cohesive, then we simply call X cohesive.

The standard examples of cohesive almost zero-dimensional spaces are E and

Ec. This follows from Erdős’ proof [18] that these spaces have the property

that every clopen nonempty subset has diameter at least 1/2 with respect to

the Hilbert norm; see also Dijkstra [7]. A cohesive space is obviously at least

one-dimensional at every point but the converse is not valid; see Dijkstra [8].

We will use the following result from Dijkstra and van Mill [12, Lemma 5.9]

about the connection between cohesion and Lelek functions.

Lemma 2.10: Let ϕ be a USC function from a zero-dimensional space X to

[0,∞) and let A be a collection of subsets of X such that ∅ /∈ A, Gϕ0 is

{Gϕ�A0 : A ∈ A}-cohesive, and {x ∈ A : ϕ(x) > 0} is dense in A for each A ∈ A.

Then there exists a USC function χ : X → [0,∞) such that χ ≤ ϕ, the natural

bijection h from the graph of ϕ to the graph of χ is continuous, the restriction

h�Gϕ0 : G
ϕ
0 → Gχ0 is a homeomorphism, and for every A ∈ A we have that χ�A

is a Lelek function.
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3. Basic properties of ν-Lelek functions

Remark 3.1: Note that if ϕ is ν-Lelek, thenM(ϕ)  0 and the domain of ϕ has

no isolated points. The restriction of a (greatest) ν-Lelek function to a clopen

nonempty set is clearly also a (greatest) ν-Lelek function. It is easily verified

that every function that is homeomorphic to a ν-Lelek function is also a ν-Lelek

function. We do not have a similar statement for greatest ν-Lelek functions. A

function β : X → Rν is called a step function if every fibre is clopen in X . If

(h,β) is a homeomorphism from a greatest ν-Lelek function ϕ to a function ψ

such that β is a step function, then ψ is also a greatest ν-Lelek function.

Lemma 3.2: If ϕ : X → [0,∞)ω is a function with a complete domain such that

for each n ∈ N, ξn ◦ϕ is n-Lelek, then ϕ is ω-Lelek.

Proof. It suffices to show that Gϕ0 is dense in Lϕ0 . Note that Lϕ0 is

closed in X × Rω, thus it is a complete space. Define for i ∈ ω the set

Ai = {(x,ϕ(x)) : x ∈ X and ϕi(x) > 0} and note that it is a Gδ-subset of

Lϕ0 by Remark 2.5. It is clear that Ai is dense in Lϕ0 . Thus according to Baire

Gϕ0 =
⋂∞
i=0Ai is dense in Lϕ0 .

Definition 3.3: If 1 ≤ ν ≤ ω, ϕ : X → [0,∞)ν , and ψ : Y → [0,∞)ν , then

ϕ × ψ : X × Y → [0,∞)ν is defined by (ϕ × ψ)i(x, y) = ϕi(x)ψi(y) for each

i < ν.

Lemma 3.4: If 1 ≤ ν ≤ ω and ϕ : X → [0,∞)ν and ψ : Y → [0,∞)ν are

ν-USC functions, then ϕ × ψ is ν-USC as well and the natural map

h : Gϕ0 × Gψ0 → Gϕ×ψ
0 is a homeomorphism. If, moreover, ϕ is a ν-Lelek

function and Gψ0 is dense in the graph of ψ, then ϕ × ψ is a ν-Lelek function

as well.

Proof. The first statement follows immediately from the case ν = 1 which was

proved in [12, Lemma 4.14]. We verify the part about Lelek functions for the

case ν = ω.

Let (x, y) ∈ X × Y , let t ∈ [0,∞)ω be such that t ≤ ϕ(x)ψ(y), let U × V

be a neighbourhood of (x, y) in X × Y , let ε > 0, and let n ∈ N. Since Gψ0
is dense in the graph of ψ we can find a y′ ∈ V such that ψ(y′)  0 and

ϕi(x)|ψi(y′) − ψi(y)| < ε/2 for each i < n. Define t′i = min{ti, ϕi(x)ψi(y′)} for

each i ∈ ω and note that |t′i − ti| < ε/2 for i < n. Since 0 ≤ t′/ψ(y′) ≤ ϕ(x)

we can find by the ω-Lelek property an x′ ∈ U such that ϕ(x′)  0 and
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|ϕi(x′)− (t′i/ψi(y
′))| < ε/(2ψi(y

′)) for each i < n. We then have that

((x′, y′),ϕ(x′)ψ(y′)) ∈ G
(ϕ×ψ)�U×V
0

and

|(ϕi(x′)ψi(y′)− ti| ≤ |(ϕi(x′)ψi(y′)− t′i|+ |t′i − ti| < ε

for each i < n. In conclusion, we have that ϕ×ψ is a Lelek function.

Lemma 3.5: Let X be a complete space and let T be a topology on X that

witnesses the almost zero-dimensionality of X . If Y is a space that contains

(X,T) as a dense subspace, then there is an ω-USC function χ : Y → Iω such

that Gχ0 is dense in the graph of χ and the rule h(x) = (x,χ(x)) defines a

homeomorphism h from X to Gχ0 .

Proof. Let Z be the zero-dimensional space (X,T). According to Lemma 2.3

there exists a USC function ϕ : Z → I such that the rule f(x) = (x, ϕ(x))

defines a homeomorphism from X to Gϕ0 . We put ϕ = extY ϕ and note that

this function is USC and that it extends ϕ. Also observe that Gϕ0 , which is

the full graph of ϕ, is dense in the graph of ϕ. Since X is complete we can

find open subsets O0, O1, . . . of Gϕ0 such that Gϕ0 =
⋂∞
i=0Oi. For each i ∈ ω

we define Ai = {x ∈ Y : (x, ϕ(x)) /∈ Oi} and ψi = extY (ϕ�Ai). Again, ψi is

a USC extension of ϕi�Ai. Note that
⋃∞
i=0Ai = Y \ Z. If x ∈ Y \ Ai, then

(x, ϕ(x)) is in the open set Oi and hence ϕ(x) > 0. Since ϕ is USC we can find

a neighbourhood U of x ∈ Y and a t ∈ (0, ϕ(x)) such that (U × (t,∞)) ∩ Gϕ0
is contained in Oi. Consequently, ϕ(a) ≤ t for each a ∈ U ∩ Ai and we have

that ψi(x) ≤ t < ϕ(x). We have shown that {x ∈ Y : ϕ(x) > ψi(x)} = Y \ Ai
for each i ∈ ω. According to [12, Lemma 4.9] there exists for each i ∈ ω

a USC function χi : Y → I such that Y \ Ai = {x ∈ Y : χi(x) > 0} and

gi(x, ϕ(x)) = (x, χi(x)) defines a continuous function from the graph of ϕ to

the graph of χi such that the restriction gi�Oi is a homeomorphism from Oi to

Gχi

0 . Let χ : Y → Iω be the ω-USC function with components (χ0, χ1, . . . ) and

note that g(x, ϕ(x)) = (x,χ(x)) defines a continuous bijection from the graph

of ϕ to the graph of χ. Note that Z = {x ∈ Y : χ(x)  0}. Since Gϕ0 is dense

in the graph of ϕ we have that g(Gϕ0 ) = Gχ0 is dense in the graph of χ. Since

for each i, gi�Gϕ0 is a homeomorphism from Gϕ0 to Gχi�Z
0 , it is clear that g�Gϕ0

is a homeomorphism from Gϕ0 to Gχ0 . Put h = g ◦ f and note that the lemma

is proved.
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Lemma 3.6: Let ϕ : X → ∏
i∈ω[0, si] be an ω-USC function such that S =∑

i∈ω si <∞. Then ψ =
∑

i∈ω ϕi : X → [0, S] is a USC function such that the

natural map between the graphs of ϕ and ψ is a homeomorphism. If ϕ is an

ω-Lelek function, then ψ is a Lelek function.

Proof. Let X1 and X2 be the set X equipped with the weakest topology that

contains the topology of X and that makes ϕ respectively ψ continuous. It is

clear that ψ is USC on X and continuous on X1. To prove that X1 = X2 it

suffices to show that every ϕi is LSC on X2. Let x ∈ X , i ∈ ω, and t < ϕi(x).

Let k > i be such that δ = ϕi(x)− t−
∑∞

j=k sj > 0. By the USC property select

a neighbourhood U of x in X such that ϕj(y) < ϕj(x) + δ/k for each y ∈ U

and j ≤ k. Note that V = U ∩ ψ−1((ψ(x)− δ/k, S]) is a neighbourhood of x in

X2 and let y ∈ V , thus ψ(x)− ψ(y)− δ/k < 0. We then have

(3.1)

ϕi(y) > ϕi(y) + ψ(x) − ψ(y)− δ/k = ϕi(y)− δ/k +

∞∑
j=0

(ϕj(x)− ϕj(y))

≥ ϕi(x)− δ/k +

k−1∑
j=0
j �=i

(ϕj(x) − ϕj(y)) +

∞∑
j=k

(ϕj(x)− ϕj(y))

≥ ϕi(x)− δ −
∞∑
j=k

sj

= t.

Thus we have ϕi(V ) ⊂ (t, si] and hence every ϕi is LSC on X2. Since ϕi is

USC on X we have that ϕi is continuous on X2 for i ∈ ω, thus X1 = X2, which

means that graphs of ϕ and ψ are homeomorphic.

For the second part let ϕ be an ω-Lelek function. In order to show that Gψ0 is

dense in Lψ0 , let x ∈ X , U a neighbourhood of x in X , ε > 0, and t ∈ [0, ψ(x)].

Select a k ∈ N such that δ = ε−∑∞
i=k si > 0. Put r = t/ψ(x) if ψ(x) > 0 and

r = 1 if ψ(x) = 0, thus t = rψ(x) and r ≤ 1. There exists a y ∈ U such that

ϕ(y)  0 and |ϕi(y)− rϕi(x)| < δ/k for i < k. Now we have ψ(y) > 0 and

(3.2) |ψ(y)− t| = |ψ(y)− rψ(x)| ≤
∞∑
j=0

|ϕj(y)− rϕj(x)| <
k−1∑
j=0

δ/k+

∞∑
j=k

sj = ε.

We have shown that ψ is a Lelek function.
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4. An extrinsic characterization

Every USC function assumes maxima on compact sets, thus every 1-Lelek func-

tion with compact domain is a greatest 1-Lelek function. The proof of the

uniqueness of the Lelek fan and of Lelek functions is based on this fact; see

[5], [6], and [12, Theorem 6.2]. In this section we will prove the uniqueness of

ω-Lelek functions. For ν > 1 it is not true that every ν-Lelek function with

compact domain is a greatest ν-Lelek function, but we have the next best thing:

Theorem 4.1: If 1 ≤ ν ≤ ω and ϕ is a ν-Lelek function with compact domain

C, then there is a continuous β : C → (0,∞)ν such that β·ϕ is a greatest

ν-Lelek function. Moreover, given an ε ∈ (0,∞)ν it can be arranged that

M(log ◦ β) ≤ ε.
Proof. We prove the theorem for ν = ω, which is the most interesting case. The

proof for finite ν is analogous and slightly simpler. Let d be a metric on C such

that d ≤ 1. If P is a partition of a set X , then a selection for P is a subset

S of X such that |P ∩ S| = 1 for every P ∈ P. We will construct by recursion

clopen partitions U1,U2, . . . of C, subsets S1 ⊂ S2 ⊂ · · · of C, and continuous

functions β1,β2, . . . from C to (0,∞)ω such that for each n ∈ N,

(1) if n > 1 then Un refines Un−1,

(2) meshUn ≤ 1/n,

(3) Sn is a selection for Un,

(4) if y ∈ Sn then ϕ(y)  0,

(5) if U ∈ Un and y ∈ U ∩Sn, then ξn ◦ (βn·ϕ)�U assumes a greatest value

at y,

(6) if n > 1 then log(βn(x)/βn−1(x)) ∈ ∏∞
i=0[−εi2−n, 0] for each x ∈ C,

and

(7) if n > 1 then βn�Sn−1 = βn−1�Sn−1.

We will use the notation ψn = βn·ϕ and we note that this function is also

ω-Lelek.

For n = 1 we put U1 = {C}. Since Gϕ0 is dense in Lϕ0 we may choose an a ∈ C

such that ϕ(a)  0 and log(M(ϕ0)/ϕ0(a)) ≤ ε0/2. We put S1 = {a}. We can

find a continuous map α : C → [ϕ0(a),M(ϕ0)] such that α(a) = ϕ0(a) and

ϕ0(x) ≤ α(x) for every x ∈ C as follows. Let C = C0 ⊃ C1 ⊃ · · · be a clopen

neighbourhood basis for a. Since ϕ0 is USC we have limj→∞M(ϕ0�Cj) = ϕ0(a),
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and hence if we let α(x) = M(ϕ0�Cj) if x ∈ Cj \ Cj+1 for j ∈ ω and α(a) =

ϕ0(a), then α is a continuous function that meets the requirements. For every

x ∈ C let β1
0(x) = ϕ0(a)/α(x) and let β1

i (x) = 1 when i > 1. Thus we have that

log(β1
0(x)) ∈ [−ε02−1, 0] for each x ∈ C. We let β1(x) = (β1

0(x), β
1
1 (x), . . . ) for

x ∈ C. Observe that the induction hypotheses are satisfied and that for each

x ∈ C,

(4.1) log(β1(x)) ∈
∞∏
i=0

[−εi2−1, 0].

Assuming that the recursive construction can be performed we verify that

the statement of the theorem follows. It is obvious that hypothesis (6) implies

that (log ◦ βni )n is a uniform Cauchy sequence for each i ∈ ω and hence β =

limn→∞ βn : C → (0,∞)ω exists and is continuous. Observe also that it follows

from formula (4.1) and hypothesis (6) that 1 ≥ β1 ≥ β2 ≥ · · · ≥ β and

M(log ◦ β) ≤ ε. Note that β·ϕ is an ω-Lelek function by Remark 3.1. Let

δ > 0 and m ∈ N. Select an n ≥ m such that 1/n < δ and consider the clopen

partition Un. Let U ∈ Un and consider {a} = U ∩ Sn. By hypothesis (7) we

have that βn(a) = βn+1(a) = · · · = β(a). We have that βn(x) ≥ β(x) for all

x ∈ C and by hypothesis (5) that ξn ◦ (βn·ϕ)�U assumes a greatest value at

a and thus also ξn ◦ (β·ϕ)�U assumes a greatest value in a. Since n ≥ m also

ξm ◦ (β·ϕ)�U assumes a greatest value at a. Since meshUn < δ we have shown

that β·ϕ is a greatest ω-Lelek function.

It remains to perform the recursion. Suppose that Un, β
n, and Sn have been

found for some n ∈ N. Let U ∈ Un be fixed and let VU be a clopen partition of

U such that meshVU ≤ 1/(n+1). For every V ∈ VU we will construct a clopen

partition WV of V and a selection AV for that partition. We will then define

(4.2) Un+1 =
⋃

{WV : V ∈ VU and U ∈ Un}
and

(4.3) Sn+1 =
⋃

{AV : V ∈ VU and U ∈ Un}.
Note that by this construction Un+1 is a clopen partition of C and that hy-

potheses (1), (2), and (3) are automatically satisfied. Let V ∈ VU be arbitrary.

Case I: V ∩ Sn �= ∅. Let {a} = V ∩ Sn. We have by hypothesis (4) that

ϕn(a) > 0 and hence ψnn(a) > 0. Since ψnn = βnn ·ϕn is USC we may assume

that V is such that log(M(ψnn�V )/ψnn(a)) < εn2
−n−1. We define WV = {V }

and AV = {a}, thereby ensuring that Sn ⊂ Sn+1 and that hypothesis (4) is
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satisfied for y ∈ V ∩ Sn+1. As above in the base step we can find a continuous

α : V → [ψnn(a),M(ψnn�V )] such that α(a) = ψnn(a) and α ≥ ψnn on V . De-

fine βn+1�V by βn+1
n �V = ψnn(a)(β

n
n�V )/α and βn+1

i �V = βni �V for i �= n.

Note that βn+1(a) = βn(a), which takes care of hypothesis (7). We clearly

have that ψn+1
n �V = (βn+1

n �V )·(ϕn�V ) assumes its maximum at a and that

log(βn+1
n (x)/βnn (x)) ∈ [−εn2−n−1, 0] for each x ∈ V . We have for i < n that

ψn+1
i �V = ψni �V and by hypothesis (6) that M(ψni �V ) = M(ψni �U) = ψni (a),

thus ξn+1◦ψn+1�V assumes a greatest value at a, which takes care of hypothesis

(5) for V and n+ 1. Clearly, hypothesis (6) is satisfied for n+ 1 and x ∈ V .

Case II: V ∩ Sn = ∅. We construct by recursion finite sequences of positive

numbers δ0 > δ1 > · · · > δn+1, clopen partitions P0,P1, . . . ,Pn+1 of V , and

subsets F0 ⊂ F1 ⊂ · · · ⊂ Fn+1 of V such that for each m ∈ {0, 1, . . . , n+ 1} we

have

(a) Fm is a selection for Pm,

(b) ψn(x)  0 for each x ∈ Fm,

(c) if m ≥ 1, x ∈ Fm−1, and 0 ≤ i ≤ n, then ψni (x) ≥ δm, and

(d) if W ∈ Pm, y ∈ W ∩ Fm, and 0 ≤ i ≤ n, then M(ψni �W ) < δm or

log(M(ψni �W )/ψni (y)) < εi2
−n−2.

For the base step m = 0 we choose a δ0 such that δ0 > M(ϕi) for each

i ≤ n. Since ψn is ω-Lelek we may select an a ∈ V such that ψn(a)  0. Put

P0 = {V } and F0 = {a} and note that the induction hypotheses are trivially

satisfied.

Now assume that δm, Pm, and Fm have been found for some m ∈ {0, . . . , n}.
Since V is compact both Pm and Fm are finite sets. Thus we can find with

induction hypothesis (b) a δm+1 ∈ (0, δm) such that δm+1 ≤ ψni (x) for every

x ∈ Fm and i ≤ n, thereby satisfying (c) for m + 1. Select for every x ∈ V a

clopen neighbourhood Bx in V such that for each i ≤ n,

(4.4) if ψni (x) = 0 then M(ψni �Bx) < δm+1

and

(4.5) if ψni (x) > 0 then log(M(ψni �Bx)/ψni (x)) < εi2
−n−2.

Since V is compact we can find a finite subset N of V with V =
⋃{Bx : x ∈ N}.

We may assume that Fm ⊂ N . Now shrink the cover {Bx : x ∈ N} to a

clopen partition Pm+1 = {Px : x ∈ N} of V such that x ∈ Px ⊂ Bx for

each x ∈ N . Observe that it follows from (4.4) and (4.5) that hypothesis (d)
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is satisfied whenever W ∈ Pm+1 and y ∈ W ∩ N . Since ψn is ω-Lelek we

can approximate every x ∈ N with an x′ ∈ Px such that ψn(x′)  0 and

log(M(ψni �W )/ψni (x
′)) < εi2

−n−2 whenever log(M(ψni �W )/ψni (x)) < εi2
−n−2

and i ≤ n. We put Fm+1 = {x′ : x ∈ N} and note that (a), (b), and (d)

are satisfied for m + 1. Of course we choose x′ = x if it happens that already

ψn(x)  0 so that hypothesis (b) implies that Fm ⊂ Fm+1. This completes

the construction of the δ, P, and F sequences.

Proceeding with Case II, we define a function f : Fn+1 → Fn+1 as follows.

Let y ∈ Fn+1 and put T = {ψni (y) : 0 ≤ i ≤ n}. If T ∩ [0, δn+1) = ∅ then we

define f(y) = y. Now let T ∩ [0, δn+1) �= ∅ and hence T ∩ [δn+1, δ0) has at most

n elements. Since {[δk+1, δk) : 0 ≤ k ≤ n} is a partition of [δn+1, δ0) into n+ 1

subintervals, we can select a k ∈ {0, 1, . . . , n} such that

(4.6) T ∩ [δk+1, δk) = ∅.
Let P be the element of Pk that contains y and let z be the unique element

of P ∩ Fk. Since Fk ⊂ Fn+1 we may define f(y) = z. By hypothesis (c) for

m = k + 1 we have ψni (z) ≥ δk+1 ≥ δn+1 for each i ≤ n and hence f(f(y)) =

f(z) = z = f(y). Let us consider an arbitrary i ≤ n. If ψni (y) < δk+1 then we

have ψni (y) < ψni (z). Now let ψni (y) ≥ δk+1. Then by formula (4.6) we have

M(ψni �P ) ≥ ψni (y) ≥ δk and hence, according to hypothesis (d) for m = k,

(4.7) log(ψni (y)/ψ
n
i (z)) ≤ log(M(ψni �P )/ψni (z)) < εi2

−n−2.

We can summarize as follows:

(4.8) f ◦ f = f,

(4.9) ψni (z) ≥ δn+1 for i ≤ n and z ∈ f(Fn+1), and

(4.10) log(ψni (y)/ψ
n
i (f(y))) < εi2

−n−2 for i ≤ n and y ∈ Fn+1.

We define AV = f(Fn+1) and

(4.11) WV =
{⋃

{P ∈ Pn+1 : P ∩ f−1(z) �= ∅} : z ∈ AV

}
.

Note thatWV is a clopen partition of V and that AV is a corresponding selection

because f is a retraction. Recall that Un+1 and Sn+1 are given by (4.2) and

(4.3). Observe that (b) implies that hypothesis (4) is satisfied for n+ 1.

Let W ∈ WV be arbitrary and let {z} = W ∩ AV . We will define βn+1�W .

Consider an x ∈W . Then there exist a P ∈ Pn+1 and a y ∈ P ∩Fn+1 such that
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x ∈ P and f(y) = z. Let i ≤ n. If ψni (x) < δn+1, then by (4.9) ψni (x) < ψni (z).

If ψni (x) ≥ δn+1, then by hypothesis (d) for m = n+ 1 we have

(4.12) log(ψni (x)/ψ
n
i (y)) ≤ log(M(ψni �P )/ψni (y)) < εi2

−n−2,

which combines with (4.10) to

(4.13) log(ψni (x)/ψ
n
i (z)) < εi2

−n−1.

Thus (4.13) is valid for every i ≤ n and we have

(4.14) log(M(ψni �W )/ψni (z)) ≤ εi2
−n−1.

As above, we find for every i ≤ n a continuous αi : W → [ψni (z),M(ψni �W )]

such that αi(z) = ψni (z) and αi ≥ ψni on W . Define βn+1�W by βn+1
i �W =

ψni (z)(β
n
i �W )/αi for i ≤ n and βn+1

i �W = βni �W for i > n. We clearly have

that M(ψn+1
i �W ) = M((βn+1

i �W )·(ϕi�W )) = ψni (z) = ψn+1
i (z) for i ≤ n,

which takes care of hypothesis (5) for n + 1. It follows from (4.14) that

log(βn+1
i (x)/βni (x)) ∈ [−εi2−n−1, 0] for each x ∈ W and i ≤ n. Since βn+1

i �W =

βni �W for i > n we have hypothesis (6). Hypothesis (7) applies only to Case I.

The proof is complete.

Theorem 4.2: If 1 ≤ ν ≤ ω then any two ν-Lelek functions with compact

domains are homeomorphic.

Proof. Again we give the proof for ν=ω. Let ϕ :C→ [0,∞)ω andψ :D→ [0,∞)ω

be greatest ω-Lelek functions with C and D compact, using Theorem 4.1. Se-

lect metrics on C and D that are bounded by 1. We construct by induction

sequences of clopen partitions U0,U1, . . . of C and homeomorphisms h0, h1, . . .

from C to D such that, for each n ∈ ω,

(1) if n ≥ 1 then Un refines Un−1,

(2) meshUn ≤ 2−n,
(3) meshhn[Un] ≤ 2−n,
(4) if n ≥ 1 then hn(U) = hn−1(U) for each U ∈ Un−1,

(5) for every U ∈ Un, ξn+1 ◦ ϕ and ξn+1 ◦ ψ assume greatest values on U

respectively hn(U), and

(6) if n ≥ 1, U ∈ Un−1, and V ∈ Un such that V ⊂ U , then for each i < n,

| log(γi(V )/γi(U))| < 2−n, where

(4.15) γi(U) =
M(ψi ◦ hn−1�U)

M(ϕi�U)
and γi(V ) =

M(ψi ◦ hn�V )

M(ϕi�V )
.
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The domain of a Lelek function cannot have isolated points, thus C and D are

Cantor sets. Let h0 : C → D be some homeomorphism and put U0 = {C}, and
note that the induction hypotheses for n = 0 are satisfied. Assume now that

hn and Un have been constructed. Let U ∈ Un. We will construct a clopen

partition VU of U and a homeomorphism fU : U → hn(U) which will produce

Un+1 and hn+1 as follows:

(4.16) Un+1 =
⋃

U∈Un

VU and hn+1 =
⋃

U∈Un

fU .

Note that by this construction hypotheses (1) and (4) are automatically satis-

fied.

By hypothesis (5) we have that ξn+1(ϕ(a))=M(ξn+1◦ϕ�U) and ξn+1(ψ(b))=

M(ξn+1 ◦ ψ�hn(U)) for some a ∈ U and b ∈ hn(U). By the greatest ω-Lelek

property select clopen partitions A = {A0, . . . , Ak} and B = {B0, . . . , Bl} of U

respectively hn(U) such that a ∈ A0, b ∈ B0, meshA ≤ 2−n−1, meshB ≤
2−n−1, ξn+2 ◦ ϕ assumes a greatest value on every Am, and ξn+2 ◦ ψ as-

sumes a greatest value on every Bj . Let a′ ∈ A0 and b′ ∈ B0 be such that

ξn+2(ϕ(a
′)) = M(ξn+1 ◦ ϕ�A0) and ξn+2(ψ(b

′)) = M(ξn+1 ◦ ψ�B0). Then we

have ξn+1(ϕ(a
′)) = ξn+1(ϕ(a)) and ξn+1(ψ(b

′)) = ξn+1(ψ(b)) are the greatest

values of ξn+1 ◦ϕ�U respectively ξn+1 ◦ψ�hn(U).

Let m ∈ {1, . . . , k}. If i ∈ {0, . . . , n} then we have

(4.17) 0 < γi(U)M(ϕi�Am) ≤ γi(U)M(ϕi�U) =M(ψi ◦ hn�U) = ψi(b
′).

The ω-Lelek property allows us to select distinct points bm ∈ B0 \ {b′}, close to
b′, such that for each i ≤ n,

(4.18)

∣∣∣∣log ψi(bm)

γi(U)M(ϕi�Am)

∣∣∣∣ < 2−n−2.

Choose disjoint clopen sets V1, . . . , Vk in D such that for each m, bm ∈ Vm ⊂
B0 \ {b′},

(4.19) log(M(ψi�Vm)/ψi(bm)) < 2−n−2

for each i ≤ n by upper semi-continuity, and ξn+2 ◦ ψ assumes a greatest

value on Vm by the greatest Lelek property. We will have that {A1, . . . , Ak} ⊂
VU and hn+1(Am) = fU (Am) = Vm, and hence γi(Am) will have the value
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M(ψi�Vm)/M(ϕi�Am). Note that for each i ≤ n,

(4.20)

∣∣∣∣log γi(Am)

γi(U)

∣∣∣∣ =
∣∣∣∣log M(ψi�Vm)

γi(U)M(ϕi�Am)

∣∣∣∣
≤

∣∣∣∣log M(ψi�Vm)

ψi(bm)

∣∣∣∣+
∣∣∣∣log ψi(bm)

γi(U)M(ϕi�Am)

∣∣∣∣
< 2−n−1,

satisfying hypothesis (6) for Am ∈ Un+1 and m ∈ {1, . . . , k}. Note that hy-

pothesis (5) is also satisfied for such an Am.

Conversely, we can find disjoint clopen sets W1, . . . ,Wl contained in A0 \{a′}
such that, for each m ∈ {1, . . . , l}, ξn+2 ◦ ϕ assumes a greatest value on Wm

and

(4.21)

∣∣∣∣log M(ψi�Bm)

γi(U)M(ϕi�Wm)

∣∣∣∣ < 2−n−1

for each i ≤ n. Put A′
0 = A0 \ ⋃l

i=1Wi and B′
0 = B0 \ ⋃k

j=1 Vj . We define

VU = {A′
0, A1, . . . , Ak,W1, . . . ,Wl} and we let hn+1�U = fU : U → hn(U) be

a homeomorphism with fU (Am) = Vm and fU (Wj) = Bj for 1 ≤ m ≤ k,

1 ≤ j ≤ l and fU (A
′
0) = B′

0. Since VU and fU [VU ] refine A respectively B we

have that hypotheses (2) and (3) are satisfied for n+ 1. It follows from (4.21)

that hypothesis (6) is satisfied for every Wj ∈ Un+1. Also, hypothesis (5) is

satisfied for each Wj . Note that

(4.22) γi(A
′
0) =

M(ψi�B′
0)

M(ϕi�A′
0)

=
ψi(b

′)
ϕi(a′)

= γi(U)

for each i ≤ n. Thus hypothesis (6) is verified for A′
0. Also, hypothesis (5) is

clearly satisfied and the induction is complete.

Obviously, h = limn→∞ hn is a homeomorphism C → D. Let i ∈ ω be

arbitrary. Define for each n > i the continuous function αni : C → (0,∞) by

(4.23) αni (x) = γi(U) for x ∈ U ∈ Un.

Note that by hypothesis (6),

(4.24) | log(αni (x)/αn−1
i (x))| < 2−n

for each x ∈ C and n > i+1. Thus (log ◦αni )n>i is a uniform Cauchy sequence

of continuous functions into R and hence αi = limn→∞ αni : C → (0,∞) exists

and is continuous. Now, let x ∈ C and select for each n > i a Un ∈ Un

with x ∈ Un. Since hn(Un) = hk(Un) for all k > n we have h(x) ∈ hn(Un).
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By upper semi-continuity and diamUn ≤ 2−n, diamhn(Un) ≤ 2−n we have

limn→∞M(ϕi�Un) = ϕi(x) and limn→∞M(ψi ◦ hn�Un) = ψi(h(x)). Thus by

(4.23) and (4.15) we have, for each x ∈ C,

(4.25)
αi(x)ϕi(x) = lim

n→∞αni (x)M(ϕi�Un) = lim
n→∞ γi(Un)M(ϕi�Un)

= lim
n→∞M(ψi ◦ hn�Un) = ψi(h(x)).

In conclusion, α·ϕ = ψ ◦ h.

If we combine Theorem 4.2 with Remark 2.8, then we have a characterization

theorem for Eωc :

Theorem 4.3: A space X is homeomorphic to Eωc if and only if there is an

ω-Lelek function ϕ with compact domain such that X ≈ Gϕ0 .

5. Intrinsic characterizations

We will “internalize” Theorem 4.3, that is, we will convert that theorem into

theorems that refer only to topological properties that are internal to the space

considered. We first need to add a feature to Lemma 2.3.

Lemma 5.1: Let X be a space, let U be an open covering of X , and let Z be

zero-dimensional space that contains X as a subset (but not necessarily as a

subspace). If Z is a witness to the almost zero-dimensionality of X , then there

exists a USC function ϕ : Z → I such that the map h : X → Gϕ0 that is defined

by the rule h(x) = (x, ϕ(x)) is a homeomorphism and for every t ∈ (0, 1] the

set ϕ−1([t, 1]) can be covered using only finitely many elements of U.

Proof. According to Lemma 2.3 there is a USC function ψ : Z → I such that

the map f : X → Gψ0 that is defined by the rule f(x) = (x, ψ(x)) is a homeo-

morphism. Without loss of generality we may assume that U has the form

(5.1) {On ∩ ψ−1((tn, 1]) : n ∈ ω},

where On is clopen in Z and tn ∈ (0, 1) for n ∈ ω. We define for n ∈ ω the

function χn : Z → [0, 2−n−1] by

(5.2) χn(x) =

⎧⎨
⎩
0, if x ∈ Z \On;
2−n−1max{0, ψ(x)− tn}, if x ∈ On.
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Put ϕ =
∑∞

n=1 χn : Z → I. Note that χn ≤ 2−n−1ψ for each n ∈ N, thus

ϕ ≤ ψ and {x ∈ Z : ϕ(x) > 0} ⊂ {x ∈ Z : ψ(x) > 0} = X . If x ∈ X

then x ∈ Un for some n, thus χn(x) > 0 and ϕ(x) > 0. We have that X =

{x ∈ Z : ϕ(x) > 0} and hence h is a bijection fromX toGϕ0 . It is clear that χn is

USC on Z and continuous onX because ψ has those properties and On is clopen

in Z. If x, y ∈ Un = On∩ψ−1((tn, 1]) then χn(x)−χn(y) = 2−n−1(ϕ(x)−ϕ(y)),
so the natural map from Un to the graph of χn : Z → [0, 2−n−1] is an imbedding.

Since U is an open cover we have that the natural map from X to the graph

of χ = (χ0, χ1, . . . ) is also an imbedding. According to Lemma 3.6, ϕ : Z → I

is USC and the bijection h : X → Gϕ0 is a homeomorphism. Note that the

definition of χn is such that, whenever x /∈ Un, then χn(x) = 0. Thus if

x /∈ ⋃n−1
i=0 Ui then ϕ(x) ≤

∑∞
i=n 2

−i−1 = 2−n. We have that ϕ−1([t, 1]) can be

covered using only finitely many elements of U for each positive t.

If T0,T1, . . . is a sequence of topologies on a set X , then
∨
i∈ω Ti denotes the

topology on X that is generated by the subbasis
⋃
i∈ω Ti.

Remark 5.2: If every Xi = (X,Ti) is separable metric, then so is X with

the topology
∨
i∈ω Ti because that space is homeomorphic to the diagonal in∏

i∈ωXi. Morover, if there is a topology W on X that witnesses the almost

zero-dimensionality of every Ti, then it is easily verified that W is also a witness

to
∨
i∈ω Ti.

Theorem 5.3: A nonempty space X is homeomorphic to Eωc if and only if

there exist topologies W,T0,T1, . . . on X and covers Ui ⊂ Ti of X for i ∈ ω

such that

(1) the given topology S on X is equal to
∨
i∈ω Ti;

(2) Z = (X,W) is a witness to the almost zero-dimensionality of every

Xi = (X,Ti);

(3) for every i ∈ ω the space Xi is
(∨

j �=i Tj
)
-cohesive; and

(4) if Ui ∈ Ui is such that {Ui : i ∈ ω} has the finite intersection property,

then the sequence (
⋂i
j=0 Uj)i∈ω converges to a point in Z.

Proof. Represent Eωc by the standard model Gψ0 as in Remark 2.8: C is a Cantor

set, ϕ : C → [0,∞) is a Lelek function, and ψ : Cω → [0,∞)ω is given by the

rule ψi(x0, x1, . . . ) = ϕ(xi). Define the projections π : Gψ0 → Cω , πi : G
ψ
0 → C,
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and pi : G
ψ
0 → Gϕ0 by π(x,ψ(x)) = x, πi(x,ψ(x)) = xi, and pi(x,ψ(x)) =

(xi, ϕ(xi)) for i ∈ ω. We let W be the zero-dimensional topology on Gψ0 that

is generated by π and we let Ti be generated by π and pi for i ∈ ω. It is clear

that the conditions (1) and (2) are now satisfied. To verify condition (3) let

(x,ψ(x)) ∈ Gψ0 and let i ∈ ω. Since Ec ≈ Gϕ0 is cohesive there is an open

neighbourhood U of xi in that space such that no nonempty clopen subset of

Gϕ0 is contained in U . Consider the Ti-open neighbourhood p−1
i (U) of x in Gϕ0 .

Let O ∈ ∨
j �=i Tj and let P be a nonempty clopen subset of (O,Ti). Select a

(y,ψ(y)) ∈ P and define the set

(5.3) Y = {(z,ψ(z)) : zj = yj for every j �= i} ⊂ Gψ0

and note that pj�Y is constant for j �= i, thus on Y the topology
∨
j �=i Tj

coincides with W. Thus we may select a clopen subset K of C such that

y ∈ Y ∩ π−1
i (K) ⊂ O. Consequently, we have that P ′ = P ∩ Y ∩ π−1

i (K) is a

clopen subset of (Y,Ti) that contains y. Note that pi�Y is a homeomorphism

from (Y,Ti) to G
ϕ
0 and hence pi(P

′) is a nonempty clopen subset of Gϕ0 . By the

choice of U we have that pi(P
′) �⊂ U and hence P �⊂ π−1

i (U). We have verified

condition (3). Turning to condition (4) we choose a compatible metric d on Cω.

For i ∈ ω we define

(5.4)
Ui = {π−1(W ∩ ψ−1

i ((ε,∞))) : for some ε > 0 and W ∈ W

with diamW < 2−i}.

Note that Ui covers G
ψ
0 and that Ui ⊂ Ti. Let Ui ∈ Ui for i ∈ ω such that

{Ui : i ∈ ω} has the finite intersection property. Since Cω is compact and

diamπ(Ui) < 2−i, we have that (
⋂i
j=0 π(Uj))i∈ω converges to a point z in Cω.

Since for each i ∈ ω there is an εi > 0 such that π(Ui) ⊂ ψ−1
i ((εi,∞)) and since

ψ−1
i ([εi,∞)) is closed in Cω by upper semi-continuity, we have that ψi(z) ≥ εi.

We may conclude that ψ(z)  0, thus (z,ψ(z)) ∈ Gψ0 and condition (4) is

verified.

Now assume that X is an arbitrary space with the listed properties. Let

i ∈ ω. Using Lemma 5.1 and assumption (2) we can select a USC function

χi : Z → (0, 1] such that the natural map from Xi to G
χi

0 is a homeomorphism

and for every t ∈ (0, 1] the set χ−1
i ([t, 1]) can be covered using only finitely

many elements of Ui. With assumption (3) and Lemma 2.10 we can find a

USC function ϕi : Z → (0, 1] such that the natural map from Xi to G
ϕi

0 is a

homeomorphism, ϕi ≤ χi, and for every U ∈ ∨
j �=i Tj \{∅}, we have that ϕi�U is
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a Lelek function. Put ϕ = (ϕ0, ϕ1, . . . ) and note that the natural map from X

to Gϕ0 , when seen as a subspace of Z × Iω, is a homeomorphism by assumption

(1).

Claim 1: ϕ is an ω-Lelek function.

Proof. We prove by induction that for n ∈ N,

(5.5) ξn ◦ϕ�U is n-Lelek for every U ∈ ∨
i≥n Ti \ {∅}.

Since the graph of ϕ equals Gϕ0 the claim follows.

The basis step n = 1 is trivially valid because ξ1 ◦ϕ = ϕ0. Assume that the

induction hypothesis (5.5) is satisfied for some n ∈ N. Let U ∈ ∨
i>n Ti, x ∈ U ,

and t ∈ In+1 be such that t ≤ ξn+1(ϕ(x)). Let O be an open neighbourhood

of x in Z and let ε > 0 be arbitrary. Define

(5.6) V = U ∩
n−1⋂
i=0

ϕ−1
i ((ϕi(x)− ε/2, 1])

and note that x ∈ V and V ∈ ∨
i�=n Ti. Since ϕn�V is a Lelek function we can

find a y ∈ V ∩O such that |ϕn(y)−tn| < ε. DefineW = U∩ϕ−1
n ((tn−ε, tn+ε))

and note that y ∈ W ∩ O and W ∈ ∨
i≥n Ti. Put t′i = min{ti, ϕi(y)} for i < n

and thus t′ = (t′0, . . . , t
′
n−1) ≤ ξn(ϕ(y)). By the induction hypothesis ξn ◦ϕ�W

is an n-Lelek function, thus there is a z ∈ W ∩ O such that |ϕi(z) − t′i| < ε/2

for i < n. Let i < n. Since y ∈ V we have ϕi(y) > ϕi(x)− ε/2 ≥ ti − ε/2, thus

|t′i − ti| < ε/2. We now have that |ϕi(z)− ti| ≤ |ϕi(z)− t′i|+ |t′i − ti| < ε. Since

z ∈ W ∩O we also have |ϕn(z)− tn| < ε and z ∈ U ∩O. Thus (z, ξn+1(ϕ(z)))

approximates (x, t) and we may conclude that ξn+1 ◦ ϕ�U is an (n + 1)-Lelek

function.

Let A consist of all finite intersections of sets of the form

Ai(q) = {x ∈ Z : ϕi(z) ≥ q} for i ∈ ω and q ∈ Q. Note that A is a

countable collection of closed subsets of Z. By a standard Stone space con-

struction we can extend Z to a zero-dimensional compactification C such that,

for all F1, F2 ∈ A, we have F1 ∩ F2 = F 1 ∩ F 2. We define the ω-USC function

ψ : C → Iω by ψi(x) = (extC ϕi)(x) for i ∈ ω and x ∈ C. Note that if ψi(x) > q,

then by the definition of ext we have that x is in the closure of Ai(q). This

leads immediately to:
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Claim 2: If x ∈ C and q ∈ Qω are such that q 
 ψ(x), then x is in the closure

in C of
⋂n
i=0Ai(qi) for each n ∈ ω.

We have ψi�Z = ϕi > 0, so the natural map from Xi to the graph of ψi�Z is

a homeomorphism and the graph of ψ�Z = ϕ is contained in Gψ0 . Then ψ is

an ω-Lelek function by the following result.

Claim 3: The graph of ϕ is dense in Lψ0 .

Proof. Let x ∈ C, n ∈ N, ε > 0, U an open neighbourhood of x in C, and t ∈ In

such that t ≤ ξn(ψ(x)). Select for each i < n a qi ∈ Q ∩ (ψi(x) − ε/2, ψi(x)).

According to Claim 2 there is a y ∈ U ∩ ⋂n−1
i=0 Ai(qi). Put, for i < n, t′i =

min{ti, ϕi(y)} and note that |t′i − ti| < ε/2 because ϕi(y) ≥ qi > ψi(x)− ε/2 ≥
ti − ε/2. Since t′ ≤ ξn(ϕ(y)) and ϕ is an ω-Lelek function by Claim 1, we

have that there is a z ∈ U such that |ϕi(z) − t′i| < ε/2 for each i < n. Thus

|ϕi(z)− ti| < ε for each i < n and we have shown that the graph of ϕ is dense

in Lψ0 .

Claim 4: Z = {x ∈ C : ψ(x)  0}.
Proof. The case Z ⊂ {x ∈ C : ψ(x)  0} follows immediately from ϕ  0.

Let x ∈ C be such that ψ(x)  0. Select a q ∈ Qω such that 0 
 q 
 ψ(x).

According to Claim 2 we have x ∈ ⋂n
i=0 Ai(qi) for n ∈ ω. We will find by

recursion sets Un ∈ Un such that for n ∈ ω,

(5.7) x ∈
k⋂
i=0

Ai(qi) ∩
n⋂
j=0

Uj for each k ∈ ω.

For the base case note that since ϕ0 ≤ χ0, we have that the element A0(q0) of

F can be covered using only finitely many elements of U0. It is easily seen that

there must be a U0 ∈ U0 such that x ∈ ⋂k
i=0 Ai(qi) ∩ U0 for each k ∈ ω. The

induction step is analogous to the base step.

The collection {Ui : i ∈ ω} clearly has the finite intersection property. Thus

by assumption (4) of the theorem the sequence (
⋂n
i=0 Ui)n∈ω converges to a

point in Z. That means that
⋂
n∈ω

⋂n
i=0 Ui contains only one point which must

be x, thus x ∈ Z.

We now have that X is homeomorphic to Gϕ0 = Gψ0 and that Gψ0 is homeo-

morphic to Eωc by Theorem 4.3.
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Theorem 5.4: A nonempty space X is homeomorphic to Eωc if and only if

there exist topologies W,T0,T1, . . . on X and covers Ui ⊂ Ti of X for i ∈ ω

such that

(1) the given topology S on X is equal to
∨
i∈ω Ti;

(2′) Z = (X,W) is zero-dimensional and W ⊂ Ti for each i ∈ ω;

(3′) for each i ∈ ω, x ∈ X , and neighbourhood U of x in Xi = (X,Ti) there

is a neighbourhood V of x in Xi such that V is a nowhere dense subset

of (U,
∨
j �=i Tj) that is closed in Z; and

(4) if Ui ∈ Ui is such that {Ui : i ∈ ω} has the finite intersection property,

then the sequence (
⋂i
j=0 Uj)i∈ω converges to a point in Z.

Proof. We derive this theorem from Theorem 5.3.

(2)&(3) ⇒ (2′)&(3′). Assume that X satisfies (2) and (3) of Theorem 5.3,

that i ∈ ω, and that U is an open neighbourhood of some point x in Xi. Select

with assumption (3) a neighbourhood W of x in Xi such that W contains no

nonempty clopen subsets of any element of
∨
j �=i Tj . Select with (2) a neigh-

bourhood V of x in E such that V ⊂ U ∩W and V is closed in Z. Suppose

that O ∈ ∨
j �=i Tj is such that O∩U ⊂ V . Note that O∩U is Ti-open in O. On

the other hand, O ∩U = O ∩ V is closed in (O,W) and therefore also closed in

(O,Ti) by (2). Thus we have that V and W contain the clopen subset O∩U of

(O,Ti) and hence O ∩ U = ∅. We have shown that V has an empty interior in

(U,
∨
j �=i Tj) and thus the set is nowhere dense because V is closed with respect

to W. We have proved property (3′). Property (2′) follows trivially from (2).

(2′)&(3′)&(4) ⇒ (2)&(3). Assume (2′), (3′), and (4) and note that (2) follows

immediately from (2′) and (3′). Let x be a point in X and let i ∈ ω. Put

T =
∨
j �=i Tj . By symmetry we may assume that i = 0. Let U0 ∈ U0 be such

that x ∈ U0 and select with (3′) a neighbourhood C0 ⊂ U0 of x in X0 that is

closed in Z. Suppose that there is an O ∈ T and a clopen nonempty subset C

of (O,T0) such that C ⊂ C0. Let x′ ∈ C. Since Z is a witness to (X,T) we

can find a neighbourhood W of x′ in (X,T) such that W ⊂ O, W is closed in

Z, and W is contained in a U1 from U1. Put C′ = C ∩W and note that C′ is
clopen in (W,T0).

With property (3′) choose for each y ∈ C′ a neighbourhood V (y) of y in X0

such that V (y) is a nowhere dense subset of C′ ∪ (X \W ) with the topology T

and V (y) is closed in Z. Since X0 is separable metric we can find a countable

set {aj : j ∈ N} ⊂ C′ with C′ ⊂ ⋃{V (aj) : j ∈ N}. Put Fj = V (aj) ∩W and
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note that C′ =
⋃∞
j=1 Fj with every Fj nowhere dense in C′ ∪ (X \W ) with the

topology T and closed in Z. Similarly, we can write W \ C′ =
⋃∞
j=1Gj where

every Gj is closed in Z.

We now construct recursively a sequence C1 ⊃ C2 ⊃ · · · of closed subsets of

Z such that for every n ∈ N,

(a) Cn is contained in an element Un of Un;

(b) Cn ∩ (Fn−1 ∪Gn−1) = ∅; and
(c) C′ meets the T-interior of Cn.

For the basis step we put C1 = W and F0 = G0 = ∅ and we note that the

hypotheses are satisfied (x′ is both in C′ and the T-interior of W ).

Assume that Cn has been found. Let P denote the T-interior of Cn. Let

b ∈ C′ ∩ P and select a Un+1 ∈ Un+1 such that b ∈ Un+1. Then P ∩Un+1 \Gn
is an element of T that contains b. Since Fn is nowhere dense in C′ ∪ (X \W )

with the topology T and P ⊂W , we have that P ′ = P ∩ Un+1 \ (Fn ∪Gn) ∈ T

contains some point c ∈ C′. Select now a T-neighbourhood Cn+1 of c in P ′ that
is closed in Z. The induction hypotheses are clearly satisfied for Cn+1.

Since C′ ⊂ C0 ⊂ U0 we have that C0 ∩ Cn is nonempty and contained in⋂n
j=0 Uj . Thus {Uj : j ∈ ω} has the finite intersection property and with

condition (4) we have that the sequence (
⋂n
j=0 Uj)n∈ω converges to a point z

in Z. Since the Cn are closed in Z we have z ∈ ⋂
n∈ω Cn. Since C1 = W we

have z ∈ W . On the other hand, we have that hypothesis (b) and the fact

W =
⋃
n∈N

Fn ∪ Gn imply that W ∩⋂
n∈ω Cn = ∅. We have proved condition

(3).

Let us examine the witness topologies on Eωc . We need some definitions.

If A is a nonempty set, then A<ω denotes the set of all finite strings of

elements of A, including the null string λ. Let Aω denote the set of all infinite

strings of elements of A. If s ∈ A<ω and σ ∈ A<ω ∪ Aω, then we put s ≺ σ if

s is an initial substring of σ. If σ ∈ A<ω ∪ Aω and k ∈ ω, then σ�k ∈ A<ω is

the string of length k with σ�k ≺ σ. A tree T over a set A is a subset of A<ω

that is closed under initial segments, that is, if s ∈ T and t ≺ s, then t ∈ T . An

infinite branch of T is an element σ of Aω such that σ�k ∈ T for every k ∈ ω.

The body of T , written as [T ], is the set of all infinite branches of T . If s ∈ T

then succ(s) denotes the set of immediate successors of s in T .
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Definition 5.5: Let X be a space. We call a system (Xs)s∈T of closed subsets of

X a generalized Sierpiński stratification of X if the index set T is a tree

as above such that:

i. Xλ = X and Xs =
⋃{Xt : t ∈ succ(s)} for all s ∈ T , and

ii. if σ ∈ [T ] then the sequenceXσ�0, Xσ�1, . . . converges to a point xσ ∈ X .

Sierpiński [24] has shown that X is an (absolute) Fσδ-space if and only if it

admits such a stratification with a countable tree.

Proposition 5.6: If a nonempty spaceX admits a generalized Sierpiński strat-

ification that consists of cohesive sets and if W is a topology onX that witnesses

the almost zero-dimensionality of X , then ∅ is the only open subset of X that is

an absolute Gδσ-subspace of (X,W). If, moreover, W is an Fσδ-topology, then

(X,W) is homeomorphic to Qω.

Proof. Let (Xs)s∈T be the generalized Sierpiński stratification. We may assume

that every Xs is nonempty. Let O be a nonempty open subset of X and let

O =
⋃∞
i=1Gi, where every Gi is a topologically complete subspace of Z =

(X,W). Put G0 = ∅. We construct by recursion a sequence s0 ≺ s1 ≺ · · ·
in T such that, for each i ∈ ω, |si| ≥ i and Xsi ⊂ O \ Gi. Let a ∈ O and

note that there is a τ ∈ [T ] such that a = xτ as in Definition 5.5. Since O is

open in X and Xτ�0, Xτ�1, . . . converges to xτ , we have that there is an s0 ∈ T

with Xs0 ⊂ O = O \ G0. Now assume that si has been found. Since Xsi is

a Gδ-subset of Z by Remark 2.2, we have that Gi+1 ∩ Xsi is a topologically

complete subspace of Z just like Gi+1. According to [12, Remark 5.5] we have

by cohesion that (Xsi ,W) is a first category space. Since Gi+1∩Xsi is complete

with respect to the topology W it cannot be dense in (Xsi ,W). Thus there is an

x ∈ Xsi and an open subset U of (Xsi ,W) such that x ∈ U ⊂ Xsi \Gi+1. Note

that U is also open in Xsi . By the same method as employed above we can find

an si+1 ∈ T such that si ≺ si+1, |si+1| ≥ i + 1, and Xsi+1 ⊂ U ⊂ O \ Gi+1.

This completes the recursion. There obviously exists a σ ∈ [T ] such that si ≺ σ

for all i. Then xσ ∈ ⋂∞
i=0Xsi ⊂ O \⋃∞

i=1Gi. Since the Gi cover O we have a

contradiction.

According to [12, Remark 5.5] (X,W) is a first category space because X =

Xλ is cohesive. The second part of the proposition follows if we recall that a

space is homeomorphic to Qω if and only if it is a zero-dimensional, first category

Fσδ-space with the property that no nonempty open subset is a Gδσ-space; see
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Steel [25] or van Engelen [17, Theorem A.2.5].

Remark 5.7: In view of Theorem 4.2 and Claim 4 of the proof of Theorem 5.3,

we have that the homeomorphism that links X with Eωc in Theorems 5.3 and 5.4

is also a homeomorphism on the level of the respective witness topologies. At

first glance, this seems to restrict the applicability of these theorems. However,

the following result shows that all witness topologies on Eωc are homeomorphic.

Corollary 5.8: Let Y0, Y1, . . . be a sequence of nonempty, almost zero-dimen-

sional complete spaces. If infinitely many of the Yi are cohesive, then for every

witness topology W for X =
∏
i∈ω Yi we have that (X,W) is homeomorphic to

Qω.

Proof. Let T=
⋃∞
k=0

∏k−1
i=0 Yi and define the cohesive space Xs={s}×∏∞

i=|s| Yi
for s ∈ T . Clearly, if σ ∈ [T ] = X then xσ = σ and (Xs)s∈T is a generalized

Sierpiński stratification of X . Thus Proposition 5.6 applies to X . According to

[12, Remark 4.12] we have that W is an Fσδ-topology.

Remark 5.9: Since the standard witness topology on Ec is σ-compact, we have

here an alternative proof of the fact that Ec is not homeomorphic to Eωc .

6. Applications

A subset A of a space X is called negligible if X \ A is homeomorphic to X .

Recall that the σ-compact subsets of P and �2 are negligible.

Corollary 6.1: All σ-compacta in Eωc are negligible.

Proof. Let W,T0,T1, . . . be topologies and let Ui ⊂ Ti be covers for Eωc as in

Theorem 5.4. Let K =
⋃
i∈ωKi be a subset of Eωc such that eachKi is compact.

Since every σ-compact almost zero-dimensional space is zero-dimensional, we

have that K has an empty interior and, in particular, that Eωc \K �= ∅.
Define W′ = {U \K : U ∈ W} and T′

i = {U \K : U ∈ Ti} for i ∈ ω. Clearly,

conditions (1) and (2′) of Theorem 5.4 are satisfied for Eωc \K. For condition

(3′) let x ∈ Eωc \ K and let U ∈ Ti be such that x ∈ U . Then we can find a

Ti-neighbourhood V of x that is W-closed and that is a nowhere dense subset of

(U,
∨
j �=i Tj). Consider now the W′-closed set V ′ = V \K. Let O be an element

of
∨
j �=i Tj such that O ∩ U \K ⊂ V . Then O ∩ U \ V is an open subset of Eωc

that is contained in K. Thus O ∩ U \ V = ∅ and O ∩ U ⊂ V , which means by
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the way V was chosen that O∩U = ∅. We have shown that V \K is a nowhere

dense subset of (U \K,∨j �=i Tj) and that (3′) is satisfied.
We now consider condition (4). Note that each Ki is also compact in Z =

(Eωc ,W) and hence we can write Eωc \Ki =
⋃
j∈ω Cij with each Cij clopen in Z.

Define

(6.1) U′
i = {U ∩ Cij \K : U ∈ Ui, j ∈ ω} ⊂ T′

i

for i ∈ ω and note that U′
i covers E

ω
c \K. Let U ′

i ∈ U′
i be such that {U ′

i : i ∈ ω}
has the finite intersection property. Select for each i ∈ ω a Ui ∈ Ui such that

U ′
i = Ui ∩ Ciji \ K for some ji ∈ ω. Then also {Ui : i ∈ ω} has the finite

intersection property, thus (
⋂i
k=0 Uk)i∈ω converges to a point x in Z. Then

also (
⋂i
k=0 U

′
k)i∈ω converges to x in Z. Since Ciji is closed in Z and U ′

i ⊂ Ciji ,

we have that x ∈ Ciji for each i ∈ ω. We may conclude that x /∈ K and hence

(
⋂i
k=0 U

′
k)i∈ω converges to x in Z \K.

Remark 6.2: Note that we do not fully use the compactness of the Ki in the

proof of Corollary 6.1, just that every Ki is nowhere dense in Eωc and W-closed.

So we have the following stronger result. Let W be a witness topology for Eωc
that satisfies the conditions of Theorem 5.4. If K is a first category subset of

Eωc that is an Fσ-set with respect to W then K is negligible in Eωc .

σ-Compacta are also negligible in Erdős space and complete Erdős space; see

Dijkstra and van Mill [14] and Kawamura, Oversteegen and Tymchatyn [19].

In [12, Corollary 8.15] and [19] it is also shown that closed proper subsets of E

and Ec are negligible. This leads to

Question 6.3: Are all nonempty open subsets of Eωc homeomorphic to Eωc ?

Definition 6.4: A space X is called an Eωc -factor if there is a space Y such that

X × Y is homeomorphic to Eωc .

We have the following stability theorem, which shows that Eωc is the ‘maximal

space’ in the class of complete almost zero-dimensional spaces.

Theorem 6.5: For a nonempty space X the following statements are equiva-

lent:

(1) X × Eωc ≈ Eωc ,

(2) X is an Eωc -factor,

(3) X is homeomorphic to a retract of Eωc ,
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(4) X admits an imbedding as a C-set in Eωc ,

(5) X admits a closed imbedding in Eωc ,

(6) X is homeomorphic to a Gδ-subset of E
ω
c ,

(7) there is an ω-USC function χ : C → Iω such that C is complete, dimC =

0, and X ≈ Gχ0 ,

(8) there is an ω-USC function χ : C → Iω such that C is compact, dimC =

0, and X ≈ Gχ0 , and

(9) X is almost zero-dimensional and complete.

Proof. (1) ⇒ (2), (2) ⇒ (3)&(4), (3) ⇒ (5), (4) ⇒ (5), (5) ⇒ (6), (6) ⇒ (9),

and (8) ⇒ (7) are trivial. (7) ⇒ (9) follows from Remark 2.5.

(9) ⇒ (8)&(1). Assume (9) and choose a witness topology W for X . Let C be

a zero-dimensional compactification of (X,W) and apply Lemma 3.5 to obtain

(8) with the additional property that Gχ0 is dense in the graph of χ. Let ψ be

an ω-Lelek function such that Gψ0 ≈ Eωc as described in Remark 2.8. According

to Lemma 3.4 we have that Eωc ×X ≈ Gψ×χ
0 and that ψ×χ is ω-Lelek. Apply

now Theorem 4.3 to obtain Gψ×χ
0 ≈ Eωc .

Remark 6.6: To prove the implication (9) ⇒ (1) we used the extrinsic charac-

terization Theorem 4.3 in combination with Lemmas 3.5 and 3.4 because this

method also gives us condition (8). One can derive (9) ⇒ (1) directly from the

intrinsic characterizations as follows. Select W,T0,T1, . . . and U0,U1, . . . for

Eωc as in Theorem 5.4, for instance. Select a complete metric d for X and a

witness topology W′ for X . Let T′
i simply be the given topology on X for every

i ∈ ω and define, for i ∈ ω,

(6.2) U′
i = {O ∈ T′

i : diamO < 2−i}.

If we put (X×Eωc ,W
′′) = (X,W′)× (Eωc ,W), (X×Eωc ,T

′′
i ) = (X,T′

i)× (Eωc ,Ti),

and U′′
i = {O′×O : O′ ∈ U′

i, O ∈ Ui}, then it is easily verified that the premises

of Theorem 5.4 are satisfied for X × Eωc .

Remark 6.7: If X×Y ≈ Zω, then Zω ≈ (Zω)ω ≈ (X×Y )ω ≈ X× (X×Y )ω ≈
X × Zω. Thus conditions (1) and (2) as in Theorem 6.5 are always equivalent

for spaces that are infinite powers.

Since every totally disconnected σ-compactum is zero-dimensional, the stable

space for the (σ-)compact almost zero-dimensional spaces is 2ω (2ω ×Q).
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We finish by showing that Eωc is countable dense homogeneous just like R,

2ω, P, Q, and �2. This is an application not of the characterization theorems

but of a theorem in Dijkstra [9].

Definition 6.8: A spaceX is countable dense homogeneous (CDH) if, given

any two countable dense subsets A,B ⊂ X , there is a homeomorphism h of X

such that h(A) = B. A space X is called strongly locally homogeneous

(SLH) if there is a basis B for the topology such that, for every B ∈ B and

x, y ∈ B, there exists a homeomorphism h : X → X that is supported on B and

that maps x to y. (A function f : X → X is said to be supported on a subset

A of X if the restriction f�(X \A) is the identity.)

The standard method for proving that a space is CDH uses a theorem of

Bennett [3], which states that for complete spaces SLH implies CDH. This

method does not work for Eωc because that space is not SLH:

Proposition 6.9: Hereditarily disconnected SLH spaces are zero-dimensional.

Recall that a space is called hereditarily disconnected if every component

is a singleton.

Proof. Let X be an SLH space that is hereditarily disconnected and let B be

a basis as in Definition 6.8. Let B ∈ B and x ∈ B. It suffices to show that

there is a clopen set O in X with x ∈ O ⊂ B. If B = {x}, then x is isolated

and we are finished. So assume that B is not a singleton. Then by hereditary

disconnectedness there is a clopen subset C of B such that x ∈ C and C �= B

(and hence B \C �= ∅). Let h : X → X be a homeomorphism that is supported

on B such that h(x) ∈ B \ C. Define the closed set O = C ∩ h−1(B \ C) and

note that x ∈ O. If y ∈ O, then h(y) �= y so y ∈ B and h(y) ∈ B. This

means that y ∈ (B ∩ C) ∩ h−1(B \ C). Thus O equals the clearly open set

(B ∩C)∩h−1(B \C). We have that O is clopen in X and contained in B, thus

X is zero-dimensional.

Definition 6.10: Let (X, d) be a metric space and let f : X → X be a bijection.

Then the norm of f is defined by

(6.3) ‖f‖ = sup

{∣∣∣∣ log d(f(x), f(y))d(x, y)

∣∣∣∣ : x, y ∈ X with x �= y

}
∈ [0,∞].



Vol. 186, 2011 STABLE COMPLETE ERDŐS SPACE 505

The space (X, d) is said to be LSLH− if for any x ∈ X , any ε > 0, and any

finite subset F of X \ {x} there is a neighbourhood V of x such that, for each

y ∈ V , there is a permutation f of X such that points of F are fixed, ‖f‖ ≤ ε,

and f(x) = y.

The following theorem is from [9].

Theorem 6.11: If (X, d) is a complete metric space that is LSLH−, then X is

countable dense homogeneous.

Proposition 6.12: The space Eωc is countable dense homogeneous.

Proof. We begin by presenting a particularly elegant model of Ec that is fea-

tured in Dijkstra [7] and called harmonic Erdős space. Consider the Cantor set

C = 2ω = {0, 1}ω with its standard boolean group structure �. We define the

following ‘norm’ from C to [0,∞]:

(6.4) ϕ(x) =

∞∑
n=0

xn
n+ 1

.

Note that ϕ(x� y) ≤ ϕ(x) + ϕ(y) for all x, y ∈ C and hence Eh =

{x ∈ C : ϕ(x) < ∞} is a subgroup of C. Moreover, it follows that d(x, y) =

ϕ(x� y) defines an invariant metric on Eh that makes Eh into a topological

group. It is shown in [7] that (Eh, d) is homeomorphic to Ec and that d is com-

plete. Consider now the space Eωh =
∏
i∈ω Eh with the function ψ : Eωh → [0, 1]

that is given by

(6.5) ψ(x) = max
i∈ω

(min{1/(i+ 1), ϕ(xi)}),

where x = (x0, x1, . . . ) ∈ Eωh . We define the natural boolean group structure on

Eωh by x�y = (x0 � y0, x1 � y1, . . . ). Note that the invariant complete metric

ρ(x,y) = ψ(x�y) generates the product topology on Eωh . If x = (x0, x1, . . . ) ∈
Eωh , then each xi ∈ 2ω and we will use the notation xi = (xi0, xi1, . . . ) where

xij ∈ {0, 1}.
To show that (Eωh , ρ) is LSLH

− and hence CDH by Theorem 6.11, let a ∈ Eωh ,

let F ⊂ Eωh \ {a} be finite, and let ε > 0. Select an n ∈ N such that for each

b ∈ F there exist i, j < n with bij �= aij . Put δ = 1
n (1 − e−ε) and define the

clopen neighbourhood U = {x ∈ Eωh : xij = aij for i, j < n} of a. Let b ∈ U be
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such that ρ(a,b) < δ and define the function h : Eωh → Eωh by

(6.6) h(x) =

⎧⎨
⎩
x� a�b, if x ∈ U ;

x, if x ∈ Eωh \ U.
Note that h is supported on U , thus h fixes the points of F . Also, h(a) = b

and h�U is an isometry of U because ρ is invariant. So to estimate ‖h‖ we only

have to consider points x ∈ U and y ∈ Eωh \ U . Thus there are i, j < n with

xij �= yij and hence

ϕ(xi � yi) ≥ 1

j + 1
and ρ(x,y) ≥ min

{
1

i+ 1
,

1

j + 1

}
≥ 1

n
.

Since h(y) = y we have

(6.7)

∣∣∣∣ρ(h(x), h(y))ρ(x,y)
− 1

∣∣∣∣ ≤ ρ(h(x),x)

ρ(x,y)
≤ ϕ(x� a�b�x)

1/n
= nψ(a�b) < nδ.

Thus ‖h‖ ≤ − log(1− nδ) = ε.

Kawamura, Oversteegen and Tymchatyn [19] have shown that Ec is CDH.

References

[1] M. Abry and J. J. Dijkstra, On topological Kadec norms, Mathematische Annalen 332

(2005), 759–765.
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