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Abstract
Purpose Major depressive disorder (MDD) has been related
to both a dysfunctional γ-amino butyric acid (GABA) system
and to hyperactivity of the hypothalamic-pituitary-adrenal
axis (HPA). Although GABA has been suggested to inhibit
HPA axis activity, their relationship has never been studied at
the level of the central GABAA-benzodiazepine receptor in
depressed patients or in relation to antidepressant treatment.
Methods Eleven depressed outpatients were compared,
before and after treatment with citalopram, with nine age-

matched healthy controls. The subjects were scanned using
the positron emission tomography (PET) tracer [11C]
flumazenil ([11C]FMZ). Parametric voxel-by-voxel Logan
plots were compared with methods based on regions of
interest (ROI), to provide volume of distribution (VT) and
binding potential (BPND) values. Plasma GABA levels were
determined and a dexamethasone-corticotropin releasing
hormone (DEX-CRH) test was performed.
Results In MDD, parametric voxel-by-voxel Logan plots
showed bilateral reduced [11C]FMZ binding in the para-
hippocampal gyrus and right lateral superior temporal gyrus
(p uncorrected ≤0.001). In the temporal area, [11C]FMZ
binding showed a strong inverse correlation with HPA axis
activity. Plasma GABA did not discriminate MDD from
controls, but correlated inversely with [11C]FMZ binding in
the right insula. Following treatment with citalopram, voxel-
based analysis revealed reduced binding in the right lateral
temporal gyrus and dorsolateral prefrontal cortex.
Conclusion The bilateral reduction in limbic parahippo-
campal and right temporal [11C]FMZ binding found in
MDD indicates decreased GABAA-benzodiazepine receptor
complex affinity and/or number. The inverse relationship
between GABAA binding in the temporal lobe and HPA
axis activity, suggests that HPA axis hyperactivity is partly
due to reduced GABA-ergic inhibition.
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Depressive disorder

Introduction

Major depressive disorder (MDD) is a common and disabling
disorder. Its final pathophysiological pathway remains
unresolved, though increasing evidence points towards a
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dysfunctional γ-amino butyric acid (GABA) system [1, 2].
Moreover, in MDD, hyperactivity of the hypothalamic-
pituitary-adrenocortical (HPA) axis during an episode is one
of the most consistent laboratory findings [3], and has been
shown to be related to both its course [4] and treatment
outcome [5]. Corticotropin releasing hormone (CRH) neu-
rons in the hypothalamic paraventricular nucleus, the central
drive of the HPA axis, receive inhibitory input from GABA-
ergic neurons. These neurons may thus provide a structural
basis for inhibitory regulation of HPA axis activity [6].

Petty et al. [7] demonstrated that male MDD patients
exhibit 10–15% lower total plasma GABA levels than
controls. In cerebrospinal fluid, reduced GABA has been
found in some studies [8–10], but not in others [11–13].
Using chromatography, Honig et al. [14] found an inverse
correlation between depression severity and GABA levels
in frontal cortex biopsy tissue of MDD patients resistant to
both pharmacotherapy and electroconvulsive therapy
(ECT). However, in a follow-up comparison study with
controls, Francis et al. [15] found no change in cortical
GABA levels.

In post-mortem brain tissue of depressive suicide
victims, Korpi et al. [16] found no differences in GABA
levels in the frontal cortex, basal ganglia, amygdala and
hypothalamus when compared to controls. Early studies,
using a [3H]flunitrazepam binding assay, found an increase
in the number of GABAA benzodiazepine binding sites in
the frontal cortex of depressive suicide victims, suggesting
decreased availability of GABA [17]. No difference in
number or affinity of benzodiazepine binding sites has been
reported in the amygdala or hippocampus [18].

In vivo, proton magnetic resonance spectroscopy (MRS)
techniques have repeatedly shown reduced GABA levels in
the dorsomedial and anterolateral prefrontal cortex [1] and
in the occipital cortex [19–22] of medication-free unipolar
MDD patients. After recovery, prefrontal GABA levels
were comparable with those in healthy controls [23],
whereas occipital and anterior cingulate cortex GABA
levels were still diminished [24, 25]. After 8 weeks of
treatment with fluoxetine or citalopram, or a completed
course of mood-improving ECT, Sanacora et al. [20, 26]
found an increase in occipital GABA levels, but not after
12 weeks of cognitive behavioural therapy, suggesting
state- and treatment-type related changes [27].

Using [123I]iomazenil and single photon emission com-
puted tomography (SPECT), Kugaya et al. [22] found no
differences in GABAA benzodiazepine binding between
MDD patients and controls. Following ECT, Mervaala et al.
[28] found an increase in baseline brain [123I]iomazenil
uptake in severe depression, though not in the temporal
cortices. Changes in GABAA binding due to pharmacother-
apeutic treatment, other than benzodiazepines, have not
been studied.

In summary, data on GABAA receptor binding in MDD
are scarce and conflicting, which may be related to limited
resolution and sensitivity of the methods used so far.
Therefore, in the present study [11C]flumazenil ([11C]
FMZ), a reversible binding central GABAA benzodiaze-
pine antagonist, was used as a positron emission tomog-
raphy (PET) tracer for the assessment of GABAA receptor
status. Furthermore, [11C]FMZ binding was studied in
relation to GABA levels and HPA axis activity in the
peripheral blood of MDD patients before and after
treatment with citalopram and of controls, to clarify their
mutual relationship. MDD and related HPA axis hyperac-
tivity were hypothesized to be associated with decreased
[11C]FMZ GABAA benzodiazepine binding, which should
partly reverse after treatment.

Materials and methods

Subjects

A group of 11 drug-free patients (age 37±11 years, mean
±SD) suffering a current MDD episode were recruited from
our outpatient psychiatric clinic. The psychiatric diagnosis
was verified using the structured clinical interview for
DSM-IV axis I (SCID) [29]. Patients completed the Beck
depression inventory (BDI) [30], the Hamilton anxiety
rating scale (HAM-A) [31] and the Montgomery Åsberg
depression rating scale (MADRS) [32]. A clinical global
impression (CGI) [33] scale was completed for each patient
by his/her own psychiatrist. Previous psychiatric history
included major depressive episode (n=5), dysthymia (n=3),
bulimia (n=1) and alcohol dependency (n=2), in nine
patients (Table 1). Six patients were completely naive for
antidepressants and benzodiazepines. At the time of PET
scanning, the patients had to be free of antidepressants for
≥3 months and benzodiazepines for ≥2 weeks.

The patients were age-matched with nine healthy control
subjects (age 32±7 years) without current depressive symp-
toms or a past history of psychiatric illness, as verified by BDI
and SCID (Table 1). Exclusion criteria for all subjects
included pregnancy, somatic disorders or current use of
drugs known to interfere with the GABA-ergic system,
including benzodiazepines, psychoactive drugs and alcohol
abuse. Written informed consent was obtained from all
participants after the procedures had been fully explained.
The study protocol was approved by the medical ethics
committee of the VU University Medical Center Amsterdam.
At baseline, all patients and controls had standard physical
and laboratory examinations, including liver and kidney
function tests, electrolytes, haematology profile and thyroid
function tests. Nine patients completed the treatment phase
and were available for posttreatment evaluation.

566 Eur J Nucl Med Mol Imaging (2010) 37:565–574



Treatment phase

MDD patients were treated with citalopram (dose 33.6±
9.2 mg/day, mean±SD) and supportive counselling (usual
treatment) for 8 weeks, starting after the initial dexameth-
asone suppression-corticotropin releasing hormone stimu-
lation (DEX-CRH) test [34]. Clinical visits took place
during weeks 1, 2, 4, 6 and 8. Remission was defined as
>50% reduction in the MADRS score and total score of <9.

Scan procedures

The radial artery was catheterized 45 min prior to PET
scanning under local anaesthesia (Xylocaine 1%, 1 ml), and
contralaterally a venous antecubital catheter was placed in
situ. Participants were transferred to the scanner room and
studied at rest, in the supine position, with ears unplugged
using an ECAT EXACT HR+ scanner (Siemens/CTI,
Knoxville, TN). First, a 10-min 2-D transmission scan
was acquired using three rotating 68Ge/68Ga sources, to
correct the subsequent emission scan for tissue attenuation.
Next, a dynamic 3-D scan (16 frames with progressively
increasing frame length) with a total duration of 60 min was
acquired, following bolus injection of a mean of 370±45MBq
[11C]FMZ with a specific activity of 62±20 GBq/µmol.

During the scan, arterial whole blood was monitored
continuously using an online detection system [35]. Discrete
samples were taken at 2.5, 5, 10, 20, 30, 40 and 60 min and
these were used for calibrating the (online) blood sampler
curve, measuring plasma/whole blood ratios, and determin-
ing metabolite fractions, enabling the generation of a
metabolite-corrected plasma input curve. Fractional concen-
trations of hydrophilic metabolites of unchanged (lipophilic)
[11C]FMZ were determined by solid-phase extraction of
plasma followed by high-performance liquid chromatogra-

phy (HPLC) [36]. All subjects underwent a T1-weighted
structural MRI scan, using a 1.5-T Sonata MR system
(Siemens, Erlangen, Germany). All MRI scans were quali-
tatively normal, as reported by experienced neuroradiologists
at the VU University Medical Center. State anxiety scores, as
measured by the Spielberger state-trait anxiety inventory
(STAI) [37], were obtained before and immediately after the
[11C]FMZ scanning session and averaged (Table 1). After
8 weeks of treatment, MDD patients returned for a second
[11C]FMZ scan session.

Image processing and analysis

Images were reconstructed using FORE+2D filtered back-
projection, applying a Hanning filter with a cut-off at 0.5 of
the Nyquist frequency. Images consisted of 63 planes of
256×256 voxels, each 1.2×1.2×2.4 mm, with a reconstructed
image resolution of approximately 7 mm full-width at half-
maximum (FWHM). The images were analysed with CAPP
software provided by the scanner manufacturer (CTI/Siemens,
Knoxville, TN) on Sun workstations (Sun Microsystems,
Mountain View, CA). MRI scans were coregistered with
summed [11C]FMZ images (10–60 min after injection) [38,
39]. Next, regions of interest (ROIs) were manually defined
on these coregistered MRI scans. Using the anatomical atlas
of Duvernoy et al. [40], ROIs were drawn on consecutive
planes in cranial–caudal order, starting with the plane in
which the vertical and horizontal diameter of the cerebrum
no longer increased and ending with the plane where either
the cerebellum or temporal poles were no longer visible. The
following structures were selected: anterior, ventrolateral,
dorsolateral and orbitomedial prefrontal cortex, anterior and
posterior cingulate, medial and lateral temporal lobe, and
insular, parietal and occipital areas, cerebellum, hippocampus,
putamen, and thalamus. The pons was selected as reference

Characteristic MDD patients before
treatment (n=11)

MDD patients after
treatment (n=9)

p valuea Controls
(n=9)

p valueb

Sex (no. F/M) 7/4 6/3 3/6

Age (years, mean±SD) 37±11 39±11 32±7

Previous psychiatric history (n) 9 None

Major depressive episode 5 5

Dysthymia 3 3

Bulimia 1

Alcohol dependency 2 1

Clinical rating scale scores
(mean±SD)
MADRS 26.9±5.9 10.2±5.9 0.001

BDI 31.3±7.3 11.7±9.0 <0.001 1.3±1.4 <0.001

CGI 4.4±0.8 2.9±0.8 <0.001

HAM-A 22.5±5.5 13.7±5.1 0.007

STAI state 50.2±7.7 38.0±11.6 0.009 30.6±3.2 <0.001

Table 1 Demographic and
clinical characteristics of MDD
patients before and after treat-
ment and of healthy controls

a Paired t-test, comparing MDD
patients before and after
treatment (n=9).
b One-way ANOVA, comparing
MDD patients before treatment
(n=11) and controls (n=9).
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tissue ROI. ROIs were projected onto the dynamic [11C]FMZ
images, generating time–activity curves for each region.

For each study, data were analysed using three different
complementary methods, applying both voxel-based and
ROI approaches. Parametric volume of distribution (VT)
images were generated using Logan plot analysis with a
metabolite-corrected arterial plasma input function [41]; VT

being the ratio of the tracer concentration in tissue to that in
plasma at equilibrium. Prior to voxel-by-voxel calculations,
reconstructed dynamic [11C]FMZ scans were smoothed
using a 10-mm gaussian filter, resulting in an overall image
resolution of about 12 mm FWHM. This preliminary
smoothing was applied to avoid noise-induced bias of
plasma input Logan plot analysis [42]. Consequently, in
subsequent SPM analysis, the usual additional smoothing
of the parametric data was omitted [43].

For ROI-based methods, which are based on best fits of
ROI time–activity curves, VT, obtained using a single tissue
(1T) compartment model with metabolite-corrected plasma
input function and an additional parameter for blood volume,
was compared with nondisplaceable binding potential (BPND)
values obtained using the simplified reference tissue model
(SRTM) [44] with the pons as reference tissue, as validated
previously [45]. Here, BPND is the ratio of receptor density
(Bmax) to radioligand equilibrium dissociation constant (KD)
and is proportional to receptor density x affinity [46].

Neuroendocrine assessments

Plasma GABA was measured at baseline screening in
both MDD patients and controls. Full blood was
centrifuged, plasma collected and frozen at −70°C until
the assay of total GABA [47]. DEX-CRH testing was
performed at baseline in patients and controls, and
repeated in MDD patients after treatment 1 week after
the [11C]FMZ scan. Urine (24-h samples) was collected
for measurement of free cortisol, with correction for
creatinine level. The overnight DEX-CRH test started
with the oral intake of 1.5 mg dexamethasone at
2300 hours. The next day at 1400 hours, after a light
lunch, 100 µg human CRH (Ferring, Kiel, Germany) was
administered intravenously as a bolus via an antecubital
catheterized vein. Blood samples for determination of
plasma cortisol and adrenocorticotropic hormone (ACTH)
were withdrawn 30 min before, and at 0, and 15, 30, 45
and 90 min after injection. HPA axis activity was
calculated including cortisol and ACTH time to peak,
peak level, area under the time-concentration curve (AUC)
and delta value (peak level minus basal level). Intra- and
interassay coefficients of variation for urine cortisol were
5% and 9% (RIA, Siemens), for serum cortisol 3% and 6%
(Centaur, Siemens), and for ACTH laboratory procedures
3% and 8% (Immulite 2500, Siemens).

Statistical analysis

Demographic, behavioural and endocrinological data were
analysed using Statistical Package for the Social Sciences
(SPSS) software (version 11.5 for Windows; SPSS,
Chicago, IL). One-way analysis of variance (ANOVA)
was employed for between-group comparisons of demo-
graphic, behavioural, corticosteroid, and molecular binding
data. Student’s paired t-tests were performed for within-
group analyses of behavioural and molecular binding data.

Parametric images were analysed using SPM2 (Statistical
Parametric Mapping; Wellcome Department of Cognitive
Neurology, London, UK). After spatial preprocessing
(normalization to anatomical standard space as defined by
SPM’s Montreal Neurological Institute (MNI) template),
images were analysed on a voxel-by-voxel basis with and
without proportional scaling. In order to correct for large
interindividual global variations, only results for proportional
scaling are reported. P values are reported at the voxel-level,
for p uncorrected <0.001, with an extent threshold of ten
voxels, unless otherwise specified. Both within- and
between-group comparisons were performed in addition
to analysis of covariance using clinical rating scale
outcomes from MADRS, HAM-A, STAI scores, GABA
and corticosteroid data. Additionally, within group
correlational Pearson analyses (denoted as r) were
repeated for these data and ROI VT or BPND.

Results

Two pretreatment scans, one posttreatment scan and one
control scan could not be included in the final analysis due
to scanner breakdown during the session (one), clotting of
the arterial line (one) and inconsistencies in the [11C]FMZ
metabolite data (two).

Comparison of [11C]FMZ binding in MDD patients
and controls

In MDD patients (n=9) compared to controls (n=8),
reduced [11C]FMZ binding was found bilaterally in the
parahippocampal temporal gyrus and in the right superior
temporal gyrus, using voxel-based SPM analysis (Fig. 1,
Table 2). No significant differences in binding were found
for any of the ROI-based VT or BPND values, nor in relation
to clinical parameters.

Comparison of [11C]FMZ binding in MDD patients
before and after treatment

Pre- and posttreatment scan pairs from six MDD patients
were available for analysis after completion of the 8-week
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treatment period. Voxel-based SPM analysis revealed
reduced binding after treatment in the right lateral temporal
gyrus and dorsolateral prefrontal cortex. There were no
significant changes in ROI VT and BPND values. VT pons
showed a nonsignificant increase of 6% (VT 0.90±0.16 to
0.95±0.09, p=0.164).

Clinical rating scales

Although none of the MDD patients was classified with a
separate comorbid anxiety disorder, the MDD patients were
significantly more anxious than the healthy controls, as
measured using the STAI scores, at baseline PET scanning
(p<0.001, Table 1). HAM-A scores, including the items
depressed mood, tension, fear and somatic anxiety equiv-

alents, decreased significantly (p=0.007), parallel with
MADRS and BDI scores (p=0.001 and p<0.001, Table 1).
Remission was seen in six out of nine MDD patients.

Neuroendocrine hormones

In MDD patients (n=10), the total GABA level was
1.23±0.14 µmol/l (range 0.971–1.440 µmol/l) compared to
1.00±0.36 µmol/l (range 0.488–1.340 µmol/l) in healthy
controls (n=6; p=0.09) and therefore was not discrimina-
tive. Plasma GABA could not be recovered in one patient
and three healthy controls.

One patient found the DEX-CRH protocol too burdensome
and one set of control HPA data could not be acquired for
logistic reasons. In the MDD patients (n=10), basal ACTH

Fig. 1 Statistical parametric
map illustrating decreased [11C]
FMZ binding in the bilateral
parahippocampal gyrus, located
at MNI −24, −36, −4 and 30,
−38, −12, and the right superior
temporal gyrus, at MNI 52, −4,
6, in MDD patients versus
controls (p uncorrected ≤0.001,
extent ten voxels). Bottom right
Z-score scale

Table 2 Brain regions showing reduced parametric [11C] FMZ binding

Condition KE
a Z-score L/R Region x y z

MDD patients < controls 27 3.79 L Parahippocampal gyrus −24 −36 −4
13 3.37 R Superior temporal gyrus 52 −4 6

13 3.23 R Parahippocampal gyrus 30 −38 −12
MDD patients before > after treatment 34 4.63 R Dorsolateral prefrontal cortex 50 18 8

11 3.65 R Lateral temporal gyrus 60 −30 0

p uncorrected <0.001, extent threshold ten voxels.
a Number of voxels in cluster.
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levels after dexamethasone suppression were significantly
increased compared to controls (n=8; p=0.023). The
increase in cortisol and ACTH output following additional
stimulation with human CRH in MDD patients was not
significantly greater than in healthy controls, presumably
due to large between-subject variability. Also, before
versus after treatment decreases in ACTH and cortisol
parameters failed to reach statistical significance (data not
shown).

Clinical outcome measures versus SPM [11C]FMZ binding

In the MDD patients, MADRS depression severity scores
were inversely correlated with voxel-based [11C]FMZ
binding in the right posterior temporal gyrus, bordering
the parahippocampal gyrus, and in ventrolateral prefrontal
cortex (Table 3). At the group level (MDD patients and
controls), but not among the MDD patients, STAI anxiety
scores were strongly inversely correlated with [11C]FMZ
binding in the left insula and the right temporal gyrus, and
bilaterally in the parahippocampal gyrus. HAM-A scores
were inversely correlated with [11C]FMZ binding in the right
parieto-occipital cortex, adjacent to the parahippocampal
gyrus, and in the right dorsolateral prefrontal cortex, adjacent
to the superior part of the insula. After treatment, MADRS

and STAI scores were no longer significantly correlated with
[11C]FMZ binding.

Plasma GABA versus [11C]FMZ binding

In the MDD patients, total GABA was inversely correlated
with [11C]FMZ binding in the right insular area proceeding
into the temporal lobe, and positively correlated with [11C]
FMZ binding in the bilateral anterior cingulate cortex, right
posterior cingulate cortex and left temporal gyrus (Table 4).

DEX-CRH outcomes versus [11C]FMZ binding

In the MDD patients, ACTH peak level, delta level, area
under the curve and to a lesser extent corresponding cortisol
outcomes were inversely related to voxel-based [11C]FMZ
binding in the bilateral insular area, extending into the
superior temporal lobe (Table 4). A single significant
positive correlation was found in the ROI MDD analysis,
between VT right posterior cingulate and peak level cortisol
(r=0.814, p=0.049) and cortisolAUC (r=0.860, p=0.028),
respectively. A similar trend was seen for VT left posterior
cingulate and cortisolAUC (r=0.791, p=0.061), but not for
the identical BPND ROI. No other ROI was significantly
related to DEX-CRH values.

Table 3 MNI coordinates of the inverse interaction between clinical rating scale scores and parametric [11C]FMZ binding

Rating scale KE
a Z-score L/R Region x y z

MADRSb 16 4.11 L Postcentral gyrus −60 −22 30

11 3.83 R Posterior medial temporal/parahippocampal gyrus 38 −36 −18
14 3.77 L Precentral gyrus −48 −22 46

44 3.67 L Occipital cortex −26 −66 −12
– 3.39 L Occipital cortex −20 −74 −8
17 3.67 L Parieto-occipital cortex −14 −66 12

11 3.52 R Ventrolateral prefrontal cortex 44 40 −14
HAM-Ab 44 3.56 R Dorsolateral prefrontal cortex/superior insula 40 16 12

95 3.63 R Parieto-occipital cortex/parahippocampal gyrus 20 −46 4

10 3.44 L Parietal cortex −36 −44 52

STAIc 103 3.83 L Insula −48 −14 14

58 3.76 R Posterior superior temporal gyrus 48 −68 12

22 3.51 R Ventrolateral prefrontal cortex 36 22 −16
13 3.50 L Dorsolateral prefrontal cortex −36 46 14

27 3.39 L Parahippocampal gyrus −22 −38 −6
20 3.36 R Anterior medial temporal gyrus 52 6 −26
42 3.27 R Posterior temporal cortex 28 −50 −12
– 3.25 R Parahippocampal gyrus 28 −36 −12

p uncorrected ≤0.001, extent threshold ten voxels.
a Number of voxels in the cluster.
b In MDD patients.
c At the group level; group including all subjects (MDD patients and controls).
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Discussion

In MDD patients, reduced bilateral [11C]FMZ binding in
the limbic parahippocampal temporal gyrus and right lateral
superior temporal gyrus was found compared to healthy
controls, suggesting decreased GABAA benzodiazepine
receptor affinity and/or numbers. Moreover, in the MDD
patients, post hoc voxel-based SPM analysis showed a
strong inverse correlation between global [11C]FMZ
binding in the bilateral insular–superior temporal area and
DEX-CRH-induced release of ACTH and cortisol. This
finding supports the hypothesis that a deficient inhibitory
GABA-ergic system is related to increased HPA axis
activity. Total plasma GABA was not discriminative.

Comparison with previous studies

Our PET findings may be in line with those of a recent study
by Aihara et al. [48], showing glucose hypermetabolism in
the right parahippocampal gyrus in unmedicated MDD
patients. As GABA is a major inhibitory neurotransmitter,
decreased binding to the GABAA benzodiazepine site of the
GABAA receptor may therefore be consistent with loss of

inhibition, resulting in increased localized brain activity and
metabolic demand. Similarly, Kennedy et al. [49] found
diminished glucose uptake in (para)hippocampal regions in
depression after successful treatment with paroxetine,
suggesting normalization to baseline levels.

Involvement of the insular area in MDD patients, as
suggested by the inverse relationship with HPA axis
activity found in this study, has been reported in post-
stroke depression [50], in panic disorder [51], and more
recently by both Cameron et al. [52] and Hasler et al. [53]
in panic disorder subjects with comorbid depression. In the
MDD patients, total plasma GABAwas inversely related to
binding in the right insular area, signifying that regionally
low GABAA benzodiazepine binding was related to
relatively high available GABA levels.

HPA axis hyperactivity may be due to reduced GABA-
ergic tone on the paraventricular nucleus, or alternatively,
hyperactivity in the HPA axis may sequentially lead to
decreases in GABAA receptor expression, consistent with
animal studies [54, 55]. Interestingly, Merali et al. [56] not
only found decreased gene expression for GABAA receptor
subunits in post-mortem brains of suicide victims, but also
decreased gene expression for the CRH1 receptor, suggesting

Table 4 Interaction between neurohormones and parametric [11C]FMZ binding in MDD patients at baseline

Condition KE
a Z-score L/R Region x y z

Total plasma GABA × [11C]FMZ binding

Negative correlation 131 4.08 R Insula 40 -−2 12

Positive correlation 263 4.38 R Posterior cingulate cortex 12 −44 42

4.26 R Posterior cingulate cortex 12 −38 36

202 4.31 L Superior/medial temporal gyrus −46 −24 −10
98 3.97 L/R Anterior cingulate cortex 4 40 16

55 4.39 L/R Subgenual anterior cingulate cortex 2 52 −14
Output DEX-CRH test × [11C]FMZ binding

Negative correlation

ACTH peak level 251 4.43 R Insula 54 0 −10
69 4.35 L Superior temporal gyrus −42 10 −22
211 4.23 L Insula −54 −8 2

4.02 L Insula −46 −4 4

60 3.70 R Medial prefrontal cortex 8 64 10

ACTH delta levelb 242 4.46 R Insula 56 2 −8
194 4.23 L Insula −54 −6 0

52 4.02 L Superior temporal gyrus −42 10 −22
53 3.57 R Medial prefrontal cortex 8 64 10

ACTH AUC 446 4.29 L Insula −54 −6 −2
247 4.03 R Insula 54 0 −8
64 3.85 R Medial prefrontal cortex 8 62 16

p uncorrected <0.001, extent threshold 50 voxels.
a Number of voxels in cluster.
b Peak level minus basal level.
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a downregulation due to increased CRH levels, consistent
with increased HPA axis activity in our study.

Psychometrics

MADRS depression severity scores were inversely associated
with voxel-based [11C]FMZ binding in areas involved in the
pathophysiology of depression and anxiety, that is the right
temporal gyrus and the ventrolateral prefrontal cortex,
indicating that high depression scores are related to low
[11C]FMZ binding [57]. Depression has a close relationship
with anxiety, at both the theoretical and clinical level (for
review see Kalueff and Nutt [2]). STAI scores significantly
differentiated MDD patients from controls. In addition, at the
group level, but not in the MDD group, state anxiety was
correlated with bilateral decreased parahippocampal [11C]
FMZ binding. None of the participants fulfilled the diagnostic
criteria for panic disorder or experienced a panic attack in the
PET scanner. Most previous studies [51, 52, 58, 59] did not
find correlations between anxiety symptom scores and
benzodiazepine binding. Only Abadie et al. [60] and Hasler
et al. [53] showed correlations in the prefrontal cortex in
panic disorder, albeit in the opposite direction. Therefore, the
correlation is probably explained by increased anxiousness
as part of the depressive syndrome.

After treatment

Following treatment with citalopram, our SPM findings of
decreased [11C]FMZ binding in the right dorsolateral
prefrontal and temporal cortex may signify either an
absolute decrease, or a ‘relative’ decrease, that is a lower
increase than in other cortical regions. Increased binding
would be in line with findings by Mervaala et al. [28].
Bhagwagar et al. [61] showed that citalopram itself does
not exhibit a direct effect upon the GABAA receptor,
though it may indirectly increase the amount of available
GABA.

In addition, DEX-CRH-stimulated HPA axis activity
partially normalized, although it could not be significantly
related to [11C]FMZ binding. The normalization would
have been partly mediated by direct effects of citalopram on
HPA axis functioning [62].

Methodological limitations

Sample sizes were small, though moderate in the field of
PET studies. The study protocol was ambitious, including
repeated acquisition of PET data with arterial sampling and
neuroendocrine testing, involving a dexamethasone and
intravenous CRH challenge. The difficulty in engaging
patients was reflected in the time it took to recruit a
sufficient number (2 years). Inherent to the diagnosis of

depression, the MDD group experienced motivational
problems. Groups were matched for age, but not for gender.
Previous studies using [11C]FMZ have not revealed gender
effects, though this has never been studied in MDD [51–
53]. When investigating these modest sample sizes we
chose to detect changes with a higher sensitivity, but
consequently lower specificity. Given the large number of
comparisons, false-positive findings cannot be excluded,
and we clearly realize that our results are in need of
replication in a larger sample.

Control subjects were tested only once. At retest,
depressive patients were less anxious, which may have
been due, at least in part, to familiarity with the procedure.
This may have influenced PET and HPA axis activity and
measurements, although STAI scores at retest were still
higher than in healthy controls. Moreover, reduced anxiety
in the control group during retest would only have
increased the difference with the MDD group.

Voxel-based parametric (SPM) and ROI methods are
complementary analytical PET techniques. The main
advantage of SPM- over ROI-guided analysis is the fact
that all data (voxels) are used. SPM does not require that
regions be defined prior to analysis. Therefore, changes that
are only present in part of a region, or indeed across
regions, can be better identified. However, normalization
and smoothing steps reduce its sensitivity. Due to the large
number of comparisons made, voxel-based analyses are
susceptible to type I errors [63, 64]. ROIs were individually
outlined by hand in all subjects and therefore subject to
bias. Given that this is a preliminary study, we did not
include additional Bonferroni corrections in our ROI
analysis to reduce the likelihood of type II error. Although
of interest for the suggested relationship between [11C]FMZ
GABAA receptor binding and HPA activity, [11C]FMZ
binding in the hypothalamic paraventricular nucleus itself
was not quantified, due to its small size and associated
partial volume effects.

Conclusion

The main finding of this study is that in MDD patients, FMZ
GABAA-benzodiazepine receptor binding is bilaterally
decreased and inversely related to HPA axis activity in the
limbic temporal areas, suggesting that increased HPA axis
activity is partly due to reduced GABA-ergic inhibition.
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