
From Outermost to Context-Sensitive Rewriting

Jörg Endrullis and Dimitri Hendriks

Vrije Universiteit Amsterdam
{joerg,diem}@few.vu.nl

Abstract. We define a transformation from term rewriting systems
(TRSs) to context-sensitive TRSs in such a way that termination of
the target system implies outermost termination of the original system.
For the class of left-linear TRSs the transformation is complete. Thereby
state-of-the-art termination methods and automated termination provers
for context-sensitive rewriting become available for proving termination
of outermost rewriting. The translation has been implemented in Jam-
box, making it the most successful tool in the category of outermost
rewriting of the last edition of the annual termination competition.

1 Introduction

Termination is a key aspect of program correctness, and therefore a widely
studied subject in term rewriting and program verification. While termina-
tion is undecidable in general, various automated techniques have been de-
veloped for proving termination. One of the most powerful techniques is the
method of dependency pairs [2]. Recently [1], this method has been generalized
to context-sensitive TRSs, thereby significantly extending the class of context-
sensitive TRSs for which termination can be shown automatically. Context-
sensitive rewriting [6] is a restriction on term rewriting where rewriting in some
fixed arguments of function symbols is disallowed. It offers a flexible paradigm to
analyze properties of rewrite strategies, in particular of (lazy) evaluation strate-
gies employed by functional programming languages.

In this paper context-sensitive rewriting is the target formalism for a transfor-
mational approach to the problem of outermost termination, that is, termination
with respect to outermost rewriting. Outermost rewriting is a rewriting strat-
egy where a redex may be contracted as long as it is not a proper subterm of
another redex occurrence. The main reason for studying outermost termination
is its practical relevancy: lazy functional programming languages like Miranda,
Haskell or Clean, are based on outermost rewriting as an evaluation strategy,
and in implementations of rewrite logic such as Maude and CafeOBJ, outermost
rewriting can be specified. Consider the TRS R0 consisting of the following rules:

a → f(a) f(f(x)) → b (R0)

Clearly, this system is not terminating as witnessed by the infinite rewrite se-
quence a → f(a) → f(f(a)) → f(f(f(a))) → . . ., but it is outermost terminat-
ing. Indeed, the third step in the infinite sequence is not an outermost step, since

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 305–319, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15471577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

306 J. Endrullis and D. Hendriks

the contraction takes place inside another redex. The only (maximal) outermost
rewrite sequence the term a admits is a → f(a) → f(f(a)) → b.

Our contribution is a transformation of arbitrary TRSs into context-sensitive
TRSs (μTRSs) in such a way that rewriting in the μTRS corresponds to out-
ermost rewriting in the original TRS. As a result advanced termination tech-
niques for μTRSs become applicable for proving outermost termination, and
automated termination provers for μTRSs can directly (without modification,
only preprocessing) be used for proving outermost termination. Our transfor-
mation is complete for the class of quasi left-linear TRSs (a generalized form of
left-linear TRSs, see [8]), that is, termination of the resulting μTRS is equivalent
to outermost termination of the original system.

The transformation is comprised of a variant of semantic labeling [12]. In
semantic labeling the function symbols in a term are labeled by the interpretation
of their arguments (or a label depending on these values) according to some
given semantics. We employ semantic labeling in order to mark symbols at redex
positions, and we obtain a μTRS by defining a replacement map that disallows
rewriting inside arguments of marked symbols.

We illustrate our use of semantic labeling by the TRS R0 from the first page.
We choose the algebra A0 = 〈{0, 1}, [·]〉 where the interpretation indicates the
presence of the symbol f , thus [a] = [b] = 0, and [f](x) = 1 for x ∈ {0, 1}. Then
we write f� if the value of its argument is 1, and just f if the value is 0. The
symbol a is always marked, and b never is. If f is marked it corresponds to a redex
position with respect to the rule f(f(x)) → b. For example the term f(f(f(a)))
is labeled as f�(f�(f(a�))). We obtain a μTRS by forbidding rewriting inside
the argument of the symbol f�; since a� is a constant, there is nothing to be
forbidden. Then for correctly labeled terms, rewriting inside redex positions is
disallowed, corresponding to the outermost rewriting strategy. In order to rewrite
labeled terms we have to label the rules of the TRS. By labeling R0 with the
algebra A0 we obtain the μTRS R0:

a� → f(a�) f�(f(x)) → b f�(f�(x)) → b (R0)

which has two instances of the second rule, one for each possible value of x.
Now, despite the fact that the original TRS is outermost terminating, the

transformed μTRS R0 admits an infinite rewrite sequence:

a� → f(a�) → f(f(a�)) → f(f(f(a�))) → . . . (1)

The reason is that the term f(f(a�)) is not correctly labeled, as the root symbol
f should have been marked. In [12] this problem is avoided by allowing labeling
only with ‘models’. Roughly, an algebra is a model if left- and right-hand sides
of all rewrite rules have equal interpretations. However, this requirement is too
strict for the purpose of marking redexes, because contraction of a redex at a
position p may create a redex above p in the term tree, as witnessed by (1). In
fact, for R0 there exists no model which is able to distinguish between redex
and non-redex positions. The rewrite step f(a) → f(f(a)) creates a redex at the
top. The term f(a) is not a redex, and therefore its root symbol f should not

From Outermost to Context-Sensitive Rewriting 307

be marked. On the other hand f(f(a)) is a redex and so the outermost f has
to be marked. The change of the labeling of a context (here f(�)) implies that
the interpretation of its arguments a and f(a) cannot be the same. Therefore
we cannot require the rule a → f(a) to preserve the interpretation.

For this reason, we generalize the concept of model, and relax the requirement
[�] = [r] to ∃n. [C[�]] = [C[r]] for all contexts C of depth n. Thus rules are
allowed to change the interpretation as long as the effect is limited to contexts
of a bounded depth. Algebras satisfying this weaker requirement, which we call
‘C-models’, are strong enough to recognize redex positions. In particular, the
algebra A0 given above is a C-model for the system R0. As demonstrated by the
rewrite sequence (1) in the μTRS R0, for C-models it is no longer sufficient to
simply label the rules: an application of the rule a� → f(a�) in the term f(a�)
creates the invalid labeled term f(f(a�)). In order to preserve correct labeling,
we sometimes need to extend the rewrite rules by putting contexts around their
left- and right-hand sides. Using the C-model A0, our algorithm transforms R0

into the μTRS �π
A0

(R0), which truthfully simulates outermost rewriting of R0:

f (a�) → f�(f (a�)) top(f�(f (x))) → top(b)
top(a�) → top(f (a�)) top(f�(f�(x))) → top(b)

(�π
A0

(R0))

We explain this magical transformation. The rule f(a�) → f�(f(a�)) is obtained
from prepending the context f(�) to a → f(a). This enables correct updating
of the labeling of the context during rewriting. Because we still have to allow
rewrite steps a → f(a) of the original TRS at the top of a term, we extend
the signature with a unary function symbol top which represents the top of
a term. Thus when prepending contexts we include top(�), giving rise to the
rule top(a�) → top(f(a�)). The necessity of the symbol top becomes especially
apparent when considering the rule f(f(x)) → b. Here prepending the context
f(�) is not even an option since f(f(f(x))) → f(b) is not an outermost rewrite
step; this rule can only be applied at the top of a term. Hence we get the two
rules displayed on the right, one for each possible interpretation of the variable x.

Semantic labeling has the nice property that it does not complicate termina-
tion proofs. Although semantic labeling increases the search space, termination
proofs for the unlabeled system carry over to the labeled one. That is, whenever
R′ is a labeling of a TRS R and A = 〈A, [·],�,	〉 is a monotone Σ-algebra [4]
which proves termination of R, then extending [·] to the labeled signature Σ′

by [fλ] = [f] for every f ∈ Σ and label λ, yields a monotone Σ′-algebra which
proves termination of R′. Consequently our transformation, based on a variant
of semantic labeling, also does not complicate termination proofs. On the con-
trary, the labeled systems often allow for simpler proofs arising from the enriched
signature which provides more freedom for the choice of interpretations, see [12].

Semantic labeling possibly creates extra copies of rules, and our extension
might even create more copies: one for each context that has to be prepended.
Despite of this fact, the implementation of our transformation in the termination
prover Jambox performs efficiently on the set of examples from the Termination
Problem Database (TPDB [10]).

308 J. Endrullis and D. Hendriks

score average time

Jambox 72 (93.5%) 4.1s

TrafO 46 (59.7%) 8.1s

AProVE 27 (35.0%) 10.8s

Fig. 1. Results of proving outermost termination in the competition of 2008

Jambox was best in proving termination in the category of outermost rewrit-
ing of the termination competition of 2008 [10], see Figure 1. With an average
time of 4.1 seconds per termination proof, Jambox was also faster than the other
participants, providing empirical evidence for the efficiency of our transforma-
tion. Not listed in Figure 1 is TTT2, which did not prove outermost termination,
but performed best in disproving outermost termination.

The secret behind the efficiency of Jambox is threefold: First, we construct and
minimize the algebras employed for marking redex positions, see Sections 4 and 5.
Secondly, we try two labeling strategies: minimal and maximal. Minimal labeling
is very efficient and contributes to 75% of the success of Jambox. In order to
have a complete transformation we also employ maximal labeling. Both labelings
are described in Section 6. Thirdly, we combine labeling and context extension
into what we call ‘dynamic labeling’, where contexts are prepended depending
on the interpretation of the variables. This is formalized in Section 3. All these
optimizations minimize the number of rules and their size in the transformed
μTRS, which is important to keep a manageable search space.

Related work. Cariboo [5] deals with outermost termination using a stand-alone
approach based on induction. The very idea for a transformational approach
to outermost termination comes from [8]. There the signature is enriched with
unary symbols top, up, and down and the TRS is extended with ‘anti-matching’
rules such that down(t) is a redex if and only if t is not a redex with respect
to the original TRS. The idea is that the symbol down is moved down in the
term tree as long as no redex is encountered. Once a redex is encountered, a
rewrite step is performed, and the symbol down is replaced by up, which then
moves upwards again to the top of the term, marked by top. This transformation
is implemented in TrafO. Based on a similarly elegant idea, Thiemann [11] de-
fines a complete transformation from outermost to innermost rewriting, which
is implemented in AProVE. For traversal to the redex positions, rules of the
form down(isRedex(f(. . .))) → f(. . . , down(isRedex(. . .)), . . .) are used. In order
to simulate outermost rewriting and to prevent from moving inside redexes, rules
isRedex(�) → up(r) are added for every rule � → r of the original TRS. Then, by
the innermost rewriting strategy, the latter rules have priority over the traver-
sal rules, whenever an original redex is encountered. The simplicity of both
approaches is attractive, but the yo-yoing effect in the resulting TRSs makes
that the original outermost rewrite steps are ‘hidden’ among a vast amount of
auxiliary steps. This increases derivational complexity, and makes it hard for
automated termination provers to find proofs for the transformed systems.

From Outermost to Context-Sensitive Rewriting 309

2 Preliminaries

For a general introduction to term rewriting and to context-sensitive rewriting,
the reader is referred to [9] and [6], respectively. Here we repeat some of the
main definitions, for the sake of completeness, and to fix notations.

A signature Σ is a non-empty set of symbols each having a fixed arity, given
by a mapping � : Σ → N. Given Σ and a set X of variables, the set Ter (Σ,X) of
terms over Σ is the smallest set satisfying: X ⊆ Ter(Σ,X), and f(t1, . . . , tn) ∈
Ter(Σ,X) if f ∈ Σ of arity n and ti ∈ Ter(Σ,X) for all 1 ≤ i ≤ n. We
use x, y, z, . . . to range over variables, and write Var(t) for the set of variables
occurring in a term t. Usually we leave X implicit and write Ter(Σ) for the set
of terms over Σ and a fixed, countably infinite set of variables X . The set of
positions Pos(t) ⊆ N

∗ of a term t ∈ Ter(Σ) is defined as follows: Pos(x) = {ε}
for variables x ∈ X and Pos(f(t1, . . . , tn)) = {ε}∪{ip | 1 ≤ i ≤ �f, p ∈ Pos(ti)}.
We write t(p) to denote the root symbol of t|p, the subterm of t rooted at p, and
we write root(t) for the root symbol of t, that is root(t) = t(ε).

A substitution σ is a map σ : X → Ter(Σ,X) from variables to terms. For
terms t ∈ Ter(Σ,X) and substitutions σ, tσ is inductively defined by xσ = σ(x)
if x ∈ X , and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) otherwise. Let � be a fresh symbol,
i.e. � ∈ Σ∪X . A context C is a term from Ter (Σ,X ∪{�}) containing precisely
one occurrence of �. By C[s] we denote the term Cσ where σ(�) = s and
σ(x) = x for all x ∈ X . The depth of a context C is defined as the length |p| of
the position p at which � resides, that is, the position p such that C(p) = �.

A term rewriting system (TRS) over Σ is a set R of pairs 〈�, r〉 ∈ Ter(Σ,X)2,
called rewrite rules and written as � → r, for which the left-hand side � is
not a variable (� ∈ X) and all variables in the right-hand side r occur in �:
Var(r) ⊆ Var(�). For a TRS R we define →R, the rewrite relation induced by
R as follows. For terms s, t ∈ Ter(Σ,X) we write s →R t, or just s → t if R is
clear from the context, if there exists a rule � → r ∈ R, a substitution σ and a
context C ∈ Ter(Σ,X ∪ {�}) such that s = C[�σ] and t = C[rσ]; we sometimes
write s →R,p r to explicitly indicate the rewrite position p, i.e. when C(p) = �.
Then s outermost rewrites to t at a position p ∈ Pos(s), denoted by s out→R,p t, if
s →R,p t and for all positions p′ that are a proper prefix of p: s|p′ is not a redex.

A mapping μ : Σ → 2N is called a replacement map (for Σ) if for all f ∈ Σ
we have μ(f) ⊆ {1, . . . , �f}. A context-sensitive term rewriting system (μTRS)
is a pair 〈R,μ〉 consisting of a TRS R and a replacement map μ. The set of μ-
replacing positions Posμ(t) of a term t ∈ Ter(Σ,X) is defined by Posμ(x) = {ε}
for x ∈ X and Posμ(f(t1, . . . , tn)) = {ε} ∪ {ip | i ∈ μ(f), p ∈ Posμ(ti)}. In
context-sensitive term rewriting only redexes at μ-replacing positions are con-
tracted: s μ-rewrites to t, denoted s →R,μ t, whenever s →R,p t with p ∈ Posμ(s).

A Σ-algebra 〈A, [·]〉 consists of a non-empty set A and for each n-ary f ∈ Σ
a function [f] : An → A, called the interpretation of f . Given an assignment α :
X → A, the interpretation of terms t ∈ Ter(Σ) is defined by: [x, α] = α(x) and
[f(t1, . . . , tn), α] = [f]([t1, α], . . . , [tn, α]). For substitutions σ : X → Ter(Σ,X),
we write [σ, α] for the function λx.[σ(x), α]. For ground terms t ∈ Ter(Σ, ∅) and
substitutions σ : X → Ter(Σ, ∅) we write [t] and [σ] for short, respectively.

310 J. Endrullis and D. Hendriks

3 Transformation by Dynamic Labeling

In outermost rewriting the only redexes which are allowed to be rewritten are
those which are not nested within any other redex occurrence. We represent this
strategy by context-sensitive rewriting by using semantic labeling: we mark the
symbols which are the root of a redex in order to disallow rewriting within that
redex. We first recall the definition of semantic labeling and models from [12],
and then generalize these to fit our purpose.

Definition 3.1 ([12]). Let Σ be a signature. A semantic labeling 〈A, [·], π〉 con-
sists of a Σ-algebra 〈A, [·]〉 and a family π = {πf}f∈Σ of functions πf : A�f → Λf

where, for each f ∈ Σ, Λf is a finite and non-empty set of labels. For a term
t ∈ Ter(Σ) and α : Var(t) → A, an interpretation of its variables, we define the
labeling lab(t, α) of t with respect to α inductively as follows:

lab(x, α) = x ,

lab(f(t1, . . . , tn), α) = fπf ([t1,α],...,[tn,α])(lab(t1, α), . . . , lab(tn, α)) .

For ground terms t ∈ Ter(Σ, ∅) we just write lab(t). Let R be a TRS over
Σ. The semantic labeling of R is the TRS lab(R) over the labeled signature
lab(Σ) = {fλ | f ∈ Σ, λ ∈ Λf}, defined by:

lab(R) = {lab(�, α) → lab(r, α) | � → r ∈ R , α : Var(�) → A} .

Term labeling satisfies the following useful property; see [12] for a proof.

Lemma 3.2 ([12]). Let 〈A, [·]〉 be a Σ-algebra, α : X → A, σ : X → Ter(Σ),
and σ(x) = lab(σ(x), α). Then lab(tσ, α) = lab(t, [σ, α])σ, for all t ∈ Ter(Σ).

The Σ-algebra of a semantic labeling has to satisfy certain constraints in order
to obtain that a TRS is terminating if and only if its labeled version is. In [12]
the algebra has to be a ‘model’: A Σ-algebra 〈A, [·]〉 is called a model of a TRS R
if for all rules � → r ∈ R and assignments of variables α : Var(�) → A we have
that [�, α] = [r, α]. In the introduction we explained why this notion of model is
too restrictive for our purpose. In order to be able to distinguish between redex
and non-redex positions we introduce C-models, a generalization of models.

Definition 3.3. A C-model for a TRS R is a Σ-algebra 〈A, [·]〉 such that for
every rule � → r ∈ R there exists n ∈ N such that for every context C of depth n
and assignment α : X → A we have [C[�], α] = [C[r], α]. When n ∈ N is minimal
for a rule � → r with respect to this property, we call n the C-depth for � → r.

As this definition suggests, it is possible to use a C-model A to transform a
TRS R by prepending contexts to its rules in such a way that A becomes a
model for the transformed system R̃, and then perform semantic labeling. But
then, from the labeled version lab(R̃), every rule that contains a marked (redex)
symbol within the context that was prepended to the rule in the construction
of R̃ has to be removed again, as it would enable a rewrite step which is not
outermost.

We choose for a different approach which we call ‘dynamic labeling’. We step-
wise extend rules by contexts, only when needed and dependent on the variable

From Outermost to Context-Sensitive Rewriting 311

interpretation used for the semantic labeling. For different interpretations of the
variables usually different context depths are necessary for achieving equal inter-
pretations of left- and right-hand side. In each extension step we check whether
a candidate symbol is a redex symbol, and, if it is, this symbol is excluded from
prepending. Here, by a redex symbol we mean a labeled symbol which indicates
the presence of a redex in the original system (at the same position). Dynamic
labeling is more efficient in that both the number and the size of the rules of
the resulting μTRS are smaller than in the ‘static’ version. We explain dynamic
labeling by means of the TRS R1 consisting of the rules:

f(g(x)) → f(f(g(x))) f(f(f(x))) → x (R1)

and the algebra A1 = 〈A1, [·]〉 where A1 = {g, f0, f1, f2} and where the inter-
pretation of the symbols is defined by [g](x) = g for all x ∈ A1, [f](g) = f1 and
[f](fi) = fmin(i+1,2) for i = 0, 1, 2. Let further 〈A1, π〉 be the semantic labeling
where π labels the symbols with the interpretations of their arguments. Then
the symbols fg and ff2 are redex symbols, corresponding to redex positions with
respect to the first and the second rule of R1, respectively. The algebra A1 is a
C-model where for the first rule the C-depth is 1, and for the second rule it is 2.

We iteratively construct sets P0, P1, . . ., until Pi+1 = Pi for some i. The initial
set P0 consists of pairs 〈� → r, α〉 for each rule � → r, and each interpretation
α : Var(�) → A1 of the variables. Then, in each step, Pi+1 is obtained from Pi

by replacing every pair 〈� → r, α〉 of Pi for which the interpretation of the left-
hand side differs from the right-hand side ([�, α] = [r, α]), by the pairs 〈C[�] →
C[r], α′〉 for every flat context C (see (2) on the next page) and every extension
α′ : Var(C[�]) → A1 of α, such that the root of the labeled, extended left-hand
side lab(C[�], α′) is not a redex symbol. Among the flat contexts to prepend we
include top(�) to cater for the case that the rule is applied at the top of the
term. For R1 the initial set P0 is:

P0 =
{
〈f(g(x)) → f(f(g(x))), λx.a〉 , 〈f(f(f(x))) → x, λx.a〉 | a ∈ A1

}
.

The only element 〈� → r, α〉 of P0 such that [�, α] = [r, α] is 〈f(f(f(x))) →
x, λx.f2〉. For this pair no context needs to be prepended. The other pairs have
to be replaced by their context extensions, and thus P1 consists of:

〈C[f(g(x))] → C[f(f(g(x)))], λx.a〉 , for all a ∈ A1, C ∈ {top(�), f(�), g(�)},
〈f(f(f(x))) → x, λx.f2〉 ,

〈C[f(f(f(x)))] → C[x], λx.a〉 , for all a ∈ A1 \ {f2}, C ∈ {(top)�, g(�)}.

In the last line the context f(�) is excluded, because the labeled left-hand side
of the rule would contain the redex symbol ff2 within the prepended context,
and thus the step would not be outermost. Due to the outermost strategy, the
original rule is only applicable under a context C[g(�)] (where C does not con-
tain any redexes) or at the top of a term. Now for all (4 · 3 + 1 + 3 · 2 = 19)
pairs of P1 left- and right-hand side have equal interpretations, and the iterative
construction is ended. We define �A1(R1) = P1, and call this set the ‘dynamic
context extension’ of R1 with respect to A1.

312 J. Endrullis and D. Hendriks

Secondly, the dynamic extension �A1(R1) is labeled using the family π which
returns for each symbol f a label consisting of the interpretation of its arguments,
i.e., πf (a1, . . . , a�f) = 〈a1, . . . , a�f 〉. Then the desired μTRS �π

A1
(R1), which we

call the dynamic labeling of R1, consists of the rules lab(�, α) → lab(r, α) for
every 〈� → r, α〉 ∈ �A1(R1), with the replacement map μ defined by μ(f) = ∅

if f ∈ {fg, ff2}, and μ(f) = {1, . . . , �f} otherwise, for all f ∈ lab(Σ).
We now formalize dynamic labeling. For the remainder of this section we fix an

arbitrary TRS R over Σ, and let A = 〈A, [·]〉 be a C-model for R. We assume top
to be a fresh symbol (top ∈ Σ) representing the top of a term, and abbreviate
Σtop = Σ ∪ {top}. We extend A to a Σtop-algebra by choosing an arbitrary
but fixed element a ∈ A and defining the interpretation of top as the constant
function [top] = λx.a. Furthermore, we let 〈A, π〉 be a semantic labeling, and
Σred ⊆ lab(Σ) a subset of the labeled signature, called the set of redex symbols.
The definition makes use of flat contexts fresh for t ∈ Ter(Σtop):

C�
t =

{
f(x1, . . . , xj−1, �, xj+1, . . . , x�f) | f ∈ Σtop, j ∈ {1, . . . , �f}

}
(2)

where x1, x2, . . . ∈ X such that xi ∈ Var(t). Furthermore, for partial functions
f, g : S ⇀ T with disjoint domains, we write f+g for the union of f and g, defined
by (f + g)(x) = f(x) if x ∈ dom(f), and (f + g)(x) = g(x) if x ∈ dom(g).

Definition 3.4. The dynamic context extension of R, denoted by �A(R), is
defined as the fixed point of the following construction of sets P0, P1, . . ., that
is, �A(R) = Pi as soon as Pi+1 = Pi for some i. The initial set is defined by:

P0 = { 〈� → r, α〉 | � → r ∈ R, α : Var(�) → A } ,

and for i = 0, 1, . . . the set Pi+1 is obtained from Pi by replacing every pair
〈� → r, α〉 such that [�, α] = [r, α], or r ∈ X ,1 by all pairs in �(� → r, α) where:

�(� → r, α) =
{
〈C[�] → C[r], α + β〉

∣
∣ C ∈ C�

	 , β : Var(C) → A,

root(lab(C[�], α + β)) ∈ Σred
}

.

Then, the dynamic labeling of R is the μTRS 〈�π
A(R), μ〉 consisting of:

�π
A(R) =

{
lab(�, α) → lab(r, α) | 〈� → r, α〉 ∈ �A(R)

}
,

and the replacement map μ, defined by μ(f) = ∅ if f ∈ Σred , and μ(f) =
{1, . . . , �f} otherwise, for all f ∈ lab(Σtop). Whenever the set Σred , which de-
termines the replacement map, is clear from the context, we write �π

A(R) as a
shorthand for 〈�π

A(R), μ〉.

Notice that the construction of �A(R) is guaranteed to terminate because of
the assumption that A is a C-model.

We come to the first main theorem, stating that outermost ground termination
of R is implied by termination of the transformed system �π

A(R).
1 The condition r �∈ X eliminates collapsing rules. This is used in the proof of Thm. 6.5,

which states completeness. Without this condition, the transformation is still sound
(Thm. 3.7). Nota bene: in the TRS R1 worked out before, r �∈ X is not used.

From Outermost to Context-Sensitive Rewriting 313

For the remainder of this section, we assume that the set Σred ⊆ lab(Σ) contains
redex symbols only, that is, for all ground terms t and p ∈ Pos(t):

lab(t)(p) ∈ Σred implies that t|p is a redex with respect to R (‡)

Lemma 3.5. Let s, t ∈ Ter(Σ, ∅) be ground terms and p ∈ Pos(s) such that
s out→R,p t. Then for all proper prefixes q of 1p we have lab(top(s))(q) ∈ Σred .

Proof. If q = ε, this follows from topλ ∈ Σred for any label λ. If q = ε, then
lab(top(s))(q) = lab(s)(q′) with q′ a proper prefix of p, and if lab(s)(q′) ∈ Σred ,
then by assumption (‡) the term s contains a redex at position q′, quod non. ��

The following lemma states that any outermost ground rewrite step in R can
be transformed into a rewrite step in �π

A(R). For ground substitutions σ : X →
Ter(Σ, ∅) define σ(x) = lab(xσ).

Lemma 3.6. Let s, t ∈ Ter(Σ, ∅) be ground terms such that s out→R t. Then:

lab(top(s)) →�π
A(R) lab(top(t)) .

Proof. Assume s out→R,p t for some position p ∈ Pos(s). Then there exists a rule
� → r ∈ R, a context C with C(p) = � and a ground substitution σ such that
s = C[�σ] and t = C[rσ]. We consider the construction of the dynamic context
extension from Definition 3.4, and prove by induction that for all i = 0, 1, . . .
there exists a context Ci which is a prefix of top(C), a ground substitution σi, and
terms �i, ri such that top(s) = Ci[�iσi], top(t) = Ci[riσi] and 〈�i → ri, [σi]〉 ∈ Pi.
For the base case we have 〈�0 → r0, [σ0]〉 ∈ P0 with �0 = �, r0 = r, σ0 = σ, and
C0 = top(C). For the induction step we assume the existence of Ci, σi, and
〈�i → ri, [σi]〉 ∈ Pi with the above properties. If [�i, [σi]] = [ri, [σi]] and ri ∈ X
then by definition 〈�i → ri, [σi]〉 ∈ Pi+1, and so we are done. For the remaining
cases [�i, [σi]] = [ri, [σi]] and ri ∈ X , we first show that Ci = �. If [�i, [σi]] =
[ri, [σi]] and Ci = � , then �iσi = top(s) and riσi = top(t), and hence root(�i) =
root(ri) = top, contradicting [�i, [σi]] = [ri, [σi]] (recall that the interpretation
of top is constant). Furthermore, we have ri ∈ X only if i = 0, and then Ci =
top(C) = �. Thus we have Ci = D[D′σ′] for some context D, flat context D′ ∈
C�

	i
and substitution σ′. We choose Ci+1 = D, �i+1 = D′[�i], ri+1 = D′[ri], and

σi+1 = σi +σ′. It remains to be shown that 〈�i+1 → ri+1, [σi+1]〉 ∈ Pi+1. For this
it suffices to prove that root(lab(�i+1, [σi+1])) ∈ Σred . We have Ci+1[�i+1σi+1] =
top(s). Let q be the position such that Ci+1(q) = �. Then, by Lemma 3.2 we
obtain root(lab(�i+1, [σi+1])) = root(lab(�i+1σi+1)) = top(lab(s))(q). Note that
q is a proper prefix of 1p, and so lab(s)(q′) ∈ Σred by Lemma 3.5.

Let i ∈ N be such that Pi+1 = Pi. By the result above we have 〈�i → ri, [σi]〉
∈ �A(R), with [�iσi] = [riσi], and then lab(�i, [σi]) → lab(ri, [σi]) ∈ �π

A(R) by
definition. Let τ and υ be defined by τ(�) = �iσi, υ(�) = riσi, and τ(x) =
υ(x) = x for x ∈ X . Then we have that lab(Ci, [τ]) = lab(Ci, [υ]) since [τ] = [υ].
Let E = lab(Ci, [τ]). We get lab(top(s)) = lab(Ci[�iσi]) = lab(Ciτ) = Eτ =
E[lab(�iσi)] = E[lab(�i, [σi])σi] and lab(top(t)) = . . . = E[lab(ri, [σi])σi], by
Lemma 3.2. Then, by Lemma 3.5 we have lab(top(s)) →�π

A(R) lab(top(t)). ��

314 J. Endrullis and D. Hendriks

Theorem 3.7. R is outermost ground terminating if �π
A(R) is terminating.

Proof. Assume R admits an infinite outermost rewrite sequence t1
out→R t2

out→R

t3
out→R Then from Lemma 3.6 it follows that �π

A(R) allows an infinite rewrite
sequence: lab(top(t1)) →�π

A(R) lab(top(t2)) →�π
A(R) lab(top(t3)) →�π

A(R) ��

Theorem 3.7 is about outermost ground termination. This is not a restriction
because by adding a fresh constant 0 and a fresh unary symbol s, outermost
ground termination coincides with outermost termination:

Lemma 3.8. The TRS R over the signature Σ is outermost terminating if and
only if R over the signature Σ ∪ {s, 0} is outermost ground terminating. ��

4 Constructing Suitable Algebras

In this section we construct C-models that are able to recognize redex positions
with respect to left-linear rules. The construction of C-models is similar to the
construction of a deterministic tree automaton (DTA) for recognizing left-linear
redexes. A DTA is a Σ-algebra 〈A, [·]〉 with a distinguished set AF ⊆ A of final
states. A term t is accepted by the automaton whenever [t] ∈ AF . The difference
with the construction of a DTA is that for the construction of a C-model we do
not distinguish final and non-final states, but instead have a family of functions
isRedexf : A�f → Bool for indicating the presence of a redex.

Definition 4.1. A redex-algebra A = 〈A, [·], isRedex〉 is a Σ-algebra 〈A, [·]〉 with
a family {isRedexf}f∈Σ of functions isRedexf : A�f → Bool . The language of A
is the set L(A) = {f(t1, . . . , tn) ∈ Ter(Σ, ∅) | isRedexf ([t1], . . . , [tn]) = true}.

By this separation of tasks our approach allows for smaller algebras, because,
intuitively, the algebra needs to ‘remember’ only the subterms t1,. . . ,tn and not
f(t1, . . . , tn) itself. To see this, consider the single-rule system:

f(g(x)) → a .

A tree automaton recognizing redex positions for this TRS needs at least three
states: one for indicating a redex f(g(. . .)), one for g(. . .), and one garbage state.
For redex-algebras two states suffice: one state for g(. . .) and one for garbage.
Then isRedexf (g(. . .)) = true and false , otherwise.

The ‘core’ of a redex-algebra consists of all interpretations of ground terms:

Definition 4.2. Let A = 〈A, [·], isRedex〉 be a redex-algebra over Σ. The core of
A is the redex-algebra Ac = 〈Ac, [·]c, isRedexc〉 where Ac is the smallest set such
that [f](a1, . . . , an) ∈ Ac whenever f ∈ Σ and a1, . . . , an ∈ Ac, and where [·]c and
isRedex c are the restrictions of [·] and isRedex to Ac, respectively. Furthermore
we say that A is core whenever A = Ac.

Lemma 4.3. Let A = 〈A, [·], isRedex〉 be a redex-algebra over Σ. Then for every
a ∈ Ac there exists a ground term t ∈ Ter(Σ, ∅) with [t] = a. ��

From Outermost to Context-Sensitive Rewriting 315

We now describe a syntactical construction of redex-algebras. The idea is to
build Σ-algebras that ‘remember’ proper subterms of left-hand sides. Given this
interpretation, the isRedex functions decide whether a redex is present. We first
define some auxiliary functions.

Let ⊥ be a fresh symbol, ⊥ ∈ Σ, and define T = Ter(Σ∪{⊥}, ∅). The function
cut : Ter(Σ,X) → T is defined such that cut(t) is the result of replacing all
variables in t by ⊥. We define match : T ×T → Bool such that match(s, t) = true
if s can be obtained from t by replacing subterms of t by ⊥, and match(s, t) =
false, otherwise. Let further merge(s, t) be the ‘most general common instance’ of
s and t, that is, merge : T ×T ⇀ T is defined by: merge(⊥, t) = t, merge(t,⊥) =
t, and merge(f(s1, . . . , sn), f(t1, . . . , tn)) = f(merge(s1, t1), . . . ,merge(sn, tn)),
and undefined whenever there exists a position p ∈ Pos(s) such that s(p) ∈ Σ,
t(p) ∈ Σ, and s(p) = t(p). Finally we define shrink : T × 2T → T such that
shrink (s, T) is the largest t ∈ T (with respect to the number of symbols) such
that match(t, s) is true. Note that shrink (s, T) is well-defined whenever T is
closed under merge and ⊥ ∈ T : whenever two terms t1 = t2 of equal size match
s then merge(t1, t2) is larger and matches s.

Definition 4.4. Let R be a TRS. The redex-algebra for R is the core of the
redex-algebra 〈A, [·], isRedex〉, where A is the smallest set such that ⊥ ∈ A and

– t ∈ A for every proper subterm t of cut(�) with � a linear left-hand side of R ,
– merge(s, t) ∈ A whenever s, t ∈ A and merge(s, t) is defined.

Then [·] is defined by [f](t1, . . . , tn) = shrink(f(t1, . . . , tn), A). And, for every
f ∈ Σ we define isRedexf (t1, . . . , tn) = true if f(t1, . . . , tn) is an instance of a
linear left-hand side of R, and isRedexf (t1, . . . , tn) = false , otherwise.

Example 4.5. Consider the term rewriting system R consisting of the rules:

c(c(c(x))) → a , c(c(a)) → c(c(c(c(a)))) .

By Definition 4.4 we obtain A = {c(c(⊥)), c(⊥),⊥, c(a), a}. Here [a] = a, [c](a) =
c(a), [c](c(a)) = c(c(⊥)) and [c](c(c(⊥))) = c(c(⊥)). Thus the elements ⊥ and
c(⊥) are not part of the core and hence not of the redex-algebra for the TRS.
Here we have isRedexc(c(a)) = isRedexc(c(c(⊥))) = true, and false otherwise.

Example 4.6. We compute the domain of the redex-algebra for the TRS:

f(x, y) → a(f(c(x), y)) , a(f(c(c(x)), y)) → e ,
f(x, y) → b(f(x, c(y))) , b(f(x, c(c(y)))) → e .

The subterms of cut(�) of linear left-hand sides � are: S = {⊥, f(c(c(⊥)),⊥),
f(⊥, c(c(⊥))), c(c(⊥)), c(⊥) }. The closure of S under merge yields the domain:
A = S ∪ {f(c(c(⊥)), c(c(⊥)))}.

Lemma 4.7. Let R be a TRS over Σ and A the redex-algebra for R. Then for
all ground terms t ∈ Ter(Σ, ∅) we have t ∈ L(A) if and only if t is a redex with
respect to a left-linear rule in R.

316 J. Endrullis and D. Hendriks

The proof proceeds by induction over the term structure. The ‘only if’-part is
crucial for soundness of our transformation, whereas the ‘if’-part is needed for
completeness for left-linear TRSs.

5 Minimizing Algebras

In this section we are concerned with the minimization of redex-algebras. The
algorithm is similar to the minimization of deterministic tree automata, see [3].
For the set of 291 TRSs of the outermost termination competition of 2008 [10],
the redex-algebras constructed according to Definition 4.4 have an average size of
4.6 elements. After an application of the minimization algorithm described here,
the average size falls to 3.4, a reduction of 27%. This reduction has a polynomial
influence on the number of rules of the transformed system.

Definition 5.1. Core redex-algebras A1, A2 are equivalent if L(A1) = L(A2).

For a given core redex-algebra we now construct a minimal equivalent algebra.
The difference to the minimization of tree automata from [3] lies in the initial
equivalence E0. For tree automata E0 consists of two partitions, the final and
the non-final states. In our setting two states are initially equivalent if they
cannot be distinguished using the isRedex functions. In general this can yield
any number of partitions between 1 and |A|.

Definition 5.2. Let A = 〈A, [·], isRedex〉 be a core redex-algebra over Σ. We
define equivalence relations Ei for i ∈ N on the elements of A. Initially two
elements a, b ∈ A are equivalent, a E0 b, if isRedexf (x, a, y) = isRedexf (x, b, y)
for all symbols f ∈ Σ, j ∈ {1, . . . , �f}, x ∈ Aj−1, and y ∈ A�f−j. Then for
i = 0, 1, . . . and a, b ∈ A we define a Ei+1 b to be the conjunction of a Ei b
and [f](x, a, y) Ei [f](x, b, y) for all f ∈ Σ, j ∈ {1, . . . , �f}, x ∈ Aj−1, and
y ∈ A�f−j . We stop when Ei+1 = Ei for some i ∈ N. Then we define E = Ei.

For a ∈ A we use �a� to denote the equivalence class of a with respect to E.
The minimized redex-algebra is defined by Amin = 〈E, [·]E , isRedexE〉 where for
every f ∈ Σ we define [f]E : E�f → E by [f]E(�a1�, . . . , �an�) = �f(a1, . . . , an)�,
and isRedexE

f : E�f → Bool by isRedexE
f (�a1�, . . . ,�an�) = isRedexf (a1, . . . , an).

Lemma 5.3. Let A be a core redex-algebra, then A is equivalent to Amin . ��

Example 5.4. We consider the TRS R consisting of the following three rules:

f(i(a)) → a , f(j(a)) → a , f(a) → a .

The redex-algebra for R is A = {a, i(a), j(a),⊥} with the interpretation [a] = a,
[i](a) = i(a), [j](a) = j(a), and the interpretation is ⊥ in all non-listed cases;
isRedexf (x) = true for all x = ⊥, and false, otherwise.

The minimization algorithm starts with E0 = {{a, i(a), j(a)}, {⊥}} as initial
equivalence, since ⊥ can be distinguished from the other elements due to [f](⊥) =
false. The first iteration of the algorithm yields E1 = {{a}, {i(a), j(a)}, {⊥}} as

From Outermost to Context-Sensitive Rewriting 317

[i](a) = i(a) whereas [i](i(a)) = [i](j(a)) = ⊥. The elements i(a) and j(a) are
indistinguishable, and so in the second iteration we obtain E2 = E1. Thus the
elements i(a) and j(a) are identified and we obtain an algebra that has one
element less than the algebra we started with.

6 Two Versions of Dynamic Labeling

In the previous sections we have constructed and minimized redex-algebras for
recognizing redex positions. For completing the transformation we still need to
define how the symbols are labeled. In this section we introduce two labelings
that arise naturally: minimal and maximal labeling. In minimal labeling symbols
are marked with a � if they correspond to redex positions and stay unlabeled
otherwise. This labeling creates a small signature and thereby results in a small
number of rules of the transformed system.

In the sequel we fix R to be a TRS over Σ and 〈A, isRedex〉 with A = 〈A, [·]〉
the minimized redex-algebra for R.

Definition 6.1. The minimal labeling for R is the semantic labeling 〈A, π〉 de-
fined for every f ∈ Σtop by πf (a1, . . . , a�f) = � if isRedexf (a1, . . . , a�f) = true,
and πf (a1, . . . , a�f) = ε, otherwise; the redex symbols are Σred = {f� | f ∈ Σ}.

Theorem 6.2. Let 〈A, π〉 and Σred be the minimal labeling for R. Then R is
outermost ground terminating if �π

R(A) is terminating.

Proof. An application of Theorem 3.7 together with Lemmas 4.7 and 5.3. ��

Minimal labeling is sound and efficient, but it is not complete:

Example 6.3. The following term rewriting system is outermost terminating:

inf (x) → cons(x, inf (s(x))) cons(s(x), y) → nil (R2)

The minimized redex-algebra for R2 is A2 = 〈A2, [·]〉 with A2 = {s,⊥}, [s](x) =
s, [inf](x) = [cons](x, y) = ⊥, and [nil] = ⊥. With minimal labeling we have
πcons(s, x) = � and πinf (x) = � for all x ∈ A2, and unmarked (ε) otherwise. The
dynamic labeling �π

A2
(R2) of R2 w.r.t. 〈A2, π〉 consists of the following rules, the

first two of which arise from the inf -rule, with α(x) = ⊥, and α(x) = s resp.:

inf �(x) → cons(x, inf �(s(x))) ,
inf �(x) → cons�(x, inf �(s(x))) ,

cons�(s(x), y) → nil .

with μ(inf �) = μ(cons�) = ∅. But now �π
A2

(R2) admits an infinite derivation:

inf �(x) → cons(x, inf �(s(x))) → cons(x, cons(s(x), inf �(s(s(x))))) →

The third term is labeled incorrectly, as the inner cons should be marked. The
reason is that in the second step, instead of the first inf �-rule, the second should
have been applied; however, the left-hand side inf �(x) contains too little infor-
mation to ‘decide’ what the labeling of the right-hand side should be.

318 J. Endrullis and D. Hendriks

This motivates the use of maximal labeling for which correct labeling is preserved
under rewriting. Symbols are labeled with the interpretation of their arguments:

Definition 6.4. The maximal labeling for R is the semantic labeling 〈A, π〉 de-
fined for every f ∈ Σtop by: Λf = A�f , πf (a1, . . . , a�f) = 〈a1, . . . , a�f〉 together
with the redex symbols Σred = {f 〈a1,...,a�f 〉 | isRedexf (a1, . . . , a�f) = true}.
Maximal labeling is sound for all TRSs, and complete for quasi-left linear TRSs.
A TRS R is called quasi left-linear if every non-linear left-hand side of a rule in
R is an instance of a linear left-hand side from R.
Theorem 6.5. Let 〈A, π〉 with Σred be the maximal labeling for R. Then R is
outermost ground terminating if �π

R(A) is terminating. Moreover, if R is quasi
left-linear, the reverse direction holds as well.

Proof. The first claim is a consequence of Theorem 3.7 and Lemmas 4.7 and 5.3.
For the second claim, let R be quasi left-linear. Assume that R is outermost
terminating but �π

A(R) is not terminating. We introduce types for �π
A(R) over

the sorts A ∪ {top}. For every fλ ∈ lab(Σtop) with λ = 〈a1, . . . , a�f 〉 we define
fλ to have input sorts 〈a1, . . . , an〉 and output sort [f](a1, . . . , an), except for
top for which we fix output sort top. An adaptation of [7, Proposition 5.5.24] for
μTRSs together with non-collapsingness of �π

A(R) yields the existence of a well-
sorted infinite �π

R(A) rewrite sequence τ . By Lemma 4.3 we have a ground term
for every sort in A. Thus by applying a ground substitution to τ we get a well-
sorted infinite ground term rewrite sequence τ ′. Well-sortedness implies correct
labeling: for every well-sorted term t ∈ Ter(lab(Σtop), ∅) there exists a term
t′ ∈ Ter(Σtop, ∅) such that t = lab(t′). Moreover, by well-sortedness the symbol
top can only occur at the top of a term; without loss of generality we assume
that every term in τ ′ has top as root. Hence to arrive at a contradiction it suffices
to show that for all terms s, t ∈ Ter(Σ, ∅) with lab(top(s)) →�π

R(A) lab(top(t))
we have s out→R t. By construction, every rule in �π

R(A) is a context extension
plus labeling of a rule in R. Let ρ : s →R t be the corresponding step. What
remains to be shown is that ρ is an outermost step. Assume there would be a
redex u above the rewrite position. Then by Lemma 4.7 we have u ∈ L(AR)
where AR is the redex-algebra for R (Definition 4.4). From Lemma 5.3 it follows
that u ∈ L(A) as A is the minimization of AR. By definition of maximal labeling
we get root(lab(u)) ∈ Σred . But then this symbol must be in lab(top(s)), either
above the applied �π

R(A) rule or within the prepended context. Both cases yield
a contradiction: the former since μ(root(lab(u))) = ∅ would prohibit the μ-step,
and the latter since we do not prepend symbols from Σred . ��
Example 6.6. We revisit Example 6.3, but this time we use maximal labeling:

inf ⊥(x) → cons⊥,⊥(x,inf s(s⊥(x))) , inf s(x) → conss,⊥(x,inf s(ss(x))) ,

conss,⊥(s⊥(x), y) → nil , conss,⊥(ss(x), y) → nil ,

conss,s(s⊥(x), y) → nil , conss,s(ss(x), y) → nil ,

with μ(inf ⊥) = μ(inf s) = μ(conss,⊥) = μ(conss,s) = ∅. This μTRS is indeed
terminating as opposed to the μTRS constructed in Example 6.3.

From Outermost to Context-Sensitive Rewriting 319

7 Discussion

For arbitrary TRSs our transformation (including the construction of C-models)
is sound, and for quasi left-linear TRSs it is complete (see Theorem 6.5). The
redex-algebra we construct recognizes redexes with respect to left-linear rules. As
a consequence, in the μTRS �π

A(R) rewriting is forbidden only inside such redex
positions. This corresponds to a weakening of the outermost rewriting strategy:
contraction of redexes is allowed as long as they are not strictly contained in a
redex occurrence with respect to a left-linear rule. We stress that our transfor-
mation with maximal labeling is complete for termination with respect to this
rewrite strategy for all TRSs.

An open question is whether there are interesting labelings between minimal
and maximal. In particular, are there more efficient complete labelings? Here
efficiency is measured in the size of the signature and the number of rules of the
transformed system. In Example 6.6 it would have been sufficient to label cons
with the interpretation of the left argument, saving two symbols and two rules
of the transformed system.

References

1. Alarcón, B., Emmes, F., Fuhs, C., Giesl, J., Gutiérrez, R., Lucas, S., Schneider-
Kamp, P., Thiemann, R.: Improving Context-Sensitive Dependency Pairs. In:
LPAR 2008. LNCS, vol. 5330, pp. 636–651. Springer, Heidelberg (2008)

2. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. The-
oretical Computer Science 236, 133–178 (2000)

3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007),
http://www.grappa.univ-lille3.fr/tata

4. Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Ter-
mination of Term Rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)

5. Fissore, O., Gnaedig, I., Kirchner, H.: Cariboo, a Termination Proof Tool for
Rewriting-Based Programming Languages with Strategies, Version 1.0 (2004)

6. Lucas, S.: Context-Sensitive Computations in Functional and Functional Logic
Programs. Journal of Functional and Logic Programming 1998(1) (1998)

7. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)
8. Raffelsieper, M., Zantema, H.: A Transformational Approach to Prove Outermost

Termination Automatically. ENTCS 237, 3–21 (2009)
9. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, vol. 55. Cambridge University Press, Cambridge (2003)
10. Termination Competition, http://www.termination-portal.org/
11. Thiemann, R.: From Outermost Termination to Innermost Termination. In: SOF-

SEM 2009, pp. 533–545 (2009)
12. Zantema, H.: Termination of Term Rewriting by Semantic Labelling. Fundamenta

Informaticae 24, 89–105 (1995)

http://www.grappa.univ-lille3.fr/tata
http://www.termination-portal.org/

	From Outermost to Context-Sensitive Rewriting
	Introduction
	Preliminaries
	Transformation by Dynamic Labeling
	Constructing Suitable Algebras
	Minimizing Algebras
	Two Versions of Dynamic Labeling
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

