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M. van de Vel Theories with the Independence

Property

Abstract. A first-order theory T has the Independence Property provided T � (Q)(Φ ⇒

Φ1 ∨ · · · ∨ Φn) implies T � (Q)(Φ ⇒ Φi) for some i whenever Φ, Φ1, . . . , Φn are formulae

of a suitable type and (Q) is any quantifier sequence. Variants of this property have been

noticed for some time in logic programming and in linear programming.

We show that a first order theory has the independence property for the class of

basic formulae provided it can be axiomatised with Horn sentences. This condition, called

crispness, is to some extent also necessary, but the properties are not equivalent.

The existence of so-called free models is a useful intermediate result. The independence

property is also a tool to decide that a sentence cannot be deduced. We illustrate this

with the case of the classical Carathéodory theorem for Pasch-Peano geometries.

Keywords: Complete theory, Crisp theory, Free model, Horn sentence, Independence

property, Reduced product.

1. Introduction

I once noticed a student making the following kind of mistake.

Given that Φ(x) implies Φ1(x) ∨ · · · ∨ Φn(x) for all x, consider an
arbitrary x satisfying Φ. Then x satisfies Φi for some i. Since an
arbitrary x satisfying Φ satisfies this Φi, conclude that Φ(x) implies
Φi(x) for all x.

This “result”, and in fact, this naive use of “an arbitrary x”, can sometimes
be justified. We say that a first-order theory T has the Independence Prop-
erty with respect to a specified class F of formulae provided the following
holds. If T � (Q)(Φ ⇒ Φ1 ∨ · · · ∨ Φn) then T � (Q)(Φ ⇒ Φj) for some j

whenever Φ,Φ1, . . . ,Φn are in F . The expression (Q) refers to an arbitrary
finite quantifier sequence. We explicitly include the case of (Q) ∨n

i=1 Φi.
Such a property shows up in constraint logic programming (see [9] for

a survey), theories of feature trees ( [1], [2], [3], [18] ), and constraint systems
in real linear programming ([11]). In each of the cited examples, the class of
formulae is some collection of so-called constraints, which is part of a stan-
dard class of “basic formulae” (comparable with facts in logic programming;
see below).
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Occasionally, there are some differences with our viewpoint. In linear
programming, for instance, there are actually two classes of formulae in-
volved in the implications under consideration: one for “polyhedral” for-
mulae in the antecedent and one for ”affine” formulae in the consequent.
Moreover, [11] takes the viewpoint of a sequent calculus. Sometimes the in-
dependence property is expressed in terms of satisfaction by a given model:
If M |= (Q)(Φ ⇒ Φ1 ∨ · · · ∨ Φn) then M |= (Q)(Φ ⇒ Φj) for some j. Yet
another format of the property occurs, involving entailment of implications
of type

(Q)(Φ ⇒ Φ1 ∨ · · · ∨ Φn) ⇒ ∨n
j=1(Q)(Φ ⇒ Φj).

Finally, in nearly all cases, only universal quantifiers are considered (exis-
tential ones in contrapositional formulations).

Most of the cited papers consider the independence property as a part of a
decision procedure for solving equalities. Interestingly, it has also been used
to prove that the theory at hand is complete (the theory of free equality
with infinitely many operators [14]; the theory CFT of constraint feature
trees [2]; the theory FT of feature trees [3]). We take the viewpoint of
mathematical logic and model theory to develop some general results about
the independence property. For most of the variant properties encountered,
we give evidence that they amount to the same. Algorithmic features are
not considered.

In section 2 we describe the class of basic formulae and a general type
of “crisp” axioms which provide sufficient conditions for a theory to have
the independence property for basic formulae. (Crisp sentences are logically
the same as Horn sentences [5, p. 407].) Conversely, we show that a theory
with the independence property, of which all non-crisp axioms are universal
or positive, is logically equivalent with a crisp theory. We also consider a
“strong” independence property, where (in the above notation) Φ is allowed
to be a Horn formula. Adding crisp axioms to a theory with a “strong”
independence property preserves the latter property. Finally, we found the-
ories with the (strong) independence property which are not crisp, but such
theories seem rare.

An intermediate result is the existence of so-called free models for crisp
theories. Basic sentences, valid in a free model, can be deduced. Such mod-
els embody the famous closed-world assumption: if a fact can’t be proved,
consider it false. On a related topic, an initial model M of a theory has the
property that for each model M ′ there is a unique homomorphism M → M ′.
Such models are easily seen to be free. The existence of initial models
of equational theories is known since the early days of universal algebra
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([4, p. 73]); it was extended later to theories with universal definite Horn
sentences. It is shown in [15, cor. 4.6] that the existence of initial models
requires a theory with ∀∃ axioms. In fact, such theories can be axioma-
tized with ∀∃ Horn sentences and (up to a technical additional condition)
this characterises theories with initial models ([15, thm. 5.9]). While initial
models of necessity have a trivial automorphism group, we show that crisp
theories with non-trivial models do have free models with arbitrarily large
automorphism groups.

(Counter) examples and use of the independence property are discussed
in section 3. A fairly detailed description of Pasch-Peano theory is included,
with a discussion of Carathéodory’s theorem.

The name “Independence property”, occuring in several papers on fea-
ture trees, is preferred among more specific names such as “independence of
negative constraints” or “independence of disequalities”. The oldest refer-
ence to the property seems to be Colmerauer [6]. The most general approach
so far seems to be [11], where connections between (a sequent formulation
of) the independence property and Horn sentences can be found. How-
ever, example 2 in this paper is an overstatement (see the remark following
lemma 2.3 below).

Do not confuse the independence property with the “disjunction prop-
erty”, which refers to a property in intuitionistic logic [8].

2. The main results

2.1. Preliminaries

For undefined concepts and notation in logic we refer to [5] and [16]. Let L
be a first-order language. Given a formula Φ in L, an array X of n distinct
variables, and an array T of n terms, then Φ[T ← X] denotes the result of
substituting the ith variable by the ith term (i = 1, . . . , n). If X is the array
of all free variables of Φ, then ∀Φ stands for the universal closure ∀XΦ of Φ.
Similarly, the existential closure ∃XΦ is abbreviated by ∃Φ. For X empty,
both expressions reduce to Φ.

A sentence is a formula without free variables whereas a proposition is a
formula with no variables at all. An atomic formula is of type P (t1, . . . , tn),
where P is an n−ary predicate symbol of L and t1, . . . , tn are terms of L, or
(in a language with equality) an equation of terms. An elementary formula
is a conjunction of one or more atomic formulae and a basic formula is a
formula of type (Q)Φ, where (Q) represents a finite sequence of quantifiers
(universal or existential) and Φ is elementary.
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A theory in a first-order language is just a set of sentences (axioms)
in that language. Two theories are (logically) the same if they have the
same consequences. A universal theory has an axiom system consisting of
sentences of type ∀Φ, where Φ contains no quantifiers. When talking about
models, an interpretation is (usually) implicitly assumed.

Part (a) of the following fact is well-known, [5]. Part (b) is a simple form
of Herbrand’s Theorem, which follows easily from (a) and [16, prop. 10.92].

Proposition 2.1. Let (L,T ) be a universal theory with L having at least
one constant.

(a) For each model M of (L,T ) there is a submodel M ′ ⊆ M of (L,T )
consisting of all interpreted variable-free terms.

(b) Let Φ be a formula in L with only one free variable x such that (L,T ) �
∃xΦ. Then there exist variable-free terms t1, . . . , tm of L such that

(L,T ) � Φ[t1 ← x] ∨ · · · ∨ Φ[tm ← x].

2.2. Crisp theories

Below, (Q) represents a finite (possibly empty) sequence of quantifiers. We
may (and always will) assume that all variables occurring in a quantifier
array are distinct. A formula will be called crisp provided it is of type

(Q)(Ψ1 ∧ · · · ∧ Ψn),

where each formula Ψi has one of the following formats.

1. Φ, with Φ a basic formula.

2. ¬Φ, with Φ a basic formula.

3. Φ1 ⇒ Φ2, with Φ1 and Φ2 basic formulae.

Quantifiers occuring in the basic formulae can be replaced with quantifiers
to the right of (Q). In this prenex normal form, crisp sentences amount to
the same as Horn sentences; cf. [5, p. 407].

A theory is called crisp provided it has an equivalent axiom system,
consisting of crisp sentences. Some crisp theories are discussed in section §3.

We will occasionally make use of reduced products or reduced powers of
models. We refer to [5, chapt. 4] for these constructions.

Theorem 2.2. A theory is crisp iff it is stable under reduced products.
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In this form (without the Continuum Hypothesis), the result is due to
Galvin ([7, thm. 2]). As a particular and rather straightforward case, proved
originally by Horn, crisp sentences are stable under (direct) products.

Lemma 2.3. Let (L,T ) be a crisp theory in a language L and let Pj for
j ∈ J be atomic propositions in L. If T ∪ {¬Pj} is consistent for each j,
then T ∪ {¬Pj : j ∈ J} is consistent.

Proof. For each j ∈ J let Mj |= T ∪ {¬Pj} and let M :=
∏

j Mj. We may
assume that each axiom of T is a Horn sentence. Then M |= T . The atomic
proposition Pj is not valid in M since it fails at the jth factor.

The conclusion of the previous lemma can be restated in this form: if Pi

for i = 1, . . . , n are atomic propositions and T � ∨n
i=1Pi, then T � Pi for

some i. This is a primitive form of the independence property, mentioned in
an exercise of [17, pp. 94-95] as early as 1967. In [11, example 2], it is claimed
that the above property actually holds for universally closed definite Horn
clauses. No proof is given, but it is suggested that this, too, is a consequence
of the stability of models under products. The following is a counterexample
(without quantifiers). Let Pi and Qi for i = 1, 2 be atomic propositions.
Consider the theory T := {Pi ⇒ Qi : i = 1, 2}. Then

T � (P1 ⇒ Q2) ∨ (P2 ⇒ Q1)

whereas T � P1 ⇒ Q2 and T � P2 ⇒ Q1.
To improve on the independence property, we have to proceed more

carefully.

Proposition 2.4. A consistent and crisp universal theory (L,T ) has a
model M such that for each basic sentence Φ in L,

M |= Φ iff (L,T ) � Φ.

Proof. We expand L to a language L′ with a countably infinite sequence
of additional constants. By Lemma 2.3 and Prop. 2.1(a), there is a model
M of (L′,T ) such that

(1) M |= ¬P for each atomic proposition P of L′ such that ¬P is consistent
with T .

(2) Each member of M is the interpretation of a variable-free term of L′.

We verify that this model is as required. Let M |= (Q)Φ, where Φ is a
quantifier-free elementary formula of L′ and (Q) represents a sequence of
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quantifiers involving different variables. If (Q) is the empty sequence, then
Φ is an elementary proposition and the result follows from (1). Proceeding
by induction, suppose (Q) has length n > 0, let M |= (Q)Φ, and suppose
the result valid for quantifier sequences of length n − 1. We have two cases
to consider.

(i) (Q) = ∃x(Q′), where x does not occur in (Q′). Then there is m ∈ M

satisfying the interpretation of (Q′)Φ. By assumption (2), m is the inter-
pretation of a variable-free term t of L′. So M |= (Q′)Φ[t ← x] and by the
induction hypothesis, (L′,T ) � (Q′)Φ[t ← x]. Therefore, (L′,T ) � ∃x(Q′)Φ.

(ii) (Q) = ∀x(Q′), where x does not occur in (Q′). Let c be one of the
additional constants of L′ not occurring in Φ. We have M |= (Q′)Φ[c ← x]
and by the induction hypothesis, (L′,T ) � (Q′)Φ[c ← x]. Generalization on
the constant c then yields (L′,T ) � ∀x(Q′)Φ, [16, prop. 11.17].

After completing the induction, we see that the result follows by restrict-
ing to formulae in L.

By a free model of a theory (L,T ) is meant a model M with

M |= Φ iff (L,T ) � Φ

for each basic sentence Φ in L. Note that every model of a complete theory
is free. In fact, it satisfies the condition for all sentences, not just basic
ones. For crisp theories, the restriction to basic sentences is essential; the
defining property may fail even for sentences of type ¬Φ or Φ1 ⇒ Φ2 with
Φ,Φ1,Φ2 basic.

We now arrive at the first main result, linking crispness with the existence
of free models and with the independence property. In fact, we can obtain a
slightly stronger conclusion involving the following version of the property: A
theory (L,T ) has the Strong Independence Property provided T � (Q)(Φ ⇒
Φ1 ∨ · · · ∨ Φn) entails T � (Q)(Φ ⇒ Φj) for some j whenever Φ1, . . . ,Φn

are basic formulae and Φ is crisp (rather than just basic). As usual, the
expression (Q) refers to an arbitrary finite quantifier sequence. Again, we
explicitly include the case of (Q) ∨n

j=1 Φj . (The phrase “with respect to the
class of basic formulae” has been omitted above, and will mostly be omitted
in the future.)

Theorem 2.5. (1) A crisp theory has the strong independence property.

(2) A consistent crisp theory has free models.

Proof. We establish part (1) first for a universal crisp theory (L,T ). Let
Φj for j = 0, 1, . . . , n be formulae in L of which Φ0 is crisp, the other ones
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being basic, such that

T � (Q)(Φ0 ⇒ ∨n
j=1Φj).

We may assume that no free variables occur in the deduced formula and
that Φ0 has no quantifiers (we can live with universal quantifiers).

The aimed result is valid in case the quantifier sequence (Q) is empty.
Indeed, under the given circumstances, all formulae Φj are sentences. If the
theory T ∪{Φ0} is inconsistent, there is nothing left to be proved. So assume
T is consistent with Φ0. We have a universal crisp theory (L,T ∪ {Φ0}),
which has a free model M , cf. Prop. 2.4. By the Deduction Theorem,

(L,T ∪ {Φ0}) � ∨n
j=1Φj,

and hence we find that
M |= ∨n

j=1Φj.

The expression to the right is a disjunction of sentences. Hence there is
j ∈ {1, . . . , n} with

M |= Φj.

Now Φj is a basic sentence in L. As M is a free model, we find

(L,T ∪ {Φ0}) � Φj,

whence (L,T ) � Φ0 ⇒ Φj by the Deduction Theorem again.
We allow Φ0 to be absent. In this case, the steps involving the deduction

theorem are skipped.
Suppose next that the quantifier array (Q) has length > 0. Let L′ be the

language obtained from L by adding a countably infinite sequence of new
constants. Starting with the sentence

(Q)(Φ0 ⇒ ∨n
j=1Φj)

(stage 0), we shall peal off the quantifiers of (Q) from left to right. Let Θ
denote the formula following the sequence (Q). At each stage k, we shall
obtain a statement of type

(L′,T ) �
∨

α∈Ik

(Q′)Θ[Tα ← Xk, Cα ← Yk].

where (Q′) is (Q) minus the leftmost k quantifiers. The variables corre-
sponding to the missing quantifiers fall into two arrays Xk and Yk. Each
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member of Xk comes from an existential quantifier and each member of Yk

comes from a universal quantifier. The members of Cα are distinct constants
of L′ not in L and members of Tα are variable-free terms of L′. Each index
α ∈ Ik is a sequence of length k, consisting of non-negative numbers.

At the initial stage k = 0, the index collection I0 contains only the empty
sequence, the disjunction has only one member, and no substitution takes
place. Suppose at stage k ≥ 0 we have obtained the above statement with
a nonempty right end (Q′) and indices α ∈ Ik. We have to distinguish two
cases.

(I) (Q′) = ∀y(Q′′), where y does not occur in (Q′′). For each α ∈ Ik,
take a distinct constant cα of L′ not in L and not occurring in the formula
following (Q′′). Then

(L′,T ) �
∨

α∈Ik

(Q′′)(Θ[Tα ← Xk, Cα ← Yk][cα ← y]).

We introduce a new index set Ik+1, whose members are sequences of type
α0 with α ∈ Ik. The array Tα is renamed Tα0; Xk is renamed Xk+1; the
array Cα0 is the old array Cα with the new constant cα appended, and y is
appended to Yk to form the array Yk+1.

(II) (Q′) = ∃x(Q′′), where x does not occur in (Q′′). We can move the
quantifier ∃x in front of the disjunction

∨
α. The theory T being universal,

we can apply Prop. 2.1(b). There are variable-free terms ti of L’ for i =
1, . . . , nk+1, such that

(L′,T ) �
∨

i

∨

α∈Ik

(Q′′)(Θ[Tα ← Xk, Cα ← Yk][ti ← x]).

We introduce a new index set Ik+1 with indexes of type αi, where i =
1, . . . , nk+1. For each new index αi, the array Tαi is the old array Tα with
the term ti appended. The variable x is appended to Xk and the array Cαi

is just the old array Cα.
This completes the induction, leaving us with a deduction

(L′,T ) �
∨

α

(
Φ0[Tα, Cα] ⇒ ∨n

j=1Φj[Tα, Cα]
)

(1)

with the listed properties and an empty quantifier sequence in front of the
implications. Here, and in the sequel, we are using [Tα, Cα] as shorthand
for the substitution [Tα ← X,Cα ← Y ]. Elementary proposition logic yields
that

(L′,T ) � ∧αΦ0[Tα, Cα] ⇒ ∨α ∨n
j=1 Φj[Tα, Cα]
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Note that ∧αΦ0[Tα, Cα] is crisp. The no-quantifier case of the independence
property yields indices α∗ and j∗ such that

(L′,T ) � ∧αΦ0[Tα, Cα]
)
⇒ Φj∗[Tα∗, Cα∗].

This can be weakened to

(L′,T ) � ∧αΦ0[Tα, Cα] ⇒ ∨αΦj∗[Tα, Cα],

and again by elementary proposition logic we obtain

(L′,T ) �
∨

α

(
Φ0[Tα, Cα] ⇒ Φj∗[Tα, Cα]

)
.

Now we trace back our steps through the quantifier elimination process.
Suppose we are at stage k > 0 and that we recovered a statement of type

(L′,T ) �
∨

α∈Ik

(Q′)
(
Φ0[Tα, Cα] ⇒ Φj∗[Tα, Cα]

)
,

where we restored a right end (Q′) of (Q) in front of each disjunction term.
If we originally reached this stage by case I, all indexes are of type α0 with
α ∈ Ik−1. The terms array Tα0 is just Tα. In the constants array Cα0, the
last element cα is removed, and the resulting array is Cα. By generalisation
on constants, cα may be replaced by the k-th variable y in the original
quantifier arrangement (Q) and the currently restored sequence is ∀y(Q′)
regardless of α.

If we originally reached the current stage by case II, all indexes are of
type αi with α ∈ Ik−1 and i = 1, . . . , nk+1. The array Cα is the same as
Cαi. The array Tα obtains from Tαi by deleting the last term ti. At each
position where the term ti was introduced, we now put back the original
variable x and we let each disjunction term be preceded by ∃x (so-called
∃-introduction). Note that the disjunction terms, indexed by αi with fixed
α, are now identical. Only one copy with index α is maintained.

After completing the induction we obtain

(L′,T ) � (Q)(Φ0 ⇒ Φj∗).

The additional constants of L′ are no longer involved and we can restrict
ourselves to the language L.

To obtain the result for general crisp theories, we use a method of re-
stricted skolemisation. Given a sentence (Q)Θ, written in prenex normal
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form with Θ quantifier-free, we can obtain a formula of type ∀Y ΘSk as fol-
lows. The universal quantifier sequence ∀Y is what remains of (Q) after
all existential quantifiers are dropped. This goes from left to right and at
each stage (say, at the quantifier ∃x), a distinct new term is added to the
language. This term depends exactly on all variables occurring in universal
quantifiers in (Q) to the left of ∃x, and it will replace all occurrences of x

in Θ. When all existential quantifiers are gone, we are left with the formula
∀ΘSk. Note the logical implication ∀Y ΘSk ⇒ (Q)Θ.

We may assume that T is a collection of crisp sentences. Applying the
above construction on each member of T , we obtain a collection T Sk of crisp
and universal sentences in an extended language LSk. By a routine argu-
ment, (LSk,T Sk) is a conservative extension of the original theory. Suppose
that

(L,T ) � (Q)(Φ0 ⇒ ∨n
j=1Φj),

where Φ0 is crisp and Φj for j = 1, . . . , n are basic. By an observation above,

(LSk,T Sk) � (Q)(Φ0 ⇒ ∨n
j=1Φj).

As shown in part (i), we obtain an index j ∈ {1, . . . , n} with

(LSk,T Sk) � (Q)(Φ0 ⇒ Φj).

The Skolem expansion being conservative, We conclude that

(L,T ) � (Q)(Φ0 ⇒ Φj).

To see that a consistent crisp theory has free models (part (2)), we use
a restricted Skolem expansion as explained in the previous paragraph. This
expansion is consistent, universal, and crisp, whence it has a free model,
cf. prop. 2.4. Restricting the interpretation to the original language yields a
model as required.

Recall ([16, p. 402]) that a formula is positive if it can be built exclusively
with the connectives ∧,∨,∀,∃. Here is some additional information on free
models and on the necessity of crispness for the independence property.

Theorem 2.6. (1) In a language with equality, a consistent crisp theory
which entails ∃x, y ¬(x ≈ y) has free models with arbitrarily large auto-
morphism groups.

(2) If a theory has the independence property and all non-crisp axioms are
universal or positive, then the theory is logically equivalent to a crisp
theory.
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(3) If a theory with the strong independence property is extended with crisp
axioms, then the extended theory has the strong independence property.

Proof. We first verify part (1). Let (L,T ) be a crisp theory with (L,T ) �
∃¬(x ≈ y). The elementary class of a crisp theory is stable under products by
theorem 2.2. It follows that T (and, in fact, every consistent crisp extension
of it) has infinite models.

The argument proving 2.5(2) shows that any free model of the (restricted)
skolemisation of (L,T ) is a free model of the original theory. Also, the
skolemisation entails ∃¬(x ≈ y). Therefore, without loss of generality, we
may assume that T is universal.

Let (L,<) be a linearly ordered set of any infinite cardinality and let L′

arise from L by adding the members of L as constants.

Consider the collection Σ of all sentences of type

¬ a ≈ b (a = b ∈ L) (2)

Φ[A ← X] ⇔ Φ[B ← X], (3)

where Φ is any formula in L with an array X of n free variables, and A,B, are
n−tuples in L, listed in increasing order. By virtue of [5, lemma 3.3.9], the
theory (L′,T ′ ∪ Σ) is consistent for each consistent crisp extension (L,T ′)
of (L,T ) . In the sequel we shall consider the subset Σ′ of Σ, consisting
of the inequalities in (2) and all equivalences of type (3) involving atomic
formulae Φ only. So, all sentences of Σ′ are crisp. This leads us to a free
model (M, I) of T ∪ Σ′ containing the set L. The theory T ∪ Σ′ being
universal, we may replace M by the submodel, consisting of all interpreted
terms I(t) of L′; cf. prop. 2.1(a). Note that this is another free model of
T ∪ Σ′.

We first show that the restriction of M to L is a free model of T . Suppose
Φ is a basic sentence of L such that M |= Φ. Then T ∪Σ′ � Φ. If T � Φ, we
have a consistent crisp extension T ∪ {¬Φ} which (as observed above) must
be consistent with Σ′, a contradiction.

Let C ⊆ M denote the set of interpreted constants of L′; note that
L ⊆ C. Modifying part of the argument in [5, thm. 3.3.11c], we achieve our
goal by proving that every bijection f : C → C, which restricts to an order
isomorphism of L and which is the identity outside L, extends uniquely to
an isomorphism of M . The prescription is as follows:

f(I(t)(I(c1), . . . , I(cn))) := I(t)(f(I(c1)), . . . , f(I(cn)))
with c1, . . . , cn constants of L′.
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This is mandatory by the requirements; hence uniqueness is not an issue.
To verify that we have a well-defined function, suppose that

I(s)(a1, . . . , am) = I(t)(b1, . . . , bn).

Here, we assume that s, t are terms of L′, m,n ≥ 0, a1, . . . , am, b1, . . . bn ∈ L,
and a1 < · · · < am, b1 < · · · < bn. Constants outside of L are not mentioned
explicitly. This equation is an instance of an atomic formula Φ(x1, . . . , xp)
in L′, where max(m,n) ≤ p ≤ m + n and c1 < · · · < cp is an ordered listing
of all ai and bj. By construction,

M |= Φ(c1, . . . , cp) ⇔ Φ(f(c1), . . . , f(cp)),

which yields

I(s)(f(a1), . . . , f(am)) = I(t)(f(b1), . . . , f(bn)).

We next claim that the extension f : M → M is a homomorphism. This
means

(i) f(I(t)(x1, . . . , xn)) = I(t)(f(x1), . . . , f(xn)) for each n-ary term sym-
bol t of the language and for each x1, . . . , xn ∈ M .

(ii) if I(P )(x1, . . . , xn)) then I(P )(f(x1), . . . , f(xn))) for each n-ary pred-
icate symbol P of the language and for each x1, . . . , xn ∈ M .

The first statement holds by the prescription of the extension; the second
statement follows with an argument as above by using suitable sentences
in Σ′.

Observe that the identity function of C leads to the identity function
on M . Hence, uniqueness of the induced function leads to its functoriality,
from which it follows that an isomorphism of the ordered set L leads to an
isomorphism of M .

To establish part (2) of the theorem, suppose (L,T ) is a theory with
the independence property such that all non-crisp axioms are universal or
positive. Let Θ be a non-crisp axiom of T . Rewrite Θ in normal conjunctive
form as

(Q) ∧i∈I (∨p∈Ji
P i

p ∨ ∨n∈Ki
¬N i

n)

with a quantifier array (Q) and atomic propositions P i
p and N i

n of L.

(i) Θ is a universal sentence. Rewrite Θ as

∧i∈I∀(∧n∈Ki
N i

n ⇒ ∨p∈Ji
P i

p).
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Applying the independence property to each conjunct separately, we
obtain

T � ∀ ∧i∈I (∧n∈Ki
N i

n ⇒ P i
p(i))

for a suitable choice of p(i) ∈ Ji for each i ∈ I. For conjuncts with
no “positive” atomic propositions P , resp., with no “negative” atomic
propositions N , the expression ∧n∈Ki

N i
n ⇒ P i

p(i) should be replaced
by, respectively,

¬(∧n∈Ki
N i

n), and P i
p(i).

In any case, the resulting crisp sentence is a consequence of T and in
turn implies Θ.

(ii) Θ is a positive sentence. Then Θ can be rewritten in the form

(Q)(∨k∈K ∧l∈Lk
P k

l ).

Direct application of the independence property yields an index k ∈ K

such that T � (Q) ∧l∈Lk
P k

l . The resulting crisp sentence is a conse-
quence of T and in turn implies Θ.

As for a proof of part (3), it suffices to consider one additional crisp
axiom Ψ. Suppose

T ∪ {Ψ} � (Q)(Φ ⇒ ∨n
i=1Φi).

Applying the Deduction theorem and a logical equivalence, we obtain

T � (Q)(Ψ ∧ Φ ⇒ ∨n
i=1Φi).

By the strong independence property, T � (Q)(Ψ ∧Φ ⇒ Φi) for some i > 0.
We conclude that T ∪ {Ψ} � (Q)(Φ ⇒ Φi) for this i.

Part (1) confirms that free models are not the same as initial models,
well-known from (a.o.) equational theories. By its very definition, an initial
model must have a trivial automorphism group.

In the argument proving part (2), the assumed format of non-crisp ax-
ioms is such that the independence property can somehow be applied. At-
tempting a proof for general theories, a version of the independence property
is suggested that deals with sentences of type

(Q) ∧i (Φi
0 ⇒ ∨jΦ

i
j)

with Φi
0 and Φi

j basic for all i, j. (For some i, the part “Φi
0 ⇒” may be

missing.) Note that every sentence can be put into the suggested format,
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which would give this version of the independence property an amazingly
wide range of application.

However, we do have an example of a crisp theory which does not satisfy
the desired strengthening of independence.

Consider a language with two constants c, d and with five unary predi-
cate symbols P,P ′, Q1, Q2, Q. The crisp axiom collection T consists of the
following.

(i) Pc ⇒ Q2c.

(ii) Pd ⇒ Q1d.

(iii) P ′d ⇒ Pc.

(iv) P ′c ⇒ Pd.

(v) ¬(Pc ∧ Pd).

It is easily seen that

T � ∃y((Py ⇒ Q1y ∨ Q2y) ∧ (P ′y ⇒ Qy)).

On the other hand, we have two models with universe {c, d} and two inter-
pretations of the predicates such that, respectively:

model 1 P P ′ Q1 Q2 Q

c + – – + ?
d – + + ? –

model 2 P P ′ Q1 Q2 Q

c – + ? ? –
d + – + – ?

(Missing information at a question mark is irrelevant.) The first model does
not satisfy ∃y((Py ⇒ Q1y) ∧ (P ′y ⇒ Qy)), whereas the second model does
not satisfy ∃y((Py ⇒ Q2y) ∧ (P ′y ⇒ Qy)) .

The argument proving part (3) does not extend to cover the (non-strong)
independence property. However, we can adapt the argument to show that
the (non-strong) independence property is preserved if axioms of type β, ¬β,
β1 ⇒ β2, with β, β1, β2 basic, are added.

Our next results deal with sentences of type

(Q)(Φ ⇒ ∨n
i=1Φi) ⇒ ∨n

i=1(Q)(Φ ⇒ Φi),
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(Q)(∨n
i=1Φi) ⇒ ∨n

i=1(Q)(Φi),

where Φ is a basic (or crisp) formula, Φ1, . . . ,Φn are basic formulae, and
(Q) is a sequence of quantifiers. We refer such sentences as “admissible”,
with the adjective “strong” in case the formula Φ is allowed to be crisp. As
before, we allow sentences with “Φ ⇒” missing.

Proposition 2.7. 1. A consistent theory, which is maximal with the strong
independence property, is complete.

2. A consistent theory with the independence property is consistent with each
admissible sentence.

3. A consistent theory with the strong independence property is consistent
with the set of all strongly admissible sentences.

Proof. Suppose T is a consistent theory which is maximal with the strong
independence property. By virtue of theorem 2.6, part (3), each crisp sen-
tence, consistent with T , can be deduced from T . Hence, all models of T
satisfy exactly the same crisp sentences. By [5, thm. 6.3.18], every sentence
in L is logically a Boolean combination of crisp sentences. Hence all mod-
els of T satisfy exactly the same sentences of L; therefore, T is a complete
theory.

As to parts (2) and (3), let T be a consistent theory with the (strong)
independence property. We first consider the case of a single (strong) ad-
missible sentence, with notation as above. Suppose it is inconsistent with
T . Then T � (Q)(Φ ⇒ ∨n

i=1Φi) and T � ¬∨n
i=1 (Q)(Φ ⇒ Φi). As T has the

(strong) independence property, the first of these statements yields an index
i and a proof of (Q)(Φ ⇒ Φi). Hence there is a proof of ∨n

i=1(Q)(Φ ⇒ Φi),
contradicting that T is consistent. (The alternative format is treated simi-
larly.) This establishes (2); we continue with a proof of (3).

Note that a consistent theory with the strong independence property
obviously extends to a maximal one. Hence it suffices to prove the result for
a maximal consistent theory T with the strong independence property. Then
T is complete by part (1). Strongly admissible sentences being individually
consistent with T , they are entailed by it.

So far we have been unable to extend parts (1, 3) of prop. 2.7 to cover
the (non-strong) independence property.

Corollary 2.8. (1) A complete theory has the (strong) independence prop-
erty if and only if it entails the theory A (SA) of all (strong) admissible
sentences.
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(2) A consistent theory with the strong independence property has a model
M such that M |= (Q)(Φ ⇒ ∨n

i=1Φi) iff M |= (Q)(Φ ⇒ Φi) for some i

(Φ crisp, Φi basic).

Proof. Let T be a complete theory with the (strong) independence prop-
erty. By proposition 2.7(2), a (strong) admissible sentence is consistent
with T . Hence it is entailed by T . Conversely, let T be a complete theory
that entails all (strong) admissible sentences. If T � (Q)(Φ ⇒ ∨n

i=1Φi) with
Φ basic (crisp) and Φi for i = 1, . . . , n basic, then we can use the appropriate
(strong) admissible sentence to conclude that T � ∨n

i=1(Q)(Φ ⇒ Φi). As T
is complete, this yields an index i with T � (Q)(Φ ⇒ Φi). (The alternative
format is treated similarly.)

As to part (2), let T be a consistent theory with the strong independence
property. By Zorn’s Lemma and 2.7(1), T has a complete extension with
this property. This extension entails all strong admissible sentences by part
(1). Any model of it is a model of T as required.

Contrasting with the statement in part (2), certain models of a crisp
theory may fail to satisfy the independence property. Here is a noteworthy
example, based on an observation in [10]. Consider the theory FE of free
equality in a language L with equality and operator symbols (among which
is at least one constant). The axioms of FE are

1. ∀(f(x1, . . . , xn) ≈ f(y1, . . . , yn) ⇒ ∧n
i=1xi ≈ yi), where f is an n-ary

operator.

2. ∀¬(f(x1, . . . , xnf
) ≈ g(y1, . . . , yng)), where f, g are distinct operator sym-

bols of arity nf and ng respectively.

3. ∀x¬(x ≈ t), where t is a term other than x in which x occurs.

Obviously, this theory is crisp. The Herbrand universe, consisting of all
variable-free terms of L, is a model of FE . If L has finitely many operator
symbols, then the model satisfies the sentence

∀x∃Y1 . . . Yk(∨
k
i=1x ≈ fi(Yi)),

where {f1, . . . , fk} are all operator symbols of L and Yi is an array of vari-
ables the size of fi’s arity. All variables involved are distinct. However, if
k > 1 then the model fails all sentences ∀x∃Yi(x ≈ fi(Yi)) for i = 1, . . . , k.

For another example, see the discussion of Pasch-Peano theory in §3).
To have all models of a theory T satisfy the strong independence prop-

erty means that T entails the theory SA of all strong admissible sentences.
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This is another, much stronger, format found in the literature; it is exclu-
sively used with complete theories, in which case corollary 2.8(1) provides a
justification. Alternatively, a model complete theory (L,T ) with the strong
independence property entails SA. Indeed, by [5, thm. 3.5.1], for each model
M of T , the theory (LM ,T ∪ ΔM ) is complete (where ΔM is the diagram
of M and LM contains all elements of M as constants). It has the strong
independence property by theorem 2.6(3), and hence entails SA by corol-
lary 2.8(1).

In our search for examples of a non-crisp theory with the independence
property, we took a closer look at the theory SA.

Theorem 2.9. Let L be a non-trivial language. Then the theory SA in L,
consisting of all strong admissible sentences, is nonempty and consistent.
Moreover, each subtheory of SA has the strong independence property. If its
axioms are taken from SA, then a subtheory is stable under reduced powers.

Proof. We assume that the language L is non-trivial just to make sure
that the collection SA is nonempty. The theory SA is consistent by propo-
sition 2.7(3).

We next prove that any subtheory T of SA has the strong independence
property. Suppose

T � (Q)(Ψ ⇒ ∨n
i=1Φi),

where Ψ is crisp and each Φi is basic. Let Θ denote the entailed formula.
Its negation is logically equivalent with

(Q′)(Ψ ∧ ∧n
i=1¬Φi),

where (Q′) is the complementary quantifier sequence. We see that ¬Θ is
a crisp sentence inconsistent with T and hence with SA. By proposition
2.7(2), ¬Θ must be a contradiction. Hence � (Q)(Ψ ⇒ ∨n

i=1Φi). As the
“empty” theory is crisp, we conclude that � (Q)(Ψ ⇒ Φi) for some i. Then
certainly T � (Q)(Ψ ⇒ Φi).

As to the final part, note that (with our usual notation) each strong
admissible sentence can be written equivalently as

(Q′)(Ψ ∧ ∧n
i=1¬Φi) ∨ ∨n

i=1(Q)(Ψ ⇒ Φi).

As before, (Q′) is the complementary quantifier sequence of (Q). Apparently,
this is a disjunction of crisp sentences. By [7, Thm. 6], a theory based on
such sentences is stable under reduced powers.
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Example 2.10. There is a non-crisp theory with the strong independence
property.

Proof. We consider a language with binary predicate symbols P,P1, P2, P3.
For convenience, we use the following abbreviations.

Ψi := ∀x∃y(P (x, y) ∧ ¬Pi(x, y)), i = 1, 2, 3;

Ψi,j := ∀x∃y(P (x, y) ∧ ¬Pi(x, y) ∧ ¬Pj(x, y)), i = j ∈ {1, 2, 3},

Ψ1,2,3 := ∀x∃y(P (x, y) ∧ ¬P1(x, y) ∧ ¬P2(x, y) ∧ ¬P3(x, y)).

The reader may verify that each of the following two packages is consistent:

{Ψ1,Θ2.3 := ∃x∀y(P (x, y) ⇒ P2(x, y) ∧ P3(x, y))},

{¬Ψ1,Ψ2,Ψ3,¬Ψ2,3}.

Note the conjunction in Θ2.3, which makes the formula different from ¬Ψ2,3.
Let M1 and M2 be a model of the first, resp., the second package. Both
models satisfy the admissible (contrapositional) sentence

(∗) ∧i Ψi ⇒ Ψ1,2,3.

In fact, both parts of the implication fail on each model. On the other hand,
if a ∈ M1 is a value of x that must exist by Θ2.3, and if b ∈ M2 is a value of
x that exists by ¬Ψ2,3, then taking (a, b) ∈ M1 × M2 as x, we find that the
formula

∃y(P (x, y) ∧ ¬P1(x, y) ∧ ¬P2(x, y) ∧ ¬P3(x, y))

does not hold in M1 × M2. Yet the product does satisfy ∧iΨi.
Being unstable under products of models, the theory with just the axiom

(*) is not crisp by theorem 2.2. Being a subtheory of SA, the theory (*) has
the strong independence property by theorem 2.9.

The above example arose from a failed attempt to prove that individual
admissible sentences are product-stable. However, we were able to verify the
following. First, a sentence of type

(Q)(Φ ⇒ ∨n
i=1Φi) ⇒ ∨n

i=1(Q)(Φ ⇒ Φi),

with Φ crisp and Φi elementary for i = 1, . . . , n, can be seen to be stable
for products with two factors provided n = 2. Secondly, if n > 2, then the
theory T , consisting of the above sentence and all versions, involving only
2, 3, .., n − 1 of the Φi, is stable for products with two factors. Hence T
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is stable under arbitrary products. By theorem 2.9, T is stable for reduced
powers. We can now use [7, Thm. 3(f)] to conclude that the theory T is
stable under reduced products and hence is crisp.

Being unions of such theories, both SA and its subtheory A of admissible
sentences are crisp.

3. Examples and conclusions

The requirements for a theory to be crisp are quite generous. As a result,
there is an abundance of theories with a crisp axiomatization. We discuss
some natural (counter)examples in the fields of algebra and order, partial
functions, convex geometry, and record logics.

3.1. Algebra, order, and functionality

(i) Universal algebra is about first order languages with equality and with
terms. In the narrow sense, one considers theories consisting of (universally
quantified) term equations. Such theories are crisp. Below, we shall en-
counter crisp theories of (abelian) groups, of rings, and of Boolean algebras.

Often, equational theories are extended with other non-equational ax-
ioms. In most cases, these are negations of equalities or implications between
equalities. Such theories are crisp too. The theory of torsion-free Abelian
groups has the additional axiom scheme

∀x(nx ≈ 0 ⇒ x ≈ 0) (n = 2, 3, · · · ),

where nx stands for n−fold addition of x. There is a similar crisp axiom
scheme describing divisible Abelian groups:

∀x∃y ny ≈ x (n = 2, 3, · · · ).

The theory of nontrivial torsion-free divisible Abelian groups is complete
([16, Thm. 21.8, p. 351]) in addition to being crisp.

The theory of non-trivial atomless Boolean algebras is another example
of a complete and crisp theory. Given the usual axioms of Boolean algebra,
the condition of being atomless can be phrased as

∀x
(
∀y(x ∩ y ≈ 0 ∨ x ∩ y ≈ x) ⇒ x ≈ 0

)

(which is logically crisp). As to the completeness of this theory, see ([16,
Thm. 21.7, p. 351]). The negation of the atomless condition is a notorious
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example of a non-crisp sentence that is stable under products ([5, Example
6.2.3, p. 409].

Tarski’s axioms for relation algebra (cf. [13]) involve constants (0, 1, ID)
and Boolean operators (union ∪, intersection ∩, complement −) in addition
to a binary “composition product” x; y and a unary “reverse operator” �x.
The axioms are those of Boolean algebra, together with the axioms of a
monoid for composition (with identity element ID) and technical equivalences
known as Schröder’s law :

(x; y) ∩ z ≈ 0 ⇔ (�x; z) ∩ y ≈ 0 ⇔ (z; �y) ∩ x ≈ 0.

Thus, the theory of relation algebras is crisp.

There are some noteworthy examples of non-crisp theories in the realm
of algebra. For instance, CUR (commutative unitary ring) theory is crisp,
but no crisp extension of CUR can entail the theory of entire rings. Indeed,
assuming the independence property, the sentence

∀(x · y ≈ 0 ⇒ x ≈ 0 ∨ y ≈ 0)

cannot be derived unless 0 ≈ 1 is adopted. In particular, there is no crisp
theory of fields.

In all of universal algebra, fundamental use is made of so-called simple
algebras, characterized by the property of having no homomorphic images
except the obvious ones. For many common algebras, a first-order charac-
terisation of simplicity is known. By theorem 2.6(a), a first-order theory
that entails simplicity cannot be crisp. It is instructive to inspect such a
first-order characterisation. For instance, simple relation algebras are char-
acterised by the sentence

∀x(x ≈ 0 ∨ 1;x; 1 ≈ 1).

This shows there is no crisp theory of simple relation algebra unless 0 ≈ 1
is adopted.

For algebraic theories based on universal definite Horn sentences, the ex-
istence of free models with prescribed “generators” as additional constants
is a well-known fact. Such models are provided by so-called initial mod-
els, and are usually constructed via generators and relations between them;
cf. [4, p. 73].

(ii) The theory of partial order and the theory of strict partial order are
axiomatized with universal definite Horn sentences and hence they are crisp.
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Any coherent combination of both within one theory, however, is almost
never crisp, as it somehow entails the sentence

∀xy(x ≤ y ⇒ x < y ∨ x ≈ y).

By virtue of the independence property, we would find that the partial order
coincides with equality.

The theory of dense strict partial order and the theory of unbounded
strict partial order are crisp too. No crisp extension of the theory of partial
order can entail the theory of total order since the sentence ∀(x ≤ y∨y ≤ x)
cannot be derived unless ∀x∀y x ≈ y is adopted.

Suppose T is a crisp theory of partial order in some language L and Φ
is a basic formula in L with one free variable1. Then the sentence

∃xΦx ⇒ ∃y
(
Φy ∧ ∀z(Φz ⇒ y ≤ z)

)

is logically crisp. We may extend T with all sentences of this type, with Φ a
basic unary formula, to obtain a crisp first-order approximation to a theory
of well-order. Except in trivial cases, this imitation will never entail a total
order.

Theories of partially ordered algebraic structures are another source of
crisp theories: axioms linking algebraic operations with partial order are
almost invariably crisp.

(iii) The theory of partial functions is crisp. Indeed, partial functionality
of f can be described by the Horn sentence

∀xy1y2(f(x, y1) ∧ f(x, y2) ⇒ y1 ≈ y2).

In this way, we obtain crisp descriptions of “partial” algebras. For instance,
a groupoid is defined as a small category where each homomorphism is an
isomorphism. Alternatively, it is a partial algebra with a unary predicate
I(x) satisfied by the identity morphisms, with a unary reverse operator �x,
and with a binary partial composition operator which we treat as a ternary
predicate C(x, y, z). The result of composition is its third argument. Except
for partial functionality of C, the axioms are the following.

(G-1) (Associativity) ∀(C(x, y, u)∧C(u, z, t) ⇒ ∃v(C(x, v, t)∧C(y, z, v))).

(G-2) (Identity) ∀(x ≈ y ⇔ ∃w(Iw ∧ C(x,w, y))).

1For convenience, Φx denotes the formula obtained from Φ by substituting the free
variable of Φ by x.



400 M. van de Vel

(G-3) (Left inverse) ∀(C(x, y, z) ⇒ C(�x, z, y)).

(G-4) (Right inverse) ∀(C(x, y, z) ⇒ C(z, �y, x)).

The resulting theory is crisp and reduces to standard group theory if we
(crisply) require a unique identity and a total composition. If, instead, the
functionality requirement of C is dropped, we arrive at a crisp axiom system
for so-called atom structures of complete relation algebras, [12].

3.2. The theory of Pasch-Peano spaces

Many geometries are based on a ternary predicate Bxyz expressing that y

is “between” x and z. Among the usual axioms are the following crisp ones,
defining so-called Pasch-Peano spaces [19, I§4].

(PP-1) (Idempotence) ∀xy(Bxyx ⇒ y ≈ x)

(PP-2) (Extensiveness) ∀xyBxxy

(PP-3) (Symmetry) ∀xyz(Bxyz ⇒ Bzyx)

(PP-4) (Pasch axiom) ∀uu′vv′w(Buu′w ∧ Bvv′w ⇒ ∃x(Buxv′ ∧ Bu′xv))

(PP-5) (Peano axiom) ∀uvwx
(
∃y(Buxy ∧ Bvyw) ⇒ ∃y(Buyv ∧ Byxw)

)

A frequent additional condition is density,

∀xy
(
x ≈ y ∨ ∃z(Bxzy ∧ ¬x ≈ z ∧ ¬y ≈ z)

)
.

Let Td denote the resulting theory of dense Pasch-Peano spaces. We can
rewrite the density axiom as

∀xy∃z
(
(z ≈ x ∧ z ≈ y) ∨ (Bxzy ∧ ¬x ≈ z ∧ ¬y ≈ z)

)
.

This suggests extending the language (L, say) to a language L′ with an
additional binary term t, and to extend the theory Td to a theory T ′ with
two additional axioms:

(1) ∀xy(txy ≈ x ∨ txy ≈ y ⇒ x ≈ y)

(2) ∀xyBx(txy)y.

The extended theory is crisp because the offending density axiom can now
be derived from the logically crisp axioms (1) and (2). Also, it is easy to
see that (L′,T ′) is a conservative extension of (L,Td). By theorem 2.2, the
former theory is stable under reduced products. Hence, as all models of
(L,Td) obtain from models of (L′,T ′) by restriction, the expansion theorem
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[5, thm. 4.1.8] yields that (L,Td) is stable under reduced products. We
conclude from theorem 2.2 that dense Pasch-Peano theory is crisp.

There is an interesting class of basic formulae with a well-established
geometric meaning. Given a finite array X of points x1, . . . , xn (n ≥ 2)
the convex hull of X in a Pasch-Peano space consists of those points z that
can be obtained inductively by requiring Bx1zx2 if n = 2 and by requiring
Byzxn, where y is in the convex hull of x1, . . . , xn−1 if n > 2. Working this
out, the statement that z is in the convex hull of n ≥ 2 points X is seen to
be expressed by a basic formula of type ∃Y ΦnXY z with n + 1 free variables
X, z, and with an array Y of n− 2 bounded variables. The resulting convex
set is called a polytope with vertices X and, by virtue of the Peano axiom
(PP-5), its construction does not depend on the naming order of the vertices
in X. It is known [19, ch. I, §4] that the Pasch axiom (PP-4) boils down
to Kakutani’s separation property of disjoint polytopes by complementary
half-spaces. (This statement and its proof properly belong to set theory.)

It is also customary to define n-dimensionality of a geometry in terms of
the existence of n + 1 “affinely independent” points. For instance, to state
that a Pasch-Peano geometry is (at least) two-dimensional, we may proceed
with three distinct constants a, b, c, with a ≈ b and

∀z1z2

(
Baz1b ∧ Baz2b ∧ Bz1z2c ⇒ z1 ≈ z2

)
.

It is (at least) three-dimensional provided there is a fourth constant d with
a, b, c as above and with d satisfying

(†) ∀z1z2

(
∃Y Φ3abcY z1 ∧ ∃Y Φ3abcY z2 ∧ Bz1z2d ⇒ z1 ≈ z2

)
,

where ∃Y Φ3abcY z expresses that z is in the convex hull of a, b, c and Y is an
array of length one (single variable). Proceeding inductively, we can crisply
state that a Pasch-Peano geometry is at least n-dimensional by adding an
(n+1)th constant satisfying an additional formula of type (†) with Φn instead
of Φ3 and with the array of the previous n constants instead of “abc”.

To formulate “exactly n-dimensional”, we require that the space be the
affine hull of the array C of n+1 constants, involved in the definition of “at
least n-dimensional”:

∀x∃vw
(
¬v ≈ w ∧ ∃Y Φn+1CY v ∧ ∃Y Φn+1CY w ∧ Bvwx

)
.

Note that the description of dimension with new language constants
is just a matter of convenience, not of necessity. The above array C of
n + 1 constants may be replaced by an array V of unused variables. A crisp
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definition of “exactly n-dimensional” then amounts to a lengthy conjunction
of all previous sentences, with C replaced by V , and an existential quantifier
sequence ∃V in front of it.

Assume that a finite number of polytopes P , Pi are given by a crisp
description of relative vertex positions. The theory of Pasch-Peano spaces
(with or without density or dimension axioms) having the independence
property, there can be no proof that P is included in the union of the
polytopes Pi, unless P is already included in some Pi. Remarkably, many
examples of Pasch-Peano spaces have an abundance of non-trivial point con-
figurations with covering polytopes. One familiar situation occurs when a
polytope is covered by its faces (a face is the convex hull of all but one
of the vertices). The classical Carathéodory theorem in Euclidean n-space
states that this is always the case if a polytope has n + 2 (or more) vertices.
Such a statement can never be obtained in a theory with the independence
property.

Nevertheless, Carathéodory’s result has been rederived in terms of Pasch-
Peano spaces2 (see [19, ch. II§1]) and, expectably, the additional assumptions
involved are in conflict with the independence property. Except for density
and dimension, two conditions are used:

• (straightness) ∀
(
Buvw ∧ Bvwx ⇒ Buvx ∨ v ≈ w

)
,

• (decomposability) ∀
(
Bxyz ∧ Bxuz ⇒ Bxuy ∨ Byuz

)
.

Roughly, straightness is needed to make conditions, involved in the defi-
nition of dimension, look more symmetric. Decomposability is the main
ingredient in the actual proof of Carathéodory’s theorem. In fact, it is a
one-dimensional variant of the theorem.

By virtue of theorem 2.5(1), the theory of Pasch-Peano spaces (with
or without density or dimension axioms) has free models with arbitrarily
large automorphism groups, but nothing seems to be known about them. In
our proof that general free models exist, an important step is the addition
of fresh constants to a language, which find their place in a free model to
function as “generic elements”. The following citation from the introduction
of [15] illustrates our perspective.

2Our current treatment of “dimension” is rather biased towards a traditional view on
geometry. The author’s monograph [19] contains other results on Carathéodory’s theorem
as well, where Pasch-Peano spaces are drawn from non-traditional sources as well, e.g.,
distributive lattices with Bxyz meaning x ∩ z ≤ y ≤ x ∪ z. Dimension is defined here
with the breadth of the lattice. It is the only addition needed and hence it violates the
independence property.
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The art of finding “generic” examples has been pushed to the extreme
in Euclidean plane geometry, where we convince ourselves of many
theorems by just drawing one picture of a non-degenerate case.

Contrasting with this observation, even in Euclidean plane, no single picture
is generic for Carathéodory’s theorem.

In closing this topic, we note that Euclidean n-space, seen as a model of
Pasch-Peano theory with density and n dimensions, including straightness
and decomposability3, definitely does not satisfy the independence prop-
erty. In particular, the “independence property” of real linear programming
escapes from our approach.

3.3. Logic with records

In [20], we considered minimal axiom schemes for so-called logics with records
and we proved a result which makes such logics interesting outside the frame-
work of logic programming as well: Every first order theory can be faithfully
interpreted into a logic with records, with provision for an assortment of
additional requirements. All axiom schemes for records and all additional
demands are crisp. The interpretation transforms original atomic formulae
into specific basic formulae.

Hence every crisp first order theory has faithful crisp interpretations into
logics with records. More generally, by virtue of theorem 2.6, part (3), every
theory with the strong independence property has a faithful interpretation
into a logic with records and with the strong independence property.

3.4. Problems

(1) It follows from 2.5, part (1), and 2.6, part (2), that the independence
property and the strong independence property are equivalent for theo-
ries whose non-crisp axioms are universal or positive. Are the properties
equivalent in other circumstances?

For instance, by virtue of corollary 2.8(1), the independence property
and strong independence property are equivalent for complete theories
if and only if the theories A (of admissible sentences) and SA (of strong
admissible sentences) are logically the same. If either of these equiv-
alent statements fails, there is a complete and non-crisp theory with

3It was a major achievement of the last century to prove that convex subspaces of Eu-
clidean n-space can be characterised with the aid of the listed axioms (n ≥ 3; completeness
is required, too). See [19, Chap. 4 §1] for a detailed account.
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the independence property. This would settle another natural question
in the negative.

(2) We note that all non-crisp theories discussed in §3 can be recognised
as such by deriving a contradiction with the independence property.
This may suggest that non-crisp theories with the (strong) independence
property are fairly exceptional. So far, we made little progress in finding
(counter)indications for this.

3.5. Conclusion

Outside the logic or linear programming communities, the independence
property of first-order theories seems to have remained largely unobserved.
The importance of the independence property in logic or linear programming
is, that it is part of a decision algorithm. Often, it also serves as a step in
proving a theory to be complete. The property may as well serve the same
purposes at other occasions, though this has not been investigated here.

The discussion of theories in §3 may illustrate a different use of the
independence property as a tool to decide that certain sentences are not
provable.

Finally, free models provide a flexible alternative for the traditional ini-
tial models, which require a more specialised axiom format. Some natural
questions on crispness and on the (strong) independence property remain
unsolved.
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