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Abstract This paper assesses methods and components of formal
evolutionary-economic modelling. Methods are broadly classified into evo-
lutionary game theory and selection dynamics, evolutionary computation and
multi-agent models, each with relevant subcategories. The components or
building blocks are organized into diversity, innovation, selection, bounded
rationality, diffusion, path dependency and lock-in, coevolution, multilevel
and group selection, and mechanisms of growth. The number of alternatives
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that has been proposed for each category is vast, making it difficult to
comprehend the variety of assumptions and formalizations underlying existing
evolutionary-economic models. Our survey aims to clarify for each model
component the choice range, formal expressions, associated assumptions, and
possible techniques for formalization. Our study is unique in that it provides
more information about the formal details of specific model components and
is considerably more inclusive than earlier reviews.

Keywords Agent based models · Diversity · Evolutionary computation ·
Evolutionary game theory · Growth mechanisms · Innovation ·
Multilevel evolution · Neo-Schumpeterian models · Selection dynamics

JEL Classification B52 · C60 · C73

1 Introduction

Many studies in evolutionary economics employ formal models of one type or
another. They are characterized by a variety of approaches and elements. Per-
haps this is a logical consequence of evolutionary economics allowing for many
different assumptions regarding individual behavior, selection mechanisms
and innovation processes. The current paper presents an overview of methods
and components underlying formal economic models employing evolutionary
approaches. This can assist inexperienced, and possibly also experienced,
researchers in understanding the available variety of model components, their
possible formalizations, and the importance of model design for deriving
specific results. Some basic knowledge of evolutionary models may be relevant
as well to evolutionary economists not working with models themselves, since
models are intended to capture the essence of evolutionary processes and
thus reflect the range of views and assumptions explored. Our survey is
unique in three respects: it provides a comprehensive overview, it contains
explicit representations of important formalizations of model components,
and it clarifies the connection between components and general methods of
modelling. Existing surveys are either old, considerably less exhaustive than
ours, focus on one type of modelling (e.g., growth), or do not show many
formal expressions of model components (Silverberg 1988, 1997; Saviotti and
Metcalfe 1991; Andersen 1994; Kwasnicki 2001, 2007; van den Bergh 2004;
Windrum 2004; Silverberg and Verspagen 2005a; Fagiolo et al. 2007).

In this survey, we consider as core building blocks: diversity, innovation
and selection; and as additional components: bounded rationality, diffusion,
path dependence and lock-in, coevolution, multilevel and group selection,
and growth mechanisms. The relevance and potentially complementary role
of these various components is supported by many studies in evolutionary
economics, including a number of appreciative surveys (e.g., Hodgson 1993;
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Nelson 1995; Dopfer 2005; Silva 2009; Witt 2008). We wish to clarify the variety
of conceptualizations for each component, as well as determine which ones
can be well addressed by particular methods. The combination of modelling
methods and building blocks is important, as the particular method determines
the specific assumptions as well as the possible hypotheses and questions that
can be studied. Thus far, different evolutionary methods as applied to model
economic phenomena have not been systematically compared. Nowak (2006)
and Dercole and Rinaldi (2008) offer comparisons of methods and techniques
but focus on applications in theoretical biology.

It is possible to identify distinct developments within evolutionary mod-
elling, namely evolutionary game theory and selection dynamics (Friedman
1991; Weibull 1995; Samuelson 1997; Fudenberg and Levine 1997; Gintis
2000), evolutionary computation techniques (Fogel 2000; Eiben and Smith
2003), and multi-agent modelling (Weiss 1999; Wooldridge 2002; Tesfatsion
and Judd 2006). They use various mathematical techniques, namely difference
or differential equations, stochastic processes, graphs and evolutionary algo-
rithms. Multi-agent models and evolutionary computation (genetic algorithms,
learning classifier systems and genetic programming) are overlapping sets of
techniques, which may create some confusion. Particularly, when agents do
not learn or do not show changing behavior over time but a population of
individuals evolves due to the processes of selective replication and stochastic
variation, the distinction becomes diffuse. Generally, evolutionary compu-
tation offers techniques suitable for studying adaptive learning, search and
optimization processes, which can be employed in multi-agent systems to
model adaptive learning of the agents.

The organization of the reminder of the paper is as follows. Section 2
briefly discusses and compares the main evolutionary modelling approaches.
Section 3 examines the various formalizations of the components of
evolutionary-economic models, and relates these to the modelling approaches.
Section 4 presents conclusions.

2 Evolutionary modelling techniques

2.1 Evolutionary game theory and selection dynamics

Evolutionary game theory originates from the work of Maynard Smith and
Price (1973). It studies the strategic interactions of boundedly rational players.
Individuals are drawn randomly from large populations and have little or no
information about the game (Weibull 1998). A central concept in evolutionary
game theory is the evolutionarily stable strategy, which denotes that strategies
in an equilibrium are resistant to invading ‘mutant’ strategies.

To study dynamic paths to reach equilibrium underlying evolutionary
games, various dynamic equations have been proposed, referred to as pop-
ulation or selection dynamics (Hofbauer and Sigmund 1998). A number
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of modelling alternatives can be distinguished, depending on whether time
and payoffs are discrete or continuous, and whether population size and
the number of strategies are finite or infinite. Dynamics underlying games
can further involve deterministic or stochastic processes. In general, selec-
tion dynamics studies how the distribution of pure strategies changes over
time. The distribution of such strategies defines a population state, which is
mathematically equivalent to a notion of mixed strategy in the evolutionary
game (Weibull 1998). Among deterministic selection dynamics, replicator
dynamics predominates (Samuelson 1997), according to which frequencies of
strategies in the population change over time according to their (relative)
payoffs. Payoffs depend on the strategies of other players, and thus on the
frequencies of these strategies within a population, which creates a feedback
loop mechanism. Replicator dynamics focuses on selection processes and omits
structural innovations, so that in effect it can be regarded as an incomplete
representation of evolution.

Replicator dynamics describes one of many possible transmission mecha-
nisms. Hofbauer and Sigmund (1998, 2003) suggest other deterministic selec-
tion dynamics, such as best response, Brown–von Neumann–Nash, imitation,
and mutator dynamics (see also Nowak and Sigmund 2004). Best response
dynamics requires agents to recognize a best reply to the mean population
strategy, which in many situations may be beyond agents’ computational and
cognitive capabilities. Imitation of a rival’s strategy in pairwise comparisons
offers more realistic accounts for modelling social interactions, which can be
captured with imitation dynamics. Among deterministic selection dynamics,
only selection–mutation dynamics accounts for errors occurring during the
replication process. Mutation can be interpreted here as agents switching
between strategies already present in the population.

In general, deterministic selection dynamics are most relevant for studying
dynamics over moderate time spans. To study interactions in the long-run, sto-
chastic dynamics are more suitable (Sandholm 2007). Unlike in deterministic
approaches, in stochastic models mutations are captured by random variables
constantly perturbing model dynamics. Here, examining the impact of random
mutations allows determining the stability of an equilibrium (Foster and
Young 1990). A unique stationary distribution of strategies is found in the limit
distribution as the mutation rate goes to zero, referred to as a stochastically
stable strategy.

Alternatively, stochastic processes can be described in more detail at the
individual level, involving birth, death and migration processes. This can be
best expressed with Markov processes. Here, agents decide each period over
which strategy to choose and occasionally employ a decision at random. The
Markov process determines changes in individual states and consequently in
the relative abundances of different strategies over time. Other stochastic
processes describing changes in individual states, discussed here, are the
Master equation and the Polya urn process.
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2.1.1 Deterministic dynamics

1. Replicator dynamics

Replicator dynamics was first formalized by Taylor and Jonker (1978). It
applies to any population divided into types E1 to En, with corresponding
frequencies x1 to xn(

∑
ixi = 1). According to the replicator model, individuals

meet each other in random encounters. Whenever an individual of i-type meets
individual of j−type, the payoff to i is aij. The motion for the frequency of type
i is governed by (Hofbauer and Sigmund 1998):

ẋi = xi
(
(Ax)i − xT Ax

)
.

where (Ax)i is the expected payoff for an individual of type i given by an n × n
payoff matrix A = (aij), and xTAx is the average payoff. The frequency of type
i increases in the population if its payoff exceeds the average payoff in the
population.

In the context of games with interactions occurring in groups with more
than two members, fitness may be expressed as a nonlinear function of the
frequencies (Nowak and Sigmund 2004). Replicator dynamics takes then the
following generalized form:

ẋi = xi

(
fi(x) − f̄ (x)

)

where fi(x) is a fitness function and f̄ (x) = ∑
ixi fi (x) is the average fitness.

2. Best response dynamics

Best response dynamics may be applied to model myopic behavior of rational
agents. It is derived under the assumption that, in large populations, a small
fraction of individuals revise their strategies and choose the best reply to the
population mean strategy x:

ẋ = β(x) − x

where β(x) denotes the set of best replies b to strategy x such that zT Ax ≤
b T Ax for any z, x, b ∈ Sn. The best reply does not have to be unique.

3. Smoothed best replies

Best reply dynamics can be approximated by smooth dynamics such as the logit
dynamics (in order to ensure a unique solution) for ε > 0:

ẋi = eai(x)/ε

∑
j ea j(x)/ε

− xi

for ε → 0, this converges to best response dynamics.
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4. Brown–von Neumann–Nash dynamics

The Brown–von Neumann–Nash dynamics is defined as:

ẋi = ki (x) − xi

∑

j

k j (x)

where ki(x) = max(0, ai(x) − xTa(x)) denotes the positive part of excess payoff
for strategy i. This equation ensures that, if there exists a strategy j with
the excess payoff higher than i’s, the frequency of strategy i will decrease
in a population. The equation describes population dynamics resulting from
myopic adjustment which, unlike replicator dynamics, allows for innovation
but assumes less rationality than best response dynamics (Hofbauer et al.
2009).

5. Imitation dynamics

The frequency of certain strategies can increase in a population through imita-
tion. Imitation dynamics is derived under the assumption that an individual
selects randomly another player in the population and decides whether to
adopt his strategy. It takes the form:

ẋi = xi

∑

j

[
fij (x) − f ji (x)

]
x j

where fij is the rate at which a player of type j adopts type’s i strategy.
The simplest rule, proposed by Hofbauer and Sigmund (2003), is ‘imitate

the better’. In this case, the rate depends only on the payoffs achieved by the
two players:

fij (x) = f
(
ai (x) , a j (x)

) = 0 for ai (x) < a j (x)

= 1 otherwise

The frequency of strategy i increases if i’s payoff exceeds j’s (the term[
fij (x) = f ji (x)

]
is in this case equal to 1). Alternatively, the switching

rate may depend on the payoff difference, i.e. fij (x) = f
(
ai (x) , a j (x)

) =
ϕ

[
ai (x) − a j (x)

]
with ϕ a monotonically increasing function. The dynamic

process then becomes:

ẋi = xi

∑

i

ψ
[
ai (x) − a j (x)

]
x j

where ψ(.) is an increasing and odd function −ψ(x) = ψ(−x), (i.e. the graph of
an odd function has 180◦ rotational symmetry with respect to the origin). The
equation may be interpreted as players imitating strategies of other agents with
a probability proportional to the expected gain from switching.
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6. Selection–mutation dynamics

The selection mechanisms discussed under 1–5 describe selection without any
drift or mutation. To allow for errors to occur during the process, models
combining selection and mutation can be employed, such as mutator and
replicator–mutator dynamics. According to mutator dynamics, the processes
of replication and mutation are sequential (Helbing 1995; Brenner 1998):

ẋi = xi ((Axi) − xT Ax
) +

∑

j

[
x jq ji − xiqij

]

where qij is a mutation probability from strategy i to j, and q ji from j to i. The
first term on the right-hand side depicts replicator dynamics, and the second
term describes the flow towards and away from strategy xi.

In population genetics, biochemistry, and models of language learning,
the replicator–mutator equation is used: ẋi = ∑

j x j f j (x) qij − f̄ (x) xi (Bürger
1998; Komarowa 2004; Nowak and Sigmund 2004). Here, mutation occurs
during the replication process. The mutation matrix Q = [qij] is a stochastic
matrix, where each entry is a probability that replication of i will result in
j, with � jqij = 1. The replicator–mutator contains both replicator dynamics
and quasi-species equations as special cases. If the matrix Q is an identity
matrix, the equation reduces to replicator dynamics (perfect learning). The
quasi-species equation describes deterministic mutation–selection dynamics
on a constant fitness landscape. The fitness values are independent of the
frequencies of other strategies in a population. Formally, the quasi-species
equation takes the form: ẋi = ∑

j x j f jqij − f̄ xi,where fi is a reproductive rate
(fitness) of strategy i and f̄ = ∑

i xi fi is the average fitness.

7. Adaptive dynamics

The term adaptive dynamics was first used by Hofbauer and Sigmund (1990)
and Nowak and Sigmund (1990). The approach allows investigating a number
of theoretical issues, including genetic variation, coevolution and speciation.
Nevertheless, its theoretical and mathematical properties are not well under-
stood (Waxman and Gavrilets 2004). Formally, adaptive dynamics requires a
population in which almost all individuals use a strategy p. The population can
be invaded by a strategy q if a payoff for an individual playing the strategy q,
while all others play p, exceeds the payoff he would receive from playing the
strategy p. Adaptive dynamics takes the form:

ṗ = ∂ f (q, p)

∂q

∣
∣q=p

The function f (q,p) denotes the payoff for an individual playing strategy q
in a homogenous population with strategy p. The derivative of this function
determines the direction of the mutant’s advantage. Adaptive dynamics cap-
tures adaptive learning and the process of myopic search in a homogenous
population where most individuals use the same strategy and only a small
number of agents (‘mutants’) use alternative strategies.
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2.1.2 Stochastic dynamics

Foster and Young (1990) were the first to introduce a stochastic term into
replicator dynamics. They claim that the biological model on which replicator
dynamics is based is inherently stochastic in nature, so that not every encounter
between i-type and j-type individuals must result in exactly the same change
in fitness. Under the assumption of a large population size and frequent
interactions, Foster and Young approximate any source of variability in the
payoffs by a continuous-time Wiener process:

ẋi (t) = xi (t)
[
(Ax (t))i �t − x (t)T Ax (t)�t + σ (
 (x)�W (t))i

]

where x (t) = [x1 (t) , ..xn (t)]T is the proportion of different strategies; W(t) is a
continuous, white-noise process with a zero mean and an unit rate covariance
matrix; 
(x) is continuous in x and has the property xT
(x) = [0, 0, .., 0]T .
The stochastic version of replicator dynamics is suitable for models where
random perturbations σ constantly affect the selection process and thus system
dynamics.

Other stochastic approaches to the study of dynamics in evolutionary
games include Markov processes, the master equation, and the Polya urn.
These techniques describe changes in the population state based on individual
stochastic processes (e.g., birth, death and migration of individuals). According
to a Markov process, a probability of transition from state x to y at time t is
conditional on all past states, but it can be reduced to a probability that is
conditional only on the state visited in the previous time t − 1:

Pr (Xt = y |Xt−1 = x, .., X0 = x0) = Pr (Xt = y |Xt−1 = x)

Economic variables modelled as Markov processes are ‘memory-less’: their
values depend solely on the values in the previous period. Wheeler et al.
(2006) offer an application of a discrete-time Markov chain to model adaptive
learning in the context of the Cobweb model.

The so-called master equation is a special case of a Markov chain (in
finite time space). It may be employed to model agents’ discrete choices. The
equation describes a transition probability based on probabilities of flows into
and out of the set of states. Formally, it can be written down, using vector
notation, as (Aoki 1996; 117):

∂ P
(
x′,t

)
/∂t =

∑

x �=x′
P (x,t) ω

(
x′ |x,t

) −
∑

x �=x′
P

(
x′,t

)
ω

(
x

∣
∣x′,t

)

where P(x,t) denotes a probability of being in state x at time t, while ω(x′|x,t)
is a transition rate from state x to x′. The first term is the sum of probability
of flows into state x′, while the second is the probability of flows out of state
x′. Weidlich and Braun (1992) discuss application of such Markov chains to
economics. Cantner and Pyka (1998b) use the master equation to model tech-
nological progress emerging from technological interactions involving spillover
effects.
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Alternatively, the Polya urn describes a dynamic process with reference to
an urn that is filled with balls of two colors. Each time, one ball is drawn
randomly: the selected ball is returned to the urn, while a ball of the same color
is added. The probability of adding a ball of a particular color equals exactly
the proportion of balls of this color in the urn. Arthur et al. (1987) propose a
more general model in which the probability of adding a ball of type j is an
arbitrary function (q) of the color frequencies. It augments the standard Polya
urn with a perturbation component. Formally, the urn consists of n balls of
N colors, where a vector Xn = {

X1
n, X2

n, .., X N
n

}
describes the proportions of

balls of colors 1 to N respectively. At each time period, one ball is added; the
probability that it is a ball of a color i is equal to qi

n (Xn) . The frequency of the
i-color ball is:

Xi
n+1 = Xi

n + 1
w + n

[
qi

n (Xn) − Xi
n

] + 1
w + n

μi
n (Xn)

Here, μi
n (Xn) = β i

n (Xn) − qi
n (Xn), while β i

n (Xn) equals 1 with a probability
qi

n (Xn) and 0 otherwise.
The Polya urn mechanism as described refers to a non-linear Polya process

(Arthur et al. 1987). Dosi et al. (1994a) apply the general urn scheme to
modelling technology choice, and Fagiolo (2005) to coordination games.

2.2 Evolutionary computation

Evolutionary computation offers algorithms based on the mechanisms of
natural selection and genetics, such as genetic algorithms (Back 1996; Mitchell
1996; Goldberg 1989), genetic programming (Banzhalf et al. 1989), evolution-
ary programming (Back 1996), learning classifier systems (Lazi et al. 1998;
Bull 2004) and evolutionary strategies (Beyer 1998).1 These techniques are
increasingly applied to evolutionary-economic modelling (see Arifovic 2000;
Dawid 1999). In evolutionary computation models, individuals do not change
over time, but a population evolves due to selective replication and variation
processes. Riechmann (1999) has proposed to interpret these evolutionary
operators in terms of socio-economic interactions, namely as learning by
imitation (selective replication), learning by communication (crossover) and
learning by experimentation (mutation).

Central to all techniques in evolutionary computation is the search process
for better solutions. It involves generating new options with mutation and
recombination operators. A mutation operator is always stochastic. It acts by
changing a value of a random characteristic of an individual with some positive
probability. Recombination (crossover) merges information (characteristics)
from two parent codes into an offspring code. The important difference
between mutation and recombination is that mutation is a unary operator; it

1Since economic applications of evolutionary programming and evolutionary strategies are rare,
we do not discuss them further here.
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requires one object as an input, while crossover is typically a binary operator
applied to two objects (parents). In addition, the possibility of recombination
with more than two parents is also possible in a socioeconomic or technological
context (see Eiben 2000). This creates a very wide spectrum of innovation
outcomes. Notably, the role of mutation and recombination differs among
alternative ‘evolutionary dialects’ from being the only variation operator for
creating diversity, the only search operator for scanning the parameter space
in search for a better solution, a mixture of these two, to not being used at all
(Eiben and Smith 2003).

The process of selective replication transfers a set of individuals hosting
distinct strategies from one generation to the next. In evolutionary algorithms,
selection consists of two processes: parent and survival selection (Eiben and
Smith 2003). The role of parent selection is to stimulate better individuals to
become parents of the next generation. Parent selection is typically probabilis-
tic: better quality individuals have a higher chance to reproduce. For instance,
parents may be selected in proportion to their relative fitness (a quality
measure assigned to each solution). The approach is also known as roulette
wheel selection: the chance of selecting a particular parent may be envisaged
as spinning a roulette wheel, where the size of each pocket is proportional to
the parent’s fitness. Other types of selection mechanisms are linear sorting and
tournament selection. According to the first, an algorithm sorts all individuals
based on their fitness and then assigns a selection probability to each individual
according to its rank. Alternatively, in tournament selection, an algorithm
chooses randomly two parents and creates an offspring of the fitter parent.
Subsequently, parents are returned to the initial population. The process is
repeated n times to create a succeeding population of n offsprings. The second
type of selection is survival selection (often deterministic). Here, offspring
compete for a place in the next generation based on their fitness. A new
population can be constructed from a set of parents and offspring, referred
to as fitness bias selection, or solely from the offspring population, known as
age bias selection.

Evolutionary algorithms may be employed to model individual learning in
multi-agent systems. In such models, each agent observes a representation of
the current state and undertakes an action according to a selected decision
rule (from a finite set of rules). After all agents undertake their decisions,
payoffs are revealed, and the effectiveness of rules is evaluated. The most
effective rules have a higher chance to be selected in the future. Over time,
an evolutionary algorithm evolves the optimal rule or set of rules in response
to a changing environment.

2.2.1 Genetic algorithms

Holland (1980, 1992), inspired by genetic processes, developed the Genetic
Algorithm (GA) method to study adaptive behavior. A simple genetic algo-
rithm is characterized by a population of strings of equal length, representing
sequences of binary or real values. A GA operates as follows: from an initial
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parent population, some strings are chosen with a probability proportionate
to their fitness. Offspring are created by applying variation operators to
the selected parents: mutation ‘flips’ the value of any bit-string with some
positive probability, while recombination (crossover) switches sequences of
consecutive bits between two parents’ strings. A new generation is then created
from parent and offspring populations (or only from the offspring population).
The process is repeated a finite number of times until convergence occurs or
some (other) stopping rule is satisfied.

Genetic algorithms are widely employed in evolutionary modelling. The
string representation offers a convenient way to code consumer preferences
(Aversi et al. 1997), production designs (Windrum and Birchenhall 1998,
2005), firm routines (Kwasnicki and Kwasnicka 1992), production rules in
cobweb models (Arifovic 1994, 1995; Dawid and Kopel 1998; Frenke 1998),
production functions (Birchenhall 1995; Birchenhall et al. 1997), pricing strate-
gies (Curzon Price 1997), or strategies in a Prisoners Dilemma (Axelrod 1987;
Miller 1996).

2.2.2 Learning classifier systems

A classifier system was designed by Holland (1992) as an adaptive system
where rules are activated depending on the state of the environment. Each
rule consists of a condition–action part (for example ‘if X appears then do Y’).
Classifier conditions are strings of symbols {0, 1, #}, while actions are expressed
as binary strings. Classifier systems work as follows. First, the state of the
environment is coded on a binary string and transmitted to the system. If a
condition part of a rule matches the message from the environment, the rule
enters a competition with other rules that have satisfied this condition. The
outcome of the process depends on strengths of rules describing a rule’s past
performance. The strengths are updated over time with a particular learning
algorithm (e.g., bucket-bridge or Q-learning). In a second stage, a genetic
algorithm is run on the population of rules to generate new and delete poorly
performing rules with the use of one-point crossover and bitwise mutation. The
purpose of employing classifier systems is to create a cooperative set of rules
that together solve the problem (Bull 2004). Classifier systems are typically
employed to model agent’s adaptive behavior (Marimon et al. 1990; Arthur
1991; Arthur et al. 1996; Vriend 1995; Kirman and Vriend 2001).

2.2.3 Genetic programming

Genetic programming (GP) represents the youngest technique in the artificial
intelligence and computational literature. It was developed by Koza (1992,
1994) and builds on the concept of functions applied to arguments; these
functions are organized into trees, the nodes of which are described with a set
of basic functions (e.g., the arithmetic, Boolean, relation, if–then operators)
plus some variables and constants {+, −, *, /,....., OR, AND, NOT, >, <, =,
...v1, v2, v3...c1, c2, c3...}. Operators have connections with other operators or
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variables. Variables, which have no further connection, constitute ‘leaves’ of
the tree.

GP proceeds by evaluating each solution according to its fitness and select-
ing the best solutions for ‘reproduction’. In order to generate new solutions,
the fittest among the existing ones are modified and recombined. For example,
crossover operates by selecting randomly two nodes in the parents’ trees and
swapping the sub-trees, which have such nodes as roots. The idea of generating
new, possibly better functions or trees in GP is similar to the way in which
genetic algorithms (GA) operate.

GP as a member of the evolutionary algorithm family shares some prop-
erties with GA. Formally, GP is a variant of GA characterized by a different
data structure. The two approaches differ with respect to the application area:
GP is used to seek models with maximum fit to the environment, while GA
aims to find an optimal solution (Eiben and Smith 2003). Working with GP
allows for more flexibility: trees take the form of complex structures with
nested components, while the size of trees may vary within a population. By
contrast, a GA population consists of fixed-length binary strings. However, the
complex structures of GP may hinder their usefulness, in particular making
the interpretation of results difficult (Arifovic 2000). Genetic programming
has been employed in a number of economic applications, for instance, to
evolve an optimal price-setting rule (Dosi et al. 1999) or an optimal trading
rule (Neely et al. 1997; Allen and Karjalainen 1999), and to model speculators’
adaptive behavior (Chen and Yeh 2000).

2.2.4 Fitness landscape and NK models

In evolutionary algorithms, there is no assumption being made about the
fitness landscape. Hill and ORiordan (2001) suggest employing the NK model
to represent solutions in the search space and subsequently to evaluate the
performance of variation operators in evolutionary algorithms. In general, the
fitness landscape can be constructed by assigning to each solution the height
corresponding to its fitness value in the search space. The NK model has
been proposed by Kauffman (1993) as a stochastic method for constructing an
adaptive fitness landscape that can be gradually tuned from smooth to rugged.
Here, N stands for the number of elements, while K denotes the complexity
of the system (interdependence of dimensions). Each element has its own
sub-function(s) within the system. It is assigned a fitness value wn drawn
randomly from the uniform distribution [0, 1]. Elements in an NK system
are interdependent; these dependencies are often referred to as ‘epistatic
relations’. If a value of a particular element changes, the change affects both
the fitness (and functioning) of this element and the fitness (and functioning)
of elements that are interlinked with it. The total fitness of the system changes
according to the average fitness of its elements:

W(s) = 1
N

∑N

n=1
wn (s)
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where wn denotes the fitness of the n-th element. In this context, search
is modelled as a trail-and-error process. Each time step the value of one
element is mutated and the fitness of the system before and after mutation is
compared. If the average fitness has increased, mutation continues, otherwise
the state of the system is restored to the previous configuration. The process
is repeated until a (local or global) optimum is reached. The NK framework
can be employed to model myopic search for better solutions (Altenberg 1997;
Auerswald et al. 2000; Frenken and Nuvolari 2004).

2.3 Multi-agent models

Multi-agent models (sometimes referred to as agent-based models, multi-agent
systems, multi-agent simulations, or multi-agent based simulations) enable
the study of coordination processes, self-organization, distributed processing,
micro diversity and innovation through recombination, all in a way that is far
beyond the capabilities of any representative agent model (Potts 2000). In
early studies, the approach was employed to model social interaction processes
(Schelling 1978; Axelrod 1984). The most ambitious in this sense has been
Epstein and Axtell’s (1996) multi-agent ‘Sugarscape’ model, which integrates
elements of demography, sociology, psychology and economics. Exercises with
this model show the way in which spatial-temporal interactions of agents
can generate a variety of social phenomena, for example, the transmission
of culture, the rise of conflicts, the spread of a disease, the diffusion of
price information, and migration. In economics the method of multi-agent
simulations became more the work of Andersen et al. (1988) and Holland
and Miller (1991). These authors proposed to view widely known through the
economy as a complex, dynamic, and adaptive system with a large number of
autonomous agents. Multi-agent simulations offer a powerful tool for address-
ing interactions of heterogeneous, boundedly rational agents characterized by
learning, increasing returns and path dependence.

The basic structure of a multi-agent system involves specifying a large
number of parameters and variables: time, the number of agents, micro states
(actions) that can be endogenously modified by agents, micro parameters con-
taining information about agents’ behavioral and technological characteristics,
time independent variables governing the fixed technological and institutional
setup, the structure of interactions and information flows among agents, and
aggregate macro variables (Pyka and Fagiolo 2007).

Formally, agents can be defined as computational entities, usually showing
some form of bounded rationality (myopia, local search), situated in some
environment, capable of undertaking flexible autonomous actions with the
objective of meeting their goals (Wooldridge 1999). Intelligent agents are
characterized as capable of perceiving the environment and responding to
it; of exhibiting goal-oriented behavior, and of interacting with other agents.
These interactions can take place indirectly through the environment in which
agents are embedded, or in direct communication among agents (Weiss 1999).
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Agents’ interactions as well as feedback from aggregate (macro) to disaggre-
gate (micro) phenomena are the sources of nonlinear dynamics.

Multi-agent models have been applied to a wide range of topics. This in-
cludes: agent learning (Arthur 1991; Ishibuchi et al. 2001; Klos and Nooteboom
2001), the evolution of norms, and conventions (Axelrod 1997; Thebaud and
Locatelli 2001; Hodgson and Knudsen 2004), financial markets (Arthur et al.
1996; Caldarelli et al. 1998; LeBaron 2001; Levy et al. 2000), diffusion of
innovations and industry dynamics (Aversi et al. 1997; Cantner and Pyka
1998a; Cantner et al. 1998, 2000; Gilbert et al. 2001; Windrum and Birchenhall
1998, 2005; Saint-Jean 2006; Schwoon 2006), land use and environmental
management (Paker et al. 2003), labor economics (Tassier and Menczer 2001;
Gabriele 2002; Fagiolo et al. 2004), and environmental policies (Janssen and
Jager 2002; Carrillo-Hermosilla 2006). Multi-agent models have been also
applied to various specific markets, including the textile market (Brannon et al.
1997), fish market (Kirman and Vriend 2001), wholesale electricity market
(Bower and Bunn 2001), and agricultural practices in a developing country
(Lansing and Miller 2004).

Despite numerous contributions, a common protocol for the design and
validation of multi-agent models has not yet emerged (Matteo et al. 2006;
Fagiolo et al. 2007; Pyka and Fagiolo 2007). Behavioral rules and different
heuristics are often introduced ad hoc, as there are no or little data available
to validate model assumptions and to calibrate the parameters. The diversity
of approaches follows from the fact that an array of assumptions can be
justified with reference to stylized facts (David and Fagiolo 2008). Existing
approaches for the validation of multi-agent models include the indirect
calibration approach, the Werker–Brenner approach, and the construction of
history friendly models. However, each method has its shortcoming (Fagiolo
et al. 2007). For these reasons, the use of multi-agent models for the evaluation
and especially design of economic policy should be approached with care (see
also a special issue on “Agent-based models for economic policy,” David and
Fagiolo 2008).

For a more extensive discussion of multi-agent modelling, see Tesfatsion
(2001a, b), Axelrod (2003), Windrum (2004), Dawid (2006), Vriend (2006),
and Epstein (2007). We discuss aspects of some of the aforementioned models
in greater detail later on in the sections dealing with particular building blocks
of evolutionary-economic models.

2.3.1 Spatial and network structures

Agent interactions in multi-agent models can occur through spatial structures
or networks taking the form of a graph, grid or lattice (Antonelli 1996;
Solomon et al. 2000; Conlisk et al. 2001; Nowak 2006, Chapters 8 and 9; Noailly
et al. 2007, 2009). Graphs compromise Ising models, small world models and
random graphs (Watts and Strogatz 1998; Cowan 2004; Frenken 2006). In Ising
models, agents are located at fixed points in a regular integer space, and they
are connected to their n-nearest neighbors only. In small world models, agents
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can interact with some distant (i.e. not direct neighboring) sites. The network
structure in small world models is characterized by high cliquishness, i.e. a
high density of agents’ interactions, and short average path lengths between
agents (Cowan and Jonard 2000). Alternatively, in random graphs, agents
are connected with some positive probability regardless of their location; the
networks do not reflect explicit geographical space. Watts and Strogatz (1998)
proposed a one-parameter random graph model compromising these three
approaches (Ising and small world models, and random graphs). A parameter
p, reflecting a probability of connecting a random agent to each link within the
network, is used to scale between the regular and random graph (e.g., p = 0
gives Ising model, p = 1 random graph).

Recently, percolation models have achieved some attention in modelling
technology diffusion and spillovers in innovations (Silverberg and Verspagen
2005b; Cantono and Silverberg 2008; Hohnisch et al. 2008). Here, interactions
occur among neighboring cells on a lattice. Cells are active (e.g., adoption of
a particular good) or inactive. An algorithm defines conditions under which
a cell can change its state; for instance, an inactive cell becomes activated.
Percolation is said to occur if one or more clusters of active cells emerge
(Hohnisch et al. 2008).

2.4 Comparing methods

Little attention has been devoted to comparing the different methods of
evolutionary modelling in evolutionary economics. In fact, there is not much
communication between researchers using distinct techniques (Witt 2008).
Important differences between the methods relate to mathematical represen-
tation, the possibility of deriving analytical solutions, dynamics being stochastic
or deterministic, the way selection and innovation mechanisms are or can be
formalized, and the level of aggregation. As a result, the choice of method will
influence model design.

Evolutionary game theory describes interactions between randomly drawn
individuals from a population, which indeed can be interpreted as a micro-
level and population approach (e.g., Friedman 1991). However, with the aim
to derive analytical solutions, applications usually reduce heterogeneity in
a population to a few strategies or subgroups, which often means a kind
of aggregation of information, certainly in comparison with multi-agent ap-
proaches that distinguish between sometimes hundreds of individual agents.
In evolutionary computation and multi-agent models, individuals within a
population are described in detail, resulting in evolutionary dynamics that are
analytically intractable. The multi-agent model is unique in the sense of allow-
ing for interactions between many heterogeneous agents, who can moreover
exhibit changing behavior and learning over their life time. By contrast, in
models developed with evolutionary computation techniques, individuals do
not change over time, but the population evolves due to selection and variation
processes. Evolutionary computation has been mainly used to study adaptive
learning or to perform optimization in complex, nonlinear systems. Each of the



344 K. Safarzyńska, J.C.J.M. van den Bergh

evolutionary algorithms (i.e. genetic algorithms, learning classifier systems and
evolutionary programming) is associated with specific formal representations
of individuals (string, tree of functions etc.). Multi-agent modelling is much
more flexible in this respect.

As already mentioned in Section 1, the classification of different meth-
ods employed in evolutionary-economics is not straightforward, especially
if different methods are combined. For instance, evolutionary games can
underlie interactions of individuals in multi-agent models, while evolutionary
algorithms can be used to model agent learning and search in multi-agent
settings. This certainly allows for more flexibility in the model designs, but may
create a difficulty in classifying, and comparing results of, different models.

3 Building blocks of evolutionary-economic models

In this section, we present an overview of the various formalizations of compo-
nents of evolutionary-economic models that have been proposed in the liter-
ature. The following categorization is employed (as motivated in Section 1):
(1) diversity, (2) innovation, (3) selection, (4) bounded rationality, (5) dif-
fusion, (6) path dependence and lock-in, (7) coevolution, (8) multi-level and
group selection, and (9) mechanisms of evolutionary growth. Table 1 summa-
rizes the manner in which these components can be formally conceptualized
using the various methods. Statements in the cells of the table are elaborated
and explained in relevant subsequent subsections.

3.1 Diversity

Central to any evolutionary model is a heterogeneous population, i.e. a
population consisting of diverse elements or members. Diversity relates to
progress through Fisher’s principle (Fisher 1930), which says that the greater
the variability upon which selection for fitness acts, the greater the expected
improvement in fitness. In evolutionary-economic models, diversity is formal-
ized in a number of different ways. In evolutionary game theory, diversity is
limited to a very small number (most commonly two) of strategies. However,
individuals may do different things on different occasions, formally captured
by the notion of mixed strategies. This has been referred to as ‘individual
behavior mixing’ as opposed to the situation in which individuals demonstrate
constant behavior over time while different individuals can show diverse be-
haviors, referred to as ‘developmental coin flipping’ (Bergstrom and Godfrey-
Smith 1998). The latter is characteristic of model design in evolutionary
computation (Section 2.2) where the number of different strategies in the
population is typically large. Finally, in multi-agent systems, variety of agent
characteristics and time variation of strategies can be combined. Agents can
differ here with respect to behavioral rules, knowledge, goals, physiologi-
cal features (e.g., vision and energetic efficiency in the Sugarscape model;
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Epstein and Axtell 1996) or signals. This creates a wide spectrum of oppor-
tunities to realize heterogeneity.

The concept of diversity can be elaborated as having three properties:
variety, balance, and disparity (Stirling 2004, 2007). Variety is defined as the
number of categories into which a population can be partitioned; the larger this
number the larger the diversity. Balance relates to the distribution of shares of
each category in the population; the more equal the shares, the more even
the distribution and the larger the diversity. Finally, disparity refers to the
degree to which options differ; it captures the distance between categories.
Disparity is a qualitative property, which represents a rather subjective and
context-dependent aspect of diversity.

Stirling suggests a simple diversity measure that combines these compo-
nents. It takes the form of a multiplicative function, representing an integrated
diversity heuristic measure D (Stirling 2007):

D =
∑

i, j(i �= j)

dα
ij

(
pi p j

)β

Here dij is the distance in a Euclidean disparity space between options i and j,
and pk is the frequency of element k in the population. The parameters α and
β may take values 0 or 1. In the reference case, α and β both equal 1 and the
measure captures balance- and disparity-weighted variety. If α = 0 and β = 1,
the index reduces to balance-weighted variety, while if β = 0 and α = 1, it
reduces to disparity-weighted variety. For α = 0 and β = 0, the measure depicts
scaled variety.

For the purpose of statistical analysis, a number of other diversity measures
have been proposed (Theil 1967; Weitzman 1992, 1998a; Önal 1997; Frenken
et al. 1999; Saviotti 2001). However, Stirling (2007) shows that most of these
are not very well balanced, as they ignore some aspects of diversity. For
instance, an entropy-based index is a dual measure combining diversity and
balance, while the Weitzman index is limited to disparity. The entropy-based
Shannon index is defined as −H = − ∑n

i=1 pi ln (pi), where n is the number
of species, and pi is the share of the ith species. H = 0 indicates the lowest
diversity. The Simpson index takes the form of the sum of the squared shares
of each option in the portfolio: H = ∑

i
p2

i . A related entropy measure is that

of Önal (1997), proposed for the purpose of creating a more operationally and
computationally convenient index. It defines the structural diversity index as:
V(x) = 1 − 1

2(n−1)

∑

i, j

∣
∣si − s j

∣
∣ (n is the number of species, and si, s j are shares

of i and j species respectively). For a given pair of groups i and j,
∣
∣si − s j

∣
∣

measures the relative diversity between the two groups. Maximum diversity
occurs when all groups in an assembly have equal numbers of elements, while
a minimum value is realized if one group contains all of the elements.

Alternatively, Weitzman’s index (1992, 1998a) emphasizes the distance
between entities. The measure can be applied to both discrete and continu-
ous variables. It classifies entities in groups on their dissimilarity through a
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distance measure d. Formally, diversity V(S) is the solution of the recursion:
V(S) = maxy∈S (V(S\y) + d(S\y, y)), where S\y stands for a set S without a
member y and d(S\y, y) captures the distance between this set and y. The
Weitzman’s index addresses disparity alone; it does not account for the relative
abundance of different options within a population.

Several studies have applied these diversity measures: Saviotti and Trickett
(1992) in a study of helicopters, Bourgeois et al. (2005) for refinery processing,
Frenken and Nuvolari (2004) for the steam engine, Frenken and Windrum
(2005) for microcomputers and laptops, van den Heuvel and van den Bergh
(2009) for the solar photovoltaic industry, and van den Bergh (2008) in an
abstract model of optimal diversity in investment. Frenken et al. (1999) use
both the entropy and Weitzman’s diversity measure to analyze the evolution
of technology in four industries: aircrafts, helicopters, motorcycles and micro-
computers. They define a population of products in terms of the distribution
of product characteristics. Changes of variety in each particular industry
are investigated as changes in the composition of the population structure
over time (measured with diversity indexes). The results reveal a tendency
for decreasing variety towards product standardization for helicopters and
microcomputers and increasing variety for aircrafts and motorcycles.

3.2 Innovation

Innovation is an inherent feature of any evolutionary system. It is essential for
diversity creation. Technological evolution may take the form of a series of
incremental improvements in already existing designs or the introduction of a
design radically different from the latest technological achievement. Mokyr
(1990) distinguishes in this respect between micro and macro inventions,
following Schumpeter (1939). Although innovations are intrinsically uncer-
tain, and for this reason in most evolutionary-economic models treated as
stochastic, it would be incorrect to consider the process of innovation as totally
random. Innovations may be expected to occur in a systematic manner, namely
preceded by the cumulativeness of relevant technical advances. The innovative
process is often depicted as following relatively ordered technological path-
ways, as is reflected by notions such as natural trajectories (Nelson and Winter
1977), technological guide points (Sahal 1985), technological paradigms (Dosi
1982), and socio-technological regimes (Geels 2002, 2005).

Innovations are conceptualized in formal models in a number of ways: as
a stochastic process (e.g., Poisson) that can result in structural discontinuity,
variation and recombination of existing technological options, or random
or myopic search on a fitness (technology) landscape. Innovations may be
associated with a new vintage of capital (e.g., Iwai 1984a, b; Silverberg and
Lehnert 1993; Silverberg and Verspagen 1994a, b, 1995). In vintage models
developed in an evolutionary game setting, innovations tend to transform a
firm as whole. For instance, Iwai (1984a) develops a capital vintage model to
examine the way in which dynamic interactions between the equilibrating force
of imitation and the disequilibrating force of innovation shape the evolutionary
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pattern of an industry. The market consists of M firms (active and potential
producers) and n production methods with corresponding unit costs ci (cn>

.. >c1). Firms face two alternatives, namely innovate or imitate the technology
exhibiting a lower than current cost of production. If innovation occurs, it
creates a new cumulative frequency Ft (CN) = 1/M, where CN denotes the
unit cost of the best production method that is technologically possible at time
t. The relative frequency of firms with the unit cost equal to c or lower than c
changes according to:

�Ft (c) = {μFt (c) (1 − Ft (c)) + νM (1 − Ft (c)) (1/M)}�t

where μ and ν are indices of the effectiveness of firm imitation and innovation
activities, respectively; v�tM denotes the probability that an innovation is
carried out successfully by one of the firms over a small time period �t.

In micro-simulation models of industry dynamics, each firm is engaged in the
search process for better solutions. In Nelson and Winter’s (1982) pioneering
model, search is modeled as a two-stage random process. In the first stage,
imitation and innovation draws determine the firm’s probability of undertaking
R&D activities (0 or 1). If a firm i gets an imitation draw, then in the second
stage it copies the industry’s best practice. If it gets an innovation draw,
it samples productivity A from a distribution of technological opportunities
F(A; t, Ai,t), where Ait is firm i’s current productivity level. Finally, if a firm
obtains a combination of imitation and innovation draws, its new productivity
level is determined by Ai,t+1 = Max(Ai,t, At, Ai,t), where Ai,t is firm i’s current
productivity level, At is the best practice productivity level at time t, and Ai,t is
a random variable resulting from the innovation draw.

In Nelson and Winter’s model, firms are treated as a single unit of selection.
Alternatively, a firm can be treated as a multi-operation unit (e.g., Kwasnicki
and Kwasnicka 1992; Chiaromonte and Dosi 1993; Dosi et al. 1994b, 2006). For
instance, in Kwasnicki and Kwasnicka’s (1992) model of industry dynamics,
each firm is characterized by two types of routines: active ones employed in
everyday practice, and latent ones stored but not actually applied. Routines
here are modelled with genetic algorithms. Each set of routines is divided
into separate segments, consisting of similar routines employed by firms in
different domains of their activities. New routines evolve due to recombina-
tion, mutation, transition or transposition. With a certain probability, the lth
routine in the kth sector changes (mutation) or the segment k of a firm-unit i is
recombined with the segment k of a firm-unit j (recombination). Alternatively,
a single routine may be transmitted from another firm (transition) or within a
single firm a latent routine can be transposed from a latent into an active state
(transposition).

Modelling innovations on the supply side is well established in the evolu-
tionary economics’ literature. By contrast, conceptualizing innovations on the
demand side has not led to a common approach, especially in the context
of modelling endogenous preferences of consumers (see Section 3.4). An
interesting attempt to formalize evolving preferences in an abstract model has
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been undertaken by Potts (2000).2 The author sketches eight ways in which the
schematic preferences, coded on a string, may evolve with the use of a genetic
algorithm. In the context of an agent choosing a set of goods from the available
set {a, b, c, d,...}, the change in his preferences may be captured with (# implies
indifference):

1. Point mutation: <aaab>→<aaaa>

2. Cross over: <aabc><bbcc>→<aacc>
3. Inversion <abca>→<acba>

4. Slide <##aabbcc##>→<aaaabb####>

5. Reclustering <abcabcaabc>→<aaabbbccc>
6. Emergence/Closure <aaaaa###>→<aaaaa>

7. Higher or lower specification: <aabb##>→<aabbc#>; <aabb##>→
<aab###>

8. Birth or death: <...>→<aabbc#>; <aabb##>→<...>

This list can be augmented with other mechanisms corresponding to genetic
processes. In addition to ‘point mutation’ and ‘recombination’, ‘insertion’ and
‘deletion’ are distinguished (in genetics). Insertion implies adding a string to
the existing sequence of code. Deletion characterizes the reverse process, i.e.
the loss of a string of code (Nowak 2006). New solutions may also result from
hybridization of more than two existing ideas, a process known as multi-parent
recombination in evolutionary computation, or modular evolution in biology.
In particular, modular evolution is the source of radical innovations in both
natural and social–technological history. Watson (2006) theoretically supports
this by formally showing that modular evolution can realize more complex
systems, or similarly complex systems in a shorter time, than gradual evolution.

A number of models address the notion of recombinant innovation in an
economic context (Weitzman 1998b; Olsson and Frey 2002; Tsur and Zemel
2007; van den Bergh 2008). Weitzman presents a formal model in which the
number of new combinations is a function of the number of existing ideas. He
shows that if this number is the only limiting factor in knowledge production,
super-exponential growth may result. Tsur and Zemel extend this model with
endogenous growth elements. Olsson and Frey (2002) connect Weitzman’s re-
combinant growth with Schumpeter’s view of the entrepreneur, who innovates
by combining existing ideas or technologies in a convex way. They demonstrate
that the resulting combinatory process is constrained by following factors:
convexity implies the exhaustion of technological opportunities; the cost of
combining ideas increases with distance (disparity) between them so that profit
maximization requires combining ideas that are technologically sufficiently
close; social acceptance constrains or prohibits certain combinations; and a

2For examples of formalization of endogenous preference change, see Aversi et al. (1997) and the
coevolutionary models described in Section 3.7.
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ruling technological paradigm limits the scope for recombinant growth. Van
den Bergh (2008) develops a model to derive optimal diversity resulting from
the trade-off between increasing returns to scale and benefits of recombinant
innovation.

3.3 Selection

Certain aspects of selection models were already discussed in Section 2. Here
we adopt a broader approach. Selection in the simplest form can be understood
in terms of picking a subset from a certain set of elements according to a crite-
rion of preference, referred to as subset selection (Price 1995). Alternatively,
selection can be seen by analogy with natural selection as the outcome of two
independent processes, namely replication of an encoded instruction set, and
interaction of entities with their environment, causing differential replication
(Knudsen 2002). If the second process applies, a population of offspring is not
a subset of parents but consists of new entities. Similar to Price (1995), we can
describe a general selection process that unifies subset and natural selection as
follows. Formally, a set P includes ni units of entities i with value xi for some
property x. A set P′ is composed of new entities corresponding to entities of
P. Selection on the set P in relation to the property x can then be defined as
a process of producing the corresponding set P′ such that n′

i is a function of
xi. According to subset selection, n′

i ≤ ni, while xi = x′
i. These assumptions are

not required in the case of natural selection.
An early discussion in evolutionary economics focused on firms being

selected by the market, in the sense of surviving competition, with pos-
sible effects on profit seeking or even maximizing behavior (Alchian 1950;
Friedman 1953; Winter 1964). In later models of industry dynamics, selection
was formalized with replicator type of dynamics by analogy with natural
selection. Accordingly, market shares of firms generating above-average prof-
its increase over time. In this context, technology diffusion is treated as an
outcome of selective competition between rival technologies, where selection
covers both traditional types of competitiveness e.g., price competition and
product differentiation (e.g., Nelson and Winter 1982; Iwai 1984a, b; Soete
and Turner 1984; Silverberg et al. 1988; Metcalfe 1988). The system of firms
competing by offering new, improved product characteristics or services, which
enable them to capture some temporary monopoly rents, has been referred to
as Schumpeterian competition (Saviotti and Pyka 2004).

Formally, in evolutionary models, frequency-dependent selection predom-
inates. The most commonly used model, replicator dynamics, ignores the
possibility of mistakes, imperfect learning, and costly experimentation during
selection and replication processes. Alternative models of selection dynamics
exist (as already discussed in Section 2.1), but these have seen little application
to economic phenomena (an exception is Safarzynska and van den Bergh
2008). Important exceptions are Foster and Young (1990), Canning (1992),
Young (1993), and Kandori et al. (1993), who propose models of adaptive
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learning in the context of repeated 2 × 2 games. Here, mistakes by players
constantly disturb the process of learning and thus the selection dynamics.

Note that, although selection environments are often modelled as being
constant, this does not need to be the case. For example, the dynamics of
consumer preferences may alter the selection environment for firms, leading to
demand–supply coevolution (see Section 3.7). The latter can be best expressed
with multi-agent modelling. Alternatively, selection may be modelled as a
two-stage or a multi-level process: internal and external to the firm. Internal
selection concerns selection of routines at the level of a firm, while external
selection is typically understood in terms of market selection (Kwasnicki and
Kwasnicka 1992; Lazaric and Raybaut 2005). For instance, in Kwasnicki and
Kwasnicka (1992) each firm searches for new routines (or new combinations of
existing routines) to increase its overall competitiveness. After a firm has made
decisions concerning production, its performance is subject to external (mar-
ket) selection. As a result, a firm’s market share depends on relative prices,
relative values of products, and the market saturation level. Although in most
models external selection takes the form of market selection, the possibility of
non-market selection—for example, due to institutional pressure—is at least
theoretically possible. For more general discussion on multi-level evolution,
see Section 3.8.

3.4 Bounded rationality

The notion of bounded rationality originated in the 1950s from Herbert
Simon’s critique of ‘economic man’. Simon (1955, 1956) proposed the concept
of bounded rationality, which involves considerations of extensiveness, com-
plexity and uncertainty (Hodgson 1997). Under extensiveness, information
may be readily accessible and comprehensible, even though time and other
resources are required to obtain it. Complexity stipulates the existence of
a gap between the computational capacity of an agent and the complexity
of his environment. Under uncertainty, agents have difficulties in assessing
probabilities of future events. In these cases, individuals are likely to exhibit
habits and rule-driven behavior.

In models of firm and organizational behavior, bounded rationality has
taken the form of rules and routines. Nelson and Winter (1982) claim that firms
operate to a large extent according to decisions rules that are not consistent
with profit maximization but instead take the form of complex patterns of
routinized behavior. Heuristics, cognitive and learning processes are crucial for
decision-making. In particular, imitation is an important mechanism underly-
ing firm behavior in models of technology diffusion. It allows saving on costs
of individual learning, experimentation or searching by exploiting information
already acquired by others (horizontal and vertical transmission). In the
context of social interactions, imitation can take the form of either copying the’
the most successful’ or ‘the majority’ strategy. Copying ‘the most successful’ is
also known as prestigious-bias transmission; it occurs when individuals seek
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to copy the most influential, knowledgeable or skillful behavior (Henrich et al.
1999). Copying the majority strategy has been termed by Boyd and Richardson
(1985) as conformist transmission. It refers to a propensity of an individual to
adopt cultural traits that appear most frequently in the population, which can
be formalized with frequency-dependent selection (see Section 2.1).

Bounded rationality is implicit in many evolutionary economics models or
results from specific choices made with regard to the other model components
(e.g., selection models), and for this reason the opportunities to review explicit
formalisations are limited. Conlisk (1996) offers an extensive (appreciative)
overview of different types of bounded rationality. In evolutionary game
settings, boundedly rational agents are incapable of anticipating actions of
other agents or consequences of their own decisions. They may engage in
myopic search for better solutions or imitate the most frequent behavior.
Various forms of selection dynamics have been proposed to model boundedly
rational behavior, as described in Section 2.1. Notably, imitating the most
successful or majority strategy in a population requires the assumption of
common knowledge. One way to deal with this rather unrealistic setting is
to limit the environment in which agents operate (Kirman 1997). This can
be achieved by assuming that agents interact with a limited number of other
agents, for instance, through networks (Axelrod 1997; Janssen and Jager
2002; Silverberg and Verspagen 2003, 2005a; Morone and Taylor 2004; Cowan
and Jonard 2004; Cowan et al. 2006). The latter predominates in evolution-
ary multi-agent models, which allow for explicit modelling of interactions
within and between heterogeneous groups, and within networks of consumers
(Section 2.3). In addition, networks play an important role in facilitating com-
munication, specialization of competences, standardization of complementary
technologies, and flows of knowledge between firms. A number of studies have
analyzed behavior of firms and strategic arrangements within specific networks
(Malerba 2006).

In general, a variety of assumptions regarding boundedly rational behavior
can be encountered in evolutionary-economic models. In many cases, they are
introduced ad hoc without clear empirical, experimental or theoretical support.
Evidence and theories in behavioral economics can help to provide a better
foundation of behavioral assumptions of evolutionary-economic models. In
particular, relevant insights are offered by prospect theory (Kahneman and
Tversky 1979), quasi-hyperbolic instead of exponential discounting (Thaler
1981; Prelec and Loewenstein 1991; Frederick et al. 2002), various social pref-
erences (Guth et al. 1982), regret theory (Bell 1985; Loomes and Sugden 1986),
and case-based theory (Gilboa and Schmeidler 1995). Prospect theory, which
describes decision making under uncertainty, has received much attention. It
builds upon the premise that individuals differently evaluate losses and gains
relative to a situation-specific reference point. The theory of social preferences
is inspired by experimental evidence that players tend to sacrifice own benefits
to reduce inequality of payoffs, while they are likely to reciprocate behaviors
that have benefited them. Regret theory assumes that, whenever the outcome
of the prospect is worse than expected, a sense of disappointment is generated,



Evolutionary models in economics: a survey of methods and building blocks 353

while in case the outcome of the prospect is good, a person experiences elation.
Finally, case based theory suggests that people choose acts based on their
performance in similar problems in the past. It provides insight into habit
formation. Although theories in behavioral economics offer useful examples
of bounded rationality of individuals, still more research is needed on the
conditions under which they apply (Fudenberg 2006; Pesendorfer 2006).

3.5 Diffusion

Diffusion is closely intertwined with the selection mechanisms. It determines
the pace of adoption of particular technologies, goods and behaviors that have
been already adopted (selected) by a fraction of the population. Diffusion
typically follows a logistic or sigmoid (S) curve over time: the diffusion rate
first rises at initially low but increasing adoption rates, leading to a period
of relatively rapid adoption. At some later stage, the diffusion rate starts to
decline, until finally a regime of satiation is reached. In general, models of
technology diffusion aim at explaining the logistic pattern of diffusion process.
For overviews, see Metcalfe (1988), Silverberg et al. (1988), Geroski (2000),
and Manfredi et al. (2004).

The diffusion process relies on the progressive dissemination of information
about technical and economic characteristics of products within a population
of potential adopters (Silverberg et al. 1988). The minimal structure of such a
diffusion model requires distinguishing between mutually exclusive sub-groups
of users and non-users, while the analysis of model dynamics focuses on the
spread of information from adopters to non-users. Several related frameworks
can be distinguished. They are typically described with difference equations.

According to the epidemic model (the seminal work is by Mansfield 1961),
technology spreads like a disease. An individual adopts a particular technology
after having had contact with the ‘infected population’ i.e. individuals who
already have adopted the innovation. The framework explains patterns of
innovation diffusion from the date of its first implementation (not invention)
by some percentage of users. The evolution of the number of adopters follows
the pattern given by: y(t) = N(1 − exp[−αt]), where N is the number of
potential adopters, and α denotes the percentage of the population that has
learned about a new technology. The model applies to a situation in which
information spreads from a central source.

Alternatively, ‘word of mouth models’ account for direct communication:
users independently contact non-users with a positive probability β. The
process of diffusion follows an S-curve over time: the rate of infection increases
as a population of users gradually rises (increasing the aggregate source of
information) until it reaches the maximum. Then it starts declining, as non-
users become more hard to find and therefore to infect.

Mixed information source models combine the epidemic and the word of
mouth approaches. The information spreads with a probability equal to a sum
of a constant rate at which an individual learns about new technology from the
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central source, plus a flexible rate at which an individual learns about novelty
from other users: α + βy(t) (see Bass 1969).

Finally, the probit model was developed for the analysis of individual adop-
tions. A simplified version of this approach assumes that individuals differ in
some characteristic x, which is randomly distributed in a population according
to a function f (x). Only individuals whose characteristic value exceeds a
threshold level x∗ adopt the innovation. Over time, technology gets cheaper
and the threshold value falls. As a consequence, more people have a chance to
adopt it. If the distribution underlying f (x) is normal, the gradual movement
of the threshold level across the distribution generates the S−shaped diffusion
curve.

The aforementioned models have been criticized for lacking a description of
individual decision-making. They do not provide insight into how the possible
saturation level is reached or determined. Multi-agent models can better
explain micro foundations of diffusion patterns as described in aggregate
models (discussed above). They allow for a description of individual imitating
behavior of earlier adopters (e.g., information cascades), of neighboring sites
in case of a game with a spatial dimension (agents are located on a grid), or of
individuals who belong to the relevant social network (e.g., Janssen and Jager
2002; Alkemade and Castaldi 2005; Delre et al. 2007, see also Section 2.3).
For instance, Delre et al. (2007) develop a multi-agent model, where adoption
decisions depend on agents’ personal networks and external marketing efforts.
The results suggested that the speed of diffusion is highly sensitive to the
network structure and the degree of consumer heterogeneity.

Evolutionary graph theory may provide interesting insights for studying the
effect of population structure on diffusion. Individuals are placed here on the
vertices of the graph and connected by edges. Edges denote reproductive rates
at which individuals place offspring into adjacent vertices. The analysis of
the fixation probability indicates how likely it is that a single mutant, placed
randomly within the network, takes over a whole population (Nowak 2006,
Chapter 8). In this context, some graphs act as suppressors or amplifiers
of selection. In particular, amplifying structures increase the probability of
fixation of advantageous mutants (with high relative fitness) and reduce the
probability of fixation of disadvantageous mutants. The superstar, funnel and
metafunnel are examples of such amplifier structures (Lieberman et al. 2005).
Evolutionary dynamics on graphs have been applied to study social games
(e.g., Prisoner Dilemma, Dove and Hawk) in spatially structured populations.

3.6 Path-dependence and lock-in

Economic systems are characterized by various reinforcement and feedback
mechanisms that explain why, after a system follows a particular path of
development, it may be difficult to reverse or change the direction of system
change. Feedback mechanisms associated with increasing returns may arise
from economies of scale, learning-by-doing, technological interrelatedness, the
accumulation of knowledge and experience, and agglomeration or spillover
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effects (see Arrow 1962; Arthur 1988; Metcalfe 1994). These are typically
mechanisms associated with supply-side dynamics. In addition, increasing
returns on the demand side play a role, in particular network externalities,
informational increasing returns, imitation and bandwagon effects, learning-
by-interacting, and external influences such as advertising, education (Katz and
Shapiro 1986; Lundvall 1988).

Increasing returns are the sources of lock-in and path dependence. A
simple model illustrating dynamics in the presence of increasing returns was
developed by Arthur (1989). This model considers two technologies, A and
B, competing for adoption by two types of economic agents: an agent R, who
has a natural or intrinsic preference for technology A, and an agent S, having
a natural inclination to chose technology B. Choices are made sequentially;
at each point in time, a randomly drawn type of agent (either R or S) decides
which technology to adopt by comparing payoffs from two technology variants.
The matrix of payoffs is described as:

Technology A Technology B

R-agent aR + rnA bR + rnB

S-agent aS + snA bSr + snB

where aR, aS denotes returns to technology A exhibited by agent R and agent
S, respectively (aR > aS); analogously b R, b S, (b R < b S), r, s are agent R’s
and S’s returns to adoption and nA, nB are the number of previous adopters
of technology A and B, respectively. These payoff functions reflect the notion
that returns from adoption of a particular technology depend on the number of
its previous adopters. This dependence causes increasing returns to scale: the
more it is adopted, the more attractive is a technology. It is a self-reinforcing
mechanism, which may be the source of lock-in: once a certain technology
becomes dominant; subsequent adoptions will most likely be of the same type
enhancing its leading position.

Witt (1997) notes that lock-in critically depends on the assumption of an
infinitely growing population of adopters. This, together with the presence of
only two types of agents and specific interactions between adopters (imitation),
prevents model dynamics from exhibiting cyclic or more complex behavior.
If a finite or constant population is assumed, an unstable fixed point rather
than an inescapable state of lock-in results. Arthur and Lane (1993), Kirman
(1993) and Dosi et al. (1994a) show that lock-in is not a necessary outcome
if interactions between agents take a different form than in the basic Arthur
model. For instance, Dosi et al. (1994a) reformulate Arthur’s model with
the generalized Polya urn schemes approach. Here, new adopters choose
the technology used by the majority of a sample m of other adopters with
probability α, while with probability 1 − α they adopt the technology used
by the minority. Due to the presence of a stochastic factor, technology shares
never converge to either 0 or 1, ensuring co-existence of variety. In addition,
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Leydesdorff and van den Besselaar (1998) use Arthur’s model to demonstrate
that, under the assumption of limited cognitive capabilities of individuals, i.e.
agents being unable to perceive small differences in the adoption rate below a
certain threshold, lock-in disappears.

Path dependence and lock-in are important features of technological change
in the context of environmental regulation. Problems of lock-in and unlocking
policy are closely related to the difficulty of making a transition to sustainable
systems in energy, transport and agriculture (Unruh 2000; van den Bergh et al.
2006; van den Bergh 2007). Lock-in does not need to be permanent. Assuming
that everyone switches, the change from an inferior state is possible (Arthur
1994). For instance, actors might coordinate their decisions to adopt a new
technology when they recognize that coordinated action yields special benefits
(Foray 1997). In line with the above remarks, Witt (1997) argues that the
capacity to pass a “critical mass threshold” in terms of the number of potential
adopters of a market alternative is the key to the success of unlocking the
market. He notes that, in fact, governments and innovating firms take account
of the critical mass phenomenon. For instance, with promotion campaigns
firms undertake efforts to convince potential adopters that others are already
about to adopt the new variant in order to stimulate coordinated adoption
decisions.

Since the seminal work by David (1985) and Arthur (1988, 1989), lock-
in and path dependence have received increasing attention in the context
of policy studies in multi-agent models (Janssen and Jager 2002; Carrillo-
Hermosilla 2006; Schwoon 2006). For instance, Carrillo-Hermosilla (2006)
develops a framework in which a public authority representing the collective
interest of society tries to guide the market (individual decisions) by supporting
the socially preferable technology with a subsidy. The conditions are investi-
gated under which escaping a lock-in of environmentally unstable practices is
possible. It is further examined whether a system can move between equilibria
(i.e. be un-locked) without a need for public intervention, and if the timing and
the direction of these spontaneous transitions would be socially optimal.

3.7 Coevolution

The term coevolution refers to a situation in which two or more evolutionary
systems or populations are linked together in such a way that each influences
the evolutionary trajectory of the others. It is achieved through reciprocal
selective pressures among evolving populations. Linking an evolutionary to
a non-evolutionary system does not produce strict coevolutionary dynamics
but co-dynamics of sub-systems (van den Bergh and Stagl 2004; Winder et al.
2005).

Coevolutionary dynamics underlie many economic processes. In an early
contribution, Norgaard (1984) discusses coevolution as the interaction be-
tween knowledge, values, organization, technology and environment. How-
ever, without explicitly referring to population dynamics, this should better be
regarded as system dynamics due to co-dynamics of subsystems. Nevertheless,
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different sub-systems (market, technology, institutions, scientific knowledge,
etc.) can be seen as consisting of heterogeneous, changing populations (pro-
ducers, consumers, policymakers, universities, etc.). Their interactions may
give rise to coevolution and, over time, render irreversible changes in socio-
technological trajectories. In spite of this, there are relatively few contri-
butions to coevolutionary modelling available. Most formal applications
focus on demand–supply coevolution (Janssen and Jager 2002; Windrum
and Birchenhall 1998, 2005; Saint-Jean 2006; Schwoon 2006; Safarzynska and
van den Bergh 2007; Windrum and Birchenhall 2009a, b). Models of other
types of coevolutionary dynamics exist, but are rare. For instance, Noailly
(2008) develop a formal coevolutionary framework to analyze the effect of
human activity (total pesticide use) on the size and the composition of pests,
while Malerba et al. (2005) propose a history friendly model that captures
coevolution of computer and semiconductor industries.

In economic models developed with evolutionary game theory and selection
dynamics, coevolution seems not to have been explored much. Nevertheless,
the method in principle seems to allow for describing coevolution of two or
more interdependent populations, for instance, by interlinking fitness func-
tions of different populations (McGill and Brown 2007). This is illustrated by
the model of Noailly (2008), in which two replicator dynamics representing
separate populations (harvesters using pesticide strategies and pests) are
coupled to give rise to coevolution. In addition, evolutionary algorithms can
also be used to model coevolution, but this does not seem to have been used in
economic applications.

In fact, all existing coevolutionary models of demand and supply are de-
veloped with the multi-agent method, which easily accommodates feedback
mechanisms between multiple populations. In a coevolutionary model devel-
oped by Saint-Jean (2006), the probability that a consumer adopts a particular
good depends on the distinct product characteristics and the relative weights a
consumer assigns to each of them. If product characteristics receive relatively
high weights from consumers, they are considered as their priorities. During
every period, firms invest in quality improvements. Each firm reallocates
R&D budget towards characteristics that are priorities for consumers and in
which a firm has reached a sufficiently high performance level. On the other
hand, consumers’ preferences evolve over time in response to technological
advances and changes in the industry structure. These mechanisms create
strong feedbacks between supply and demand.

In a coevolutionary model by Windrum and Birchenhall (1998, 2005), firms
aim to offer product designs maximizing the average utility of a randomly
selected consumer class. Consumers can move between classes, depending
on how well they are served by the incumbent firms. In order to improve
its competitiveness, each firm engages in product innovation. It implements a
new design only if it yields a higher utility of consumers in its target class than
the current design. Evolving consumer preferences influence the direction of
such product innovations. Formally, firms compete by offering distinct designs
or different points in a multi-dimensional (service characteristic, price) space.
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Their success depends on realizing a utility of the target consumer class i above
the average level:

ϕi,t+1 = ϕi,t
wit

Wt

where ϕi,t+1 = Git
G ; G is the total number of consumers; Git is the number of

consumers in class i at time t; wit denotes the average utility in the i class
in time t; and Wt is the average level of utility across classes. Consequently,
technological change (product succession) is modelled here as an outcome
of a coevolutionary process involving interactions between consumers and
producers. Recently, Windrum and Birchenhall (2009a, b) applied the earlier
approach to address the substitution of more by less polluting firms

Building upon Windrum and Birchenhall (1998, 2005), Safarzynska and van
den Bergh (2007) propose a multi-agent model of demand–supply coevolu-
tion to assess the probability of market lock-in which results from dynamic
interactions of the most important types of increasing returns on the demand
and supply side. They further consider the effect of different demand side
specifications. On the supply side, a technological trajectory arises from the
interplay of incremental innovation, search for a new product design and
marketing activities. On the demand side, two disequilibrating forces underlie
consumer choices, namely a desire for distinction (status) and imitation of
other consumers within the social network (peer group).

To conclude, coevolution of demand and supply is an important theme in
economics. However, no canon for designing coevolutionary demand–supply
dynamics has emerged so far. Researchers derive conclusions based not only
on differently formalized behavioral rules but also on different technical model
specifications, including: number of consumers and consumer classes, number
of firms, the length of a single simulation run, and the number of overall
simulations conducted. Results from Safarzynska and van den Bergh (2007)
suggest that the technical specification of the models, e.g. the number of firms,
is important for coevolutionary dynamics. Consequently, detailed and specific
guidelines for modelling may be useful and allow systematic comparison and
validation of different coevolutionary models.

3.8 Multi-level evolution and group selection

The economy can be seen as a complex, hierarchical structure compris-
ing various levels and subsystems linked together through strong feedback
mechanisms. The micro-interactions among heterogeneous elements lead to
the emergence of a higher structure, while variation and selection processes
occurring in any of the subsystems affect changes in the total environment. In
this context, Potts (2000) has called for a new evolutionary microeconomics
based on discrete, combinatorial mathematics, and in a practical sense graph
theory and multi-agent modelling. A standard graph theory model is described
by the elements S = (V, E) S-system, V-elements, E-connections. According
to Potts, connections are crucial for the analysis of dynamics, complexity
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and system change. Due to the introduction of connections, the notions of
emergence and hierarchy can be combined into a single construct, termed a
hyperstructure. Formally, this requires recognizing that a system itself can be
an element of a higher-level system, while an element may itself be a system at
a lower level

(
Sn = Vn+1

)
.

Gunderson and Holling (2001) develop an alternative complexity model
build upon the notion of resilience: panarchy. The idea of panarchy combines
the concept of space–time hierarchies with the context of adaptive structures.
Elements of a complex adaptive system, which emerge through local interac-
tions among various components, are recursively nested to form a hierarchy.
The framework may be applied to evolving systems: economic, ecological or
social. For instance, nature (forests, lakes) and humans (cultures, governance
structures) can be interlinked through the panarchy in never-ending adaptive
cycles of growth, accumulation, restructuring, and renewal. The approach has
seen formalization through multi-agent evolutionary models (e.g., Janssen and
Carpenter 1999).

A multilevel theory of evolution that is receiving much attention presently is
built on the combination of individual and group selection (Wilson and Sober
1994; Wilson 2002, 2006; Henrich 2004; van den Bergh and Gowdy 2009).
Group selection theory tries to elucidate emerging phenomena by taking into
account individual and group level processes framed in a multi-level model.
There are many relevant models available now (see Bergstrom 2002; Garcia
and van den Bergh 2007). The minimal structure of a group selection model
requires defining a reproducing population composed of groups characterized
by more intense or regular interactions among members than with outsiders.
Two main approaches can be identified to attain a group formation for the next
generation. In a haystack or migration pool type model, after reproducing,
groups are pooled together and then randomly sampled. Alternatively, in
propagule types of models, groups are formed solely on the basis of a single
parent group; in this case, offspring are continuously added to the parent group
that splits into two after reaching a certain size (Bowles et al. 2004; Trauslen
and Nowak 2006). The second approach makes selection more effective. To
further increase the effectiveness of group selection, non-random assortment
typical of cultural and economic systems may be included (Bergstrom 2003).

A wide range of techniques can be used to build a group selection model,
such as difference and differential equations, deterministic and stochastic
models, spatial models and multi-agent frameworks. The Price equation is
often used to decompose evolutionary change into effects of within- and
between-group components (Price 1970). Formally, it takes the form of:

w�z = Cov (wi, zi) + E (wi, �zi)

Here, �z depicts a change in the average characteristic (trait) over generations
according to �z̄ = ∑

i qi
′z′

i − ∑
i qizi, where qi is the frequency of the type

i with the characteristic zi in the parent population, q′
i the frequency of the

type i with the characteristic z′
i in a descendant (offspring) population, and

�zi measures the change in the trait value for the type i as �zi = z′
i − zi. In
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addition, the frequency of type i in the offspring population is proportional to
the relative fitness of the type i in the parent population: q′

i = qi
wi

/
w, where

wi stands for the fitness of i type and w denotes the average fitness of the
population. The components of the Price equation are open to a wide variety
of interpretations (Frank 1995; Andersen 2004). For instance, the equation
may decompose the evolutionary process into selection and transmission. In
the context of group selection models, the covariance and expectation terms
can be construed as effects of between- and within-group selection on the
average trait frequency in the population (Henrich 2004). The Price equation
is often mistaken for being a generally applicable analytical tool, while its
role is solely to decompose evolutionary change. Ultimately, the equation
is an identity or mathematical tautology (Grafen 2000). Van Veelen (2005)
suggests distinguishing clearly between statistical and probability (stochastic)
analysis. He claims that the Price equation can be employed to address two
types of questions. First, it can be used to assess a possibility (likelihood) of
certain modelling assumptions being correct. Alternatively, one may employ
the equation to make interferences given a set of assumptions and mechanisms
leading to a theoretical (evolutionary) model.

Group selection has not been employed in many economic applications, but
has the potential to provide a theoretical explanation for the emergence and
evolution of all sorts of institutions. For instance, selection on the group level
may contribute to a better understanding of the processes of replication of
successful and extinction of ineffective institutions, the evolutions of power
relations and firm organizational structures, and the dynamics of conflicts over
economic distributions (van den Bergh and Gowdy 2009).

3.9 Mechanisms of growth

Endogenous growth theory has tried to explain the rate of technological
progress by endogenizing human capital or R&D research (e.g., Romer 1986,
1990; Lucas 1988; Grossman and Helpman 1991). In addition, new endogenous
growth theories devote more attention to the importance of creativity and
innovations in the process. For instance, Aghion and Howitt (1992) develop
a model embedding Schumpeter’s idea of creative destruction, where the
expected growth rate of the economy depends upon the economy-wide amount
of research. Each innovation is regarded here as an act of creation aimed at
capturing monopoly rents, while it simultaneously destroys rents that moti-
vated the previous discovery. The model relies on a temporal equilibrium, a
representative agent and rational expectations, so that it cannot be catego-
rized as an evolutionary-economic approach. Silverberg and Yildizoglu (2002)
indeed show numerically that the behavior of Aghion and Howitt’s model
critically depends on the rational agent assumption.

With the seminal work by Nelson and Winter (1982), evolutionary eco-
nomics contributed to opening the ‘black box’ of growth theories. Models
developed in an evolutionary spirit describe diversity of production techniques
at the level of individual firms characterized by bounded rationality, i.e.
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production routines. Opportunities of innovation can arise any time, as entities
(agents, firms) are constantly involved in search activities. The analysis focuses
on structural change and differential growth of a population of firms. In the
classic evolutionary model of growth by Nelson and Winter (1982, Chapter
12), heterogeneous firms produce the same homogenous product but with
different techniques. Model dynamics are driven by investment rules and
search processes relating to each individual firm. Firm i’s desired expansion
or contraction (of the capital stock K) at time tis determined by gross invest-
ment I(.), the output per unit capital Ait, price Pt, profit on capital �it, the
depreciation rate of the capital δ, the production cost c, and the market share
Qit/Qt:

Ki (t + 1) = I
(

Pt Ai,t+1

c
,

Qi,t

Qt
, �i,t, δ

)

Ki,t + (1 − δ) Ki,t

Industry output results from aggregating over individual firms’ production
levels: Qt = ∑

i
Qi,t.

Nelson and Winter built their evolutionary growth model from the bottom-
up. They carried out simulations of micro data, which generated patterns
consistent with observed macro aggregates. The model initiated a new phase
in evolutionary growth theorizing. Later contributions to evolutionary growth
theory can be categorized into models following Nelson and Winter’s per-
spective of micro foundations and evolutionary growth theories formulated
at the macro level (Silverberg and Verspagen 2005a). Within the first type,
two distinct approaches can be identified (Kwasnicki 2007): (1) capital-vintage
type of models (e.g., Silverberg and Verspagen 1994a, b, 1995; Iwai 2000);
and (2) two-sector type of models (Chiaromonte and Dosi 1993; Dosi et al.
1994b; Fagiolo and Dosi 2003), where the single economy is divided into an
industry fabricating inputs for production and an industry manufacturing final
goods. In these models, dynamics at the firm level underlie the growth rate of
aggregate output. The common modelling technique is computer simulation.
Models differ in the degree of complexity, technology representation, and firm
behavior rules. In addition, an extension to a multi-country framework is pos-
sible. For instance, Silverberg and Verspagen (1995) propose an evolutionary
model of endogenous growth to explain the convergence between countries’
productivity levels. In each country, there are q firms producing homogenous
goods from different types of capitals. Formally, the accumulation of capital j
in firm i is governed by replicator dynamics:

k̇ij = rij + α
(
rij − ri

) − σ

where kij is capital, ri is the average profit over all types of capital employed in
firm i, rij is profit of firm j realized with capital i, σ is a depreciation rate, and
α a parameter.

Contributions to the macro approach to evolutionary growth do not include
micro foundations explicitly. Here, dynamics are analyzed at the sector or
industry level directly. Different techniques are employed, namely analytical
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methods and computer simulations (Silverberg and Verspagen 2005a). The
aggregate growth rate of output may be driven by an increase in labor or
output productivity (Conlisk 1989; Silverberg and Lehnert 1993; Metcalfe et al.
2006) or by a growing variety of the economic system (Saviotti and Pyka
2004, 2008). In the growth model by Metcalfe et al. (2006), output growth
depends on the growth rates in different interdependent economic sectors. The
interdependence arises due to income and expenditure flows through market
interactions. The (average) output growth in the economy is described as: 	q=

αe+βegz

(
∑

e j� j)(1−βu)+βe
, where βu and βe are the average elasticities of technological

progress constructed with weights corresponding to the income elasticities and
employment shares in each sector, respectively. Furthermore, αe is the average
rate of residual progress (due to investments unrelated to the current capacity),
e j refers to the share of employment in sector j, and � j is elasticity of capital
income in sector j.

Recently, growth through variety has achieved more attention, indicating
an interesting direction for further research. For instance, Saviotti and Pyka
(2004, 2008) develop a model in which the emergence of new products and
services allows for a continuation of economic development. Here, an industry
is defined as a collection of firms producing variants of goods with different
characteristics along the same dimensions of the characteristics space. The
growth rate of the number of firms in each industry depends on firms’ entry
and exit, and thus on the size of the potential market, financial availability, the
intensity of competition, and a number of mergers and acquisitions, formally
expressed as:

Nt+1
i − Nt

i = k1 × F At
i × AGt

i − ICt
i − MAt

i

where Nt
i is the number of firms in industry i at time t; F At

i is financial
availability in industry i at time t; ICt

i is intensity of competition in industry
i at time t; and MAt

i are mergers and acquisitions in industry i at time t. For
each industry there exists a saturation level; once it is reached, firms innovate
radically by offering a new product in the characteristic space. As a result, new
sectors emerge and old ones disappear.

4 Conclusions

This paper has reviewed methods underlying, and components of, evolutionary
models in economics. The main methods, namely evolutionary game theory
and selection dynamics, evolutionary computation, and multi-agent models,
were described in some detail. In addition, an overview was given of compo-
nents or theoretical building blocks of evolutionary economic models. We dis-
cussed the various ways in which these components have been conceptualized
in models developed using a range of modelling techniques.

In evolutionary-economic models, replicator dynamics is the most popu-
lar variant of deterministic selection dynamics. According to this method,
repeated selection can cause convergence to a single strategy, which makes
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sense given that no mechanism generating diversity—i.e. the emergence of
new strategies—is required. This simplifies resulting models considerably and
in turn may allow for analytical solutions. Other selection dynamics, such as
selection-mutation and stochastic dynamics, allow for errors to occur during
the process of replication. On the other hand, in evolutionary algorithms
innovations are essential. New solutions are generated with the variation
operators: mutation and crossover. Evolutionary algorithms can be employed
to study adaptive learning and optimization processes, also within the setting
of a multi-agent system. The number of evolutionary contributions to multi-
agent modelling has increased drastically in recent years. However, so far no
common rule for model specification, conducting simulations and validating
results has been established.

The main goal of the paper was to clarify the variety of specific choices made
with regard to formal conceptualization of evolutionary system (and resulting
model) components, namely core ones—diversity, innovation and selection—
and additional ones—bounded rationality, diffusion, path dependency and
lock-in, coevolutionary dynamics, multilevel and group selection, and growth
mechanisms. The review shows that there is much variety and little agreement
on how to conceptualize many of these building blocks in formal models. This
is perhaps in the nature of evolutionary economics, which steps away from
rational, representative agents as the decision units, and market processes as
the main driving force of economic dynamics. The variety of choices available
for each model component translates into an even larger variety of possible
combinations of these components, that is, particular evolutionary-economic
models.

Nevertheless, some building blocks have converged to a certain modelling
standard. On the supply side, mechanisms underlying innovation, diffusion and
evolutionary growth are well established in evolutionary economics. On the
other hand, there is still no consensus on how to model consumer behavior
on the demand side, in particular, how to conceptualize consumer diversity,
social interaction, and bounded rationality. Concepts are often tailored to
the application context and vary depending on the method used. However,
a full understanding of the economy as a complex evolving system requires
accounting for interdependencies among various groups and entities, including
consumers. This can be only achieved if consumers and producers attain equal
balance, resulting in coevolutionary demand–supply models. These are, how-
ever, still very uncommon. In addition, a (cultural) group selection approach
has been rarely employed in modelling economic phenomena, although it
potentially provides a concrete formal theory of selection at multiple levels
(individual and group). Its application could enhance our understanding of the
emergence and evolution of human organizations and institutions.

Multi-agent modelling is definitely the most flexible in addressing the nine
building blocks, as it allows for a variety of assumptions. However, the main
difficulties associated with this method are validation of model results and
communication with other researchers, in the absence of a protocol for design
of such models. Evolutionary game theory is much more limited, especially
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in addressing diversity, innovation and coevolution, but it has the advantage
that—under certain conditions—analytical solutions can be obtained. Finally,
the potential of evolutionary computation techniques for modelling economic
dynamics has not been exhausted. Evolutionary algorithms are mostly em-
ployed to address population (social) learning. All in all, it seems as though
one should not expect a general convergence on the specification of building
blocks and choice of modelling techniques in the near future. Nevertheless,
a good understanding of the properties of modelling methods and their im-
plications for designing model components is essential for further progress of
evolutionary economics.
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