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Combinatorial Representations of Token Sequences

Cees H. Elzinga

Vrije Universiteit, Amsterdam

Abstract: This paper presents new representations of token sequences, with andwithout
associated quantities, in Euclidean space. The representations are freeof assumptions
about the nature of the sequences or the processes that generate them. Algorithms and
applications from the domains of structured interviews and life histories arediscussed.

Keywords: Sequence classification; Sequence representation; Sequence analysis; Dy-
namic programming.

1. Introduction

Token or state sequences are a quite common kind of data, not only in the
behavioral sciences but also in other fields such as e.g molecular biology or
ethology. Such data then come in the form of a matrix like the one presented
below
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where each row is a sequence of tokens from a finite alphabet andthe tokens are
acronyms for disjoint classes of events. Typical examples from the behavioral
sciences are encoded transcripts of interviews or life or employment histories;
in molecular biology, the symbols in the rows are typically the amino acids A,
C, T and G and each row represents (a part of) the DNA of a specificspecies.
In ethology, the tokens could represent different kinds of movements or phrases
of song produced by birds engaged in mating or defending their territory. In
many instances of such matrices, e.g. when the rows represent life histories, the
tokens are associated with a quantity. If the rows representlife histories, that
quantity will normally represent the duration of a particular state and the rows
of the data matrix will have the form of

(

αp βq γr · · · · · · βu δv

)

,

where each subscript represents a positive number of time units. In ethology, the
associated quantities could stand for the frequencies of repetition of different
kinds of behavior or sound levels of song phrases. In analyzing such matrices,
two kinds of questions can be posed. The first, traditional one,is the question
of what process or mechanism generated the sequences observed. A model
for such data considers each token on its own and the model is supposed to
reproduce the sequential character of the data. The second type of question
one might raise, is the question of how to classify the objects that produced the
sequences, each class supposedly generating its own, typical sequence. If this
is indeed the question, then one considers each sequence, instead of each token,
as one datum and the first challenge is to find a way to describe these data in
such a way that they become amenable to a method of classification. This paper
tries to meet this challenge.

Comparing sequences and measuring their distances or similarities is
quite common amongst microbiologists and those involved inelectronic data
transmission. Probably the best known way of mapping equallylong sequences
into a metric space, is by measuring the Hamming distance between pairs of
sequences: the number of positions in which the sequences differ. Hamming
distance first arose in electronic data transmission (Hamming 1950) where bit
strings are embedded in longer strings (Hamming codes) to facilitate error de-
tection and correction after the string has been transmitted over a noisy chan-
nel. The Hamming distance is closely related to the well knownMinkowski
L1-distance and has been used in the multivariate analysis of binary data (e.g.
Heiser and Meulman 1997). Generalizations of the Hamming distance have
been used in the classification of medical syndromes; e.g. Bezem and Keijzer
(1997). Transferring the concept to the present context, consider the example
sequences given as follows:
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x = [α, β, γ, δ],

y = [ε, α, β, γ],

z = [µ, ν, ξ, π].

The Hamming distance between these three pairs of sequences equals 4:
the sequences have no common tokens in identical positions.However, if these
sequences represented bird song phrases, encoded with a musically meaningful
alphabet, the ornithologist would probably be disappointed by these distances.
For the first two phrases represented would probably sound quite similar and
each of them would sound very different from the third one. Yet, their Hamming
distance is the same. Similar disappointment would arise if these sequences
would have represented strands of DNA, the tokens referringto nucleotides, or
employment histories, the tokens referring to different types of jobs. Basically,
this disappointment arises from the fact that the Hamming distance is insensi-
tive to common precedence. Let us writeα ≫ β, precisely when tokenα pre-
cedes tokenβ. Then the first two sequences exhibit the relationsα ≫ β ≫ γ,
which is why the song phrases represented sound similar. Thiscommonality
of precedences is of course of no relevance in data transmission: it is irrelevant
whether [101101] or [101001] was received when [010010] wassent. Similarly,
in comparing patients with different symptom patterns, it is irrelevant in which
order the symptoms appear in the list: only their presence orabsence counts.
So in the classification of symptom patterns, Hamming distanceis only natural
since the lists of symptoms are considered as sets, not as sequences wherein
the order reflects a temporal or spatial pattern. In many otherapplications, it
is precisely this (lack of) commonality of the represented spatial or temporal
distribution of events that is of interest and should be reflected by the measured
distance or similarity between the sequences. This led to attempts to include
commonality of precedences in a distance measure. A very appealing idea is, to
”align” the sequences. Again, consider the above example sequences. The first
two can be aligned by inserting a gap-symbol ”−” into both sequences, thus
creating the transformed sequences

x′ = [−, α, β, γ, δ],

y′ = [ε, α, β, γ,−].

Similar transformations are possible by deleting and/or inserting tokens.
Counting the minimum number of such transformations, necessary to obtain
perfect alignment of the two sequences, leads to to a metric called the edit or
Levenshtein distance (of which the Hamming distance is a special case: it just
counts deletions). Descriptions of Levenshtein’s algorithm can be found in
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e.g. Gusfield (1997) or Clote and Backofen (2000). The Levenshtein distances
between the three example sequences are given by

x
y
z





0
2 0
4 4 0



 .

These distances were computed on the basis of the arbitrary assumption
that the weight or cost of either edit operation on any character is the same.
Indeed, to the ornithologist, this would be a more satisfying solution than the
Hamming distances. A slight but important generalization of the Levenshtein
distance allows for differentially weighing or costing thedifferent edit oper-
ations of deleting, inserting or substituting a character.Methods based upon
the Levenshtein distance and its generalizations have come to be known as
O(ptimal) M(atching) methods. It is precisely this generalization that made the
Levenshtein distance appealing to microbiologists; an appeal that was boosted
by the classical paper of Needleman and Wunsch (1970) on a feasible algo-
rithm for arbitrary gap weight and Gotoh’s (1982) paper on affine groups of
gap weight functions. This appeal was caused by the fact that biologists were
able to formulate biological problems or models in terms of suitable cost func-
tions for the edit operations and gap handling, i.e. the geometries implied by the
use of OM-methodology were considered as acceptable renderings of biochem-
ical or phylogenetical models. Some 20 years ago, Abbott and Forrester (1986)
first introduced OM into the behavioral sciences and Abbott and Tsay (2000)
presented a detailed overview of its diverse applications since then. However,
the use of OM-methods in behavioral science applications received quite some
criticisms (e.g. Dijkstra and Taris 1995; Wu 2000; Elzinga 2003). To illustrate
these objections, we cite an example taken from Dijkstra andTaris (1995): they
consider the sequences (in our notation):

x = [α, α, α, β, γ, δ],

y = [β, γ, δ, ε, ε, ε],

z = [τ, τ, τ, τ, τ, τ ].

The Levenshtein distances between each pair of these sequences equals
6, which is the maximum distance for sequences of length 6. Dijkstra and Taris
(1995) object to the use of edit distance because sequencesx andy should be
closer to each other than toz since (pp. 216) ”...they share as much as three
elements, and in the same order.” This criticism illustratesthat the geometry
implied by an OM-metric does not necessarily reflect the theoretical notions
of the research area in which it is applied. Indeed, the main objection to the
transfer of OM-methods to the behavioral sciences has been,that the implied
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geometries have no empirical interpretation. Furthermore,neither the Hamming
metric nor the OM-methods can handle the quantities that are, in the behavioral
sciences, often associated to the sequence events.

Therefore, the present paper sets out to construct a representation of
token sequences in a metric space, such that the resulting representation is
amenable to the majority of today’s classificatory techniques and such that it
handles associated quantities in a natural and flexible manner. As will become
apparent (see Table 1), this representation will lead to a metric that is quite
different from from the Hamming-metric and the metrics employed by OM-
methods.

2. Representations

This section treats the formal aspects of creating representations for se-
quences with and without associated quantities. We start with a quite detailed
discussion of the representation of simple sequences, i.e.sequences of tokens
that have no associated quantities. Later, we will slightly modify the repre-
sentation in order to allow for representing the associatedquantities as well.
Let A = {α, β, γ, . . .} with |A| > 0 be a finite alphabet of tokens. A token
sequencex is a finite, ordered string of tokens fromA. We say that the se-
quence has lengthlx if x haslx positions occupied by tokens fromA. We write
x = [α, γ, µ, . . .] or x = [α1, α2, . . .] with αi ∈ A. To indicate that a particular
tokenµ occurs inx, we writeµ = [µ] ⊂1 x. Furthermore, we define an empty
sequenceθ = []. Note that one and the same token may occur more than once
in the same sequence as, for example, inx = [α, β, α, γ] with lx = 4.

Naturally, if x = [α1, α2, . . . , αk] andy = [β1, β2, . . . , βk], we define
x = y precisely whenαi = βi for all 1 ≤ i ≤ lx = ly. Given two sequences
x andy with lx ≥ ly, we say thaty is a subsequence ofx, precisely when all
tokens fromy appear inx and in the same order, i.e. ifα precedesβ in y, then
α precedesβ in x too. We then writey ⊂ly x and, of course,x ⊂lx x. These
definitions of identity and subsequence are natural and direct. Note however,
that a particular subsequencey ⊂j x might be embedded inx in several ways.
In our example sequencex = [α, β, α, γ], [α, γ] ⊂2 x is embedded in two
different ways. It will prove useful to specify and enumerate subsequences
in a somewhat less direct way. Thereto, we writeX for the set of all finite
sequences that are constructable fromA andXk = {x ∈ X|lx = k} ⊂ X.
Furthermore, letPk be the set of all binary strings of lengthk: Pk = {pk

i }2k

i=1
with pk

i = (pi,1, . . . , pi,k) andpi,j ∈ {0, 1} for all 1 ≤ j ≤ k. Consider the
pk

i as projections: letpk
i be any such binary string with

∑

j pi,j = n ≤ k and
x = [x1, . . . , xk], thenpk

i (x) = v ∈ X such thatv ⊂n x andαj ⊂1 v if and
only if pi,j = 1. Thus, for each subsequencey ⊂j x ∈ Xk, there is at least one
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Table 1. Distance matrices for 6 sequences as indicated in the first column. The distances in
the matrix ”Euclidean” represent the Euclidean distances between the vector according to the
representation proposed in this paper.

pk
i such thatpk

i (x) = y. At least one, since some of the tokens ofx may repeat
in different positions inx: for example, we can generate[α, γ] ⊂2 x =
[α, β, α, γ] with p4

1 = (1, 0, 0, 1) and withp4
2 = (0, 0, 1, 1). So, the concept

of a subsequence can also, but less directly, be defined by applying a projec-
tion. Therefore, the enumeration of the different embeddings of a particular
subsequencev in a given sequencex is equivalent to the enumeration of the
different projectionspk

i defined bypk
i (x) = v. To implement this, we define,

for eachx ∈ Xk and allv ∈ Xj with 1 ≤ j ≤ k, the equivalence setsEk
v,x =

{

pk
i |pk

i (x) = v
}

and we use the cardinalitiesgx,k(v) = |Ek
v,x| ≥ 0 of these sets

to enumerate the embeddings ofv in x. Combinatorially, thegx,k are multisets
(e.g. Stanley 1997) onx. We adopt the conventionlv > k ⇒ gx,k(v) = 0.
Thus, for our example sequence, we havegx,2([α, γ]) = 2, gx,2([β, γ]) = 1 and
gx,2([γ, α]) = 0. Now we adopt the convention to index the possible elements
of Xj in a lexicographic manner, according to the order of the tokens in the
alphabetA. So, if A = {α, β, γ}, the first element ofX2 would be[α, α] and
the6th element ofX2 would be[β, γ]. For an arbitrary sequencey ∈ X, we
can now construct objects, for eachj ≥ 1,

yj =
(

gy,j(x1), . . . , gy,j

(

x|A|j
))

∈ Xj ⊂ N
|A|j ,

where
{

x1, . . . , x|A|j
}

= Xj andN denotes the natural numbers. For our ex-
ample sequencex = [α, β, α, γ] we thus havex2 = (1, 1, 2, 1, 0, 1, 0, 0, 0). A
vector that completely determines a sequencex of lengthk is then a vectorx,
the first |A| coordinates of which form the image ofgx,1, the next|A|2 coor-

dinates are the values ofgx,2, etc. and the
(

∑k
j=1 |A|j + 1

)th
coordinate and

all subsequent coordinates are set to 0 sincelv > k ⇒ gx,k(v) = 0. A vec-
tor spaceX representingX is now easily established by defining the negative
−x, scalar multiplication and vector addition in the usual wayand having the
empty sequenceθ ≡ [ ] represented by the zero-vector0. This vector space then
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becomes a pre-Hilbert space by defining the inner product〈x, y〉 ≡
∑

i xi · yi

where thexi andyi now denote the coordinates ofx andy respectively, and a
norm as‖x‖ ≡

√

〈x, x〉. Note that each setXj can analoguously be represented
in a vector spaceXj = {xj}.

Admittedly, the representation suffers from obesity, in the sense that there
are very many vectors inX that do not represent any constructable sequence.
On the other hand, the representation chosen, ensures that the representation
of each particularx is unique. This uniqueness is almost trivially established:
for a sequencex with lx = k, there is only one projection in the equivalence
setEk

x,x, so if x andy with lx = k and ly = k′ are different, the setsEk
x,x

andEk′

y,y are different and eachx is directly recoverable fromEk
x,x andA. Fur-

thermore, the only property of the sequences used to represent them, is their
orderedness: we discern a sequence from a collection of the same tokens by the
fact that, in the sequence, certain tokens precede specific other tokens. Listing
and counting all the precedences is what is in fact accomplished by the pro-
jections and their equivalence sets. Therefore, it seems difficult to represent a
more basic property of sequences; at the same time, and for the same reason, it
seems hard to represent other properties without includingassumptions about
the origin or the generation of the sequences. Table 1 shows,for the sequences
indicated in the table, the Euclidean distances between the sequence represen-
tations as proposed here, and the distances according to theHamming and the
Levenshtein metric. Important is, that the order relations between the distances
in each matrix differ from those in each of the other matrices. Note that the
method proposed here produces columns that are strictly increasing, contrary
to the first two columns in the other two matrices. This implies that the repre-
sentation proposed sometimes reverses the order of distances when compared
with the Hamming metric or the Levenshtein metric.

We now turn to the representation of sequences that have associated
quantities. As a running interpretation, we will assume that these quantities
represent the time spent in the various states in the sequence. With this inter-
pretation in mind, we see that, with each sequencex with lengthlx, there is a
vectortx = (t(1), . . . , t(lx)) with positive, real valuedt(i) representing these
quantities. In the representation of a simple sequence, coordinates ofx are plain
cardinalities of the equivalence setsEk

v,x, i.e. each projection in these sets is
assigned an equal weight of 1. Projections represent tuples fromx. A straight-
forward, but arbitrary, way to represent associated time isto assign weights to
the tuples, i.e. to the projections, according to the time spent in each state of the
tuple. This is easily accomplished by writing the projections as column vectors
and defining the multisets

g∗x,k(v) =
∑

pk∈Ek
v,x

tx · pk. (1)
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For example, in the sequencex = [α1, β3, α6, γ2], we havey = [α, γ] ⊂2

x, {(1, 0, 0, 1), (0, 0, 1, 1)} = E2
y,x andtx = (1, 3, 6, 2) sogx,2(y) = 3 + 8.

As will appear in the next sections, this way of representingtime has a
number of attractive properties which are nicely expressable in analytical terms,
distances have a clear interpretation in terms of sequence similarity and actually
constructing the representation is algorithmically feasible. However, it will turn
out that there is no clearcut interpretation of vector length like there is in the
representation of simple sequences. Of course, (1) can be easily modified by
introducing some nondecreasing transformation on its inner sum but we will
not dwell upon this. A modification of (1) that seems appealingis

g∗x,k(v) = |Ek
v,x|−1

∑

pk∈Ek
v,x

tx · pk. (2)

In (2), one computes the average of the times spent in equivalent tuples.
Analytically, the properties of (2) are not too difficult to describe and now vec-
tor length does have a clear interpretation. But algorithmically, constructing a
representation with (2) is not feasible because of the colossal task of enumerat-
ing the equivalence sets.

A quite different incorporation of associated quantities could arise from
the following considerations. Imagine two individuals, both having been un-
employed for two periods of six months each. Hence, the employment history
sequence of both individuals would certainly contain the subsequence[u6, u6],
u standing for being unemployed. Now suppose that the complete employ-
ment histories of these individuals would be[u6, e1, u6] and[u6, e100, u6], the
token e denoting employedness. Most of us will agree that the economical,
sociological and psychological difference between these sequences is quite sig-
nificant. Apparently, the fact that[u6, e1, u6] spans 13 months for the first in-
dividual and 112 months for the second individual is decisive. Such consid-
erations could lead to measuring time spent in a tuple as the total time tra-
jectory that starts from the onset of the first state in the tuple and ends with
the end of the last state of the tuple. This can be formalised byintroducing a
transformationf

(

pk
i

)

= qk
i = (qi,1, . . . , qi,k) with qi,j = 1 precisely when

min1≤j≤k{j|pi,j = 1} ≤ j ≤ max1≤j≤k{j|pi,j = 1} and writing

g∗x,j(v) =
∑

pk∈Ek
v,x

tx · f(pk). (3)

Neither algorithmically nor analytically, (3) poses big problems; the
real problem with this representation is that it maps different sequences
onto one and the same vector. Using (3) on sequences like for example
x = [αq, βp, αq, β2p, αq] andy = [αq, β2p, αq, βp, αq] results inx = y as a con-
sequence of measuring ”spanned time” instead of ”occupied time”. It is hard
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to think of a substantial theory on the data that would justify such mappings of
different sequences onto the same point. So, in the sequel, wewill restrict our-
selves to studying and applying the representation of simple sequences and the
representation specified by (1) for sequences with associated quantities. Note
that producing a table that is analoguous to Table 1 is not possible since OM-
methods cannot handle quantified sequences.

3. Principles of Algorithms

Because of the colossal number of coordinates that results from the rep-
resentation of a sequence of even moderate length and constructed from a fairly
limited alphabet, calculations with such a vector are not practically feasible.
For example, writing out in full a vector representing a sequence of length
10, constructed from an alphabet consisting of only 20 tokens, would require
∑20

i=1 10i > 1013 figures to write down. Directly calculating quantities like
‖x‖2 or 〈x, y〉 is therefore sheer impossible. In this section we will discuss
the basic idea of algorithms that do allow for such calculations within a rea-
sonable time; for representations of simple sequences thisreasonable time will
even appear to be third order polynomial time. These algorithms are not only
a prerequisite for the applicability of the described representations; as will be-
come apparent in the next sections, the principle of these algorithms is also very
useful when studying properties of the representations. From the previous sec-
tion, it is clear that the general expression that determines the coordinates of a
representing vector is of the form

gx(v) = f(Ek
v,x, tx). (4)

Since〈x, y〉 =
∑

i xiyi =
∑

i gxgy, wherexi and yi now denote the
coordinates ofx andy, it is immediate that, in the case of simple sequences,
∑

i gxgy enumerates the number of matches obtained when each and every i-
tuple fromx is compared with each and everyi-tuple fromy. If x andy are
time-coupled sequences, then, if there is a match between a tuple fromx and a
tuple fromy, the properties off determine the contributions of these tuples to
the total of〈x, y〉. So, in this section, we limit our discussion of algorithms to
enumerate matching tuples from a pair of, not necessarily different, sequencesx
andy. The major algorithms and the most important optimisations are discussed
in Appendix A to this paper.

To begin with we define, for each pair of sequencesx andy with lengths
lx and ly, an (lx × ly)-matrix Ex,y = {ex,y(i, j)} such thatex,y(i, j) = 1
if and only if the ith token fromx is identical to thejth token fromy and
ex,y(i, j) = 0 in all other cases (in the sequel, we drop the subscriptsx and
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y whenever possible). Obviously, ifx = y, E is symmetric around the main
diagonal ande(i, i) = 1 for 1 ≤ i ≤ lx. Next, we define ann-path℘(i, j) =
[[e(i, j), e(k, l), . . .]] as an orderedn-tuple of positive elements ofE such that,
for i 6= k andj 6= l, e(k, l) ∈ ℘(i, j) ⇔ i < k, j < l and such that, whenever
e(k, l), e(n, m) ∈ ℘(i, j), eitherk > n andl > m or n > k andm > l. We
will say thatn is the length of a path℘ if ℘ is ann-path. Please note, that,
if x andy are of the same length, the Hamming distance betweenx andy is
given bylx − ∑

i e(i, i). Now for each path inE there exists ann-tuple inx
and ann-tuple iny that consist of the same tokens and the same precedences
and, conversely, for all pairs of matchingn-tuples fromx andy, there exists a
uniquen-path inE. Hence, finding and enumerating matchingn-tuples fromx
andy is equivalent to finding and enumeratingn-paths inE. A simple dynamic
algorithm that enumerates all paths inE is easily constructed: letai,j denote the
number of paths of which the first elemente(i, j) = 1. Obviously, ife(i, j) = 1,
we must haveai,j ≥ 1, equality holding wheni = lx and/orj = ly. So, we
have the recursion

ai,j = 1 +
∑

q>i,r>j

aq,r, (5)

hence, for simple sequences, we have〈x, y〉 =
∑

i,j ai,j . However, this algo-
rithm is not very efficient; details of this and other algorithms are discussed in
Appendix A.

4. Boundaries on‖x‖2

Which are the properties of the representations chosen? Oneway to gain
insight into this question is to study the behaviour of certain quantities under
extreme conditions, i.e. how extreme sequences are represented. Therefore we
investigate the boundaries of‖x‖2 and, in a later section, of〈x, y〉 in the unit
sphere.

In this section we discuss boundaries on‖x‖2, given some fixed sequence
lengthlx and, for time-coupled sequences, a total time trajectoryLx =

∑

i tx(i)
of some fixed size under the assumption that|A| ≥ lx. Some remarks about the
case where|A| < lx will be made in Appendix B.

We start with the simple sequences and consider a sequencex of some
fixed lengthlx and suppose at least one token ofx repeats inx, i.e. there exists
at least one token that occurs on at least two different positions inx. Call this
token α and suppose its first two occurrences are on positionsi and j with
i < j. Then we havee(i, j) = e(i, i) = 1 = e(j, j) = e(j, i) and j < i,
i.e. e(j, i) is a subdiagonal element frome with 2 ≤ j ≤ lx. Consider all
n-paths ine with 1 ≤ n ≤ j which containe(i, j) as their last (and possibly
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first) element and of which all other elements are diagonal. Then the number
of these paths equals

∑

i=0

(

j−1
i

)

= 2j−1. Likewise, the number of paths of
which the first element ise(i, j) and all the other elements are diagonal equals
2lx−i. Hence, a lower bound on the number of paths inE that containe(i, j),
amounts to2lx−i+j−1 − 1. This number is a lower bound since their might be
other positive subdiagonal elements with which paths containing e(i, j) could
be constructed. Therefore, if we replace the tokenα, say on positionj, by a
token fromA, sayβ, that is not occurring inx, and such a token exists sinceα
repeats and|A| ≥ lx, we create a sequencey with ‖y‖2 < ‖x‖2 sinceβ does
not repeat iny, soey,y(i, j) = 0. So,‖x‖2 is minimal givenlx, precisely when
no token inx is repeated andex,x(i, j) = 1 if and only if i = j. But then the
total number of paths inEx,x amounts to

∑

i=1

(

lx
i

)

= 2lx − 1 = ‖x‖2.
Obviously, for simple sequences with some fixedlx, the maximum of

‖x‖2 will be attained when all elements ofE are positive, i.e. whenx contains
just one single token fromA that repeatslx times. But then we have‖x‖2 =
∑

i=1

(

lx
i

)2
=

(

2lx
lx

)

− 1, since of the first|A| coordinates ofx, only one will be

nonzero and will have a value of
(

lx
1

)

; of the next|A|2 coordinates ofx, again
only one will be nonzero with value

(

lx
2

)

; etc. This fact can also be directly
derived from the structure ofE: since every element ofE is positive, every
(i × i)-submatrix ofE contains exactly onei-path; its diagonal, and there exist
(

lx
i

)2
of such submatrices. We summarize the above by stating that,for a simple

sequence withlx ≤ |A|, we have

2lx − 1 ≤ ‖x‖2 ≤
(

2lx
lx

)

− 1. (6)

Next we try to determine similar boundaries in casex is a time-coupled
sequence. We supposex to be of lengthlx with a total time trajectory of length
Lx =

∑

i tx(i). It is quite obvious now, that‖x‖2 will be minimal whenx
consists oflx different tokens withtx(i) = Lx/lx for all 1 ≤ i ≤ lx. We take
Lx/lx = 1 and determine‖x‖2 =

∑lx
i=1

(

lx
i

)

i2 = 2lx−2lx(lx + 1). The latter
equality arises since the summands in the middle expressionare hypergeometric
terms so we determine the closed expression through evaluating the sum by
Gosper’s algorithm (e.g. Petkovšek, Wilf and Zeilberger 1996, chap 5).

The squared length‖x‖2 will increase when the number of different states
decreases to the minimum thereof which equals 2. Then‖x‖2 will further in-
crease when an ever increasing part ofLx is occupied by either of the two
extreme states, say the first one. Hence, a sequence with a verybig value of
‖x‖2 will be of the form[αLx−w, βv2

, αv3
, βv4

, . . .] with w =
∑lx

i=2 vi being ex-
tremely small. Therefore, a good approximation of the maximum of ‖x‖2 given
lx andLx will be ‖x∗‖2 of the imaginary sequencex∗ = [αLx

, β0, α0, β0, . . .] 6=
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[αLx
]. The form ofEx∗,x∗ will be (omitting zero’s)

α β α β α . . .

Ex∗,x∗ =

α
β
α
β
α
...



















1 1 1 . . .
1 1 . . .

1 1 1 . . .
1 1 . . .

1 1 1 . . .
...

...
...

...
...

...



















= E.

All n-paths inE that containe(1, 1) will contributeL2
x to ‖x∗‖2 and all

then-paths not containinge(1, 1) will not contribute to‖x∗‖2. Therefore, we
need the sum of the number ofn-paths inE that containe(1, 1). That sum is
the sum of alln-paths(k ≥ 1) in the (lx − 1) × (lx − 1) submatrix ofE that
emerges when the first row and the first column ofE are removed. A simple,
closed expression for the number ofn-paths in this submatrix could not be
found. But a simple expression for the sum of the number of these paths does
exist and is given by (Sloane and Plouffe 1995, sequence A025565)

⌊lx/2⌋
∑

n=0

(

lx − 2

n

)(

lx − n

n + 1

)

.

Therefore, in the case of time-coupled sequences,‖x‖2 is bounded by the
expression

L2
x2lx−2(lx + 1)/lx ≤ ‖x‖2 ≤ L2

x

⌊lx/2⌋
∑

n=0

(

lx − 2

n

)(

lx − n

n + 1

)

. (7)

5. Complexity and Homogeneity

If our target data matrix would consist of ordinary numerical measure-
ments, we would probably start a description of that matrix by mentioning sev-
eral means and variances. With token sequences, means and variances cannot
be so easily defined. But consider the small example sequencespresented be-
low, together with the squared lengths of their representing vectors:

v = [α, α, α], ‖v‖2 = 19,
w = [α, α, β], ‖w‖2 = 11,
x = [α, β, α], ‖x‖2 = 9,
y = [α, β, γ], ‖y‖2 = 7.



Combinatorial Representations of Token Sequences 99

We are probably inclined to considerv as the most simple sequence and
y as the least simple one, i.e. the most complex one; going downthis list of
sequences, one would need an increasingly complex statement in ordinary lan-
guage to fully describe the sequences. From the squared lengths of the rep-
resenting vectors, it seems that these lengths well quantify these complexities.
However, these lengths are not very useful in comparing sequences of different
lengthsl. We writexmax for the maximum value of‖x‖2 andxmin for the min-
imum value of‖x‖2, i.e. xmax ≡

(

2lx
lx

)

− 1 andxmin ≡ 2lx − 1, and our first
attempt to quantify complexity is

0 ≤ c(x) ≡ xmax − ‖x‖2

xmax − xmin
≤ 1. (8)

The numerator ofc(x) measures the distance between‖x‖2 and its max-
imum, givenlx, and the denominator relates this distance to the possible range
of distances, which itself only depends upon sequence length. However,c(x)
as defined in (8) has the very unfortunate property that its resolution is quite
limited. For consider a sequencex, comprised of a token, sayα, that re-
peatsj times andk tokens different fromα. Furthermore, suppose all of
thesek tokens are different from each other. Under these assumptions, we
have‖x‖2 = 2k

(

2j
j

)

− 1, from which substituting the appropriate boundaries

in (6) and using Stirling’s approximation (e.g. Knuth 1997)n! ≈
√

2πn
(

n
e

)n
,

one deriveslimj→∞ c(x) = 1 − 2−k. In applications, this kind of asymptotic
behavior implies that in most circumstances,c(x) will be very close to 1. The
reason for this behavior is that, with increasinglx, the upper bound

(

2lx
lx

)

− 1

increases very much faster than the lower bound2lx − 1: the central binomial
increases so rapidly that the relative difference of eithersubtracting‖x‖2 or
xmin from it, does not make a big difference.

Our second attempt to quantify complexity focuses on the ratio xmin/‖x‖2.
Evidently,

xmin

xmax
≤ xmin

‖x‖2
≤ 1 (9)

and the lower bound of (9) depends uponxmax. This lower bound will rapidly
tend to zero aslx increases, but not rapidly enough to ensure comparability of
complexity numbers for shorter sequences of different sequence lengths. There-
fore, we map the image ofxmin /‖x‖2 onto the closed interval[0, 1] by the
transformation

0 ≤ C(x) ≡
(

xmax − ‖x‖2

xmax − xmin

)

·
(

xmin

‖x‖2

)

≤ 1. (10)
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Now,C(x) measures the ratioxmin/‖x‖2, corrected for the relative posi-
tion of‖x‖2 in the rangexmax−xmin and this normalised quantity doesn’t suffer
from the shortcomings of either (8) or (9). A few examples of the behavior of
C(x) as shown in Table 2 illustrate this.

C(x) is akin to the varianceσ2 of a sequence of numbers: onlyC(x)
uses information on all the possiblek-tuples whereasσ2 uses only the squared
distance between 2-tuples; tuples of higher order are used to describe higher
moments of the number sequence.C(x) will be close to zero if there are many
repetitions of tokens just likeσ2 will be relatively small if there are many rep-
etitions of numbers in the number sequence. On the other hand, σ2 will remain
to be greater than zero, even if there are only very few different numbers, just
like C(x) will not reach zero as long as there is only a tiny fraction of tokens
that differs from the rest.

As discussed in the previous section, the boundaries of‖x‖2 for time
coupled sequences are well established, at least whenlx ≤ |A|. But we also
demonstrated that‖x‖2 givenlx andLx, decreases with an increase in the num-
ber of different states inx but increases with an increase in the variation of the
times associated with the states. Therefore, the interpretation of a measure like
C(x) for time coupled sequences is far from clear.

Let X be a set ofm sequences andX = (x1, . . . , xm) be them × n-
matrix of representing (row-)vectors. Of course, one couldsay that the centroid
cX = (c1, . . . cn) with ci = 1

m

∑n
j xi,j is characterising the setX. However,

for most setsX, the centroid does not represent any constructable sequence.
So, the best we can do, is to specify those vectors fromX that have minimal
distance toc and consider this set (since there could be more than one of such
vectors) as characterisingX. Since our algorithms do not provide us withX but
with them×m-matrix (p1, . . . , pm) = PXX = XX′ of inner products, we find
the distance of somexj ∈ X to c as

‖xj − c‖2 =
1

m2
iPXX i′ − 2

m
pj i′ + pj,j ≡ d2

j,c

wherepj denotes thejth row from PXX , pj,j = ‖xj‖2 andi′ = (1, 1, . . . , 1).
Obviously, the averageHX = m−1

∑m
i di,c is a good descriptor of the homo-

geneity ofX. Furthermore, ifX andY are two sets of sequences, then

d2
cx,cy

= m−2
x iPXX i′ + m−2

y iPY Y i′ − 2(mxmy)
−1iPXY i′

measures the difference in location of the two sets. In applications, one could
use one of the variants of the non-parametric Kolmogorov-Smirnov statistic to
test for a difference between the distributions of the distances tocX andcY .
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Table 2. Sequence complexityC(x) (Eq. 9) for some example sequences. The middle column
shows the normalisation factor for the ratioxmin/‖x‖2.

x c(x) C(x)

[α, α, β] 0.667 0.424
[α, β, α] 0.833 0.648
[α, β, γ] 1 1
[α, β, γ, α, β, γ] 0.958 0.610
[α, β, γ, γ, β, α] 0.951 0.571
[α, α, β, β, γ, γ] 0.823 0.241
[α, β, γ, γ, δ, ǫ] 0.963 0.638
[α, α, α, α, α, α, α, α, α, β] 0.476 0.005

6. Similarity of Sequences

The quest for useful representation of token sequences stemsfrom the
apparent need to find ”typical patterns” or ”characteristic sequences”, i.e. se-
quences that are, e.g. on the average, more similar to a set ofsequences than
any other sequence.

A substantial part of the criticisms (e.g. Dijkstra and Taris 1995; Wu
2000) raised to the use of OM methods was directed to the notion of sequence
similarity that seemed to arise from these methods and not somuch to the repre-
sentation in a Hamming or Levenshtein metric as such. This is perfectly under-
standable, since all one can say about the relation between asimilarity measure
and a distance metric is that the one should be nonincreasingwith the other.
Therefore, given a metric representation, it is not immediate how to derive a
similarity measure from it. So, Elzinga (2003) formulated a minimal set of
rules that is independent of any representation, to which a similarity measure
for simple sequences should adhere. These are:

1. Sequences that have no common tokens are maximally dissimilar.
2. Sequences that consist of exactly the same tokens in the same order are

maximally similar.
3. Similarity increases with an increase in the number of common tokens.
4. The more common order there is amongst common tokens, the more sim-

ilar the sequences are.

To these rules, one should add, as a refinement of rule 2,

2a. Sequences with identical tokens in the same order are maxi-
mally similar, if the ratio’s of the quantities associated to these to-
kens in the one sequence are identical to the corresponding ratios in
the other sequence.
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Rule 2a demands that a similarity measure is time scale invariant. With
these rules in mind, a natural candidate for a similarity measure, both for simple
and for time-coupled sequences, is

sx,y =
〈x, y〉

‖x‖ · ‖y‖ , (11)

i.e. the cosine of the angle betweenx andy in the unit sphere. LikeC(x) is
a direct analogue to variance,sx,y is a direct analogue to Pearson’s correlation
coefficient. It is not difficult to see that (11) indeed adheres to the rules 1-4 as
stated above. First, if sequencesx andy have no common tokens,〈x, y〉 = 0.
So, (11) satisfies rule 1. If sequencesx andy are identical we obviously have
sx,y = 1, so (11) satisfies rule 2 and, because of (1), it also satisfies time scale
invariance (rule 2a). Supposeu is the longest common subsequence ofx and
y. Furthermore, suppose thatα ⊂1 x andβ ⊂1 y and that[α, β] 6⊂2 u. Now
replaceβ by α, thus creatingy′. Evidently,‖y′‖ = ‖y‖ but 〈x, y′〉 > 〈x, y〉 so
sx,y′ > sx,y, hence (11) satisfies rule 3. To see that (11) also adheres to rule
4, consider two sequencesx andy, each consisting of the same, non-repeating
tokens in different permutations. Furthermore, suppose that [α, β] ⊂2 x and
[α, β] 6⊂2 y. Now interchangeα andβ in y, thus creating the sequencey′.
Again, we have‖y′‖ = ‖y‖ but 〈x, y′〉 > 〈x, y〉 sosx,y′ > sx,y.

It is interesting to investigate some of the numerical properties of sx,y,
and therewith the properties of the representations, by confronting it with var-
ious small example sequences. To start with, we restrict ourselves to simple
sequences and show some figures in Table 3.

Indeed,sx,y behaves as expected. Note that the last sequence in Table 3
is a complete revert of the first one. We inspect the behaviour of sx,y in handling
complete reverts in some more detail by constructing pairs of sequencesx and
x′ with x consisting oflx > 1 different tokens andx′ being a complete revert
of x. The results are shown in Table 4.

Note the strange, oscillating behaviour of the OM coefficient. The above
results encourage determining some more general properties ofsx,y. Therefore,
we consider pairs of sequences of the formx = [u, v] andy = [u, w] with u =
[α, β, . . .] of lengthlu = k with all different tokens;v andw have lengthslv =
j = lw and have no tokens in common withu. To start with, we furthermore
assume thatv andw consist ofj different tokens and do not have common
tokens. Clearly, then

sx,y =

∑

i=1

(

k
i

)

∑

i=1

(

k+j
i

) =
2k − 1

2k+j − 1
, (12)

from which it is immediate that, assuming an unrestricted alphabet,
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Table 3. The under diagonal part shows values ofsx,y as defined in Eq. 11; the upper diagonal
part shows the values of the similarity derived from a unit-cost OM representation. The sequences
themselves are shown in the first column.

[α, β, γ, δ] 1 0.5 0.25 .0 0.25 .0
[α, β, δ, γ] 0.733 1 0.5 0.5 0.5 .0
[β, α, δ, γ] 0.533 0.733 1 0.5 0.5 .0
[β, δ, α, γ] 0.467 0.6 0.733 1 0.5 .0
[δ, β, α, γ] 0.4 0.467 0.6 0.733 1 0.5
[δ, γ, β, α] 0.267 0.333 0.4 0.467 0.6 1

Table 4. Similarity between pairs of sequences consisting oflx different tokens in which the one
sequence is a complete revert of the other. OM indicates the values of the similarity index as
derived from a unit-cost OM representation andsx,y is as defined in Eq. 11

lx 2 3 4 5 6 7 8 9 10
OM 0 0.333 0 0.2 0 0.143 0 0.111 0
sx,y 0.667 0.429 0.267 0.161 0.095 0.055 0.031 0.018 0.001

limk→∞ sx,y = 2−j (note that the way tokens fromu andv are mixed, is not
relevant). We determined several of these limits for various compositions of the
subsequencesv andw and show the results in Table 5.

The reader correctly guesses that the same table results fromany compo-
sition of the common subsequenceu. Indeed, the above table implies that the
pair of sequencesx = [α, α, . . . , α, γ] andy = [α, α, . . . , α, δ] is less similar
than the pairy = [α, β, γ, δ] andz = [β, α, γ, δ] although perceptually, they are
almost perfectly similar. But perceptual similarity is perhaps not very relevant
in this context and it does not appear in the rules stated above. The fact that the
similarity between[α, . . . , α, β] and[α, . . . , α, γ] tends to0.5 justly reflects the
fact that these sequences differ in an important aspect: theone ends withβ and
the other withγ. If this is felt to be not so important after all, a redesign ofthe
encoding itself is indicated.

We now turn our attention to the behaviour ofsx,y in case of time-coupled
sequences, i.e. the representation defined by (1). Table 6 shows similarities
between the same sequences that were used in Table 3, the difference now being
that all states occupy the same, constant amount of time.

Clearly, the values differ from those in Table 3 but the orderrelations
between the figures are exactly the same as those of Table 3. In Table 7, the
tokens of each sequence are the same and in the same order but now the times
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Table 5. limk→∞ sx,y for sequencesx = [u, v] andy = [u, w] wherek is the length of the
common subsequenceu andj is the length of the noncommon subsequencesv andw. The com-
positions ofv andw are shown in the first row and column of the Table.[α, α, ...] or [β, β, ...]

mean thatv and/orw consist of one single repeating token, not occurring inu, and[ζ, η, ...] or
[β, γ, ...] mean thatv and/orw consist of different tokens, not occurring inu. [ ] denotes thatv
and/orw are empty.

v/w [β, β, ..] [β, γ, ..] [ ]

[α, α, . . .]
(

2j

j

)

−1

[ζ, η, . . .]
√

2−j
(

2j

j

)

−1

2−j

[ ]
√

(

2j

j

)

−1 √
2−j 1

Table 6. Sequence similarity and the permutation of tokens

[α1, β1, γ1, δ1] 1
[α1, β1, δ1, γ1] 0.525 1
[β1, α1, δ1, γ1] 0.25 0.525 1
[β1, δ1, α1, γ1] 0.2 0.363 0.525 1
[δ1, β1, α1, γ1] 0.15 0.2 0.363 0.525 1
[δ1, γ1, β1, α1] 0.05 0.1 0.15 0.2 0.363 1

Table 7. Sequence similarity and the permutation of durations

[α27, β9, γ3, δ1] 1
[α27, β9, γ1, δ3] 0.733 1
[α9, β27, γ3, δ1] 0.533 0.733 1
[α9, β1, γ27, δ3] 0.467 0.6 0.733 1
[α1, β9, γ27, δ3] 0.4 0.467 0.6 0.733 1
[α1, β3, γ9, δ27] 0.267 0.333 0.4 0.467 0.6 1

occupied by these states have been shuffled like the tokens were shuffled in the
previous table.

As expected, the effect of variation in the precedences (Table 6) is much
bigger than the effect of varying the distribution of times occupied with constant
precedences (Table 7). Again, the order relations between the figures are exactly
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those of Tables 3 and 6. The last table demonstrates the effectof shuffling
precedences with varying times occupied by the different states.

The similarity between time-coupled sequences appears to exhibit the
same kinds of asymptotic behaviour as was discussed above for the simple se-
quences and summarised in Table 5. We demonstrate this by considering pairs
of sequencesx = [u, v] andy = [u, w] and computingsx,y for ever increasing
lengths of the common subsequenceu. We assumelx = L = ly andu to be
a sequence consisting ofL − j different states, each of which occupying just 1
single unit of time. Now, for example, suppose thatv andw each contain just 1
single state, different from each other and both not occuring in u, that occupies
j units of time.

Then〈x, y〉 =
∑

i=1 i2
(

L−j
i

)

and‖x‖2 = ‖y‖2 with

‖x‖2 =

L−j
∑

i=0

(j + i)2
(

L − j

i

)

+

L−j
∑

i=1

i2
(

L − j

i

)

.

Substituting these expressions into (11) and using Gosper’smethod (Pet-
kovšek et al. 1996) again, this yields

sx,y = 2−1 L(L − j + 1) + j(j − 1)

L(L + 1) + j(j − 1)
,

hencelimL→∞ sx,y = 2−1. Again, similar expressions can be derived for var-
ious combinations of compositions ofv and w and their limiting values are
shown in Table 9.

The results of this section and the previous one seem to be sufficiently
encouraging to confront the representions with some real world data.

7. Application 1: Encoded Structured Interviews

In this section, we analyse a typical social science exampleof simple
token sequences: encoded structured interviews. A structured interview is an
interview in which the interviewer asks preformulated questions in a fixed order
or according to some fixed routing and in which the respondent is supposed to
answer these questions by choosing one of a number of prescribed response al-
ternatives. All verbal utterances in such an interview can be encoded. The data
we discuss here comprise of a subset of data collected and amply described by
Draisma (2000). Essential for our present discussion is, that from a number
of the questions posed in these interviews, the correct answers were known to
the researchers. So answers given by subjects, who were unaware of the re-
searcher’s knowledge of the correctness of their answers, could be compared
to the correct answers. These interviews were transcripted and encoded ac-
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cording to a multivariable encoding method as described by Dijkstra (1999).
From these encoded interviews, 923 Question/Answer-sequences were picked
that were complete and of which the correct answers were known. We stripped
and simplified the encoded utterances to a very basic, two-variable encoding
scheme that describes ‘who does what’. Furthermore, we removed introduc-
tory statements and compressed identical adjacent codes into one single code.
Encoded in this way, the sequences consist of two-character symbols, the first
character indicating the ‘who’ - I(nterviewer) or R(espondent) - and the second
character indicating the ‘what’ - the specific kind of utterance. The utterances
were encoded according to a scheme shown in Table 10.

So, the complete alphabet consists of 10 tokens; each of the characters
from Table 10, preceded by either I or R. A typical Q/A-sequence then might
look like

IQ RC RA IP RA IC IP .

In this example the interviewer poses a question, the respondent com-
ments upon it, then produces an answer of which the interviewer acknowl-
edges perception, again the respondent gives an answer on which the inter-
viewer makes a comment and a closing acknowledgement. The 923resulting
sequences vary in length from 2 to 19 tokens with an average ofsome 4.4 tokens
per sequence and a standard deviation of 2.7 tokens. In Table11, the ‘typical’
Q/A-sequence is shown, along with the sequence whose representing vector has
the minimal distance to the centroid of all the representingvectors.

Interestingly, the first sequence mentioned in Table 11 is known as the
‘paradigmatic sequence’ in any structured interview: it represents the ideal se-
quence where the interviewer clearly states the question asintended and cor-
rectly presents all of the possible response alternatives,in which the respondent
gives an adequate answer that is acknowledged by the interviewer (e.g. May-
nard and Schaeffer, 2002). In fact, this is certainly not the most frequently
observed sequence; in practice, all sorts of variations on and violations of this
paradigm do occur. Apparently, this paradigmatic sequenceis ‘recognised’ by
the representation as the backbone structure of all the sequences. Quite com-
mon is the structure that is generated as the sequence closest to the centroid; a
variation in which the respondent repeats his answer with the same or different
wording, confirming his previous statement. In Table 12 some more details of
the representation are shown.

The fact that there is a common backbone structure, the paradigmatic
sequence, is reflected in the fact thatsi,j is reasonably high in view of the fact
that there is quite a large standard deviation of the interpoint distances. Note
also that the sequence withdmin is roughly 3 times closer to the centroid than the
average distancedi,j . The questions were Yes/No-questions with the additional
possibility of choosing ‘Don’t know’ for an answer. In Table13, we show the
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Table 8. Sequence similarity: permutations of tokens and duration.

[α27, β9, γ3, δ1] 1
[α27, β9, δ1, γ3] 0.716 1
[β9, α27, δ1, γ3] 0.283 0.401 1
[β9, δ1, α27, γ3] 0.203 0.222 0.498 1
[δ1, β9, α27, γ3] 0.193 0.194 0.468 0.666 1
[δ1, γ3, β9, α27] 0.085 0.086 0.22 0.301 0.453 1

Table 9. limL→∞ sx,y for sequencesx = [u, v] andy = [u, w] whereL denotes the total time
trajectory of bothx andy. x andy are supposed to consist ofL − j common tokens, each
occupying 1 unit of time.u andv consist of common tokens, occupyingj units of time. The
compositions ofv andw are shown in the first row and column of the Table.[αj ] and[βj ] in-
dicate thatu andv both consist of one token, different foru andv, that occupyj units of time.
[γ1, δ1, . . .] and[ζ1, η1, . . .] indicate thatu andv both consist ofj different tokens, each occupy-
ing 1 unit of time.[ ] denotes thatv and/orw are empty.

v/w [βj ] [γ1, δ1, . . .] [ ]
[αj ] 2−1

[ζ1, η1, . . .] 2−(j+1)/2 2−j

[ ]
√

2−1
√

2−j 1

Table 10. Coding scheme of types of verbal utterances, either made bythe interviewer or the
respondent

code meaning
Q asks question
A answers question
P acknowledges perception
C comments
R requests

Table 11. Characteristic sequences for 923 encoded Q/A-sequences. The typical sequence is the
sequence with the highest average similarity (smax) with all the other sequences.dmin is the
smallest Euclidean distance to the centroid of the 923 vectors.

IQ RA IP smax = 0.717
IQ RA IP RA IP dmin = 10.37
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Table 12.di,j is the average Euclidean distance between representing vectors,si,j denotes the
average similarity,C is the average complexity1 of the sequences andl is the average sequence
length.sd always denotes the standard deviation of the quantity to the left of it.

n di,j sdd si,j sds C sdC l sdl

923 52.9 282.4 0.562 0.287 0.852 0.234 4.38 2.69

Table 13. Representation characteristics for differently answered questions. Symbols are ex-
plained in the legenda to Table 12.

correct incorrect don’t know
n 714 148 61
di,j 36.09 51.73 133.06
sdd 214.45 96.82 513.65
si,j 0.603 .475 0.386
sds 0.283 0.284 0.235
C 0.877 0.78 0.975
sdC 0.215 0.269 0.034
l 4.08 5.09 6.13
sdl 2.38 3.45 3.06

Table 14. Characteristic sequences for differently answered questions. Representation details in
Table 13.

correct
smax = .748 IQ RA IP
dmin = 8.41 IQ RA IP RA

incorrect
smax = .638 IQ RA IP
dmin = 32.82 IQ RP RA IP RA IP

don’t know
smax = .524 IQ RA IP
dmin = 13.22 IQ RP RA IP RA IP

same kind of results as in Table 12, but now for correct, incorrect and ‘Don’t
know’-answers separately. In Table 14, the characterisingsequences for these
groups of differently answered questions are shown.

From Tables 13 and 14, it is obvious that the three groups of differently
answered questions are quite differently represented. The sequences leading
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to correct answers seem to be shorter and relatively more complex than those
which result in an incorrect answer. Furthermore, these sequences seem to be
most similar to the paradigmatic sequence and have, on the average, the high-
est intersequence similarity. A more detailed analysis of these results and se-
quences is beyond the scope of the present paper. What is important, is that the
combinatorial representation of these simple (and simplified) sequences leads
to a useful and meaningful description of the data.

8. Application 2: Life Histories of Young Adults

In trying to validate their proposals to quantify sequence similarity, Dijk-
stra and Taris (1995) and Elzinga (2003) amply discussed the dataset that we
will use again in this paper to demonstrate the applicability of the representa-
tions described above. These data consist of 494 encoded lifehistories of adults
(244 females and 250 males), interviewed at the age of 26. Encoding was done
on 3 variables: living situation, education and employment, according to the
scheme presented in Table 15.

As a result of this encoding, each subjects life history consists of a se-
quence of 3-character states, ranging in length from 2 to 17 states. Since, at the
time, neither Dijkstra et al. nor we knew how to handle associated quantities,
it was never mentioned that the duration of all the states, except for the last
one, was also known. Thus an individuals life history was fully encoded as, for
example,

HOO/60, HFO/140, HPP/20, HOF/4, SOF/16, POP/-1

The last event of each sequence was always assigned a durationof -1,
meaning that the duration of the last state was unknown sinceit was the state
the subjects were in at the time of data collection. For each subject, gender and
a score on a 10-point scale2 of socio-economic status (SES) was known. These
data, without the associated durations, were used by Dijkstra et al. to demon-
strate that there is/was a ‘typical’, ‘traditional’ life history sequence, different
for males and females:

(HOO) HFO HOO HOF MOF (MOO).

The first event is put between parenthesis because the first episode (last-
ing invariably for 60 months for each and every subject in thesample) wasn’t
mentioned by Dijkstra et al. The last event is put between parenthesis, because
this last event was thought to be typical for females and not for men. The above
sequences were inferred by Dijkstra et al. from ‘typical’ sequences for males
and females that were found by looking at that sequence with the highest aver-
age similarity (according to their indexγ) with all other sequences in the data.
Since the duration of the last state of each sequence is unknown, we decided to
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Table 15. Coding scheme of life histories on three variables, according toDijkstra and Taris
(1995). ‘part time’ means that employment or education was less than 4days per week.

Variable Category Code
with parents H
alone S

living with partner P
married M
other O
full time F

education part time P
none O
full time F

employment part time P
none O

Table 16. Typical patterns of time coupled life histories. The sequences indicated withsmax

denote the sequences with the maximum average similarity to all other sequences; the sequences
indicated withdmin are those sequences of which the distance to the centroid is smallest.

total
smax = .233 HOO/60 HFO/214 HOO/2 HOF/24
dmin = 8.9 HOO/60 HFO/194 HOO/18 HOF/28

females
smax = .205 HOO/60 HFO/178 HOO/6 HOF/44 MOF/12
dmin = 11.8 HOO/60 HFO/154 HOO/3 HOF/83

males
smax = .255 HOO/60 HFO/214 HOO/2 HOF/24
dmin = 10.7 HOO/60 HFO/194 HOO/18 HOF/28

Table 17. Characteristics of representations of time coupled life histories.Distances haven been
rescaled (multiplier = 0.006689) such thatdi,j = 100 for the total group. See the legenda to
Table 12.

total females males
n 494 244 250
di,j 100 103.1 96.9
sdd 174.3 207.5 134.1
si,j 0.0838 .0765 0.0982
sds 0.1199 0.1164 0.1310
max s 0.2332 0.2051 0.2547
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censor3 all the sequences at 300 months. In Tables 16 and 17, the main results
of the analyses are shown.

The general picture from Table 16 corroborates previous findings with
the same data without the state durations as reported by Dijkstra et al. (1995)
and Elzinga (2003); only the state MOF does not occur, probably because of the
inevitable censoring we had to apply. Again, the typical female sequence sug-
gests that women tend to marry at an earlier age than men. Redoing the analysis
with the same data recoded such that living together with a partner is equivalent
to living married, also produces the state MOF in the typicalmale sequence.
This indicates that young men do start experimenting with partnerships but are
less prone to marriage than women. ANOVA (full factorial with gender and
SES as fixed effects) with the similarity to the typical female sequence as the
dependant variable does not reveal a significant effect of gender but does show
a strong and significant effect of SES: the similarity to the typical female pat-
tern diminishes with increasing SES. No interaction between gender and SES
was found. The lack of such a gender effect is remarkable sinceit was reported
by Dijkstra et al. (1995) and by Elzinga (2003) when analysingthe simple life
histories. Of course, a great deal of the similarities between the sequences is
due to the fact that for all subjects, there is quite a long period of compulsory
education: roughly 180 months in a total time span of only 300months. So,
within the first 180 months of these life histories, many differences should not
and do not occur. Therefore, we removed the first 180 months fromour data.
The effects of this removal are shown in Tables 18 and 19.

As expected, the average similarity and the maximum averagesimilarity
do decrease. Remarkably, and as hoped for, the structure of the figures appear-
ing in Tables 18 and 19 is almost identical to those of Tables 16 and 17. The
same ANOVA now does reveal, apart from the effect of SES, a signicant effect
of gender when the similarity with the female pattern of Table 19 is used as
the dependent variable. Hence, our representation does generate a difference
between male and female life histories, provided the episode of forced equality
is removed from the data.

9. Conclusions

Neither of the applications discussed leads to any new or spectacular so-
ciological insights into life histories of young adults or the turn-taking during
structured interviews. On the contrary; nothing came out that was new, unex-
pected or not found in many other studies. This demonstrates that the repre-
sentations constructed, both for the simple and for the time-coupled sequences,
lead to a useful and meaningful description of the data: the sequences taken as
the unit of description. And that was exactly what we set out for: a metric rep-
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Table 18. Typical sequences after removing the first 180 months fromthe data.

total
smax = .175 HFO/94 HOO/2 HOF/24
dmin = 9.3 HFO/74 HOO/18 HOF/28

females
smax = .149 HFO/58 HOO/6 HOF/44 MOF/12
dmin = 12.0 HFO/41 HOF/79

males
smax = .203 HFO/94 HOO/2 HOF/24
dmin = 10.7 HFO/74 HOO/18 HOF/28

Table 19. Characteristics of representations of time coupled life history sequences. Distances
have been rescaled (multiplier=0.03628) such thatdi,j = 100 for the total group. See the leg-
enda to Table 12.

total females males
n 494 244 250
di,j 100 103.4 96.6
sdd 166.2 196.5 129.9
si,j 0.0535 .0460 0.0681
sds 0.1004 0.0967 0.1136

resentation of sequence data, free of any assumption about the nature, the ori-
gin or the generator of the sequences and the resulting Euclidean distances or
similarities are directly amenable to the application of any of the well known
classification tools. The theoretical part of the paper showedhow to construct
and to compute such representations and it is unequivocal about the arbitrari-
ness of some of the choices made. But this arbitrariness doesnot differ from the
arbitrariness of the standard descriptive tools that we useto describe numerical
data: means, standard deviations, correlation coefficientsand the like. By in-
vestigating the boundary properties of the representation, we have tried to show
what the limitations of the representations are. For example, the quantification
of similarity does not completely coincide with perceptualsimilarity. On the
other hand, one may wonder what relevance perceptual similarity has, when
studying life or employment histories, encoded interviewsor stock investment
patterns.

The next challenge is to come up with reasonable distributiontheories
that allow for proper statistical hypothesis testing.

A Algorithms

In Section 3, we explained that, both for simple and for time-coupled
sequences, the basis of the algorithms is a dynamic algorithm that uses alln-
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paths in an(lx × ly)-matrix E = {e(i, j)} with e(i, j) = 1, precisely when the
ith token ofx is identical to thejth token fromy, ande(i, j) = 0 otherwise. For
simple sequences, one algorithm, SIMPLE, just adds the number ofn-paths in
such a matrix, for alln ∈ {1, . . . ,min{lx, ly}}; the other algorithm, GOBBLE,
uses the recursive equation (5) and is slightly more efficientthan SIMPLE when
e contains many 1’s, i.e. when the sequences contain many repetitions of the
same tokens. It is not difficult to design a variant of GOBBLE that handles
associated quantities; we will not discuss this because of lack of space. For
time-coupled sequences, the algorithm should assign a weight to each path,
the weight being the product of the functionsgx,n andgy,n as defined in (1).
Here we discuss the variants of the basic dynamic algorithm since substantial
optimisation is possible and necessary to ensure acceptable performance.

A1 SIMPLE

We slightly change our notation and writeE1 instead ofE. Furthermore,
we writeak(i, j) for the number ofk-paths℘(i, j), i.e. paths of lengthk with
first elemente(i, j). Then〈x, y〉 =

∑

k

∑

i,j ak(i, j). Obviously, the sum of the
1-pathsa1(i, j) equals

∑

i,j e1(i, j). The number of 2-pathsa2(i, j) equals, for
all i andj,

∑

n>i,m>j e1(i, j) and we defineE2 = {e2(i, j)} with e2(i, j) =

a2(i, j). Once E2 has been constructed, it is immediate thata3(i, j) =
∑

n>i,m>j e2(i, j) = e3(i, j) and we constructE3 = {e3(i, j)}, etc. Hence we
compute〈x, y〉 as

〈x, y〉 =
∑

k=1

∑

i,j

ek(i, j) (13)

with

ek(i, j) =
∑

n>i

∑

m>j

ek−1(n, m) (14)

ande1(i, j) as defined above. This algorithm was already described in Elzinga
(2003) but that description doesn’t use the concept of ak-path and is far less
elegant. Although the algorithmic complexity of the algorithm as embodied in
(13) is alreadyO

(

n3
)

wheren = min{lx, ly}, there are two highly efficient
optimisations of the algorithm. The first one arises from the fact that, for alli,
ek(m, i) = 0 for all m ≥ lx−k+1 andek(i, m) = 0 for all m ≥ ly−k+1 since
the correspondingk-paths do not exist. This implies that the upper boundaries
of the summations in (14) decrease by 1 with every nextk. Implementing this
into (14), saves as much as

(

4l3 − 3l2 − 1
)

/6 summands in the expansion of
(13) in caseE is of dimensionsl × l. The second optimisation uses the fact
that the calculation ofek(i, j) implies calculation of allek(n, m) with n > i
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andm > j. Hence, an implementation of (13) should compute (13) by adding
the elements ofek−1 ‘from below’ and ‘from the right’ instead of taking (14)
literally and doing the same computations over and over.

A2 GOBBLE

This algorithm computes〈x, y〉 on the basis of the recursive equation
(5): 〈x, y〉 =

∑

i, jai,j with ai,j = 1 +
∑

q>i,r>j aq,r. However, a naive
implementation of this algorithm will do the same calculations over and over
again and therefore be very inefficient: onceai,j has been computed, allaq,r

with q > i andr > j also must have been computed. This is easily avoided
by providing the algorithm with a memory, in the form of a(lx × ly)-matrix
M = {mi,j}, that stores previously computedaq,r in mq,r for ever bigger values
of q andr and addsmi,j to 〈x, y〉 instead ofai,j whenevermi,j > 0.

A3 TIMEPATH

This algorithm computes〈x, y〉 in case of time coupled sequences repre-
sented according to (2). LetE be equal to the matrixE1 from SIMPLE and,
initially, S:=0. Then the algorithm finds, for each positivee(i, j) ∈ E, all
k-paths℘k(i, j) with k ≥ 1. Let ℘k(i, j) be a particulark-path inE and define

sk =
∑

e(n,m)∈℘k(i,j)

tx(n) · ty(m). (15)

Supposee(u, v) is the last element of℘k(i, j). The algorithm then searches
for the first positive elemente(u + a, v + b) in the submatrix{e(u + a, v +
b)}a≥1,b≥1 and elongates℘k(i, j) to awpk+1(i, j) by appending it withe(u +
a, b + v). The algorithm then computesS := S + sk+1 with sk+1 := sk +
tx(u + a) · ty(v + b).

If such an elemente(u+a, v+b) does not exist, thek-path is shortened to
a path℘k−1(i, j) by removinge(u, v) and it computessk−1 := sk−tx(u)·ty(v)
if k−1 > 0. The algorithm will then try to elongate℘k−1(i, j) by searching the
submatrix{e(u + a, v + b)}a≥0,b≥1 for a next positive element. Ifk − 1 = 0, a
next positive element is looked for in{e(i + a, j + b)}a≥0,b≥1 and starts with a
new 1-path, computess1, etc. If no more positive elements inE can be found,
the algorithm is done and〈x, y〉 = S.

B min
{

‖x‖2
}

and c(x) with finite alphabets

If x has even lengthlx > |A|, then a matrixEx,x = {ex(i, j)} of x such
that‖x‖2 is minimal givenlx, is generated by a simple algorithm, which is given
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in pseudo-code follows:

Input : m = |A| > 1, n = lx > m
Output : (n × n) permutation matrixEn = {en(i, j)}
em(i, j) := 0, i 6= j, ∀ i, j ∈ {1, . . . , m} ;
em(i, i) := 1, ∀ i ∈ {1, . . . , m} ;
for k := 1 to n − m do

w = m + k ;
ew(i, j) := ew−1(i, j), ∀i, j ∈ {1, . . . , w − 1} ;
ew(w, i) := 0, ew(i, w) := 0 ∀i ∈ {1, . . . , w} ;
ew(w, k) := 1 ;
ew(w, i) := ew(k, i), ∀i ∈ {1, . . . , k − 1} ;

if k eventhen
interchange thewth and the(w − 1)th row;
ew(j, i) := ew(i, j), j = w − 1 &∀i ∈ {1, . . . , w − 1} ;
ew(j, i) := ew(i, j), j = w & ∀i ∈ {1, . . . , w};

next k ;

This algorithm probably generates a solution iflx is even; iflx is even,
there seem to exist two different solutions, only one of which will be generated
by the algorithm. Probably and seemingly, since we don’t knowhow to prove
the correctness of this claim. However, ample numerical calculations did not
produce a falsification of this conjecture so we are strongly convinced of its
correctness. If there exists a second solutiony with Ey,y = {ey(i, j)}, then
ey(lx − i, lx − j) = ex(i, j) for all 1 ≤ i, j ≤ lx. As an example of the
symmetry of the structure of such anE (and such symmetry always arises ifm
divideslx) , we show the solution (omitting zero’s) for|A| = 4 andlx = 12 as
generated by the algorithm above:

α
β
γ
δ
β
α
δ
γ
α
β
γ
δ







































1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1






































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Table 20: Minimum values for‖x‖2 in the columns labeled|A| = 2, etc. for different sequence
lengthslx. For comparison, we also show values of2lx − 1, the minimum of‖x‖2 in case
lx ≤ |A|.

lx 2lx − 1 |A| = 2 |A| = 4 |A| = 8

10 1023 10871 1723 1033
15 32767 2124045 97023 34473
20 1.0E06 3.9E09 6.0E06 1.0E06

Evidently, the minimal value of‖x‖2 is much bigger than2lx − 1 in case
lx > |A| and the difference grows rapidly with increasinglx/|A|. Table 20
shows these differences for some values of|A|.

Of course, these differences do affect the precision with which C(x) is
computed when using the boundaries in (5) for nonrestrictedalphabets, espe-
cially so when|A| is small. LetC∗(x) denote the complexity ofx wherexmin

is calculated with the above algorithm. Then Figure 1 shows plots of the ratio
C(x)/C∗(x) againstlx for various alphabet sizes|A|.

These plots clearly show that for smaller alphabets,C(x) underestimates
C∗(x) substantially; for alphabets with|A| ≥ 20, the underestimation seems
negligeable for quite a range of sequence lengths.

Notes

1. To calculate complexity, we used the algorithm outlined in Appendix B to
calculatexmin.
2. We merged the groups with SES-scores of 0 and 1 (4 and 102 subjects
respectively) and the groups with SES-scores of 8 and 9 (10 and 2 subjects
respectively).
3. Actually, we could also have decided to retain as much as possible of the
encoded life histories. For many individuals, this would have meant useful
encodings beyond the age of 300 months; for many others, it wouldn’t have
made any difference. Analyses with different kinds of censoring did not lead
to substantive differences in outcomes, so we arbitrarily decided to present the
analysis on the data censored at 300 months.
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Figure 1. Plots ofC(x)/C∗(x) against sequence length (horizontal axis), whereC∗(x) uses the
algorithm of Appendix B to calculate the minimum vector length given the alphabet size|A|.
From left to right, the curves pertain to alphabets of 2, 4, 8 and 12 tokens.
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