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Combinatorial Representations of Token Sequences
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Abstract: This paper presents new representations of token sequences, witlitlaoiat
associated quantities, in Euclidean space. The representations acé &&simptions
about the nature of the sequences or the processes that generatéAtgerithms and
applications from the domains of structured interviews and life historiegiscessed.

Keywords: Sequence classification; Sequence representation; Sequenceasaiayys
namic programming.

1. Introduction

Token or state sequences are a quite common kind of datanhoincthe
behavioral sciences but also in other fields such as e.g niateoiwlogy or
ethology. Such data then come in the form of a matrix like the presented
below
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where each row is a sequence of tokens from a finite alphabe¢handkens are
acronyms for disjoint classes of events. Typical exampies fthe behavioral
sciences are encoded transcripts of interviews or life gulepment histories;
in molecular biology, the symbols in the rows are typicalig amino acids A,
C, T and G and each row represents (a part of) the DNA of a spepificies.
In ethology, the tokens could represent different kinds ofements or phrases
of song produced by birds engaged in mating or defending thgitory. In
many instances of such matrices, e.g. when the rows repidedristories, the
tokens are associated with a quantity. If the rows reprdgertistories, that
quantity will normally represent the duration of a partaustate and the rows
of the data matrix will have the form of

(ap By v 0 o DB 51}),

where each subscript represents a positive number of tiite imethology, the
associated quantities could stand for the frequenciespattiteon of different
kinds of behavior or sound levels of song phrases. In analygiich matrices,
two kinds of questions can be posed. The first, traditional @le question
of what process or mechanism generated the sequences edhsekvmodel
for such data considers each token on its own and the modeposed to
reproduce the sequential character of the data. The secpradofyquestion
one might raise, is the question of how to classify the objdwt produced the
sequences, each class supposedly generating its owraltgpiguence. If this
is indeed the question, then one considers each sequesieadrof each token,
as one datum and the first challenge is to find a way to descrilse ttegta in
such a way that they become amenable to a method of classificathis paper
tries to meet this challenge.

Comparing sequences and measuring their distances orstmag is
quite common amongst microbiologists and those involvedl@ttronic data
transmission. Probably the best known way of mapping eqlaily sequences
into a metric space, is by measuring the Hamming distancedeet pairs of
sequences: the number of positions in which the sequentfes dilamming
distance first arose in electronic data transmission (Hamrh@b0) where bit
strings are embedded in longer strings (Hamming codesXitlitéde error de-
tection and correction after the string has been transthiver a noisy chan-
nel. The Hamming distance is closely related to the well kndhnkowski
Ly-distance and has been used in the multivariate analysimafbdata (e.g.
Heiser and Meulman 1997). Generalizations of the Hammistpdce have
been used in the classification of medical syndromes; e.gerBend Keijzer
(21997). Transferring the concept to the present contexisider the example
sequences given as follows:
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[(1,5,’}/,5],
= [€7a7ﬁ?’7]’
z = [yl

The Hamming distance between these three pairs of sequenuas 4:
the sequences have no common tokens in identical posititmsever, if these
sequences represented bird song phrases, encoded witlcaliguseaningful
alphabet, the ornithologist would probably be disappairig these distances.
For the first two phrases represented would probably sourtd gimilar and
each of them would sound very different from the third onet, tfesir Hamming
distance is the same. Similar disappointment would arisbei$¢ sequences
would have represented strands of DNA, the tokens refetamyicleotides, or
employment histories, the tokens referring to differepity of jobs. Basically,
this disappointment arises from the fact that the Hammistadice is insensi-
tive to common precedence. Let us writes> 3, precisely when token pre-
cedes toker. Then the first two sequences exhibit the relatians- 5 > ~,
which is why the song phrases represented sound similar. cbnmsnonality
of precedences is of course of no relevance in data tranismissis irrelevant
whether [101101] or [101001] was received when [010010] vead. Similarly,
in comparing patients with different symptom patternss irielevant in which
order the symptoms appear in the list: only their presencabeence counts.
So in the classification of symptom patterns, Hamming dist@énoaly natural
since the lists of symptoms are considered as sets, not asrsaes wherein
the order reflects a temporal or spatial pattern. In many @applications, it
is precisely this (lack of) commonality of the representpdtsl or temporal
distribution of events that is of interest and should be redlby the measured
distance or similarity between the sequences. This led éongiis to include
commonality of precedences in a distance measure. A vegadipg idea is, to
"align” the sequences. Again, consider the above exampjessees. The first
two can be aligned by inserting a gap-symbel”’into both sequences, thus
creating the transformed sequences

:LJ = [_7O[aﬁ7775]7
- [870‘7/8777_}'

Similar transformations are possible by deleting and/ceritirsg tokens.
Counting the minimum number of such transformations, reargsto obtain
perfect alignment of the two sequences, leads to to a mettiedcthe edit or
Levenshtein distance (of which the Hamming distance is aigpegse: it just
counts deletions). Descriptions of Levenshtein’s algamitban be found in
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e.g. Gusfield (1997) or Clote and Backofen (2000). The LevemsHistances
between the three example sequences are given by

T 0
Y 2 0 .
z 4 4 0

These distances were computed on the basis of the arbitrsuynasion
that the weight or cost of either edit operation on any charas the same.
Indeed, to the ornithologist, this would be a more satigfygolution than the
Hamming distances. A slight but important generalizatibthe Levenshtein
distance allows for differentially weighing or costing t#ferent edit oper-
ations of deleting, inserting or substituting a charactdethods based upon
the Levenshtein distance and its generalizations have conbe known as
O(ptimal) M(atching) methods. It is precisely this genation that made the
Levenshtein distance appealing to microbiologists; an appat was boosted
by the classical paper of Needleman and Wunsch (1970) onsébfealgo-
rithm for arbitrary gap weight and Gotoh’s (1982) paper dinafgroups of
gap weight functions. This appeal was caused by the fact thhigists were
able to formulate biological problems or models in termswfeble cost func-
tions for the edit operations and gap handling, i.e. the g#nas implied by the
use of OM-methodology were considered as acceptable riegdef biochem-
ical or phylogenetical models. Some 20 years ago, Abbott anck&ter (1986)
first introduced OM into the behavioral sciences and Abbadt &say (2000)
presented a detailed overview of its diverse applicatiomsesthen. However,
the use of OM-methods in behavioral science applicatioosived quite some
criticisms (e.g. Dijkstra and Taris 1995; Wu 2000; Elzing®20 To illustrate
these objections, we cite an example taken from Dijkstralamis (1995): they
consider the sequences (in our notation):

r = [Oé,Oé,Oé,ﬁ,’}/,(S],
= [/87776787678]7
z = |[r,7,7,7,7,7T]

The Levenshtein distances between each pair of these segusmecas
6, which is the maximum distance for sequences of length fsPa and Taris
(1995) object to the use of edit distance because sequersmedy should be
closer to each other than tosince (pp. 216) "...they share as much as three
elements, and in the same order.” This criticism illustrdbeg the geometry
implied by an OM-metric does not necessarily reflect the thigwal notions
of the research area in which it is applied. Indeed, the mbjaation to the
transfer of OM-methods to the behavioral sciences has libahthe implied
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geometries have no empirical interpretation. Furthermmeegher the Hamming
metric nor the OM-methods can handle the quantities thatratke behavioral
sciences, often associated to the sequence events.

Therefore, the present paper sets out to construct a repaésanof
token sequences in a metric space, such that the resulijmmgsentation is
amenable to the majority of today’s classificatory technggaled such that it
handles associated quantities in a natural and flexible maAsewill become
apparent (see Table 1), this representation will lead to &icriat is quite
different from from the Hamming-metric and the metrics eoyeld by OM-
methods.

2. Representations

This section treats the formal aspects of creating reprasens for se-
guences with and without associated quantities. We staéintavquite detailed
discussion of the representation of simple sequencességuences of tokens
that have no associated quantities. Later, we will slightlydify the repre-
sentation in order to allow for representing the associgteghtities as well.
Let A = {«, 3,7,...} with |[A] > 0 be a finite alphabet of tokens. A token
sequencex is a finite, ordered string of tokens from. We say that the se-
guence has length if = hasl, positions occupied by tokens frorh We write
r = [, , . ..] Orx = [a1,as,...] With a; € A. To indicate that a particular
tokeny occurs inz, we writep = [u] C1 x. Furthermore, we define an empty
sequencé = [|. Note that one and the same token may occur more than once
in the same sequence as, for example; ia [a, 3, «, 7] with [, = 4.

Naturally, if z = [a1, @9, ..., ax] andy = [B1, B, ..., Bk, we define
x = y precisely wheny; = g; forall 1 < i <[, = [,. Given two sequences
x andy with [, > [, we say thay is a subsequence of precisely when alll
tokens fromy appear inz and in the same order, i.e.df precedeg’ in y, then
a precedeg’ in x too. We then writey C;, = and, of coursey C;, x. These
definitions of identity and subsequence are natural andtdiféate however,
that a particular subsequenge”; = might be embedded in in several ways.
In our example sequence = o, 3, ,7], [a,7] C2 = IS embedded in two
different ways. It will prove useful to specify and enumeraubsequences
in a somewhat less direct way. Thereto, we wiiefor the set of all finite
sequences that are constructable frdnand X, = {x € X|l, = k} C X.
Furthermore, leP" be the set of all binary strings of length P* = {pf12",
with p¥ = (p;;,...,P;x) andp; ; € {0,1} forall 1 < j < k. Consider the
pf as projections: Iepf be any such binary string witﬁ:j p,;=n< k and
r = [z1,...,21], thenp¥(z) = v € X such that C,, z ande; C; v if and
only if p, ; = 1. Thus, for each subsequenge ; z € X, there is at least one
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Table 1. Distance matrices for 6 sequences as indicated in the first collhendistances in
the matrix "Euclidean” represent the Euclidean distances between thar wacording to the
representation proposed in this paper.

Euclidean Hamming Levenshtein
[avﬁ’7>6] - - -
(@, 8,6,7] | 28 - 2 - 2 -
B,a,6,7] | 37 28 - 4 2 - 3 2 -
8,6,c,7] | 40 35 28 - 4 3 2 - 4 2 2 -
6,8,c,7] | 42 40 34 28 3 2 3 2 - 3 2 2 2 -
6,7,8,0] {47 45 42 40 35 -4 4 4 4 3 -14 4 4 4 4 -

p¥ such thap¥(x) = y. At least one, since some of the tokensrahay repeat
in different positions inz: for example, we can generafe,| Co z =
[, B, a,y] with p{ = (1,0,0,1) and withpj = (0,0,1,1). So, the concept
of a subsequence can also, but less directly, be defined byiagp@ projec-
tion. Therefore, the enumeration of the different embedsliofa particular
subsequence in a given sequence is equivalent to the enumeration of the
different projectiong? defined byp?(z) = v. To implement this, we define,
for eachz € X, and allv € X; with 1 < j < k, the equivalence sef§’, =
{p¥|p¥(x) = v} and we use the cardinalitigs ,(v) = [£X | > 0 of these sets
to enumerate the embeddingswoh «. Combinatorially, they,, ;, are multisets
(e.g. Stanley 1997) om. We adopt the conventioh > k = g, x(v) = 0.
Thus, for our example sequence, we have([«,]) = 2, g.2([5,7]) = 1 and
9z2([7, @]) = 0. Now we adopt the convention to index the possible elements
of X; in a lexicographic manner, according to the order of the neke the
alphabetA. So, if A = {«, 5,~}, the first element o, would be[a, a] and
the 6' element ofX, would be[3,~]. For an arbitrary sequengec X, we
can now construct objects, for eagh> 1,

Yi = (g%j(xl)w'wgy,j (@A‘;)) S Xj C N'A‘j7

where{xl, e ,a:|A|j} = X, andN denotes the natural numbers. For our ex-
ample sequence = o, 3, a, 7] we thus have:, = (1,1,2,1,0,1,0,0,0). A
vector that completely determines a sequenaf lengthk is then a vectok,
the first| A| coordinates of which form the image of ;, the next|A|* coor-

: th
dinates are the values of -, etc. and the(Zf:1 |Al7 + 1) coordinate and

all subsequent coordinates are set to 0 sipce k& = g, r(v) = 0. A vec-

tor spaceX representingX is now easily established by defining the negative
—X, scalar multiplication and vector addition in the usual veay having the
empty sequencg = [] represented by the zero-vec@rThis vector space then
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becomes a pre-Hilbert space by defining the inner progugh = > . x; - ys
where ther; andy; now denote the coordinates wfandy respectively, and a
norm ag|x|| = /(X,X). Note that each se{; can analoguously be represented
in a vector spacX; = {x;}.

Admittedly, the representation suffers from obesity, ms¢knse that there
are very many vectors iX that do not represent any constructable sequence.
On the other hand, the representation chosen, ensurehéhetresentation
of each particular: is unique. This uniqueness is almost trivially established:
for a sequence with [, = k, there is only one projection in the equivalence
set&k ., so if x andy with I, = k andl, = K are different, the set§},
and&l’ are different and eachis directly recoverable froms% . and A. Fur-
thermore, the only property of the sequences used to reygrdsam, is their
orderedness: we discern a sequence from a collection oathe tokens by the
fact that, in the sequence, certain tokens precede speditc wkens. Listing
and counting all the precedences is what is in fact accohgaidy the pro-
jections and their equivalence sets. Therefore, it seerfisudifto represent a
more basic property of sequences; at the same time, andefgathe reason, it
seems hard to represent other properties without incluaésgimptions about
the origin or the generation of the sequences. Table 1 stionthe sequences
indicated in the table, the Euclidean distances betweenreitpgesice represen-
tations as proposed here, and the distances according kathening and the
Levenshtein metric. Important is, that the order relatiostsvieen the distances
in each matrix differ from those in each of the other matricBiete that the
method proposed here produces columns that are strictlganing, contrary
to the first two columns in the other two matrices. This impliest the repre-
sentation proposed sometimes reverses the order of destaviten compared
with the Hamming metric or the Levenshtein metric.

We now turn to the representation of sequences that haveiatsb
guantities. As a running interpretation, we will assume thase quantities
represent the time spent in the various states in the segué&¥ith this inter-
pretation in mind, we see that, with each sequenegth lengthl,., there is a
vectort, = (¢(1),...,t(l;)) with positive, real valued(:) representing these
guantities. In the representation of a simple sequencediowdes ofk are plain
cardinalities of the equivalence seftﬁx, i.e. each projection in these sets is
assigned an equal weight of 1. Projections represent tugdesaf. A straight-
forward, but arbitrary, way to represent associated tinte &ssign weights to
the tuples, i.e. to the projections, according to the timensm each state of the
tuple. This is easily accomplished by writing the projecsi@s column vectors
and defining the multisets

gaw) = 3 tph (1)

pregs .,
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For example, in the sequenee= [aq, (3, ag, 2], we havey = [a, ] Co
x,{(1,0,0,1),(0,0,1,1)} = Ey%x andt, = (1,3,6,2) S0g,2(y) = 3 + 8.

As will appear in the next sections, this way of representing has a
number of attractive properties which are nicely exprelgsalanalytical terms,
distances have a clear interpretation in terms of sequémdesty and actually
constructing the representation is algorithmically felsiHowever, it will turn
out that there is no clearcut interpretation of vector lardte there is in the
representation of simple sequences. Of course, (1) candilg esdified by
introducing some nondecreasing transformation on itsrisoen but we will
not dwell upon this. A modification of (1) that seems appeailng

Grk(0) =570 Y tooph. (2)
presy,

In (2), one computes the average of the times spent in eguit/aiples.
Analytically, the properties of (2) are not too difficult tosigibe and now vec-
tor length does have a clear interpretation. But algoritathy, constructing a
representation with (2) is not feasible because of the saldask of enumerat-
ing the equivalence sets.

A quite different incorporation of associated quantitiesild arise from
the following considerations. Imagine two individuals thbdvaving been un-
employed for two periods of six months each. Hence, the eynpdmt history
sequence of both individuals would certainly contain thiessguenceéug, ug|,

u standing for being unemployed. Now suppose that the com@etploy-
ment histories of these individuals would pg, e, ug] and|ug, €100, ug|, the
tokene denoting employedness. Most of us will agree that the eciazam
sociological and psychological difference between thege@ances is quite sig-
nificant. Apparently, the fact thatg, e1, ug] spans 13 months for the first in-
dividual and 112 months for the second individual is deeisiGuch consid-
erations could lead to measuring time spent in a tuple asctia time tra-
jectory that starts from the onset of the first state in theetwgsid ends with
the end of the last state of the tuple. This can be formaliseihtbgducing a

transformationf (pf) =qF = (%1,---,0; ) With g, ; = 1 precisely when
minlgjgk{j]pi’j = 1} <5< maxlgjgk{j]pi’j = 1} and Writing
gei)= > - f(PY). (3)
preey .

Neither algorithmically nor analytically, (3) poses bigoptems; the
real problem with this representation is that it maps déffersequences
onto one and the same vector. Using (3) on sequences likeximme
x = oy, Bp, g, Pop, 0g) @NAy = [ag, Bap, oy, Bp, 0] results ink =y as a con-
sequence of measuring "spanned time” instead of "occujied’t It is hard
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to think of a substantial theory on the data that would jystiifch mappings of
different sequences onto the same point. So, in the sequeljliwvestrict our-
selves to studying and applying the representation of gErs@tiuences and the
representation specified by (1) for sequences with assdaiatantities. Note
that producing a table that is analoguous to Table 1 is ndfiplessince OM-
methods cannot handle quantified sequences.

3. Principles of Algorithms

Because of the colossal number of coordinates that resaltsthe rep-
resentation of a sequence of even moderate length and gotestfrom a fairly
limited alphabet, calculations with such a vector are necpcally feasible.
For example, writing out in full a vector representing a sqpe of length
10, constructed from an alphabet consisting of only 20 tek&muld require
5220 10° > 10" figures to write down. Directly calculating quantities like
Ix]|? or {x,y) is therefore sheer impossible. In this section we will dsscu
the basic idea of algorithms that do allow for such calcatadiwithin a rea-
sonable time; for representations of simple sequencesahsonable time will
even appear to be third order polynomial time. These algosthre not only
a prerequisite for the applicability of the described repraations; as will be-
come apparent in the next sections, the principle of thegeithms is also very
useful when studying properties of the representationankhe previous sec-
tion, it is clear that the general expression that detersiihe coordinates of a
representing vector is of the form

9o (v) = f(gzlf,xv ty). 4)

Since(X,y) = >, zyi = Y, 9=9y, Wherez; andy; now denote the
coordinates ok andy, it is immediate that, in the case of simple sequences,
> 929y €numerates the number of matches obtained when each arydiever
tuple fromz is compared with each and everyuple fromy. If x andy are
time-coupled sequences, then, if there is a match betwagnieaftomx and a
tuple fromy, the properties of determine the contributions of these tuples to
the total of(x,y). So, in this section, we limit our discussion of algorithms to
enumerate matching tuples from a pair of, not necessafirdnt, sequences
andy. The major algorithms and the most important optimisatisaslscussed
in Appendix A to this paper.

To begin with we define, for each pair of sequeneesdy with lengths
l, andly, an (I x l,)-matrix E; , = {e;,(¢,7)} such thate, ,(i,7) = 1
if and only if the:*" token fromz is identical to thej*® token fromy and
exy(1,7) = 0in all other cases (in the sequel, we drop the subscrigad
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y whenever possible). Obviously, if = y, E is symmetric around the main
diagonal and:(i,i) = 1 for 1 < i < [,. Next, we define am-pathp(i,j) =
le(i, j),e(k,1),...] as an ordered-tuple of positive elements d& such that,
fori # kandj # [, e(k,l) € p(i,j) & i < k,j < [ and such that, whenever
e(k,l),e(n,m) € p(i,j), eitherk > nandl > morn > kandm > [. We
will say thatn is the length of a pathy if  is ann-path. Please note, that,
if x andy are of the same length, the Hamming distance betweandy is
given byl, — > . e(i,7). Now for each path ifE there exists am-tuple inz
and anmn-tuple iny that consist of the same tokens and the same precedences
and, conversely, for all pairs of matchingtuples fromx andy, there exists a
uniquen-path inE. Hence, finding and enumerating matchinduples fromz
andy is equivalent to finding and enumeratingpaths inE. A simple dynamic
algorithm that enumerates all pathdHiis easily constructed: let; ; denote the
number of paths of which the first elemett, j) = 1. Obviously, ife(i, j) = 1,
we must haves; ; > 1, equality holding wheni = [, and/orj = [,. So, we
have the recursion

am = 1 + Z aq,'m (5)

q>i,r>j

hence, for simple sequences, we haxgy) = >, ; a; ;. However, this algo-
rithm is not very efficient; details of this and other algomith are discussed in
Appendix A.

4. Boundaries on||x||2

Which are the properties of the representations chosenv@y& gain
insight into this question is to study the behaviour of darguantities under
extreme conditions, i.e. how extreme sequences are repeese herefore we
investigate the boundaries {%||? and, in a later section, dk,y) in the unit
sphere.

In this section we discuss boundaries|ati?, given some fixed sequence
lengthl,. and, for time-coupled sequences, a total time trajeci@ry- >, ¢..(¢)
of some fixed size under the assumption tt> /.. Some remarks about the
case wheréA| < [, will be made in Appendix B.

We start with the simple sequences and consider a sequenicsome
fixed lengthl,, and suppose at least one tokernxakpeats inx, i.e. there exists
at least one token that occurs on at least two differentipositin . Call this
token a and suppose its first two occurrences are on positioaisd j; with
i < j. Then we have:(i,j) = e(i,i) = 1 = e(j,j) = e(j,i) andj < 4,
i.e. e(j,7) is a subdiagonal element fromwith 2 < j < [,. Consider all
n-paths ine with 1 < n < j which containe(i, j) as their last (and possibly
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first) element and of which all other elements are diagonal.nTthe number
of these paths equals,,_, (;') = 2/~!. Likewise, the number of paths of
which the first element ig(7, j) and all the other elements are diagonal equals
2=, Hence, a lower bound on the number of path&ithat contaire(s, ;),
amounts t@’=—“+7=1 — 1. This number is a lower bound since their might be
other positive subdiagonal elements with which paths doimze(i, j) could
be constructed. Therefore, if we replace the tokesay on positionyj, by a
token fromA, sayg, that is not occurring i, and such a token exists sinae
repeats andA| > I, we create a sequengewith ||y||> < ||x||? since3 does
not repeat iny, soey (i, j) = 0. So,||x||? is minimal given,,, precisely when
no token inz is repeated and, ,(i,j) = 1 if and only ifi = j. But then the
total number of paths i, , amounts toy,_, (+) = 2% — 1 = ||x|%.

Obviously, for simple sequences with some fixgdthe maximum of
[Ix||* will be attained when all elements Bfare positive, i.e. whem contains
just one single token froml that repeat$, times. But then we havgx||? =

St (lm)2 = (%) — 1, since of the firstA| coordinates ok, only one will be

7
nonzero and will have a value ¢f); of the next|A|? coordinates ok, again
only one will be nonzero with valué;); etc. This fact can also be directly
derived from the structure d&: since every element d is positive, every
(7 x i)-submatrix ofE contains exactly ongpath; its diagonal, and there exist

(l;')2 of such submatrices. We summarize the above by statingdnat simple
sequence with, < |A|, we have

ly

Next we try to determine similar boundaries in casis a time-coupled
sequence. We supposdo be of length,, with a total time trajectory of length
L, = > .t.(i). Itis quite obvious now, thafx||* will be minimal whenz
consists of, different tokens witht,.(i) = L, /I, forall 1 < < ,. We take
L./l, = 1 and determinglx||> = Yk | (%)i? = 25721,(1, + 1). The latter
equality arises since the summands in the middle expreasidnypergeometric
terms so we determine the closed expression through evajuidie sum by
Gosper’s algorithm (e.g. Petkéek, Wilf and Zeilberger 1996, chap 5).

The squared lengthx||? will increase when the number of different states
decreases to the minimum thereof which equals 2. Th&A will further in-
crease when an ever increasing partlgfis occupied by either of the two
extreme states, say the first one. Hence, a sequence with digevalue of
|1x]|? will be of the form{az,, —w, Buys Qs> Bus, - - -] With w = 32, v; being ex-
tremely small. Therefore, a good approximation of the maxmaii||x||? given
I andL, will be ||x*||? of the imaginary sequenag = [ay,_, Bo, ao, Bo, - - .| #

21,
zlmlgnxu?s(l)l. ©)
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[ar,.]. The form ofE,- .- will be (omitting zero’s)

a [/ a g «

E:p*,:p* =

R ™R @R
—_
—_
—_

All n-paths inE that containe(1, 1) will contribute L2 to ||x*||? and all
the n-paths not containing(1, 1) will not contribute to||x*||2. Therefore, we
need the sum of the number ofpaths inE that contaire(1,1). That sum is
the sum of alln-paths(k > 1) in the (I, — 1) x (I, — 1) submatrix ofE that
emerges when the first row and the first columricdre removed. A simple,
closed expression for the number mfpaths in this submatrix could not be
found. But a simple expression for the sum of the number cfdhmaths does
exist and is given by (Sloane and Plouffe 1995, sequence A&)556

L§J Ly — 2\ (I —n
vt n n+1)

Therefore, in the case of time-coupled sequenpdl, is bounded by the
expression

le/% l _ 2 l —n
2ela—2 < IxlI?2 < 1.2 ’ N :
L2272l + 1)/l < IX|P < L2 ) ( n > < ) ()

= n—+1
5. Complexity and Homogeneity

If our target data matrix would consist of ordinary numericeeasure-
ments, we would probably start a description of that matyixri@ntioning sev-
eral means and variances. With token sequences, means rigncea cannot
be so easily defined. But consider the small example sequenessnted be-
low, together with the squared lengths of their represgntactors:

v =[a,a,ql, IV||? = 19,
w = [a, o, ], w||? = 11,
T = [0‘7/87 a]v HXH2 =9,

y = o, 3,91, Iyl> = 7.
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We are probably inclined to consideras the most simple sequence and
y as the least simple one, i.e. the most complex one; going dhbisrist of
sequences, one would need an increasingly complex statémeandinary lan-
guage to fully describe the sequences. From the squarech&enfthe rep-
resenting vectors, it seems that these lengths well qyahtise complexities.
However, these lengths are not very useful in comparingeseops of different
lengthsl. We write ., for the maximum value ofx||? andx,;, for the min-
imum value of||x||2, i.e. Zmax = (Qll) — 1 andzy, = 2= — 1, and our first
attempt to quantify complexity is

Tmax — ||X||2

0 < c(x) <1 (8)

Tmax — Tmin

The numerator of(z) measures the distance betwejafi?> and its max-
imum, givenl,,, and the denominator relates this distance to the possibtger
of distances, which itself only depends upon sequenceHhergbwever,c(x)
as defined in (8) has the very unfortunate property that itsluéen is quite
limited. For consider a sequenae comprised of a token, say, that re-
peats;j times andk tokens different froma. Furthermore, suppose all of
thesek tokens are different from each other. Under these assungptioe
have||x||? = 2’“(?) — 1, from which substituting the appropriate boundaries
in (6) and using Stirling’s approximation (e.g. Knuth 1997}~ v/2rn (2)",
one derivedim;_,, c(z) = 1 — 27%. In applications, this kind of asymptotic
behavior implies that in most circumstanceg;) will be very close to 1. The
reason for this behavior is that, with increasingthe upper bouncﬁiz) -1
increases very much faster than the lower bo2nd- 1: the central binomial
increases so rapidly that the relative difference of eithéstracting||x||? or
Tmin from it, does not make a big difference.

Our second attempt to quantify complexity focuses on the gt /|| x||%.
Evidently,

Lmin < Zmin <
P NP ©
and the lower bound of (9) depends upap.. This lower bound will rapidly
tend to zero as, increases, but not rapidly enough to ensure comparability o
complexity numbers for shorter sequences of differentsecglengths. There-
fore, we map the image af.;, /||x||? onto the closed intervdD, 1] by the
transformation

0<C(z) = (xmax — ‘XH2> - (ﬁ;@) <1. (10)

Tmax — Lmin
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Now, C(z) measures the ratioy,i, /||x||?, corrected for the relative posi-
tion of ||x||? in the ranger ., — zmin and this normalised quantity doesn't suffer
from the shortcomings of either (8) or (9). A few exampleshe behavior of
C(z) as shown in Table 2 illustrate this.

C(z) is akin to the variance? of a sequence of numbers: ondy(z)
uses information on all the possibtetuples whereas? uses only the squared
distance between 2-tuples; tuples of higher order are use@gcribe higher
moments of the number sequenc¢&:x) will be close to zero if there are many
repetitions of tokens just like? will be relatively small if there are many rep-
etitions of numbers in the number sequence. On the other, Bl remain
to be greater than zero, even if there are only very few diffenumbers, just
like C(x) will not reach zero as long as there is only a tiny fractionaieins
that differs from the rest.

As discussed in the previous section, the boundarigixpf for time
coupled sequences are well established, at least when|A|. But we also
demonstrated thaix||? giveni, and L., decreases with an increase in the num-
ber of different states im but increases with an increase in the variation of the
times associated with the states. Therefore, the intetetaf a measure like
C'(z) for time coupled sequences is far from clear.

Let X be a set ofn sequences and = (Xg,...,X;,) be them x n-
matrix of representing (row-)vectors. Of course, one caalgithat the centroid
cx = (c1,...¢) With ¢; = % E? x; ; is characterising the sé&t. However,
for most setsX, the centroid does not represent any constructable seguenc
So, the best we can do, is to specify those vectors f¥othat have minimal
distance tac and consider this set (since there could be more than onecbf su
vectors) as characterising. Since our algorithms do not provide us wkhut
with them x m-matrix (py, . .., pm) = Pxx = XX’ of inner products, we find
the distance of some; € X tocas

1. . 2 .
1X; — c|* = W'PXXV - %pjll + D5 = d?,c

wherep; denotes thg'® row from Px x, p;; = |Ix;[|? andi’ = (1,1,...,1).
Obviously, the averag8l x = m~!> " d; . is a good descriptor of the homo-
geneity ofX. Furthermore, ifX andY are two sets of sequences, then

d? . = m;2ipxxi/ + m;zipyyil — 2(mxmy)*1iPXyi’

CayCy

measures the difference in location of the two sets. In agftins, one could
use one of the variants of the non-parametric KolmogorovrSonistatistic to
test for a difference between the distributions of the disés tocy andcy .
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Table 2. Sequence complexiy(z) (Eq. 9) for some example sequences. The middle column
shows the normalisation factor for the ratigin /|| x||>.

T c(z)  C(=)
o, @, 3] 0.667 0.424
o, B, ] 0.833 0.648
o, B,7] 1 1

e, B, 7, @, 3,7] 0.958 0.610
[, B,7,7, B, & 0.951 0.571
[, o, B, B,7,7] 0.823 0.241
[, B,7,7, 9, €] 0.963 0.638
[o, 0,y 0y 0y oy, 0, 0, 3] | 0.476  0.005

6. Similarity of Sequences

The quest for useful representation of token sequences $temshe
apparent need to find "typical patterns” or "characteriséiquences”, i.e. se-
guences that are, e.g. on the average, more similar to a setjaénces than
any other sequence.

A substantial part of the criticisms (e.g. Dijkstra and $atB95; Wu
2000) raised to the use of OM methods was directed to themofisequence
similarity that seemed to arise from these methods and noust to the repre-
sentation in a Hamming or Levenshtein metric as such. Thisrfeqty under-
standable, since all one can say about the relation betwsienlarity measure
and a distance metric is that the one should be nonincreasthghe other.
Therefore, given a metric representation, it is not immedfaiw to derive a
similarity measure from it. So, Elzinga (2003) formulated animial set of
rules that is independent of any representation, to whidmaasity measure
for simple sequences should adhere. These are:

1. Sequences that have no common tokens are maximally dissimi

2. Sequences that consist of exactly the same tokens in the cater are
maximally similar.

3. Similarity increases with an increase in the number of comiokens.

4. The more common order there is amongst common tokens, treesimo-
ilar the sequences are.

To these rules, one should add, as a refinement of rule 2,

2a. Sequences with identical tokens in the same order are- maxi
mally similar, if the ratio’s of the quantities associatecthese to-
kens in the one sequence are identical to the correspondatiing in

the other sequence.
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Rule 2a demands that a similarity measure is time scaleianar\With
these rules in mind, a natural candidate for a similarity snea, both for simple
and for time-coupled sequences, is

(X,y)
Sxy = , (11)
X Dyl

i.e. the cosine of the angle betweemndy in the unit sphere. Lik&'(z) is

a direct analogue to variance, , is a direct analogue to Pearson’s correlation
coefficient. It is not difficult to see that (11) indeed adhecethe rules 1-4 as
stated above. First, if sequencesandy have no common tokensx,y) = 0.

So, (11) satisfies rule 1. If sequenceandy are identical we obviously have
szy = 1, S0 (11) satisfies rule 2 and, because of (1), it also satisfiesdcale
invariance (rule 2a). Supposeis the longest common subsequence: @nd

y. Furthermore, suppose thatC; = and C; y and thatja, 3] Z2 u. Now
replaces by «, thus creating/’. Evidently,||y'|| = |ly|| but(x,y) > (x,y) so
Sz > Szy, hence (11) satisfies rule 3. To see that (11) also adhereseto ru
4, consider two sequencesandy, each consisting of the same, non-repeating
tokens in different permutations. Furthermore, suppose|th&] C» = and
[, 5] Z2 y. Now interchanger and 3 in y, thus creating the sequengé
Again, we havdly'|| = |ly|| but(X,y’) > (X,y) SOz > Sz 4.

It is interesting to investigate some of the numerical proes of s, ,
and therewith the properties of the representations, bfr@oiing it with var-
ious small example sequences. To start with, we restrictatugs to simple
sequences and show some figures in Table 3.

Indeed,s, , behaves as expected. Note that the last sequence in Table 3
is a complete revert of the first one. We inspect the behaviosy pin handling
complete reverts in some more detail by constructing pdisequences and
2’ with x consisting ofl, > 1 different tokens and’ being a complete revert
of z. The results are shown in Table 4.

Note the strange, oscillating behaviour of the OM coefficidie above
results encourage determining some more general propeftig ,. Therefore,
we consider pairs of sequences of the farm [u, v] andy = [u, w] with u =
[a, B, ...] of lengthl,, = k with all different tokensy andw have lengthg, =
j = l, and have no tokens in common with To start with, we furthermore
assume that andw consist of; different tokens and do not have common
tokens. Clearly, then

- Zzzl(’;) _ 2k -1
Ty = S (k:—i-j) okts 17

%

(12)

from which it is immediate that, assuming an unrestricteghabet,
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Table 3. The under diagonal part shows values,0f as defined in Eq. 11; the upper diagonal
part shows the values of the similarity derived from a unit-cost OM mr&tion. The sequences
themselves are shown in the first column.

[, B,7,0] | 1 05 025 .0 025 .0
[a,8,6,4] | 0.733 1 05 05 05 .0
[8,0,8,4] | 05633 0733 1 05 05 .0
8,6,0,] | 0.467 06 0733 1 05 .0
6,8,0,7] | 0.4 0467 06 0733 1 0
0,v,8,0] | 0267 0333 04 0467 06 1

Table 4. Similarity between pairs of sequences consistirlg different tokens in which the one
sequence is a complete revert of the other. OM indicates the values afrtiterisy index as
derived from a unit-cost OM representation ang, is as defined in Eq. 11

le 2 3 4 5 6 7 8 9 10
oM 0 0.333 0 0.2 0 0.143 0 0.111 0
sey | 0.667 0429 0.267 0.161 0.095 0.055 0.031 0.018 0.p01

limy oo S2,y = 277 (note that the way tokens fromandv are mixed, is not
relevant). We determined several of these limits for vagicempositions of the
subsequencasandw and show the results in Table 5.

The reader correctly guesses that the same table resultafrpeompo-
sition of the common subsequenee Indeed, the above table implies that the
pair of sequences = [a, v, ...,a,y] andy = [a, a, ..., «,d] is less similar
than the paiy = [«, 3,7, 0] andz = [, «, 7, ] although perceptually, they are
almost perfectly similar. But perceptual similarity is paps not very relevant
in this context and it does not appear in the rules statedealidwe fact that the
similarity betweena, . .., «, 5] and[a, . . ., a, 7] tends td).5 justly reflects the
fact that these sequences differ in an important aspectrtbends with and
the other withy. If this is felt to be not so important after all, a redesigritud
encoding itself is indicated.

We now turn our attention to the behavioursgf, in case of time-coupled
sequences, i.e. the representation defined by (1). Tablevéss$imilarities
between the same sequences that were used in Table 3, t#reid® now being
that all states occupy the same, constant amount of time.

Clearly, the values differ from those in Table 3 but the ordgations
between the figures are exactly the same as those of Table Jabla T, the
tokens of each sequence are the same and in the same ordentthiertimes
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Table 5. limj .« sa,y for sequences = [u,v] andy = [u, w] wherek is the length of the
common subsequenegandyj is the length of the noncommon subsequencasdw. The com-
positions ofv andw are shown in the first row and column of the Table, «, ...] or [3, 3, ...]
mean that and/orw consist of one single repeating token, not occurring,iand[¢, 7, ...] or
[8,7, ...] mean that and/orw consist of different tokens, not occurringn [ | denotes that
and/orw are empty.

vw | B8] | B |
N )
(G | 2@ | 2

g () | v

Table 6. Sequence similarity and the permutation of tokens

[ev1, B, 71, 01] 1

[041,61,(51,’}/1] 0525 l

[B1,a1,61,7] | 025 0525 1

[51,61,(11,71] 0.2 0.363 0.525 1

[01, 01, 1,71] | 0.15 0.2 0.363 0.525 1
[61,71,81,01] | 005 01 015 02 0363 1

Table 7. Sequence similarity and the permutation of durations

[a7, B9, 73, 01] 1

[a27, Bo,71,03] | 0.733 1

[awg, B27,73,01] | 0.533 0.733 1

[ao, B1,727,05] | 0.467 0.6 0733 1
[a1,B0,727,05] | 0.4 0.467 06 0733 1
[a1,B5,79,027] | 0.267 0.333 0.4 0467 06 I

occupied by these states have been shuffled like the tokerssiveifled in the
previous table.

As expected, the effect of variation in the precedenceslé®lis much
bigger than the effect of varying the distribution of timegsopied with constant
precedences (Table 7). Again, the order relations betwesfigures are exactly
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those of Tables 3 and 6. The last table demonstrates the effesttuffling
precedences with varying times occupied by the differatest

The similarity between time-coupled sequences appearshibiekhe
same kinds of asymptotic behaviour as was discussed aboteefsimple se-
guences and summarised in Table 5. We demonstrate this sideoimg pairs
of sequences = [u, v] andy = [u, w] and computing, , for ever increasing
lengths of the common subsequenceWe assumé, = L = [, andu to be
a sequence consisting 6f— j different states, each of which occupying just 1
single unit of time. Now, for example, suppose thandw each contain just 1
single state, different from each other and both not ocgurin:, that occupies
J units of time. _

Then(x,y) = 3, (") and|[x||* = [ly||* with

x| = 20 (M) ng (")

Substituting these expressions into (11) and using Gospextkod (Pet-
kovsek et al. 1996) again, this yields

5 :zflL(L_j‘Fl)"'j(j—l)
oy LIL+1)+4(G—1)

hencelimy, .o 55,y = 2~1. Again, similar expressions can be derived for var-
ious combinations of compositions ofandw and their limiting values are
shown in Table 9.

The results of this section and the previous one seem to beisnffic
encouraging to confront the representions with some redtivaata.

7. Application 1: Encoded Structured Interviews

In this section, we analyse a typical social science exampEmple
token sequences: encoded structured interviews. A stadiaterview is an
interview in which the interviewer asks preformulated dioes in a fixed order
or according to some fixed routing and in which the respondestipposed to
answer these questions by choosing one of a number of gredmesponse al-
ternatives. All verbal utterances in such an interview camicoded. The data
we discuss here comprise of a subset of data collected anly degcribed by
Draisma (2000). Essential for our present discussion ig,ftben a number
of the questions posed in these interviews, the correct ensswere known to
the researchers. So answers given by subjects, who were maivthe re-
searcher’'s knowledge of the correctness of their answerdd de compared
to the correct answers. These interviews were transcriptddeacoded ac-
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cording to a multivariable encoding method as described ijiksa (1999).
From these encoded interviews, 923 Question/Answer-seqaamere picked
that were complete and of which the correct answers were kn@ve stripped
and simplified the encoded utterances to a very basic, twiablarencoding
scheme that describes ‘who does what'. Furthermore, we rethimiroduc-
tory statements and compressed identical adjacent cottesrie single code.
Encoded in this way, the sequences consist of two-charagtaras, the first
character indicating the ‘who’ - I(nterviewer) or R(espend) - and the second
character indicating the ‘what’ - the specific kind of uttesanThe utterances
were encoded according to a scheme shown in Table 10.

So, the complete alphabet consists of 10 tokens; each of Hraatkrs
from Table 10, preceded by either | or R. A typical Q/A-seqiesthen might
look like

IQRCRAIPRAICIP.

In this example the interviewer poses a question, the respdncom-
ments upon it, then produces an answer of which the intearieagknowl-
edges perception, again the respondent gives an answer ich thle inter-
viewer makes a comment and a closing acknowledgement. Thee828ing
sequences vary in length from 2 to 19 tokens with an averagemé 4.4 tokens
per sequence and a standard deviation of 2.7 tokens. In Tablae ‘typical’
Q/A-sequence is shown, along with the sequence whose esftireg vector has
the minimal distance to the centroid of all the represenigjors.

Interestingly, the first sequence mentioned in Table 11 isvknas the
‘paradigmatic sequence’ in any structured interview: jiressents the ideal se-
quence where the interviewer clearly states the questiontesded and cor-
rectly presents all of the possible response alternatineghich the respondent
gives an adequate answer that is acknowledged by the iewegvi(e.g. May-
nard and Schaeffer, 2002). In fact, this is certainly not thastmirequently
observed sequence; in practice, all sorts of variationsnohv#lations of this
paradigm do occur. Apparently, this paradigmatic sequéntecognised’ by
the representation as the backbone structure of all theesega. Quite com-
mon is the structure that is generated as the sequencetdiosiks centroid; a
variation in which the respondent repeats his answer wetst#ime or different
wording, confirming his previous statement. In Table 12 sormeendetails of
the representation are shown.

The fact that there is a common backbone structure, the manadic
sequence, is reflected in the fact thgf is reasonably high in view of the fact
that there is quite a large standard deviation of the iniatptistances. Note
also that the sequence wifh;, is roughly 3 times closer to the centroid than the
average distancé ;. The questions were Yes/No-questions with the additional
possibility of choosing ‘Don’t know’ for an answer. In Talll8, we show the
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Table 8. Sequence similarity: permutations of tokens and duration.

(27, B, s, 01] 1

[a27, ﬁg, (51, ’yg] 0.716 1

[ﬁg7a27,61,73] 0283 0401 1

[ﬁg, 51, 27, 73] 0.203 0.222 0.498 1

[61, 80, va7,7v3] | 0.193 0.194 0.468 0666 1
[01,73,890,c27] | 0.085 0.086 0.22 0.301 0.453 |1

Table 9.limy, . sz, fOr sequences = [u,v] andy = [u, w] whereL denotes the total time
trajectory of bothx andy. x andy are supposed to consist &f — j common tokens, each
occupying 1 unit of time.u andwv consist of common tokens, occupyirigunits of time. The
compositions ofy andw are shown in the first row and column of the Table,] and[3;] in-
dicate thatu andv both consist of one token, different farandv, that occupy; units of time.
[v1,61,...] and[¢1, n1, .. .] indicate that. andv both consist ofi different tokens, each occupy-
ing 1 unit of time.[] denotes that and/orw are empty.

viw [55] M1,00,--] L1
(o] o1
[CL,m,..] | 270072 -
(] Vo1 N .

Table 10. Coding scheme of types of verbal utterances, either mattee bgiterviewer or the
respondent

code | meaning

Q asks question

A answers question

P acknowledges perceptionh
C comments

R requests

Table 11. Characteristic sequences for 923 encoded Q/A-sequéieetypical sequence is the
sequence with the highest average similarity. () with all the other sequencesini, is the
smallest Euclidean distance to the centroid of the 923 vectors.

IQRAIP Smax = 0.717
IQRAIPRAIP | dumin = 10.37
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Table 12.d; ; is the average Euclidean distance between representing vegtprdenotes the
average similarity( is the average complexityof the sequences arids the average sequence
length. sd always denotes the standard deviation of the quantity to the left of it.

n dij sdq Si,j sds C sdc 1 sd;
923 529 2824 0562 0.287 0.852 0.234 4.38 2,69

Table 13. Representation characteristics for differently answerestigne. Symbols are ex-
plained in the legenda to Table 12.

correct incorrect don't know
n 714 148 61

di; | 36.09 51.73 133.06
sdg | 21445 96.82 513.65

si; | 0603 475 0.386
sds | 0.283  0.284 0.235
C | 0877 078 0.975
sdc | 0215  0.269 0.034
] 408 509 6.13
sd, | 238  3.45 3.06

Table 14. Characteristic sequences for differently answered quesiapresentation details in
Table 13.

cormect Smar — 748 IQRAIP
dmin =841  IQRAIPRA
omect | Pmax =035 IQRAIP
dmin = 32.82 IQRP RAIPRAIP
, Smax = 524 IQRAIP
don'tknow | ;" 1322 IQRPRAIPRAIP

same kind of results as in Table 12, but now for correct, iresmirand ‘Don’t
know'-answers separately. In Table 14, the characterisgggiences for these
groups of differently answered questions are shown.

From Tables 13 and 14, it is obvious that the three groups tdrdiftly
answered questions are quite differently represented. &heemnces leading
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to correct answers seem to be shorter and relatively morg@leanthan those
which result in an incorrect answer. Furthermore, theseesezps seem to be
most similar to the paradigmatic sequence and have, on #drage, the high-
est intersequence similarity. A more detailed analysideé results and se-
quences is beyond the scope of the present paper. What istanpas that the
combinatorial representation of these simple (and simg)ifsquences leads
to a useful and meaningful description of the data.

8. Application 2: Life Histories of Young Adults

In trying to validate their proposals to quantify sequennalarity, Dijk-
stra and Taris (1995) and Elzinga (2003) amply discusseddteset that we
will use again in this paper to demonstrate the applicghiftthe representa-
tions described above. These data consist of 494 encodéiikiiteies of adults
(244 females and 250 males), interviewed at the age of 26.dimgavas done
on 3 variables: living situation, education and employmewxtording to the
scheme presented in Table 15.

As a result of this encoding, each subjects life history xia®of a se-
guence of 3-character states, ranging in length from 2 tddtés Since, at the
time, neither Dijkstra et al. nor we knew how to handle assed quantities,
it was never mentioned that the duration of all the statesepixfor the last
one, was also known. Thus an individuals life history was/fathcoded as, for
example,

HOO/60, HFO/140, HPP/20, HOF/4, SOF/16, POP/-1

The last event of each sequence was always assigned a durhtibn
meaning that the duration of the last state was unknown sirveas the state
the subjects were in at the time of data collection. For eablest, gender and
a score on a 10-point scélef socio-economic status (SES) was known. These
data, without the associated durations, were used by Dijlkstal. to demon-
strate that there is/was a ‘typical’, ‘traditional’ lifedtory sequence, different
for males and females:

(HOO) HFO HOO HOF MOF (MOO).

The first event is put between parenthesis because the firstlefdiast-
ing invariably for 60 months for each and every subject indample) wasn'’t
mentioned by Dijkstra et al. The last event is put betweenrnhesis, because
this last event was thought to be typical for females andaraifen. The above
sequences were inferred by Dijkstra et al. from ‘typicaljsences for males
and females that were found by looking at that sequence hitthighest aver-
age similarity (according to their indey with all other sequences in the data.
Since the duration of the last state of each sequence is umknesvdecided to
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Table 15. Coding scheme of life histories on three variables, accordibjjkstra and Taris
(1995). ‘part time’ means that employment or education was less tday&per week.

@]
o
Q
)

Variable Category
with parents
alone

living with partner
married
other

full time
education part time
none

full time
employment| part time
none

OTTMO TTMOZTWnmI

Table 16. Typical patterns of time coupled life histories. The sequendésated withsmax
denote the sequences with the maximum average similarity to all other seguéme sequences
indicated withd,;, are those sequences of which the distance to the centroid is smallest.

total Smax = .233  HOO/60 HFO/214 HOO/2 HOF/24
dimin = 8.9 HOO/60 HFO/194 HOO/18 HOF/28
females Smax = .205 HOO/60 HFO/178 HOO/6 HOF/44 MOF/12
dmin = 11.8  HOO/60 HFO/154 HOO/3 HOF/83
males Smax = .255  HOO/60 HFO/214 HOO/2 HOF/24
dmin = 10.7 HOO/60 HFO/194 HOO/18 HOF/28

Table 17. Characteristics of representations of time coupled life hist@istances haven been

rescaled (multiplier = 0.006689) such thét; = 100 for the total group. See the legenda to
Table 12.

total females males
n 494 244 250

di 100 103.1 96.9
sdg 174.3 207.5 134.1
S5 0.0838 .0765 0.0987
sds 0.1199 0.1164  0.131(
max3s | 0.2332 0.2051 0.2547
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censot all the sequences at 300 months. In Tables 16 and 17, the it
of the analyses are shown.

The general picture from Table 16 corroborates previous fgslimith
the same data without the state durations as reported bgtEijkt al. (1995)
and Elzinga (2003); only the state MOF does not occur, protdaatause of the
inevitable censoring we had to apply. Again, the typical darsequence sug
gests that women tend to marry at an earlier age than menirRgithe analysis
with the same data recoded such that living together withrimeiais equivalent
to living married, also produces the state MOF in the typioale sequence.
This indicates that young men do start experimenting wittneaships but are
less prone to marriage than women. ANOVA (full factorial vgender and
SES as fixed effects) with the similarity to the typical femalgqusnce as the
dependant variable does not reveal a significant effect adeyeout does show
a strong and significant effect of SES: the similarity to the tgpfemale pat-
tern diminishes with increasing SES. No interaction betweengeand SES
was found. The lack of such a gender effect is remarkable simaes reported
by Dijkstra et al. (1995) and by Elzinga (2003) when analysirgsimple life
histories. Of course, a great deal of the similarities betwihe sequences is
due to the fact that for all subjects, there is quite a longopleof compulsory
education: roughly 180 months in a total time span of only 8@hths. So,
within the first 180 months of these life histories, many d#feces should not
and do not occur. Therefore, we removed the first 180 months tnandata.
The effects of this removal are shown in Tables 18 and 19.

As expected, the average similarity and the maximum avesigjéarity
do decrease. Remarkably, and as hoped for, the structune &iures appear-
ing in Tables 18 and 19 is almost identical to those of Tabkard 17. The
same ANOVA now does reveal, apart from the effect of SES, a sighieffect
of gender when the similarity with the female pattern of &9 is used as
the dependent variable. Hence, our representation doesajera difference
between male and female life histories, provided the egisddorced equality
is removed from the data.

9. Conclusions

Neither of the applications discussed leads to any new atapelar so-
ciological insights into life histories of young adults dwetturn-taking during
structured interviews. On the contrary; nothing came oat tias new, unex-
pected or not found in many other studies. This demonstratdstitie repre-
sentations constructed, both for the simple and for the-tmepled sequences,
lead to a useful and meaningful description of the data: ¢éggisnces taken as
the unit of description. And that was exactly what we set otit & metric rep-
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Table 18. Typical sequences after removing the first 180 monthstfrerdata.

Smax = .175  HFO/94 HOO/2 HOF/24

dmin = 9.3 HFO/74 HOO/18 HOF/28

Smax = .149  HFO/58 HOO/6 HOF/44 MOF/12
dmin = 12.0 HFO/41 HOF/79

Smax = .203  HFO/94 HOO/2 HOF/24

dmin = 10.7  HFO/74 HOO/18 HOF/28

total

females

males

Table 19. Characteristics of representations of time coupled life histopyesees. Distances
have been rescaled (multiplier=0.03628) such that = 100 for the total group. See the leg-
enda to Table 12.

total females males
n 494 244 250
di; | 100 103.4 96.6
sdg | 166.2 196.5 129.9
5;,; | 0.0535 .0460 0.0681
sds | 0.1004 0.0967 0.113¢

resentation of sequence data, free of any assumption dmmutture, the ori-
gin or the generator of the sequences and the resulting Eaclidistances or
similarities are directly amenable to the application of ahthe well known
classification tools. The theoretical part of the paper shdwad to construct
and to compute such representations and it is unequivocait abe arbitrari-
ness of some of the choices made. But this arbitrarinessraesffer from the
arbitrariness of the standard descriptive tools that weagescribe numerical
data: means, standard deviations, correlation coefficeemdsthe like. By in-
vestigating the boundary properties of the representatierhave tried to show
what the limitations of the representations are. For exanthke quantification
of similarity does not completely coincide with perceptaatilarity. On the
other hand, one may wonder what relevance perceptual sityiteas, when
studying life or employment histories, encoded intervi@wstock investment
patterns.

The next challenge is to come up with reasonable distributieories
that allow for proper statistical hypothesis testing.

A Algorithms

In Section 3, we explained that, both for simple and for timemed
sequences, the basis of the algorithms is a dynamic algotitlat uses alh-
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paths in an(l, x [,)-matrixE = {e(4, )} with e(7, j) = 1, precisely when the
i*M token ofz is identical to thej*" token fromy, ande(i, j) = 0 otherwise. For
simple sequences, one algorithm, SIMPLE, just adds the numbepaths in

such a matrix, for alh € {1, ..., min{l,,[,}}; the other algorithm, GOBBLE,
uses the recursive equation (5) and is slightly more effitkeart SIMPLE when
e contains many 1’s, i.e. when the sequences contain manyitreps of the

same tokens. It is not difficult to design a variant of GOBBLEt thandles

associated quantities; we will not discuss this becausaaif bf space. For
time-coupled sequences, the algorithm should assign ahtveageach path,
the weight being the product of the functions,, andg, ,, as defined in (1).
Here we discuss the variants of the basic dynamic algoritheessubstantial
optimisation is possible and necessary to ensure accegialformance.

Al SIMPLE

We slightly change our notation and wrig instead ofE. Furthermore,
we write a (i, j) for the number ofk-pathsp(i, 7), i.e. paths of lengtlk with
first element(i, j). Then(x,y) = >, >_, ; ax(i, j). Obviously, the sum of the
1-pathsa (4, j) equalsy_; ; e1(4, j). The number of 2-paths; (i, j) equals, for
all i andj, >_,,-;,~;€1(i,j) and we define; = {ea(d, j)} with e2(i, j) =
ax(i,7). Once E; has been constructed, it is immediate thafi, j) =
> nsim>j €2(i,7) = es(i, j) and we construdE; = {es(:, j) }, etc. Hence we
compute(x,y) as

<X’ y> = Zzek(ivj) (13)

k=1 4,j
with

er(i, ) =D > er-1(n,m) (14)
n>im>j

ande; (i, 7) as defined above. This algorithm was already described in Ezing
(2003) but that description doesn't use the concept bfpath and is far less
elegant. Although the algorithmic complexity of the alglom as embodied in
(13) is alreadyO (n®) wheren = min{l,,,}, there are two highly efficient
optimisations of the algorithm. The first one arises from ttut flaat, for alls,
er(m,i) = 0forallm > [, —k+1ande(i,m) = 0 forallm > [, —k+1 since
the corresponding-paths do not exist. This implies that the upper boundaries
of the summations in (14) decrease by 1 with every fexmplementing this
into (14), saves as much 44/* — 31> — 1) /6 summands in the expansion of
(13) in caseE is of dimensiond x [. The second optimisation uses the fact
that the calculation o (i, j) implies calculation of alky(n, m) with n > i
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andm > j. Hence, an implementation of (13) should compute (13) byradd
the elements o#;_; ‘from below’ and ‘from the right’ instead of taking (14)
literally and doing the same computations over and over.

A2 GOBBLE

This algorithm computesx,y) on the basis of the recursive equation
(6): (x,y) = >, jaij Witha;; = 1+ >, - aqr. However, a naive
implementation of this algorithm will do the same calcwdas over and over
again and therefore be very inefficient: ongg has been computed, all, ,.
with ¢ > i andr > j also must have been computed. This is easily avoided
by providing the algorithm with a memory, in the form of(& x I, )-matrix
M = {m; ;}, that stores previously computegl, in m, , for ever bigger values
of ¢ andr and addsn; ; to (x,y) instead ofz; ; whenevem; ; > 0.

A3 TIMEPATH

This algorithm compute&, y) in case of time coupled sequences repre-
sented according to (2). L& be equal to the matrif; from SIMPLE and,
initially, S:=0. Then the algorithm finds, for each positivg, j) € E, all
k-pathspy (i, 7) with &£ > 1. Let pi (7, j) be a particulak-path inE and define

se= > ta(n)-ty(m). (15)

e(n7m)e@k (ZJ)

Suppose(u, v) is the last element @f. (¢, 7). The algorithm then searches

for the first positive element(u + a,v + b) in the submatrix{e(u + a,v +
b) }a>1,>1 and elongatepy, (i, j) to awpy1(4, j) by appending it withe(u +
a,b + v). The algorithm then computes := S + sp11 With s == sk +
te(u+a)-ty(v+b).

If such an element(u+a, v+b) does not exist, the-path is shortened to
apathpy_1 (7, j) by removinge(u, v) and it computes,_1 := s —t(u)-t,(v)
if k—1 > 0. The algorithm will then try to elongatg;._+ (7, j) by searching the
submatrix{e(u + a, v + b) }4>0,5>1 for a next positive element. K—1 =0, a
next positive element is looked for {(i + a, j + b) }4>0>1 and starts with a
new l-path, computes, etc. If no more positive elements hcan be found,
the algorithm is done angk,y) = S.

B min {||x|?} and ¢(z) with finite alphabets

If = has even length, > |A|, then a matriXE, , = {e,(i,j)} of X such
that||x||? is minimal giveni,, is generated by a simple algorithm, which is given
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in pseudo-code follows:

Input: m=|A| >1,n=10, >m
Output: (n x n) permutation matrdE,, = {e,(¢,7)}

em(i,7) =0, i#g, Vi, je{l,...,m};
em(i,1) =1, Vie{l,...,m};

for k:=1ton —mdo

w=m+k;

ew(i ) = ew1(i,j),  Vije{l,...,w—1};
ew(w, ) =0, ey(i,w):=0 Vie{l,...,w};

ew(w, k) :=1;
| ew(w, i) = ey(k, 1), Vie{l,...,k—1};
if £ eventhen

interchange thev'® and the(w — 1)*" row;

ew(d, i) i=ew(i,g),j=w—1&Vie{l,...,w—1};
| ew(f, i) i=ew(i,j), j=w&Vie{l,...,w};
nextk ;

This algorithm probably generates a solution,ifis even; ifl, is even,

there seem to exist two different solutions, only one of \uhidgll be generated
by the algorithm. Probably and seemingly, since we don’t khow to prove
the correctness of this claim. However, ample numericalutations did not
produce a falsification of this conjecture so we are stronglyvinced of its
correctness. |If there exists a second solugonith E, , = {e,(4,7)}, then
ey(le — il — j) = eg(i,7) forall 1 < 4,5 < I,. As an example of the
symmetry of the structure of such &1and such symmetry always arisegrif
dividesl,) , we show the solution (omitting zero’s) fpd| = 4 andl, = 12 as
generated by the algorithm above:

22 WO D2 ®w e
—_
[—y
—
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Table 20: Minimum values foltx||? in the columns labelefd| = 2, etc. for different sequence
lengthsl,. For comparison, we also show values25f — 1, the minimum of||x||? in case
le <A

I. [ 2% -1 [A]=2 JA]=4 |A]=8

10 [ 1023 10871 1723 1033
15 | 32767 2124045 97023 34473
20 | 1.0E06 3.9E09 6.0E06  1.0E06

Evidently, the minimal value ofx||? is much bigger thag’> — 1 in case
l, > |A] and the difference grows rapidly with increasifhg|A|. Table 20
shows these differences for some valuesAjf

Of course, these differences do affect the precision witichvty(z) is
computed when using the boundaries in (5) for nonrestriatpbabets, espe-
cially so when|A| is small. LetC*(z) denote the complexity of wherez i,
is calculated with the above algorithm. Then Figure 1 showtsbthe ratio
C(z)/C*(z) against,, for various alphabet sizgsl|.

These plots clearly show that for smaller alphab@ts;) underestimates
C*(x) substantially; for alphabets wittd| > 20, the underestimation seems
negligeable for quite a range of sequence lengths.

Notes

1. To calculate complexity, we used the algorithm outlined\ppendix B to
calculater iy .

2. We merged the groups with SES-scores of 0 and 1 (4 and 102 &ubjec
respectively) and the groups with SES-scores of 8 and 9 (10 amndbj2css
respectively).

3. Actually, we could also have decided to retain as much asiple of the
encoded life histories. For many individuals, this wouldridnaneant useful
encodings beyond the age of 300 months; for many others, utdmt have
made any difference. Analyses with different kinds of ceimgpdid not lead
to substantive differences in outcomes, so we arbitraslyided to present the
analysis on the data censored at 300 months.
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Figure 1. Plots of”(z)/C™ () against sequence length (horizontal axis), whgtéx) uses the
algorithm of Appendix B to calculate the minimum vector length given the akghsize|A|.
From left to right, the curves pertain to alphabets of 2, 4, 8 and 12 tokens.
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