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In both the clinical-diagnostic tradition and the
empirical-quantitative tradition, taxonomies of child-
hood psychopathology have developed in recent years
from relatively undifferentiated to specific concepts
(Achenbach, 1995; Cantwell, 1996; Volkmar & Schwab-
Stone, 1996). However, in the clinical-diagnostic tra-
dition, both the diagnostic labels and the criteria used for
the clinical assessment of childhood psychiatric syn-
dromes have been the subject of debate (see DSM;
American Psychiatric Association, 1980, 1987, 1994; and
ICD; World Health Organisation, 1967, 1978, 1992).
Clinically derived taxonomies have been criticised further
for their lack of empirical support (Achenbach, 1995;
Quay, 1986a, b). In contrast, the quantitative-empirical
approach to conceptualising childhood psychiatric syn-
dromes has provided heterogeneous findings with regards
to which symptoms measure which problem dimensions.
That is, despite some consistency of global clusters across
empirical studies (Quay, 1986b), delineation of these
childhood syndrome dimensions is still imprecise. Critics
of the quantitative-empirical approach suggest that there
is little congruity with regards to both the number and the
nature of problem dimensions that aremutually necessary
and sufficient to represent various domains of psycho-
pathology (Millon, 1991). In short, to date there is neither
agreement nor empirical evidence regarding exact opera-
tionalisation of childhood psychiatric syndromes.

Consequently, instruments with apparently compar-
able coverage differ with regard to which syndrome
dimensions are indexed by which symptoms. For
example, the modified Conners Teacher Rating Scale
(CTRS-28; Goyette, Conners, & Ulrich, 1978) and the
Teacher Report Form (TRF; Achenbach, 1991b) contain
respectively the dimensions of inattentive-passive and
attention problems. Both of these empirically derived
instruments address the construct ‘‘ inattention’’. They
differ, however, in that the TRF ‘‘attention problems’’
scale contains items such as ‘‘can’t sit still ’’, ‘‘ impulsive ’’,
and ‘‘fidgets ’’, which are elements of the hyperactive}
impulsive domain of the clinical diagnosis Attention-
Deficit}Hyperactivity Disorder (ADHD in DSM-IV;
American Psychiatric Association, 1994) or Hyperkinetic
Disorder (HKD in ICD-10; World Health Organisation,
1992) (for a discussion of ADHD and HKD, see Swanson
et al., 1998). In contrast, the CTRS distinguishes between
the dimensions ‘‘ inattention’’ and ‘‘hyperactivity ’’. Fur-
thermore, the TRF contains in the ‘‘aggression’’ scale
items that are part of the CTRS’s ‘‘hyperactivity ’’ scale :
‘‘disturbs other children’’, ‘‘demands must be met
immediately ’’, and ‘‘demands a lot of attention’’. Thus,
the constructs comprised in the TRF and the CTRS,
while containing apparently similar problem dimensions,
differ in content and domain, and differ as to how they are
related to the clinical diagnosis of ADHD}HKD. In
short, a typology of childhood psychiatric syndromes,
whether originating from the clinical or empirical tra-
dition, is in a state of ‘‘work in progress ’’.

Part of this process is the sharpening of definitions and
criteria. As Quay (1986a, p. 2) put it : ‘‘We can never
arrive at a scientific understanding of any specific disorder
until we can describe it accurately and determine how it is
different from other disorders ’’. Research effort has been
concerned primarily with criterion-related validation

through aetiological, prognostic, or treatment outcome
studies (Frick et al., 1994; Lahey, Applegate, Barkley et
al., 1994; Lahey, Applegate, McBurnett et al., 1994).
However, the power of these external construct validation
studies depends upon the adequacy with which the
diagnostic groups are defined and selected. This in turn
depends upon the conceptual coherence of the symptoms
in syndromes and the precision with which these can be
differentiated from one another. Ideally, clarification of
the internal construct validity of diagnostic syndromes
and their defining criteria should occur prior to validation
with respect to external criteria (Waldman, Lilienfeld, &
Lahey, 1995).

The present paper is concerned with the construct
representation of the empirically derived syndrome
dimensions used in the CBCL (Achenbach, 1991a) and
the TRF (Achenbach, 1991b). The work of Achenbach
and associates is one of the major efforts towards a
quantitative empirically defined taxonomy of childhood
psychopathology. Furthermore, this research is an ex-
cellent example of how the issuwe of combining infor-
mation from multiple informants may be addressed. In
addition, this research programme included attempts to
ascertain the cultural (in)dependence of the empirical
taxonomy (Berg, Fombonne, McGuire, & Verhulst,
1997; De Groot, Koot, & Verhulst, 1994, 1996). These
instruments have been translated into 55 languages. Over
2300 publications report both practical and research
applications of these instruments. Given their widespread
use, a thorough investigation of the construct represen-
tation of the cross-informant syndromes seems war-
ranted.

In the present paper, the eight cross-informant syn-
dromes of the CBCL and the TRF are studied in samples
collected in seven different countries, separately for
parents and teachers. The objective is to determine the
internal construct validity of these syndrome dimensions.
A strong test of the construct validity of the syndrome
representation of an instrument is the replication of its
factor structure in different cultures (Bird, 1996;Verhulst,
1995). Furthermore, empirical support for the validity of
similar syndrome dimensions across informants is a
prerequisite for uniformity of measurement instruments.
A factor analytic approach was used in the present study
to determine internal construct validity, as described
below.

The Factor Analytic Approach

In this study, construct validity is investigated within a
factor analytic framework. A factor is a latent variable on
which individuals vary. In factor analysis the underlying
constructs are assumed to be continuous. The factor
analytic model provides a dimensional view of childhood
syndromes. In the dimensional tradition, differences
between children’s scores on a particular syndrome
dimension are viewed as quantitative, varying in intensity
rather than in quality. ‘‘Normal ’’ children will have
certain scores on the dimension and children who have
certain problems will have other scores on the dimension.
Thus, even when the child is typically not an aggressive
person, the construct ‘‘aggression’’ is still relevant to
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him}her (see Jackson, 1973). It is further assumed that
there is no discontinuity between those children who have
the syndrome and those who do not have the syndrome.
The eight syndromes of the CBCL and the TRF were
derived in this dimensional tradition (Achenbach,
1991a, b).

In the factor analytic framework the latent variables
are viewed as theoretical abstractions that cannot be
observed directly. They can, however, be assessed by
considering the degree to which the associated observable
variables are present. This distinction between the unob-
servable and the observable is also fundamental to
developmental psychopathology (Rutter & Pickles,
1990). Different types of psychopathology are regarded
as referring to different constellations of symptoms. The
symptoms are regarded as representative but imperfect
indices of the syndrome. They are the basis from which
the presence of underlying unobservable syndrome of the
child is deduced. Thus, both factor analysis and child
psychopathology assume latent underlying constructs
which have measurable attributes.

Factor analysis assesses the construct validity of
syndrome dimensions by examining the internal structure
of the instrument through modelling the patterns of
covariation among the measurable attributes. The notion
that the presence of certain symptoms is a manifestation
of a particular underlying syndrome implies that these
symptoms occur together to some extent in children with
that syndrome. Symptoms that are not features of the
syndrome are less likely to be present in these children.
Children with another syndrome are, in turn, more likely
to exhibit the symptoms that are regarded as diagnostic
indicators for this second syndrome. Children with no
syndromes are likely to have low scores on the symptoms
throughout. Syndrome dimensions are thus implied by
the patterns of covariance among the symptoms. Not all
the symptoms need to be present or absent to the same
degree, but the more the hypothesised pattern is present,
the more coherent and differentiated will be the under-
lying hypothesised problem dimensions (Muthe!n, Hasin,
& Wisnicki, 1993). A good match between the pattern of
covariation predicted by the factor model and that
observed in the data suggests that there is empirical
support for the hypothesised model representing the
syndrome dimensions, the items by which these syn-
drome dimensions are indexed, and their differentiation.

Two approaches can be distinguished in factor analy-
sis : exploratory factor analysis (EFA) and confirmatory
factor analysis (CFA). These approaches differ in the
degree of a priori hypothesised explicitness of the patterns
of clustering of the symptoms. EFA emphasises the
exploration and identification of the latent variables and
their indicators. The syndrome dimensions of the CBCL
and the TRF were developed in this inductive manner by
means of Principal Component Analysis (PCA). This
method is similar to EFA in that both techniques seek to
identify underlying dimensions of observed variables.
Items were chosen such that they formed a representative
and wide range of child psychiatric problem behaviours
from which the syndrome dimensions were empirically
derived (Achenbach, 1991a, b). CFA, on the other hand,
aims at the confirmation of a hypothesised factor struc-
ture rather than exploration. The explicit factor structure

derived in an exploratory manner for the CBCL and the
TRF (Achenbach 1991a, b), may be followed up with
more formal hypothesis testing with CFA in subsequent
samples.

A schematic representation of the cross-informant
factor model, as well as a list of the relevant problem
items for both type of informants, is presented in Fig. 1.
Figure 1 is a representation of the general factor analytic
equation:

x¯Λxn ξ­δ,

where x is the vector of observed variables, i.e. the
problem items; Λx is a matrix of factor loadings ; ξ is a
vector of common factors ; and δ is the vector of specific
factors. Thus, there are two categories of latent variables :
common factors and specific factors. The common factors
represent the underlying syndrome dimensions, which
give rise to the covariation between the problem items.
The specific factors are responsible for variation unique
to each problem item. In short, a child’s score on a
problem item is determined partly by the child’s score on
the syndrome dimension specified by the model, and
partly by unique variance.

The model shown in Fig. 1 is a confirmatory factor
model. Instead of all problem items loading on all
underlying constructs, as in an exploratory factor model,
the measurement structure is defined by a specific
prespecified pattern of items loading on specific con-
structs. In Fig. 1 it is indicated that the items in the model
follow a simple structure, i.e. a child’s score on a
particular problem item is dependent on only one
underlying syndrome dimension in themodel (see
Jo$ reskog, 1979a). Figure 1 is simplified in two respects :
first, the number of items is not constant but varies for
each of the eight cross-informant syndromes. Second, a
small number of items, as specified in the cross-informant
model, load on more than one syndrome dimension and
are thus of complex structure (see legend in Fig. 1).

Additional model specifications may be derived from
Fig. 1. First, the covariations among the specific factors
are required to be zero in order not to introduce
additional symptom covariation over and above the eight
hypothesised cross-informant syndromes. Second, the
double-headed arrows connecting the common factors
indicate that the common latent constructs covary.
Although originally the syndrome dimensions were de-
rived using an orthogonal rotation procedure (Achen-
bach, 1991a, b), the requirement of uncorrelated problem
dimensions seems to be too stringent, given the syndrome
overlap in child psychopathology (Angold, Costello, &
Erkanli, 1999; Caron & Rutter, 1991; Sonuga-Barke,
1998). A correlated factor model (or an oblique rotation)
may thus be a more realistic choice, resulting in factors
that potentially have a better chance to be integrated in
existing theory. The use of a correlated factor model is
consistent with previous CFA studies on the measure-
ment structure of the CBCL (Berg et al., 1997; Dedrick,
Greenbaum, Friedman, Wetherington, & Knoff, 1997;
De Groot et al., 1994; Van den Oord, 1993) and the TRF
(De Groot et al., 1996).

The goodness of fit of a factor model is indicated by the
degree towhich the theoretical covariance (or correlation)
structure implied by the hypothesised cross-informant
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Figure 1. Schematic representation of the CBCL and TRF cross-informant measurement structure and list of pertaining problem
items (Model 6). The problem item numbers correspond with the numbers in the CBCL and the TRF; symptom content is
summarised; the common item model is based on the 77 items common to the CBCL and the TRF cross-informant model ; the full
cross-informant model is based on 85 symptoms for the CBCL, and 101 for TRF; * indicates that the symptom is of complex structure
in the common symptom cross-informant model ; g indicates that symptom is of complex structure in the full cross-informant model.

model and the observed sample covariance (or cor-
relation) matrix agree with one another. When this fit is
found to be acceptable for the parent data, as well as the
teacher data, the eight syndrome dimensions are judged
to provide an adequate summary of the covariation
patterns among the problem items. This would provide

support for the internal construct validity of the cross-
informant model.

Having established that the fit is acceptable, the
correlations among the factors and the factor loadings
may be interpreted. This provides information on the
relative independence of each of the syndrome dimension,



1099CBCL AND TRF SYNDROME DIMENSIONS

as well as the degree to which each of the problem items
is a central feature of the syndrome dimension.

Confirmatory factor analysis has been applied in a
number of studies using the CBCL (Berg et al., 1997;
Dedrick et al., 1997; De Groot et al., 1994; Van den
Oord, 1993), and in one study using the TRF (De Groot
et al., 1996). Previous studies restricted their analysis to
only one method: Unweighted Least Squares (ULS)
applied to polychoric correlations (described below),
using conventional rules to assess goodness of fit. In the
present study two methods are used: Maximum Like-
lihood (ML) applied to product moment correlation
coefficients and ULS applied to polychoric correlations.
These methods are complementary: ML is the most
commonly method used in CFA (see, e.g. Marsh, Hau,
Balla, & Grayson, 1998), and product moment cor-
relation coefficients (PMCCs) are relatively stable. In
contrast,ULS can be applied to matrices that are deficient
in rank (Wothke, 1993), which is the case for the
polychoric correlation matrices in our samples. Poly-
choric correlations, although more unstable, may provide
more accurate estimates of the underlying associations
between the symptoms. These methods are described in
more detail in the Method section of this paper. The
adequacy of fit for the cross-informant model is es-
tablished here on the basis of three approaches : con-
ventional rules of fit, simulation, and comparison with
other models (also described below). In addition, the
diversity and volume of the samples reported here are
unequalled. The central question is : Is there sufficient
evidence for the factorial validity of the empirically
defined taxonomy of the CBCL and TRF to justify its use
and interpretation?

Method

Subjects

Data were collected from the following seven countries :
Greece, Israel, Norway, Portugal, the Netherlands, Turkey, and
the United States of America. Table 1 lists the age and gender
distributions of each of the samples. These samples have been
described in detail elsewhere. The Norwegian (Nøvik & Zeiner,
1995), Turkish (Erol, Arslan, & Akçakin, 1995), Portuguese
(Fonseca et al., 1995), Israeli (Zilber, Auerbach, & Lerner,
1994), Greek (Hartman et al., 1995), and United States (Loeber,
Farrington, Stouthamer-Loeber, & Van Kammen, 1998) data
were sampled from the general population. Two samples
consisted of clinically referred children, a Dutch and an Israeli
sample (Zilber et al., 1994). The Israeli teacher sample was a
mixed sample (Auerbach, Goldstein, & Elbadour, 1998). About

Table 1
Sample Characteristics

Greece Portugal Turkey Norway Netherlands Israel United States

Sample
Age range

POP
6–12

POP
6–16

POP
6–18

POP
4–17

CLR
4–18

CLR
4–17

POP
4–17

MIX
6–11

POP
5–16

Source CBCL TRF CBCL TRF CBCL TRF CBCL CBCL TRF CBCL CBCL TRF CBCL TRF

Total 1213 1179 1375 1377 1564 1608 1162 1753 1418 2246 1340 954 2573 2357
Boys 602 581 700 719 752 792 570 1174 955 1384 672 539 2573 2357
Girls 611 598 675 658 812 816 592 579 463 862 668 415 – –

POP: population sample; CLR: clinically referred sample; MIX: mixed sample.

half of this sample was rated by the teachers as having problems
to the extent that clinical evaluation was warranted. For the
Norwegian subjects only CBCL ratings were available. Both
CBCLs and TRFs were available for the Dutch, Greek, Israeli,
Portuguese, Turkish, and US samples. Each sample was
analysed separately, since we did not want to assume a priori
that the samples are homogeneous, i.e. they can be described by
the same model (see, e.g., Muthe!n, 1989). Samples that are
different with respect to some known external criterion (e.g.
country) may have a different factor structure. Likewise, we did
not model parent and teacher data simultaneously in a
Multitrait-Multimethod matrix (MTMM) (Campbell & Fiske,
1959; see, for an example of CFA applied to MTMM data,
Kenny & Kashi, 1992). This procedure averages out rather than
illuminates potential differences between parent and teacher
populations (see Wothke, 1996, for more complex statistical
models than CFA which allow for interactions between traits
and methods).

Cross-informant Model

The CBCL and the TRF are questionnaires for assessing
problembehaviours and competencies of children as reportedby
their parents and teachers, respectively (Achenbach 1991a, b).
The part of these instruments relating to problem behaviour
consists of 120 problem items. These items are rated using a 3-
point Likert scale, where 0 indicates responses of ‘‘not true’’, 1
‘‘ somewhat or sometimes true’’, and 2 ‘‘very true or often
true’’. Achenbach developed a cross-informant model that is
similar for both sexes, a large age range (4 to 18 years), and for
three informants (parent, teacher, child). This model consists of
8 syndromes, which are measured by 85 of the 120 items for the
CBCL and 101 of the 120 items for the TRF (see Achenbach,
1991a, p. 45; 1991b, p. 36, for an exact representation of the
cross-informant model), which is given in Fig. 1 here. Conse-
quently, the eight syndromes are partly indexed by different
items for parents and teachers. Seventy-seven problem items of
the cross-informant syndromes are common to both instru-
ments.

Both the full cross-informant model, based on 85 and 101
items, respectively, and the restricted cross-informant model,
based on the 77 common items, were fitted to the data. These
models are referred to as the full cross-informant model and the
common item model, respectively. The separation of these two
models facilitates comparisons of model fit of parents and
teachers, since for the common item model only the informants
reporting the problems of the child differ, but the problem items
themselves do not.

Data Analysis

Child psychiatric symptoms do not fulfil the factor analytic
requirements of normally distributed variables. They are known
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to be skewed (see, for example, Farrington & Loeber, in press).
Furthermore, as with most questionnaires in child psychiatry,
the CBCL and the TRF are scored on an ordinal (3-point)
rather than a continuous scale. There is no agreed best method
for factor analysing a large number of highly skewed, ordinally
scored items with restricted sample sizes. Due to space limita-
tions a brief account of the relevant problems and the choices
made with regard to the data analysis is provided here.

Measure of association. The first choice to be made for the
data here concerns the type of measure of association to be
used. Given that the data are categorically measured, a
polychoric correlation (Jo$ reskog, 1994; Olsson, 1979), rather
than a covariance or PMCC would seem to be the best choice.
The reason for this is that the maximum value of the covariance
(or correlation) between two categorically scored items is often
downwardly biased (Farrington & Loeber, in press ; Muthe!n,
1989). This bias increases when the number of response
categories is small, and as the item responses depart from equal
representation in the response categories. These attenuated
correlations result in downwardly biased factor loadings. This
would incorrectly indicate poor reliability and validity of the
items. Simulation studies have generally shown that polychoric
correlations do not suffer from this problem and that they
provide accurate estimates of pairwise correlations (Babakus,
Ferguson, & Jo$ reskog, 1987).

However, some properties of the data in the present study
argue against the use of polychoric correlations. First, the
assumption of underlying bivariate normality of the variables
required for polychoric correlations may be unrealistic. It is
improbable that the skewness of the item scores can be
attributed solely to crude measurement. Even use of a con-
tinuous scalewould reveal that themajority of children cluster in
the ‘‘no problem’’ range. Second, the considerable skew creates
a paucity of observations in the 1 and 2 response categories and
the bivariate distribution of the problem items are thus
concentrated in the null category. When the expected cell
frequencies are low, the polychoric correlation coefficient may
be distorted, unless extremely large samples are used (Muthe!n,
1989). For these two reasons, estimates of the polychoric
correlations are considerably more unstable than the usual
PMCCs (Muthe!n, 1989). In the present study, it was decided to
fit the cross-informant model to both polychoric correlations
and PMCCs. Prelis-2.12a (Jo$ reskog & So$ rbom, 1993a) was
used to calculate both measures of association.

Fit function. The second problem for the analysis of the
data reported here concerns the fit function. The choice of fit
function is guided by the distribution of the items, where the
normal distribution theory estimators (e.g. Maximum Like-
lihood) apply to multivariate normally distributed items. The
Asymptotic Distribution Free (ADF) (Browne, 1984) estimator
applies to all other distributions. Theoretically, the ADF
estimator is here the appropriate fit function.

However, for practical data analysis, the usefulness of the
ADF test statistic is seriously limited because of its extreme
instability (Hu, Bentler, & Kano, 1992). The skewness of the
data aggravates this problem (Muthe!n, 1989). Simulation
studies have shown that only when sample size is extremely
large and}or the number of degrees of freedom are relatively
small, does the ADF chi-square statistic work satisfactorily
(Muthe!n & Kaplan, 1985, 1992). The large measurement model
(due to the number of items contained in both the CBCL and
TRF) evaluated in this study (and consequent large number of
degrees of freedom) prohibits the use of the ADF fit function
(see Muthe!n, 1989). It has been suggested that more than 10,000
children for a single sample would be needed to use ADF for the
analysis of the cross-informant model (Dedrick et al., 1997).

In the present study the ML fit function was applied to the
PMCCs, for pragmatic rather than theoretical reasons. ML is

the most commonly used estimation method in factor analysis
(Marsh et al., 1998). The ULS estimation method was used for
the analysis of the polychoric correlations (see Rigdon &
Ferguson, 1991). Lisrel-8.12a (Jo$ reskog & So$ rbom, 1993b) was
used for both ML and ULS. The latter method allows for
comparisons of results with the earlier-cited studies on the
measurement structure of the CBCL and the TRF (Dedrick et
al., 1997; De Groot et al., 1994, 1996; Van den Oord, 1993), as
these studies consistently used polychoric correlations as the
measure of association and ULS as the estimation method. In
this study, we will also be able to compare the results from ML
estimation and PMCCs with those from ULS estimation and
polychoric correlations.

Model Fit

Conventional rules of fit. It was noted above that there is no
optimal measure of association and no appropriately defined fit
function for the data studied here. Consequently, the calculated
chi-square statistic does not follow the theoretical chi-square
distribution and is therefore difficult to interpret. The evaluation
of how adequately the model fits the data is thus seriously
impeded.

Fortunately, the fit of the model to the data may be assessed
by other means than the chi-square. Multiple fit indices are
generally used because there is no agreed upon best fit index. In
addition to chi-square, the following fit indices are considered in
the present study: Root Mean Square Error of Approximation
(RMSEA) (Steiger, 1990), Root Mean Square Residual (RMR)
(Bollen, 1989), Goodness of Fit Index (GFI) (Jo$ reskog &
So$ rbom, 1989; Tanaka & Huba, 1985), and the Comparative
Fit Index (CFI) (Bentler, 1990).

A major problem with these fit indices is that the theoretical
probability distributions for these fit indices are unknown.
Consequently, rules of thumb are used for the range of values
that are generally taken to indicate a good fit. This concerns the
following ranges : RMSEA (0.03–0.07) ; RMR (0–.05) ; GFI
(.90–1.00) ; CFI (.90–1.00).

However, the extent towhich the data characteristics reported
here influence the values of these fit indices cannot be
determined. Fixed cutoff values for adequate fit may not work
well with large models, large sample sizes, and categorically
skewed variables, resulting in the aforementioned less than
optimal measures of association and estimation methods.
Whether the above-mentioned rules of thumb apply to the
present situation is currently unknown.

Simulation
Inadequate values of the various fit indices may result from

violation of the factor analytic requirement of multivariate
normality of the variables. Thus, inadequate fit values do not
unequivocally indicate that the model is wrong, as the skewed,
discrete variables analysed here by no means approximate
normality. It was, therefore, decided that additional procedures
were needed for evaluating goodness of fit. One way to
accomplish this is by means of studying the chi-square and the
other fit indices in a simulation study.

In simulation, instead of deciding on the fit of the model on
the basis of the theoretical distribution of a fit index (chi-square)
or on the basis of a priori cutoff values (RMSEA, RMR, GFI,
CFI), which may or may not be applicable to the present data,
model fit is evaluated by the empirical probability distribution
of these fit indices. A simulation study provides distributions for
the various fit indices taking the skewed categorical distribu-
tions observed in the samples into account. The idea of
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simulation is to draw samples repeatedly with the distribution
characteristics as observed in the sample from a population for
which the theorised model holds, but with the introduction of
random error through sampling. Subsequently, the theorised
model is fitted to each of these simulation samples, in order to
obtain an empirical sampling distribution of the fit indices.
Actual values of the fit indices as they are found for each of the
samples studied here may then be compared with this range of
values, which fall under random sampling variations if the
model is valid. In these simulated distributions of the fit indices,
potentially inadequate fit due to inaccuracy of the theorised
model is disentangled from apparent inadequate fit caused by
violations of distribution assumptions. Thus, these empirical
sampling distributions of the fit indices provide a frame of
reference by which the fit of the cross-informant model can be
evaluated.

In summary, the simulation study is designed such that (1) the
distribution characteristics of the items in the simulation
samples are like the items in the sample for which the cross-
informant model is evaluated, and (2) the simulation samples
are drawn from a population that is consistent with the
correlational structure implied by the cross-informant model.

To obtain results that are sufficiently precise (see, e.g., Efron
& Tibshirani, 1993), 400 simulation samples were drawn for
each sample (countries), measure of association (PMCCs and
polychoric correlation), model (the common item and the full
cross-informant model), and informant (parent and teacher).
The sample size of these simulation samples equals the sample
size of the sample for which the cross-informant model is
evaluated (e.g. 400 simulation samples with sample size N¯
1213 for the parent sample of Greece). For each sample,
measure of association, model, and informant, an empirical
probability distribution is provided for chi-square, RMSEA,
RMR, GFI, and CFI, based on 400 values resulting from 400
fits of these 2 models to the simulated data.

For polychoric correlations this simulation procedure is well
known and available in the computer program Prelis-2.12a
(Jo$ reskog & So$ rbom, 1993a) combined with Lisrel-8.12a
(Jo$ reskog & So$ rbom, 1993b). First, Lisrel-8.12a was used to
generate the model-implied population polychoric correlation
matrixΣ(θW ), for which the cross-informantmodel holds. Second,
ordinal data were simulated from this population with Prelis-
2.12a following the distributions of the items in the actual
samples (Jo$ reskog & So$ rbom, 1993a, pp. 16–21). Third, Lisrel-
8.12a was used to fit the cross-informant model with ULS to the
polychoric correlations estimated for each of these simulated
samples.

For PMCCs the simulation procedure is based on an
algorithm originally proposed by Boomsma (1983). Since this
procedure is relatively unknown, it is presented here briefly (see
also Hox & Hartman, 1999b, for an extensive description).
The algorithm starts with the model-implied PMCC population
correlation matrix Σ(θW ), for which the cross-informant model
holds. It is assumed that the observed skewed, discrete variables
with model-implied correlation matrix Σ(θW ) are obtained from a
specific categorisation of underlying normally distributed vari-
ables with a correlation matrix ρ. The key issue in this
procedure is to estimate ρ (see next paragraph). Once ρ
is known, simulation is straightforward, because procedures to
draw simulation samples from a multivariate normal popu-
lation with a specified covariance matrix are well known and
built into computer programs such as EQS 5.6 (Bentler, 1995).
After drawing these simulation samples, the standardised
normal variables were subsequently categorised according to
the observed category proportions of each of the problem items
in the sample under consideration (e.g. the parent sample of
Greece). The cross-informant model was subsequently fitted to
each of the correlation matrices calculated on the basis of these
categorised variables in the simulation samples. Thus, except

for random sampling variation, the cross-informant model is
consistent with these correlation matrices. The resulting em-
pirical distribution of the fit indices provides the range of values
obtained under random sampling of skewed categorically
measured variables for which the cross-informant model holds.

The estimation of ρ requires further elaboration. In the above
described procedure, the key issue is to estimate a correlation
matrix ρ on the basis of which normally distributed simulation
samples are drawn, which, after categorisation (ρ

categorised
),

show the correlation patterns implied by the cross-informant
model Σ(θW ). For each element of Σ(θW ), i.e. the model-implied
correlation between two variables, it is assumed that this
correlation results from categorising two underlying continuous
variables with a bivariate normal distribution and correlation ρ.
The cutting points for the categorisation are estimated from the
univariate observed distribution of the variables in the sample
under consideration. Under this model, ρ

categorised
given ρ is

calculated using numerical integration of the underlying bivari-
ate normal distribution. ρ is estimated iteratively, starting with
an initial estimate that is equal to Σ(θW ). This estimate is
iteratively improved until ρ

categorised
differs from the model-

implies Σ(θW ) less than a specified criterion of 0.001. ρ serves as
the population covariance matrix on the basis of which the
simulation samples are drawn (see the above paragraph).

ρ was estimated with the computer program Simulcat
(Hox, 1998). Second, EQS 5.6 (Bentler, 1995) was used to draw
the simulation samples from the population matrix. Third,
these data were categorised with EQS 5.6 following the
distribution of the items in the actual samples. Fourth, EQS 5.6
was used to fit the cross-informant model with ML to the
PMCC correlation matrices of each of these simulated samples.
We used both Prelis-2.12a}Lisrel-8.12a (ULS}polychoric corre-
lations) and EQS 5.6 (ML}PMCCs) to make optimal use of
simulation features available in each of these programs.

Comparison with other models. As a third way of deciding
on the overall fit of the model, the values of the fit indices are
judged comparatively for a series of models.

Five models were considered in which fewer problem dimen-
sions than the cross-informant model are hypothesised.

Model 1, the most restrictive model fitted to the data, is the
independence model. This model hypothesises that all problem
items in the model are uncorrelated, indicating that no common
factors underlie the items. The goodness of fit (or rather the
‘‘badness ’’ of fit) provides a measure of the information in the
data to be explained by better models, i.e. the lower the fit, the
more covariation present in the data. The independence model
has the lowest possible fit as compared to models that do assume
common factors. It can thus be considered as a baseline for
evaluating the fit of other models.

Model 2 is a single factor model. This model tests for the
possibility that one undifferentiated latent dimension underlies
the items.

Model 3 is the eight-factor cross-informant model with
uncorrelated factors. This model best represents the cross-
informant model as originally derived, since an orthogonal
rotation method was used (Varimax) (Achenbach, 1991a, b).

Both the fourth and the fifth models are based on the
distinction between internalising and externalising problem
behaviour. This has been regarded as a meaningful distinction
in child psychopathology (Achenbach & Edelbrock, 1978;
Cantwell, 1996; Rutter et al., 1969; Verhulst & Van der Ende,
1992). The fourth and the fifth models are in keeping with
Achenbach’s grouping of syndromes into internalising and
externalising problem behaviour. Items from withdrawn, soma-
tisation, and anxiety}depression load with the internalising
factor and items from aggression and delinquency load with the
externalising factor. The remaining problem items from social,
thought, and attention problems do not pertain to the internal-
ising}externalising distinction (Achenbach, 1991a, b).
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Model 4 is a two-factor model in which the remaining
problem items from social, thought, and attention problems
scales are hypothesised to load with both factors. A study by
Song, Singh, and Singer (1994) on the measurement structure of
the Youth Self Report (YSR) (Achenbach, 1991c) provided
support for this model. In that study, superior model fit was
found when social, thought, and attention problems cross-
loaded on both the internalising and the externalising problem
dimensions. Following Song et al., the two factors were allowed
to correlate here. This is consistent with findings that children
sometimes show both internalising and externalising behaviour
(Angold et al., 1999; Angold & Costello, 1993; Biederman,
Faraone, Mick, & Lelon, 1995; Kovacs & Pollock, 1995;
Loeber & Keenan, 1994; Loeber, Russo, Stouthamer-Loeber,
& Lahey, 1994; McConaughy & Skiba, 1993; Pliszka, 1992;
Zoccolillo, 1992).

Model 5 is a five-factor model which specifies social, thought,
and attention problems as separate factors, in addition to the
internalising and externalising factors. Again, the factors were
allowed to correlate.

Model 6 is the eight-factor cross-informant model (see Fig.
1). The eight factors were allowed to correlate. The improve-
ment in fit may be assessed for the cross-informant model over
and above the aforementioned models.

Finally, the least restricted model in this series is the
unrestricted model (Model 7) (Jo$ reskog, 1979b). Except for the
minimum number of restrictions required for model identifi-
cation (Jo$ reskog, 1979b), no specific pattern is specified for the
problem items loading with the underlying syndrome dimen-
sions, i.e. all but eight items load on all eight latent variables.
The unrestricted model is statistically equivalent to an ex-
ploratory factor analysis and gives identical goodness of fit for
the data. This model essentially assesses whether the number of
factors is appropriate to describe the data adequately, regardless
of the pattern of high and low factor loadings (the substantive
meaning of the factors). The fit of the unrestricted model
indicates the best possible fit for an eight-factor model. The
comparison with the cross-informant model provides infor-
mation on the extent to which fit deteriorates as a consequence
of the specific measurement structure of the cross-informant
model. A large difference in model fit casts doubt on the
hypothesised relationships between the problem items and the
underlying syndrome dimensions.

All models were fitted to the data using Lisrel-8.12a (Jo$ reskog
& So$ rbom, 1993b).

Results

Aptness of the Cross-informant Model Using
Conventional Rules of Fit

Overall model fit of the cross-informant model (Model
6) is presented in Tables 2a and 2b for parent and teacher
ratings, respectively. Fit indices are provided for two
methods, the PMCCs analysed with ML, and the poly-
choric correlations analysed with ULS. Two models were
evaluated: first, a restricted cross-informant model based
on those problem items common to the CBCL and the
TRF, and second the full cross-informant model
(Achenbach, 1991a, b).

Parent data. For the parent data, the ML estimation
method (applied to PMCCs, Table 2a) gave high model
chi-square values. Two other fit indices (RMSEA and
RMR) provide acceptable to nearly acceptable fit using
conventional cutoff scores. The remaining two fit indices,
GFI and CFI, are well below the range of values

considered acceptable. Similar results are observed for
the common item and the full cross-informant models.

Using the second method, ULS estimation (applied to
the polychoric correlations, Table 2a), the chi-square
values are very high. The remaining four fit indices show
the opposite pattern of results compared with the ML
method of the PMCCs. The RMSEA and RMR are
inadequate, while GFI and CFI are almost acceptable.
There is no difference between the common item and the
full cross-informant model.

No solution could be found for the Norwegian data
using the ULS method nor for the Israeli data for the
common item model.

It should be noted that the above pattern of results is
consistent across the different countries. No clear-cut
differences emerged between population samples and
clinical samples.

Teacher data. The fit indices for the teacher data,
compared with parental data, are somewhat poorer
(Table 2b). Both estimation methods gave high chi-
square values. The two fit indices, RMSEA and RMR,
approach an acceptable fit for the ML analysis of
PMCCs, but again suggest the opposite conclusion for
the polychoric correlations analysed with ULS, namely,
a poor fit. In contrast, the other two fit indices, CFI and
GFI, provide inadequate fit for ML but approximate
acceptable fit for the polychoric correlations analysed
with ULS. The pattern of results is consistent across the
different countries for both referred and nonreferred
samples.

As can be seen from Table 2b, the fit indices for the
common item model and the full cross-informant model
are similar, hence no differentiation between these two
models can be made based on these results.

No solution could be found for the full cross-informant
model for the ULS estimation method for the Greek,
United States, and Israeli teacher data, nor for the
common item model for the latter sample.

Table 3 lists the results from previous CFA studies of
the CBCL (Dedrick et al., 1997; De Groot et al., 1994;
Van den Oord, 1993) and TRF (De Groot et al., 1996).
Comparison of these studies with the present study is
limited to the full cross-informant model and to the ULS
estimation method applied to polychoric correlations.
The chi-square was reported in two studies, and the GFI
and RMR in four studies. Previous results are very
similar to those reported here : RMRs tend to be high,
indicating inadequate fit, while GFIs approach accept-
able fit. Model fit for the teacher data seemed somewhat
poorer than model fit for the parent data.

Using conventional rules of fit, the two methods of
analysis produced somewhat conflicting results (see
Tables 2a, 2b, and 3). Clearly, more detailed analyses are
required to evaluate whether the measurement structure
of the CBCL and TRF is a good approximation of the
covariance patterns in the data.

Aptness of the Cross-informant Model: A
Simulation Study

ML}PMCCs. Separate probability distributions
were derived for each sample (countries), informant
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Table 2a
Model Fit Indices for Cross-informant Measurement Structure of the CBCL (Model 6)

Model
df

Common items
2816

Full model
3451

Method PMCC}ML Polych}ULS PMCC}ML Polych}ULS

Greece (N¯ 1213)
χ# 9518 42,316 11,163 52,235
RMSEA .044 .11 .043 .11
RMR .060 .11 .058 .11
GFI .81 .87 .80 .87
CFI .68 .86 .67 .86

Portugal (N¯ 1375)
χ# 10,402 38,724 12,344 32,153
RMSEA .044 .10 .043 .078
RMR .056 .10 .058 .080
GFI .81 .88 .80 .93
CFI .72 .87 .71 .93

Turkey (N¯ 1564)
χ# 11,821 33,507 14,278 42,907
RMSEA .045 .084 .045 .086
RMR .056 .084 .060 .087
GFI .81 .92 .80 .92
CFI .67 .92 .66 .92

Norway (N¯ 1162)
χ# 9668 11,860
RMSEA .046 .046
RMR .054 Σ(θW ) : npd .055 Σ(θW ) : npd
GFI .81 .79
CFI .65 .62

Netherlands (N¯ 1753)
χ# 16,435 46,872 19,204 55,440
RMSEA .053 .094 .051 .093
RMR .071 .094 .070 .093
GFI .76 .89 .75 .89
CFI .70 .88 .69 .88

Israel (N¯ 2246)
χ# 19,727 49,620 22,860 59,758
RMSEA .052 .086 .050 .085
RMR .069 .086 .068 .085
GFI .78 .91 .76 .91
CFI .67 .89 .66 .89

Israel (N¯ 1340)
χ# 10,756 13,017 93,696
RMSEA .046 .045 .14
RMR .054 ** .054 .14
GFI .81 .79 .81
CFI .63 .60 .79

United States (N¯ 2573)
χ# 15,703 44,605 18,587 53,805
RMSEA .042 .076 .041 .075
RMR .048 .076 .048 .076
GFI .84 .94 .83 .94
CFI .75 .93 .73 .93

PMCC}ML: Maximum Likelihood estimation method applied to product moment correlation
coefficients ; polych}ULS: Unweighted Least Squares estimation method applied to polychoric
correlations; χ# is rounded to the nearest integer ; Greek, Portuguese, Turkish, Norwegian, Israeli
(N¯ 1340) and United States samples are population based; Dutch and Israeli (N¯ 2246)
samples are clinically referred samples.

Σ(θW ) : npd: The estimated model correlation matrix was not positive definite (see Wothke, 1993).
**: The solution did not converge for this model.

(parent and teacher), and model (common symptom
model and full cross-informant model). Each probability
distribution was based on 400 simulation samples. These

simulated probability distributions encompass the range
of values which indicate adequate fit, against which the
validity of the cross-informant model can be assessed.
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Table 2b
Model Fit Indices for Cross-informant Measurement Structure of the TRF (Model 6)

Model
df

Common item model
2816

Full model
4911

Method PMCC}ML Polych}ULS PMCC}ML Polych}ULS

Greece (N¯ 1179)
χ# 16,846 115,776 26,449
RMSEA .065 .18 .061
RMR .092 .18 .10 Σ(θW ) : npd
GFI .67 .83 .61
CFI .65 .82 .65

Portugal (N¯ 1377)
χ# 17,206 58,083 29,071 122,846
RMSEA .061 .13 .060 .13
RMR .086 .13 .096 .13
GFI .70 .91 .64 .90
CFI .69 .91 .66 .90

Turkey (N¯ 1608)
χ# 18,543 70,985 31,293 133,263
RMSEA .059 .12 .058 .13
RMR .083 .12 .092 .13
GFI .71 .90 .64 .89
CFI .67 .90 .65 .89

Netherlands (N¯ 1418)
χ# 17,691 63,424 27,482 100,306
RMSEA .061 .12 .057 .12
RMR .087 .12 .089 .12
GFI .70 .85 .65 .87
CFI .67 .83 .67 .86

Israel (N¯ 954)
χ# 14,747 22,667
RMSEA .067 .062
RMR .091 Σ(θW ) : npd .095 Σ(θW ) : npd
GFI .65 .58
CFI .70 .68

United States (N¯ 2573)
χ# 29,684 76,909 46,349
RMSEA .064 .11 .060
RMR .090 .10 .092 Σ(θW ) : npd
GFI .68 .95 .62
CFI .73 .95 .73

See Table 2a for abbreviations. Greek, Portuguese, Turkish, and United States samples are
population based; the Dutch sample is clinically referred.

Table 3
Model Fit Indices for Full Cross-informant Model in Previous Studies (Model 6)

CBCL
Van den Oord et al.a CBCL

De Groot et al.
CBCL

Dedrick et al.
TRF

De Groot et al.
(N¯ 2148)b (N¯ 1387) (N¯ 2335) (N¯ 631) (N¯ 1221)

χ# not reported 100,580 17,018 not reported
df 2458 2458 3451 3451 4911
GFI .96 .89 .89 .91 .85
RMR .082 .098 .096 .086 .13

Method is Unweighted Least Squares applied to polychoric correlations; χ# is rounded to the
nearest integer.

a A number of items were removed because of low symptom endorsement. Thus the comparison
here is with a somewhat reduced cross-informant model.

b This sample is an adoption sample; all other samples are clinically referred samples.

Tables 4a and 4b provide the simulated intervals
together with the model fit of the cross-informant model
for parents and teachers, respectively. Both the common-
symptom and the full cross-informant models were

evaluated. All indices of model fit, irrespective of model,
informant, or country fall outside the null-distribution’s
range of values indicating adequate fit. This finding
unequivocally indicates that the measurement structure
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Table 4a
Model Fit Indices and 99% Null Hypothesis Intervals for Cross-informant Measurement
Structure of CBCL (Model 6)

Model
df

Common item model
2816

Full model
3451

Model fit 99% interval Model fit 99% interval

Greece (N¯ 1213)
χ# 9518 3514–4237 11,163 4529–5716
RMSEA .044 .014–.020 .043 .016–.023
RMR .060 .027–.031 .058 .028–.032
GFI .81 .92–.93 .80 .90–.92
CFI .68 .92–.96 .67 .88–.93

Portugal (N¯ 1375)
χ# 10,402 3769–4595 12,344 4894–5993
RMSEA .044 .016–.021 .043 .017–.023
RMR .056 .026–.029 .058 .027–.032
GFI .81 .92–.93 .80 .91–.92
CFI .72 .92–.96 .71 .90–.94

Turkey (N¯ 1564)
χ# 11,821 4065–5050 14,278 5498–6911
RMSEA .045 .017–.023 .045 .019–.025
RMR .056 .026–.029 .060 .028–.033
GFI .81 .92–.94 .80 .91–.92
CFI .67 .89–.93 .66 .85–.91

Norway (N¯ 1162)
χ# 9668 4656–6161 11,860 5941–7650
RMSEA .046 .024–.032 .046 .025–.032
RMR .054 .032–.038 .055 .034–.040
GFI .81 .88–.91 .79 .87–.89
CFI .65 .81–.87 .62 .77–.85

Netherlands (N¯ 1753)
χ# 16,435 2923–3336 19,204 3789–4291
RMSEA .053 .005–.010 .051 .007–.012
RMR .071 .020–.022 .070 .020–.023
GFI .76 .95–.96 .75 .95–.95
CFI .70 .98–1.00 .69 .98–.99

Israel (N¯ 1340)
χ# 10,756 4358–5490 13,017 5667–7038
RMSEA .046 .020–.027 .045 .022–.028
RMR .054 .029–.033 .054 .030–.034
GFI .81 .90–.92 .79 .89–.91
CFI .63 .83–.89 .60 .80–.87

Israel (N¯ 2246)
χ# 19,727 3013–3505 22,860 3807–4417
RMSEA .052 .006–.010 .050 .007–.011
RMR .069 .018–.020 .068 .019–.021
GFI .78 .96–.97 .76 .96–.96
CFI .67 .98–.99 .66 .98–.99

United States (N¯ 2573)
χ# 15,703 3398–3949 18,587 4317–5029
RMSEA .042 .009–.013 .041 .010–.013
RMR .048 .018–.020 .048 .018–.020
GFI .84 .96–.97 .83 .96–.96
CFI .75 .97–.99 .73 .96–.98

Method is Maximum Likelihood applied to product moment correlation coefficients ; number of
simulation samples for each model and each country is 400. χ# is rounded to the nearest integer.

Greek, Portuguese, Turkish, Norwegian, Israeli (N¯ 1340) and United States samples are
population based; Dutch and Israeli (N¯ 2246) samples are clinically referred samples.

of the cross-informant model does not adequately de-
scribe the covariance patterns in the current data, above
and beyond the lack of fit engendered by the distribution
properties of the items.

In Tables 4a and 4b it can be seen that model fit for
teachers is somewhat poorer than that for parents. To
illustrate this, in Tables 4a and 4b chi-square for the
common symptom model is 9518 (interval 3514–4237) for
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Table 4b
Model Fit Indices and 99% Null Hypothesis Intervals for Cross-informant Measurement
Structure of TRF (Model 6)

Model
df

Common item model
2816

Full model
3451

Model fit 99% interval Model fit 99% interval

Greece (N¯ 1179)
χ# 16,846 5037–6991 29,449 8228–10,313
RMSEA .065 .026–.035 .061 .024–.031
RMR .092 .031–.038 .10 .030–.036
GFI .67 .87–.90 .61 .85–.88
CFI .65 .86–.92 .65 .88–.92

Portugal (N¯ 1377)
χ# 17,206 5057–6102 29,071 8211–9692
RMSEA .061 .024–.029 .060 .022–.027
RMR .086 .028–.033 .096 .027–.031
GFI .70 .90–.92 .64 .88–.90
CFI .69 .90–.94 .66 .91–.93

Turkey (N¯ 1608)
χ# 18,543 5070–6230 31,293 7858–9316
RMSEA .061 .022–.027 .058 .019–.024
RMR .086 .026–.030 .092 .025–.028
GFI .70 .91–.93 .64 .90–.91
CFI .69 .91–.94 .65 .92–.94

Netherlands (N¯ 1418)
χ# 17,691 3065–3588 27,482 5448–6076
RMSEA .061 .008–.014 .057 .009–.013
RMR .087 .022–.025 .089 .022–.025
GFI .70 .94–.95 .65 .92–.93
CFI .67 .97–.99 .67 .98–.99

Israel (N¯ 954)
χ# 14,747 3973–4847 22,667 7004–8090
RMSEA .067 .021–.028 .062 .021–.026
RMR .091 .027–.032 .095 .028–.032
GFI .65 .87–.91 .58 .86–.88
CFI .70 .93–.96 .68 .92–.95

United States (N¯ 2357)
χ# 29,684 5637–6812 46,349 9375–10,945
RMSEA .064 .021–.025 .060 .020–.023
RMR .090 .021–.025 .092 .021–.024
GFI .68 .92–.94 .62 .90–.92
CFI .73 .95–.96 .73 .95–.96

Method is Maximum Likelihood applied to product moment correlation coefficients ; number of
simulation samples for each model and each country is 400; χ# is rounded to the nearest integer.

Greek, Portuguese, Turkish, and United States samples are population based; the Dutch sample
is a clinically referred sample; the Israeli sample is a mixed sample.

Greek parents and 16,846 (interval 5037–6991) for Greek
teachers. The model for parents differs less than that of
the teachers. A similar conclusion holds for the other fit
indices. Thus, both models fit poorly but the teacher
model diverges somewhat more than that of the parent
model from the expected values under the cross-inform-
ant model.

Tables 4a and 4b illustrate that model fit is poorer for
clinically referred samples than for population-based
samples. As an illustration, chi-square for the common
symptom CBCL model is 11,821 (interval 4065–5050) for
the Turkish population sample and 16,435 (interval
2923–3336) for the Dutch clinical sample. Model fit
differs less from the range of values indicating adequate
fit for the population sample than for the clinical sample.
A similar conclusion holds for the other fit indices. Thus,
both are poor fits, but the clinical sample diverges more

than the population sample from the expected values
under the cross-informant model.

ULS}Polychoric correlations. It was not possible to
derive probability distributions of the fit indices for the
polychoric correlations evaluated with ULS. For the vast
majority of samples no solution could be found when the
cross-informant model was fitted to the simulated data.
The teacher data were in this respect even more prob-
lematic than the parent data. Since symptom endorse-
ment was lower for the teachers, this suggests that the
estimation problems are due to the skewed data.

In the first stage of the simulation procedure, standard
normally distributed variables were generated and trans-
formed such that, except for sampling variation, their
covariance structure was in agreement with the cross-
informant measurement structure. For the purposes of
locating the cause of the estimation problems, the cross-
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Table 5
Comparative Factor Models

Model Properties

Model 1
Independence model Assumes no covariation among the problem items and hence no underlying problem

dimensions.
Indicates lowest level of fit for these problem items.

Model 2
Single-factor model Assumes a single undifferentiated psychopathology factor underlying the problem items, as

reported by the informant.
Model 3

Orthogonal eight-factor model Assumes uncorrelated factors but is otherwise identical to the cross-informant model.

Model 4
Two-factor model Assumes no differentiation within internalising and externalising problem dimensions, i.e.

withdrawn, somatic complaints, and anxious}depressed are represented as a single factor
and delinquency and aggression are represented as a second factor. Social problems, thought
problems, and attention problems load on both the internalising and externalising factor.
The two factors are allowed to correlate.

Model 5
Five-factor model Identical to two-factor model regarding the internalising and externalising distinction. In

contrast, social problems, thought problems, and attention problems do not load on the
internalising-externalising factors but are represented as separate factors. The five factors
are allowed to correlate.

Model 6
Cross-informant model Assumes eight correlated problem dimensions (see Fig. 1).

Model 7
Unrestricted model Assumes eight factors underlying the problem items but leaves unspecified which symptoms

load with which factors (Jo$ reskog, 1978b). The eight factors are allowed to correlate.
Indicates upper level of fit for an eight-factor model.

informant model was fitted to the PMCCs calculated for
these normally distributed data. No estimation problems
occurred in this phase.

In the second stage, these simulated data were trichoto-
mised according to the distribution of each of the problem
items in the actual sample. When the cross-informant
model was fitted to the polychoric correlations estimated
from these categorised data, the estimation problems
emerged. Removal of the most skewed symptoms resulted
in convergence of the model fitting process in most
samples.

These results again suggest that accurate estimation of
the population polychoric correlations may not be
possible for extremely skewed categorically measured
data (see Muthe!n, 1989; Muthe!n et al., 1993). A small
change in the number of children in the 1 and 2 categories
of the distribution may result in a large change in the
estimated values of the polychoric correlation with other
variables. The results suggest that sampling variability
caused the polychoric correlations to deviate from the
cross-informant measurement structure to the extent that
no solutions could be obtained.

Aptness of Cross-informant Model: Comparison
with Other Models

The cross-informant model was compared with a
number of alternative models. Table 5 provides a de-
scription of these models. Fit indices for these models are
presented in Tables 6a and 6b, for parent and teacher
data respectively. Results are provided for both PMCCs

analysed with ML and polychoric correlations analysed
with ULS. Tables 6a and 6b are based on the problem
items of the full cross-informant model. (Similar tables
based on the problem items of the common symptom
model may be obtained from the first author.)

Results were similar for parent and teacher data, for
the two methods of analysis, and for the common
symptom model as well as the full cross-informant model.

The independence model (Model 1) shows extremely
poor fit in all instances, indicating that there is con-
siderable covariance among the problem items, which
needs to be explained.

The single factor model (Model 2) shows a large
improvement in fit as compared with the independence
model. This result indicates that a considerable part of
the covariation is explained by one undifferentiated
factor.

For the orthogonal cross-informant model (Model 3),
large residuals (RMR) were found. These residuals
approach those of the independence model, which indi-
cates the lowest possible fit for these items. Again, this
finding is indicative of substantial covariance underlying
the problem items. The poor fit of the orthogonal cross-
informant model becomes worse for the polychoric
correlations analysed with ULS. In a number of instances
no solution could be found for this method.

In comparison to the single-factor model, the two-
factor model (Model 4) shows some improvement in fit.
This suggests some support for the distinction between
internalising and externalising problem behaviour, par-
ticularly for teachers.

The goodness of fit of the five-factor model (Model 5)
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Table 6a
Model Fit for Comparative Factor Models for Parent Ratings

df

Independence
Model 1

3570

1-factor
Model 2

3485

Orthogonal
Model 3

3479

2-factor
Model 4

3461

5-factor
Model 5

3465

C.I.
Model 6

3451

Unrestricted
Model 7

2918

Greece (N¯ 1213)
ML}PMCCS

χ# 27,084 13,961 14,257 11,980 11,856 11,163 6695
RMSEA .074 .050 .051 .045 .045 .043 .033
RMR .15 .057 .13 .052 .057 .058 .029
GFI .34 .72 .74 .79 .79 .80 .88
CFI .00 .55 .54 .64 .64 .67 .84

ULS}Polych
χ# 353,240 65,943 263,561 54,254 54,656 52,235
RMSEA .28 .12 .25 .11 .11 .11
RMR .28 .12 .24 .11 .11 .11 **
GFI .13 .84 .35 .87 .86 .87
CFI .00 .82 .26 .85 .85 .86

Portugal (N¯ 1375)
ML}PMCCS

χ# 34,462 17,092 16,268 14,237 13,774 12,344 6779
RMSEA .079 .053 .052 .048 .047 .043 .031
RMR .17 .064 .14 .056 .057 .058 .026
GFI .28 .67 .73 .75 .76 .80 .89
CFI .00 .56 .59 .65 .67 .71 .88

ULS}Polych
χ# 435,709 49,784 35,734 35,660 32,153
RMSEA .30 .10 .082 .082 .078
RMR .29 .10 Σ(θW ) : npd .084 .084 .080 **
GFI .12 .90 .93 .93 .93
CFI .00 .89 .93 .93 .93

Turkey (N¯ 1564)
ML}PMCCS

χ# 35,287 19,375 18,402 16,419 16,429 14,278 7694
RMSEA .075 .054 .052 .049 .049 .045 .032
RMR .15 .065 .13 .058 .059 .060 .027
GFI .34 .68 .73 .75 .75 .80 .89
CFI .00 .50 .53 .59 .59 .66 .85

ULS}Polych
χ# 488,334 62,748 48,170 42,907
RMSEA .29 .10 .091 .086
RMR .29 .10 Σ(θW ) : npd .092 Σ(θW ) : npd .087 **
GFI .12 .89 .91 .92
CFI .00 .88 .91 .92

Norway (N¯ 1162)
ML}PMCCS

χ# 25,426 14,753 14,229 12,776 12,643 11,860 7562
RMSEA .073 .053 .052 .048 .048 .046 .037
RMR .14 .060 .11 .054 .056 .055 .032
GFI .38 .71 .74 .77 .77 .79 .86
CFI .00 .48 .51 .57 .58 .62 .79

ULS}Polych
χ# 465,443 153,736 137,161
RMSEA .33 .19 .18
RMR .33 .19 Σ(θW ) : npd .18 Σ(θW ) : npd Σ(θW ) : npd **
GFI .096 .70 .73
CFI .00 .67 .71

Netherlands (N¯ 1753)
ML}PMCCS

χ# 53,620 30,664 23,251 23,382 21,925 19,204 9796
RMSEA .089 .067 .057 .057 .055 .051 .037
RMR .18 .086 .14 .070 .073 .070 .027
GFI .26 .53 .70 .69 .71 .75 .87
CFI .00 .46 .60 .60 .63 .69 .86

ULS}Polych
χ# 434,497 97,466 271,199 61,022 61,999 55,440
RMSEA .26 .12 .21 .097 .098 .093
RMR .26 .12 .21 .098 .098 .093 **
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Table 6a (cont.)

df

Independence
Model 1

3570

1-factor
Model 2

3485

Orthogonal
Model 3

3479

2-factor
Model 4

3461

5-factor
Model 5

3465

C.I.
Model 6

3451

Unrestricted
Model 7

2918

GFI .15 .81 .47 .88 .87 .89
CFI .00 .78 .38 .87 .86 .88

Israel (N¯ 2246)
ML}PMCCS

χ# 60,081 33,188 28,417 27,211 26,368 22,860 11,579
RMSEA .084 .062 .057 .055 .054 .050 .036
RMR .17 .073 .14 .065 .070 .068 .027
GFI .29 .59 .71 .72 .72 .76 .88
CFI .00 .47 .56 .58 .59 .66 .85

ULS}Polych
χ# 536,552 93,943 368,364 65,987 59,758
RMSEA .26 .11 .22 .090 .085
RMR .26 .11 .21 .090 ** .085 **
GFI .15 .85 .42 .90 .91
CFI .00 .83 .32 .88 .89

Israel (N¯ 1340)
ML}PMCCS

χ# 27,479 15,198 16,352 13,817 13,697 13,017 8064
RMSEA .071 .050 .053 .047 .047 .045 .036
RMR .14 .056 .12 .052 .054 .054 .032
GFI .39 .74 .73 .78 .78 .79 .87
CFI .00 .51 .46 .57 .57 .60 .78

ULS}Polych
χ# 434,500 105,685 336,651 96,018 97,108 93,696
RMSEA .30 .15 .27 .14 .14 .14
RMR .30 .15 .26 .14 .14 .14 **
GFI .12 .78 .31 .80 .80 .81
CFI .00 .76 .23 .79 .78 .79

United States (N¯ 2573)
ML}PMCCS

χ# 60,050 26,012 25,986 22,212 21,260 18,587 10,310
RMSEA .078 .050 .050 .046 .045 .041 .031
RMR .17 .054 .14 .049 .049 .048 .025
GFI .28 .73 .76 .79 .80 .83 .91
CFI .00 .60 .60 .67 .68 .73 .87

ULS}Polych
χ# 754,539 78,516 539,839 61,930 60,876 53,805
RMSEA .29 .091 .24 .081 .080 .075
RMR .28 .091 .24 .081 .080 .076 **
GFI .13 .91 .38 .93 .93 .94
CFI .00 .90 .29 .92 .93 .93

Chi-squares are rounded to the nearest integer.
Σ(θW ) : npd: The estimated model correlation matrix is not positive definite (see Wothke, 1993).
**: The solution did not converge for this model.
Models are based on the 85 problem items of the full CBCL cross-informant model.
Greek, Portuguese, Turkish, Norwegian, Israeli (N¯ 1340), and US samples are population based; Dutch and Israeli (N¯ 2246)

samples are clinically referred samples.

is very similar to that of the two-factor model. No change
in fit is observed whether social problems, thought
problems, and attention problems are represented as
separate factors or whether they are specified as loading
on both internalising and externalising problem dimen-
sions. For a number of samples no solution could be
found for the polychoric correlations analysed by ULS.

The cross-informant model (Model 6) shows a minor
improvement compared with the two- and five-factor
model. This shows that the differentiation of a crude
internalising problem dimension into more specific types
of internalising problem behaviour, i.e. withdrawn, soma-
tisation, and anxiety}depression, is not strongly sup-
ported by the data. A similar conclusion holds for the

distinction of externalising behaviour into aggression and
delinquency.

The unrestricted model (Model 7) shows considerable
improvement in fit compared with the cross-informant
model. The unrestricted model evaluates whether eight
factors are in principle an adequate number to explain the
covariance patterns of the data without imposing ad-
ditional restrictions as to which problem items load with
which factors. The improvement in fit for the unrestricted
model compared with the cross-informant model suggests
that there is misspecification in the measurement struc-
ture of the CBCL and the TRF. No solutions could be
found for this model for the polychoric correlations
analysed with ULS.
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Table 6b
Model Fit for Comparative Factor Models for Teacher Ratings

df

Independence
Model 1

5050

1-factor
Model 2

4949

Orthogonal
Model 3

4939

2-factor
Model 4

4909

5-factor
Model 5

4925

C.I.
Model 6

4911

Unrestricted
Model 7

4270

Greece (N¯ 1179)
ML}PMCCS

χ# 66,833 39,141 30,237 29,331 28,400 29,449 13,629
RMSEA .10 .077 .066 .065 .064 .061 .043
RMR .24 .10 .19 .085 .10 .10 .029
GFI .15 .36 .57 .52 .58 .61 .81
CFI .00 .45 .59 .60 .62 .65 .85

ULS}Polych
χ# 1,044,338 212,328 159,271
RMSEA .42 .19 .16
RMR .41 .19 Σ(θW ) : npd .16 Σ(θW ) : npd Σ(θW ) : npd **
GFI .05 .81 .86
CFI .00 .80 .85

Portugal (N¯ 1377)
ML}PMCCS

χ# 75,909 42,427 33,410 32,037 31,081 29,071 15,811
RMSEA .10 .074 .065 .063 .062 .060 .044
RMR .24 .097 .19 .081 .093 .096 .028
GFI .15 .39 .58 .58 .61 .64 .80
CFI .00 .47 .60 .62 .63 .66 .84

ULS}Polych
χ# 1,171,345 171,753 114,792 122,846
RMSEA .41 .16 .13 .13
RMR .41 .16 Σ(θW ) : npd .13 Σ(θW ) : npd .13 **
GFI .056 .86 .91 .90
CFI .00 .86 .91 .90

Turkey (N¯ 1608)
ML}PMCCS

χ# 79,797 45,761 37,140 33,279 33,288 31,293 14,925
RMSEA .096 .072 .064 .060 .060 .058 .039
RMR .22 .097 .18 .079 .092 .092 .026
GFI .16 .39 .59 .57 .61 .64 .83
CFI .00 .45 .57 .62 .62 .65 .86

ULS}Polych
χ# 1,176,981 185,621 117,278 133,263
RMSEA .38 .15 .12 .13
RMR .38 .15 Σ(θW ) : npd .12 Σ(θW ) : npd .13 **
GFI .065 .85 .91 .89
CFI .00 .85 .90 .89

Netherlands (N¯ 1418)
ML}PMCCS

χ# 72,897 40,671 31,172 33,269 30,338 27,482 13,836
RMSEA .097 .071 .061 .064 .060 .057 .040
RMR .22 .094 .17 .088 .092 .089 .028
GFI .15 .43 .60 .55 .61 .65 .82
CFI .00 .47 .61 .58 .63 .67 .86

ULS}Polych
χ# 693,853 138,836 410,758 104,430 106,958 100,306
RMSEA .31 .14 .24 .12 .12 .12
RMR .31 .14 .24 .12 .12 .12 **
GFI .093 .82 .46 .86 .86 .87
CFI .00 .81 .41 .86 .85 .86

Israel (N¯ 954)
ML}PMCCS

χ# 60,809 32,578 27,789 25,435 24,453 22,667 11,804
RMSEA .11 .077 .070 .066 .065 .062 .043
RMR .28 .098 .24 .086 .095 .095 .028
GFI .11 .35 .53 .50 .55 .58 .79
CFI .00 .50 .59 .63 .65 .68 .86

ULS}Polych
χ# 867,315 100,109 73,292
RMSEA .42 .14 .12
RMR .42 .14 Σ(θW ) : npd .12 Σ(θW ) : npd Σ(θW ) : npd **
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Table 6b (cont.)

df

Independence
Model 1

5050

1-factor
Model 2

4949

Orthogonal
Model 3

4939

2-factor
Model 4

4909

5-factor
Model 5

4925

C.I.
Model 6

4911

Unrestricted
Model 7

4270

GFI .053 .89 .92
CFI .00 .89 .92

United States (N¯ 2357)
ML}PMCCS

χ# 156,182 74,900 56,165 60,748 52,685 46,349 22,120
RMSEA .11 .077 .066 .069 .064 .060 .042
RMR .30 .096 .24 .086 .090 .092 .024
GFI .099 .37 .57 .46 .58 .62 .82
CFI .00 .54 .66 .63 .68 .73 .88

ULS}Polych
χ# 2,634,919 215,602 135,384
RMSEA .47 .13 .11
RMR .47 .13 Σ(θW ) : npd .11 Σ(θW ) : npd Σ(θW ) : npd **
GFI .043 .92 .95
CFI .00 .92 .95

Chi squares are rounded to the nearest integer.
Σ(θW ) : npd: The estimated model correlation matrix is not positive definite (see Wothke, 1993).
**: The solution has not converged for this model.
Models are based on the 101 problem items of the full TRF cross-informant model.
The Greek, Portuguese, Turkish, Israeli, and US samples are population based; the Dutch sample is a clinically referred sample.

Based on the comparisons between this series of
models, we do not find strong support for the differen-
tiation between the eight syndrome dimensions of the
CBCL and the TRF.

Discussion

In this paper the internal construct validity of the
cross-informant model of the CBCL and the TRF was
evaluated using CFA. Using conventional cutoff scores
for assessingmodel fit, it was found that different methods
and fit indices provided somewhat conflicting results. For
ML, RMSEA and RMR approached adequate fit for the
cross-informant model, whereas GFI and CFI indicated
inadequate fit. In contrast, for ULS, GFI and CFI
suggested almost adequate fit for the cross-informant
model, whereas RMSEA and RMR indicated inadequate
fit. Since there is no agreed best method for factor
analysing the data reported here, these results indicate
that reliance on a single method or fit index is un-
warranted. In order not to be dependent on conventional
rules of fit, which may not be applicable to the present
data, empirical probability distributions of the fit indices
were derived in a simulation study. It was shown that the
fit indices as they were found for the cross-informant
model were well outside the range of values indicating
adequate fit. Hence, the cross-informant model was
unequivocally rejected. However, it could be argued that,
given the large model, adequate fit is not a realistic goal
(see Marsh et al., 1998). Therefore, in addition to
interpretation of goodness of fit in absolute terms, the
explanatory value of the cross-informant model was
examined as compared to simpler models. The results
showed a general dominance of a single factor and a
negligible improvement in model fit for the cross-
informant model as compared with the internalising and
externalising problem dimensions. Thus, these results
indicate poor conceptual differentiation and little em-
pirical evidence as to how the cross-informant syndromes

are indexed by which items. These results were consistent
across countries, informants, and both population and
clinical samples". In view of the differences between the
present and past reports on the cross-informant model of

"One anonymous reviewer suggested that the cross-informant
model as formulated (Achenbach, 1991a, b) is too stringent a
test of the proposed structure of the CBCL and the TRF. It
was proposed that a more appropriate model would be one that
allows the specific factors to be mutually correlated. We agree
with the argument that there are many reasons why test items
may be correlated above and beyond the more substantive
factors of interest in the measurement instrument (e.g. difficulty
factors, synonyms, etc.). Therefore, we explored the possibility
of an adequate model fit for a correlated uniqueness cross-
informant model. However, based on the ML}PMCC method
and the common item model, model fit did not increase to any
great extent for any of the samples when all correlated errors&
r.20r were modelled. The reviewer’s second suggestion with
regard to correlated errors concerned the comparison with
alternative models (e.g. a two-factor model). It was argued quite
rightly that unmodelled correlated errors in anymodel decreases
the potential to discriminate between them. To explore this, we
used the sample with the largest number of correlated errors for
the cross-informant model (Greek teacher sample), and com-
pared the goodness of fit with the two-factor model, for which,
similarly, all correlated errors& r.20r were modelled. Model fit
was slightly better for the more parsimonious two-factor
correlated uniqueness model (11 correlated errors, df¯ 2806,
χ#¯ 13,731, RMSEA¯ .057, RMR¯ .082, GFI¯ .73,
CFI¯ .72) as compared to the cross-informant correlated
uniqueness model (18 correlated errors, df¯ 2798, χ#¯ 14,150,
RMSEA¯ .059, RMR¯ .085, GFI¯ .72, CFI¯ .71). It was
not realistic to model the correlated errors for the ULS}
polychoric correlations method, because of the extremely large
number of correlated errors & r.20r present, which is most
probably due to the erratic behaviour of the polychoric
correlation coefficient. The issue of correlated errors could
obviously be explored in much more detail. As it stands, this
result supports our claim that the cross-informant model does
not show adequate construct differentiation.
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the CBCL (Achenbach, 1991a, b; Berg et al., 1997;
Dedrick et al., 1997; De Groot et al., 1994; Macmann et
al., 1992; Van Den Oord, 1993) and the TRF (De Groot
et al., 1996), these studies are discussed below.

The original factorial structure of the CBCL and the
TRF was developed with PCA (Achenbach, 1991a, b).
PCA does not evaluate model fit. Rather, PCA identifies
possible dimensions that account for covariation among
items. The eight syndromes of the CBCL and the TRF
were derived on the basis of replication in different
samples (Achenbach, 1991a, b). However, the process of
identifying, refining, and redefining constructs may pro-
ceed slowly and extend across many more subsequent
studies, since the conceptual boundaries may only be
dimly perceived in the first stages of this research
(Comrey & Lee, 1992). A PCA (cf. EFA) may give only a
rough idea of the underlying dimensions. A follow-up
CFA allows this preliminary model to be refined more
precisely. A distinction should therefore be made between
the possible identification of problem dimensions and the
precision with which these dimensions are conceptualised
and measured, as evaluated by CFA. In CFA, the
hypothesised cross-informant model is tested for its fit
with the observed covariance structure of the problem
items. The poor fit reported here suggests little support
for the cross-informant syndromes and their differenti-
ation as currently defined.

De Groot et al. (1994, 1996) derived a Dutch model for
the CBCL and the TRF. In the first phase of these studies,
the emphasis was on the identification of syndrome
dimensions. De Groot et al. followed an exploratory
approach, subjecting half of the sample to an EFA, to
identify a model for the Dutch sample. In the second
phase of this research, both the Dutch and the cross-
informant (Achenbach, 1991a, b) models were fitted to
the remaining half of the Dutch sample by means of
CFA. For the CBCL, it was found that the eight-factor
solution of the EFA was similar in content to the eight
cross-informant syndromes. This result was chosen to
represent the Dutch model. In contrast, for the TRF a 12-
factor solution was required to identify 8 factors that
were similar in content to the cross-informant syndromes.
Thus, four additional factors were present in the TRF
data, which were not modelled in the eight-factor Dutch
model, which was subsequently fitted to the remaining
part of the sample. Consistent with this, De Groot et al.
found a poorer fit for the Dutch TRF model than for the
Dutch CBCL model (see Table 3 here).

It could be argued that the poorer fit indices for the
teacher model (De Groot et al., 1996) were caused by a
greater violation of distribution assumptions, since
teacher ratings are generally more skewed than parent
ratings (present study; see also Spiker, Kraemer, Con-
stantine, & Bryant, 1992). However, these differences in
skew were incorporated here in the simulation study and,
despite this, a slightly poorer fit was found for the TRF
compared with the CBCL (see Tables 4a and 4b).

De Groot et al. (1994, 1996) showed that for both the
CBCL and the TRF the fit indices of the cross-informant
model were nearly identical to those of the Dutch CBCL
and TRF models. The authors interpreted this to imply
that ‘‘ the cross-informant syndromes transcend dif-
ferences in language, culture and mental health systems

between Holland and the United States ’’. Identical fit
could be interpreted equally well, however, as a relatively
arbitrary composition of the items in the scales. For
example, in the Dutch CBCL model the items ‘‘brags’’
and ‘‘disobedient at school ’’ are part of the delinquent
behaviour syndrome; ‘‘ jealous’’ is part of the anxious}
depressed syndrome; ‘‘fights ’’ and ‘‘attacks people ’’ are
part of the social problems syndrome. In contrast, these
five problem items are part of the aggressive behaviour
syndrome in the cross-informantmodel. Similar examples
of exchangeable problem items hold for other syndrome
dimensions. Thus, on the basis of the covariation patterns
in this Dutch sample, it could not be determined whether
the Dutch model or the cross-informant model provide a
better model for the data, since identical fits were found.
Consequently, this result may be interpreted as imprecise
measurement of the diagnostic constructs rather than
cross-cultural robustness, because of a relative arbi-
trariness of the problem items in the scales.

Furthermore, a relatively arbitrary construct represen-
tation of the CBCL and the TRF is consistent with the
present findings and those from the study by Dedrick et
al. (1997). Dedrick et al. compared the cross-informant
model with three alternative models : the independence
model, the single-factor, and the orthogonal eight-factor
model. This showed the same pattern of results as was
repeatedly found for the samples analysed here. Con-
siderable improvement in fit was found for the single-
factor model over both the independence model and the
orthogonal eight-factor model. In contrast, improvement
in fit for the cross-informant model compared with the
single-factor model was small. Taken together, these
results indicate that a large single factor dominates the
problem items. This factor may in part be due to a halo
effect (Epkins, 1994), which is a threat to the constructs
measured by the instrument, since they cannot be
differentiated adequately from one another. The halo
effect may be defined as a rater’s failure to discriminate
among conceptually distinct and possibly independent
aspects of the ratee’s performance which, in turn, results
in higher correlations among rating dimensions than the
true levels of these correlations (Pulakos, Schmitt, &
Ostroff, 1986, p. 29). An alternative explanation is that
the instrument(s) is measuring one general psychopath-
ology factor (Macmann et al., 1992).

In addition to the single-factor model comparison, the
cross-informant model was compared here with two
models based on the internalising and externalising
dimensions. It was found that model fit slightly improved
over the single-factor model, suggesting some but not
considerable support for the internalising-externalising
distinction. Macmann et al. (1992) showed that for a two-
factor model (PCA, biquartimin rotation), the majority
of problem items of the CBCL had factor loadings & .40
on both the internalising and externalising dimensions.
On the basis of this result, Macmann et al. concluded that
the CBCL does not reliably distinguish internalising from
externalising problem dimensions. Further differenti-
ation into eight syndrome dimensions was not supported
by the results reported in the present study, since
improvement in model fit of the cross-informant model
compared with the internalising-externalising models was
negligible.
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A recent study on the convergence between the cross-
informant syndromes of the CBCL and clinical diagnoses
showed that each CBCL scale predicted a broad range of
DSM-III-R diagnoses (Kasius, Ferdinand, van den Berg,
& Verhulst, 1997). This finding was attributed to high
comorbidity, intrinsic to childhood psychopathology.
While recognising the presence of high comorbidity in
childhood psychopathology (Angold et al., 1999), the low
specificity of the CBCL scales with regard to widely
varying DSM diagnoses additionally suggests insufficient
construct differentiation in the CBCL. Consistent with
this, Lachar (1998) pointed out that the primary evidence
of the validity of the CBCL and TRF, as reported in the
1991 manuals (Achenbach, 1991a, b), is that syndrome
scales differentiate between clinically referred and nor-
mative samples. However, the effectiveness of individual
scales with regard to making specific distinctions between
different clinical groups was scarcely documented
(Lachar, 1998).

The cross-informant model (Achenbach, 1991a, b) was
derived following a procedure that effects goodness of fit
in CFA. Items that loaded & .40 on the aggressive
syndrome and & .30 on a second syndrome were retained
only for the second syndrome. This procedure ignores the
fact that these items measure two factors rather than one.
Further, these items load more on aggression than on the
syndrome dimensions to which they were actually as-
signed in the cross-informant model. Here, the fit of the
unrestricted model, which imposes the minimum number
of restrictions as to which problem items load with which
factors, consistently showed the presence of substantial
misspecification and}or cross-loadings in the cross-infor-
mant model. This finding may, at least in part, be
explainedby the orthogonal rotation procedure originally
used by Achenbach to derive the cross-informant syn-
dromes. Problem dimensions in child psychopathology
are known to be highly correlated (Angold et al., 1999).
In the present study, the fit indices for the orthogonal
cross-informant model (Model 2) do, in fact, show that
this model strains reality. When an orthogonal rotation
method in a PCA (cf. EFA) is used, the covariation
present in the data comes through in a less conceptually
clean factor structure, i.e. incorrect classification of items
on factors and}or a large amount of substantial dual or
multiple loadings (Cattell & Dickman, 1962; see also
Cattell, 1973).

Thus, Van den Oord (1993) allowed a large number of
items to (1) have secondary or more cross-loadings on
other syndrome dimensions, and (2) load on different
syndrome dimensions than originally specified in the
cross-informant model. These revisions of the cross-
informant model change the conceptual meaning of the
syndrome dimensions and the boundaries between them.
The resulting improvement in model fit found by Van den
Oord further indicates a lack of empirical support for the
cross-informant syndromes as currently defined.

A modified model that was based on the best items (47
out of 85) was used in a subsequent study by Van den
Oord, Verhulst, and Boomsma (1994). On the basis of
both Dutch and French data, Berg et al. (1997) proposed
a reduced model using 43 out of 85 problem items. De
Groot et al. (1994) also referred to the more robust
version of the cross-informant syndromes consisting of

the overlapping items between the Dutch measurement
structure and the U.S. based cross-informant model.
However, the overlap of ‘‘robust ’’ CBCL items for these
three studies is small, reducing the cross-informant model
to four items (aggression) or three items (remaining
scales) for each dimension (factor loadings& .40 on the
appropriate factor in three studies ; Van den Oord, 1993,
was used for this purpose, because the factor solution was
not reported for the 47-item version that was used in the
Van den Oord et al., 1994, study). The small item-
overlap across studies suggests a loose anchoring of most
problem items in the cross-informant syndrome scales.
The construct validity of these reduced factors as meas-
ured by the remaining few problem items remains to be
determined.

From a conceptual point of view, loose anchoring of
items in the scale is consistent with what Kamphaus and
Frick (1996) refer to as a lack of coherence of the CBCL
and TRF cross-informant syndromes: the item content of
the problem dimensions tends to be heterogeneous,
leading to problems of interpretation (see also Lachar,
1998). Kamphaus and Frick stress that in order to
understand the meaning of an elevated syndrome scale
score, it is imperative to view which individual items
caused the elevation. However, the sole purpose of
summing items into syndrome scores is to yield a more
reliable and conceptually more meaningful score than
any of the individual item scores.

A second criticism made by Kamphaus and Frick
(1996) concerns the conceptual differentiation between
the scales of the CBCL and TRF. They argue that the
combination of constructs such as anxiety and depres-
sion, and hyperactivity and inattention, into single scales
hinders differential diagnosis. The inductive approach
used for the derivation of the cross-informant syndromes
assumes that one may proceed from problem items to
adequate syndrome dimensions. However, the adequacy
of the dimensions that emerge is a function of the original
item pool. In this sense, an inadequate item pool may lead
to a lack of conceptual differentiation. The inductive
method of questionnaire construction has, moreover,
been associated with the following aspects of measure-
ment imprecision: conceptual overlap and imprecise
boundaries among the constructs, heterogeneous items
that do not necessarily have a clear substantive link to the
construct, and substantial method (e.g. halo) rather than
construct specific variance (Jackson, 1971). This is con-
sistent with the findings for the cross-informant model
discussed here.

Although the CBCL and TRF development was never
intended to replace a clinical diagnosis (Achenbach,
1995), there has been a tendency in clinical practice to
assume that the syndrome dimensions generated from
these instruments are indeed clinical ones. This unfor-
tunate practice should be avoided. Even accepting this
point, the meaning of the peaks and the troughs in the
CBCL and TRF profiles is obscure, because there is little
evidence to support the homogeneity and differentiation
of the eight syndrome dimensions. Therefore, it is
precarious to interpret differences in scale scores. Fur-
thermore, in research, the power of any study that is
aimed at the understanding of childhood psychiatric
syndromes depends on the rigour with which the di-
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agnostic groups were defined and selected. Therefore,
based on the present results, selection of groups on the
basis of high scores on individual CBCL and TRF
syndrome scales may be far from optimal because of
insufficient measurement precision. That is, scale scores
will show too low an association with variables of interest
and too high an association with irrelevant variables.

In sum, the present CFA study evaluated the internal
validity of the construct representation of the CBCL and
the TRF, and consistently showed inadequate empirical
support for the cross-informant syndromes.
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