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In a hierarchical or fixed-order regression analysis, the independent variables are
entered into the regression equation in a prespecified order. Such an analysis is
often performed when the extra amount of variance accounted for in a dependent
variable by a specific independent variable is the main focus of interest (e.g.,
Cohen & Cohen, 1983). For example, in the area of reading achievement, there
is a general interest in the specific abilities that predict reading development.
Because these specific abilities are often correlated with more general abilities,
such as verbal intelligence, the latter abilities are controlled for first (e.g., Wag-
ner, Torgesen, & Rashotte, 1994). An additional reason for performing a hierar-
chical regression analysis is that, in these research applications, as well as in
many others, the independent variables are often highly correlated. When corre-
lated independent variables are included simultaneously in the regression model,
multicollinearity arises (Cohen & Cohen, 1983). Though regularly used with ob-
served variables, hierarchical regression analysis has not been performed with
latent variables. In most applications of structural equation modeling (SEM), the
latent predictors have been entered simultaneously into the regression model, al-
though in several cases hierarchical regression analysis would have been the
more appropriate approach (e.g., Guthrie et al., 1998; Normandeau & Guay,
1998; Wagner et al., 1994; Wagner et al., 1997).
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In this article we describe how a hierarchical regression analysis may be con-
ducted in SEM. The main procedure proposed is to perform a Cholesky or triangu-
lar decomposition of the intercorrelations among the latent predictors (Harman,
1976; Loehlin, 1996). First the procedure is described and then an example of a hi-
erarchical regression analysis with latent variables is given.

THE CHOLESKY APPROACH

In Figure la, a path diagram of a structural model is shown in which three latent
predictors, F\ to F3, affect a fourth latent variable F4. The predictors F\ to F3 are
correlated. Figure lb depicts a Cholesky decomposition of the intercorrelations
among the predictors using the Bentler-Weeks notation, which is applied in the
program EQS (Bentler, 1993). The three latent predictors load in a specific way
on the three new uncorrelated latent variables, Fs to Ft (see Harman, 1976;
Loehlin, 1996). As can be seen, F\ loads only on F5, F2 is dependent on Fs and
Ff,, and F3 is determined by all three newly formed latent variables. Figure lc is
similar to Figure lb, but in this figure the notation of the LISREL program
(Joreskog & Sorbom, 1993) is used.

Mathematically, a Cholesky decomposition of the matrix of intercorrelations
among the latent predictors concerns the decomposition of this matrix into the
product of a triangular matrix and its transpose (Neale & Cardon, 1992). Note that
this decomposition does not alter the number of degrees of freedom of the struc-
tural model in Figure la. Conceptually, Fs is equal to F\, F(, can be interpreted as
the residual of F2 after F\ has been partialled out, and F7 is the residual of F3 after
both F\ and F2 have been partialled out. Consequently, the standardized path coef-
ficients of F5 with F4, Fe with F4 and F7 with F4 (see Figure lb) can be'interpreted,
respectively, as the correlation between Fi and F4 (ru), the semipartial correlation
of F2 and F4 controlling for F\ (ru.\), and the semipartial correlation of F3 with F4
controlling for both Fi and F2 (04.12). Because the factors F$ to F^ are
uncorrelated, the total proportion of variance described in F4 is r2i4 + r224.i +
r234.i2. which is exactly the kind of variance partitioning that is accomplished in a
hierarchical regression analysis (e.g., Cohen & Cohen, 1983).

The order in which the predictors are included in the analysis is specified by the
pattern of factor loadings of Fi to F3 on the extra latent variables F5 to F7. In the ex-
ample of Figure 1 b, F3 is included after Fi and F2 have been controlled for. For exam-
ple, to enter the predictors in the reverse order, F3 should be equal to F5, F2 should be
dependent on F5 and Ff,, and F\ should load on all newly formed latent variables.

Three additional aspects of the procedure should be mentioned. First, the proce-
dure is not only suited for a hierarchical analysis of latent variables, but it can also
be adopted when either the predictors or the dependent variable or both are ob-
served. In addition, the procedure can also be applied when two or more dependent



FIGURE 1 (a) Simultaneous regression model, (b) Hierarchical regression model in EQS
notation, (c) Hierarchical regression model in LISREL notation, (d) Hierarchical regression
model with two dependent variables. (Circles indicate latent variables; squares denote ob-
served variables.)
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variables are regressed simultaneously on the newly formed latent variables.
These two aspects are illustrated in Figure Id. Finally, it should be mentioned that
the disturbance term associated with the dependent variable might be considered
as another latent variable (F$ in Figure lb and 2j4 in Figure lc). This alternative
specification illuminates that in the case of one dependent variable the number of
original latent variables matches the number of newly formed latent variables. As a
result, the procedure might be interpreted as a Cholesky decomposition of the full
matrix of intercorrelations among predictors and dependent variable.1 That is, the
dependent variable FA loads on all newly formed latent variables (F5-F8), F3 is de-
pendent on F5 to Fy, F2 on F5 and Fe, and F2 on F5. However, note that such an in-
terpretation is no longer valid when two or more dependent variables are predicted
simultaneously (see Figure Id).

Several programs are available to perform hierarchical regression analysis in
SEM. Currently, the most widely used are EQS (Bentler, 1993) and LISREL
(Joreskog & Sorbom, 1993). The implementation of the analysis in EQS is
straightforward and can be directly derived from Figure lb. To perform such a hi-
erarchical regression analysis in LISREL we specify a second order factor model,
Submodel 3A in the LISREL terminology (see Joreskog & Sorbom, 1993), with
the/? (latent) predictors and the (latent) dependent variable as etas, which load on p
extra latent variables denoted as xis (see Figure lc where p = 3). The most impor-
tant matrix is the matrix of factor loadings (or standardized regression coeffi-
cients) of the p+ 1 eta variables on the pxi variables. This is a (p + l ) x p matrix, in
LISREL denoted as gamma. The specific pattern of loadings in this matrix deter-
mines the order in which the (latent) predictors are entered in the regression equa-
tion. In addition, it is necessary to specify the error term of the regression of the
dependent variable on the xi variables. To this extent, the last diagonal element in
the psi matrix, which i sa(p+l)x(/7 + l) diagonal matrix, is set free whereas the
other diagonal elements are fixed to zero. Further, phi and lambda-X are identity
matrices and beta and theta-delta are zero matrices. Finally, lambda-Y specifies
the loadings of the observed variables, not included in Figure la to lc, on thep + 1
eta variables (see the Appendix for an example of a setup in LISREL).2

ILLUSTRATIVE APPLICATION

To demonstrate the use of hierarchical regression analysis with latent variables, we
analyzed part of the data reported by Wagner, Torgesen, Laughon, Simmons, and

1This alternative was suggested by an anonymous reviewer.
2Specification in LISREL is even somewhat easier if the disturbance term associated with the

dependent variable η4 is considered as another latent variable (ζ4). Then, psi becomes a zero matrix and
gamma is p × p matrix (where p = 4). The element (p, p) of the gamma matrix is the square root of the
proportion of unexplained variance in the dependent variable.
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Rashotte (1993). In their kindergarten sample Wagner et al. (1993) did a confirma-
tory factor analysis that included (a) several phonological factors, (b) a factor that
reflected more general cognitive abilities, and (c) a word recognition factor. From
their factor intercorrelation matrix (see Wagner et al. [1993], Table 7, p. 97) it is ev-
ident that the phonological factors are highly correlated and that all factors are sub-
stantially related to early reading development, that is word recognition. Wagner et
al. (1993) remarked that "the level of multicollinearity among predictors prevented
an analysis of the relative importance of the phonological factors in accounting for
word recognition" (p. 95).

For this example, we selected three tests to indicate the factor Awareness (de-
noted by Wagner et al. [1993] as Analysis), which refers to the awareness of the
constituent sounds in a word, three tests to reflect Synthesis, the ability to blend
separate sounds into a word, and two tests to indicate Serial Rapid Naming, the
ability to retrieve the sounds of letters or digits from long-term memory. In addi-
tion, three tests were selected to reflect nonverbal intelligence. The dependent fac-
tor, Word Recognition, was formed by one test and thus not a latent but an
observed variable. The correlations among the tests and their standard deviations
are presented in Table 1.

To start, we conducted a confirmatory factor analysis with three phonological
factors (Awareness, Synthesis, and Serial Rapid Naming), one factor for nonver-
bal intelligence and one word decoding factor. Note that the factor for word decod-
ing was equivalent to the observed variable word decoding. The model appeared to
have a good fit, x2(45, N=95) = 56.13, p = .12 (Confirmatory Fit Index = .98). The
intercorrelations among the factors are shown in Table 2. As in the analysis re-
ported by Wagner et al. (1993), the correlations among the factors are high, partic-
ularly the correlation between Analysis and Synthesis.

Next, we specified a structural model in which word identification was re-
gressed simultaneously on the phonological factors and the Nonverbal Intelli-
gence factor. The fit of the model was not altered by this alternative
specification of the intercorrelations among the latent variables. The standard-
ized regression estimates are presented in the second column of Table 3. The
only significant relation was between Serial Rapid Naming and Word Recogni-
tion. The pattern of parameter estimates clearly shows the effects of
multicollinearity among the latent predictors. For example, although Awareness
and Synthesis have very similar correlations with the factor Word Recognition
(see Table 2), the regression weight of Awareness is about .30, but
nonsignificant, and the estimate for Synthesis is -.05. It is obvious that the re-
gression coefficient of Synthesis changes when Awareness is not included in the
analysis. In addition, the simultaneous solution does not indicate the extent to
which the contributions of the various phonological factors to word recognition
are interchangeable and whether these contributions can be accounted for by a
more general cognitive ability, such as nonverbal intelligence.



Variable

Awareness
1. Segmentation
2. Sound isolation
3. Sound categorization

Segmentation
4. Blending rime
5. Blending words
6. Blending nonwords

Serial rapid naming
7. Naming digits
8. Naming letters

Nonverbal intelligence
9. Corsi blocks
10. Visual search
11. Spatial relations

Reading
12. Word recognition

SD

Number"

1
3
4

5
6
7

13
15

18
19
20

21

.—

.56

.48

.60

.59

.51

.32

.41

.24

.46

.20

.38
1.8

2

.—

.45

.53

.54

.56

.51

.53

.35

.51

.38

.43
4.3

TABLE 1
Correlations Among the Variables

3

.—

.63

.56

.57

.29

.36

.35

.42

.21

.34
3.8

4

.—

.81

.76

.48

.58

.34

.47

.22

.44
5.5

5

.—

.84

.55

.58

.40

.50

.26

.49
4.0

6

.—

.59

.62

.43

.47

.37

.48
3.1

7

.—

.80

.39

.47

.25

.55
0.4

8

.—

.34

.45

.24

.51
0.4

9

.—

.53

.48

.25
6.8

10

.—

.51

.41
4.7

11

.—

.26
6.8

12

,—
4.1

"Number of the variable in Wagner et al. (1993).

s
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TABLE 2
Factor Intercorrelations

Factor

1. Awareness
2. Synthesis
3. Serial naming
4. Nonverbal intelligence
5. Word recognition

.—

.880

.647

.734

.545

.—

.705

.620

.525

.—

.585

.591
.—
.456

TABLE 3
Regression Analysis Predicting Word Recognition From Awareness (AW), Synthesis

(SYN), Serial Rapid Naming (SRN), and Nonverbal Intelligence (Nl)

SIP

AW
SYN
SRN
NI
TotalR2

fi

.30
-.05

.42*

.02

.40

Order 1

NI
AN

SYN
SRN

fi

.46*

.32*

.10

.29*

Hierarchical Analysis

AR2

.21

.10

.01

.08

.40

Order 2

NI
SRN
SYN
AN

fi

.46*

.41*

.11

.12

to?

.21

.17

.01

.01

.40

Note. SIP = Simultaneous inclusion of predictors in the regression model; A R1 = incremental
proportion of variance described in Word Recognition.

•p<.01.

To answer these latter questions, two hierarchical regression analyses were
conducted in which the latent factors were entered in a prespecified order. In the
first analysis the order was (a) Nonverbal Intelligence, (b) Awareness, (c) Synthe-
sis, and (d) Serial Rapid Naming. The LISREL and EQS input files for this analy-
sis are displayed in the Appendix. In the second analysis, the order of the
phonological factors was reversed. The results of both analyses are reported in Ta-
ble 3. For the hierarchical analysis the standardized regression parameters, the
betas in this table, reflect a correlation with word recognition for the first factor
(Nonverbal Intelligence), and semipartial correlations for the factors that are in-
cluded subsequently. The square of the beta parameter reflects the incremental
pioportion of variance (A R1) described in Word Recognition after inclusion of the
factor. Thus, Nonverbal Intelligence describes 21 % of the variance in word recog-
nition. Subsequent inclusion of Awareness (Order 1) adds 10% of variance. Syn-
thesis had no significant additional effect on word recognition after Nonverbal
Intelligence and Awareness had been incorporated, whereas Serial Rapid Naming
accounted for a significant 8% of the variance. Reversing the order of inclusion of
the phonological factors (Order 2) revealed that neither Synthesis nor Awareness
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had an effect on word recognition after controlling for Nonverbal Intelligence and
Serial Rapid Naming.

This example has shown that, as known, the regression coefficients in a multi-
ple regression analysis can be difficult to interpret when there is strong
multicollinearity among the predictors. In such a situation hierarchical regression
analysis should be favored. The example demonstrates how a hierarchical regres-
sion analysis can be performed within SEM and how to interpret the results.

DISCUSSION

Hierarchical regression analysis can be implemented in SEM by a Cholesky factor-
ing of the predictors. Such a factoring does not alter model fit and does not affect the
measurement part of the model.

The previous example concerned an observed variable that was regressed on
several latent predictors. However, the Cholesky approach can be applied to both
latent and observed variables. In addition, it is possible to use more than one de-
pendent variable and to conduct a hierarchical regression analysis in several
groups simultaneously. In the former case one can test whether the specific effect
of a predictor is similar on both dependent variables (for an example of such a
problem, see Gottardo, Stanovich, & Siegel, 1996). Hierarchical regression analy-
sis in multiple groups offers, when means are taken into account, a test of group
differences on a specific variable after other variables have been controlled for,
which comes down to conducting an analysis of covariance.

As stated, one reason to apply hierarchical regression analysis is to examine the
contributions of specific variables after controlling for more general variables.
Gustafsson and Balke (1993) have described two other models that could serve the
same purpose. One model is a hierarchical factors (HF) model, in which all latent
predictors load on a second order factor. In this model the variance of each latent
predictor is partitioned into variance due to the second order factor and residual
variance. The latter can be conceived as the variance of a specific factor. An exam-
ple of an HF model for three latent predictors, F\ to Fj, is displayed in Figure 2a.
As in Figure 1, we also included a dependent variable F4 in this figure. The three
latent predictors load on four uncorrelated additional latent variables. Of these
variables F$ is a second order factor that affects all three latent predictors. Fe, to Fs
are residuals associated to F\ to F3, respectively. However, these residuals are rep-
resented here as latent factors. An HF model for the independent variables pro-
vides direct information about the relative contributions of the general second
order factor (F5) and the independent specific factors (F(,—F$) on one (or more) de-
pendent variables.

In fact, Gustafsson and Balke (1993) mentioned a special type of HF model in
which one of the first order factors was perfectly correlated with the second order
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FIGURE 2 (a) Hierarchical factors model in EQS notation, (b) Nested factors model in EQS
notation. (Circles indicate latent variables; squares denote observed variables.)
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factor (see also Mulaik & Quartetti, 1997). The model shown in Figure 2a can be
turned into this specific HF model by omitting one of the specific factors. If, for ex-
ample, Fs is omitted, Fi is set equal to F$. In addition, in this model the relation be-
tween the other latent predictors, Ft and F3, is completely due to their relation with
Fi, being equal to the second order factor F5. Note now that this specific HF model
can be easily turned into the model shown in Figure 1 b by including the regression of
Fi to F$. This path represents the residual covariance between Ft and F3 after F5 has
been taken into account. Thus, a Cholesky decomposition of latent predictors is a
less constrained version of the specific HF model proposed by Gustafsson and
Balke.

Because Gustafsson and Balke (1993) considered the HF model to be fairly com-
plicated, they proposed the nested factors (NF) model as an alternative. This model
consists of a general factor and several specific factors, which are assumed to be
uncorrelated with the general factor and among themselves. Regression of a depend-
ent variable on these factors reveals the independent contributions of the general and
the specific factors. The general factor is meant to replace the second order factor in
the HF model. However, the general factor in the NF model is assumed to affect each
observed predictor, whereas the second order factor in the HF model influences all
latent predictors. Accordingly, in the NF model, the variance of each observed pre-
dictor, instead of each latent predictor, ispartitioned into apart due to the general fac-
tor and a part accounted for by a specific factor. An example of a model with three
latent predictors and a dependent variable is given in Figure 2b.

Gustafsson and Balke (1993) introduced the NF model as an alternative for the
rather complicated HF model. However, the NF model has several disadvantages.
One is that the postulate of uncorrelated specific factors is a very strong assump-
tion. In addition, as recently noted by Mulaik and Quartetti (1997), it appears to be
difficult to test this assumption in the model. Another disadvantage of the NF
model is that the interpretation of the general factor is dependent on the battery of
tests included in a particular study. In addition, the interpretation of this general
factor might be rather difficult. The latter disadvantage also applies to the HF
model, because it might prove difficult to tell what the second order factor—that is
the common variance of several first order factors—reflects.

Cholesky factoring represents a less constrained version of a specific type of HF
model (see previous). However, the interpretation of at least the most general
Cholesky factor is straightforward. Therefore, Cholesky factoring might be consid-
ered as a better alternative to a HF model than the NF model as a means of separating
the independent contributions of general and specific factors in aregression analysis.
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APPENDIX
Eqs and Lisrel 8 Input RIes for the Hierarchical Regression Analysis (Order 1)

Displayed in Table 3

EQS INPUT FILE
/TITLE
HIERARCHICAL REGRESSION ANALYSIS OF WAGNER ET AL. (1993) DATA: ORDER 1
/SPECIFICATIONS
VARIABLES = 12; CASES = 95;
METHODS = ML;
MATRIX = COR; AN = COV;
/LABELS
vl = lseg; v2 = 3sound; v3 = 4scateg; v4 = 5blrime; v5 = 6blword; v6 = 7blnword; v7 = 13rands; v8

= 15ranls; v9 = 18corsi; vlO= 19search; v l l =20sparel; vl2 = 21wordr;
f 1 = AW; f2 = SYN; f3 = SNAME; f4 = IQ; f5 = WD;
f6 = IQp; f7 = AWp; f8 = SYNp; f9 = SNAMEp;
/EQUATIONS
vl=f l+el ;
v2 = *f 1 + e2;
v3 = 1.5*fl+e3;
v4=.5*f2 + e4;
v5 = f2+e5;
v6=l.l*f2 + e6;
v7 = f3+e7;
v8 = 1.2*f3 + e8;
v9=l*f4 + e9;
vlO=1.2*
vll=f
IBelow we specify the Cholesky decomposition
f4 = *f6;
f 1 = *f6 + *f7;
f2 = *f6+*f7 + *f8;
f3 = *f6 + *f7 + *f8 + *f9;
IThis is the regression of vl 2 on the Cholesky factors
vl2 = *f6 + *f7 + *f8 + *f9 + dl2;
/VARIANCES
dl2 = 8*;
f6tof9 = l;
el=8*;e2 = 4*;e3=13*;
e4=1.5*;e5=l*;e6 = 3*;
e7 = .07*;e8 = .01*;
e9 = 53*;elO=19*;ell=2O*;
/COVARIANCES
/MATRIX
llnsert here correlation matrix presented in Table 1
/STANDARD DEVIATION

(Continued)
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APPENDIX (Continued)

Ilnsert here standard deviations presented in Table 1
/LMTEST
/END
LISREL 8 INPUT FILE
HIERARCHICAL REGRESSION ANALYSIS OF WAGNER ET AL. (1993) DATA: ORDER 1
da ni = 12 no = 95 ma = cm
la
lseg 3sound 4scateg 5blrime 6blword 7blnword 13rands 15ranls 18corsi 19search 20sparel 21wordr
km
Ilnsert here correlation matrix presented in Table 1
SD
Ilnsert here standard deviations presented in Table 1
mo ny = 12 ne = 5 nk = 4 ly = fu,fi ga = fu,fi ph = di.fi te = di,fi ps = di.fi
maly
10000
2.40000
20000
01.5000
01000
0.8000
00100
001.200
00010
0001.20
0001 0
0 0 0 0 1
mate
1 8 7 7 2 1 .07 .01 26 6 9 0
!In the first four rows of GA we specify the Cholesky decomposition
!The last row of GA is the regression of Word Recognition on the Cholesky factors
paga
1 100
1 1 1 0
1 1 1 1
1 0 0 0
1 1 1 1
fr ly 2 1 Iy 3 1 ly 4 2 ly 6 2 ly 8 3 ly 9 4 ly 104
s t l l y 1 I ly521y731y 11 4 Jy 125
st 1.29 ga 1 2
St3.71ga2 3
st .36 ga 3 4
st 4 ga 4 1
st 1 ps 5 5
fr te 1 1 te 2 2 te 3 3 te 4 4 te 5 5 te 6 6 te 7 7 te 8 8

(Continued)
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APPENDIX (Continued)

f r t e 9 9 t e l 0 1 0 t e l l 11
st 1 ph 1 1 ph 2 2 ph 3 3 ph 4 4
frps5 5
ou ml sc ns ad = off

Note. The numbers in the acronyms of the variable labels correspond to the numbers of the tests in
the article by Wagner etal.(1993). The start values might not be appropriate to fit alternative models to
these data.
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