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1The importance of vitamin A for the immune system has been known for a long 

time from epidemiological studies in developing countries where a large number 

of people, mainly children, suffer from vitamin A deficiency. Vitamin A deficiency 

compromises proper mucosal immune responses, causing diarrhea, infections 

and early childhood mortality [1-3]. The exact role for vitamin A in maintaining 

immune homeostasis was not known, but since the discovery in 2004 by Iwata 

et al. [4], that the vitamin A metabolite retinoic acid directly imprints T cells with 

gut-homing capacity, the role of vitamin A in the intestinal immune system has 

gained considerable attention from research groups. 

The generic term “retinoids” covers hydrophobic, lipid-soluble and small sized 

molecules that include natural vitamin A (retinol) and all vitamin A metabolites, 

e.g. all-trans retinoic acid. 

1. Vitamin A metabolism

1.1 Absorption, metabolism and storage

Vertebrate animals need vitamin A for several life processes such as embryogenesis, 

vision, reproduction, intestinal barrier function, immune function and normal cell 

proliferation and differentiation. The ability for de novo synthesis of vitamin A 

molecules is limited to plants and microorganisms [5,6].  Vertebrate animals, 

however, must obtain vitamin A from their diet. Vitamin A (retinol) is a fat soluble 

vitamin and is absorbed from the gastrointestinal tract. The major sources 

of retinol in human diet are provitamin A carotenoids which can be obtained 

from fruits and vegetables, or retinyl esters (REs) found in animal source food 

[7]. Food with the highest concentration of REs in western countries are livers, 

fortified foods, milk, eggs or margarines. The highest concentration of provitamin 

A carotenoids can be found in carrots, pumpkin, spinach and kale [8]. In the 

intestinal lumen, carotenoids and REs are metabolized by endogenous enzymes 

secreted into the lumen to generate free retinol prior to absorption by enterocytes 

(subset of intestinal epithelial cells, Figure 1) [9-11]. Within enterocytes, retinol 

will be bound to cellular retinol binding protein 2 (CRBP2) [12]. The CRBP2-retinol 

complex serves as a substrate for the esterification process of retinol to REs by 

lecithin:retinol acyltransferase (LRAT) [13,14]. All formed REs are incorporated 

into chylomicrons or intestinal lipoproteins and then released into the lymphatic 

system [7,15,16] and the portal circulation [17] for transport to liver hepatocytes 

and stellate cells (Figure 1). The liver is the primary site of vitamin A storage, 

where vitamin A will be stored mainly in the form of REs in large cytoplasmic 

lipid droplets [18-22]. Liver stellate cells account for 80% of total body vitamin 
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A storage, while the remainder is stored in liver hepatocytes [18,23]. The liver 

regulates the availability of serum retinol to meet tissue requirements. Before 

REs are mobilized from their storage, REs are hydrolyzed into free retinol that 

will bind to serum retinol binding proteins (RBPs) for secretion from the liver, 

transport through the circulation and delivery to target cells (Figure 1) [24]. Since 

retinol is relatively hydrophobic, it requires protein binding to be effectively 

transported. Also, binding to RBPs prevents retinol from chemical and enzymatic 

degradation. In vitamin A sufficient animals, circulating levels of RBP-retinol are 

maintained at a constant level. These levels generally do not decline, except when 

hepatic stores of vitamin A are depleted. The levels also decrease in the setting 

of serious infections, however the regulation of serum retinol levels by the liver is 

not completely understood. 

Figure 1. Major pathway for vitamin A absorption and transport (adapted from [221]).

Dietary retinyl esters are hydrolyzed to retinol in the intestinal lumen. Retinol and carotenoids are absorbed by 

enterocytes and converted into retinyl esters to be packaged into chylomicrons. Chylomicrons are released into 

the lymph and subsequently reach the circulation. Chylomicrons are cleared from the blood by the liver, where 

retinyl esters are hydrolyzed to retinol in hepatocytes. Here retinol will be bound to retinol binding proteins for 

transfer to stellate cells where retinol can be stored in lipid droplets in the form of retinyl esters. Alternatively, 

retinol can be released into the circulation bound to retinol binding proteins for delivery of retinol to target 

cells. RE, retinyl ester; CM, chylomicron; RBP, retinol binding protein. 
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1.2 Retinol delivery to target cells

Target cells expressing a RBP receptor on the plasma membrane can recognize 

retinol-RBP complexes and mediate the cellular uptake of retinol from its complex. 

STRA6 is now described as a cell surface receptor for retinol-RBP complexes. 

STRA6 is a member of a large group of “stimulated by retinoic acid” (STRA) genes 

that encode transmembrane proteins and it specifically binds to retinol-RBP 

complexes to mediate retinol uptake from its complex into the cell (Figure 2) [25-

27]. RNAi knockdown of STRA6 in WiDr cells greatly diminished retinol uptake 

[25]. Consistent with the essential roles of vitamin A in human development, 

mutations in human STRA6 caused severe birth defects, reduced RBP binding and 

largely abolished vitamin A uptake activity [26,28,29]. STRA6 is widely expressed 

in the murine embryo and in the adult, yet STRA6 is undetectable (or is expressed 

at low levels) in some tissues that are highly responsive to retinoids like the skin 

or liver [29]. This suggests the existence of other RBP receptors that have yet to 

be discovered. 

1.3 Cellular retinoid binding proteins 

Various cellular retinoid binding proteins exist to solubilize and stabilize their 

hydrophobic and labile ligands in the aqueous milieu within cells. These binding 

proteins show high specificity and affinity for their specific retinoid ligands. 

In addition, cellular retinoid binding proteins have specific functions in the 

regulation of retinoid transport, metabolism and activity of retinoids [30] (Figure 

2). The cellular retinoid binding proteins include cellular retinol binding proteins 

(CRBPs) and cellular retinoic acid binding proteins (CRABPs) and belong to a family 

of cytosolic proteins binding small hydrophobic ligands [31,32]. In general, the 

cellular concentrations of CRBPs and CRABPs exceed the concentrations of their 

ligands. CRBPs are known to exist in 4 isoforms of which CRBP1 and CRBP2 are the 

most well-known retinol binding proteins. CRBP2 expression is almost exclusively 

restricted to adult intestines and is involved in absorption of retinol from the 

intestinal lumen [33-36]. CRBP1 is expressed in multiple extra-intestinal tissues 

and is involved in uptake of retinol from the circulation [30,37]. In addition, 

CRBPs are proposed to facilitate the metabolism of retinol, since enzymes like 

LRAT or alcohol dehydrogenases (ADHs) recognize the CRBP-retinol complex very 

efficiently, while the affinity of these enzymes for free retinol is much lower. CRBPs 

promote access of retinoids to some enzymes, while metabolism or catabolism by 

other enzymes is prevented. 

A second family of retinoid binding proteins is formed by the cytoplasmic cellular 

retinoic acid binding proteins (CRABPs). The general function of CRABPs is to allow 

access to enzymes for generation of retinoic acid and modulate the concentration 

of retinoic acid available to nuclear retinoid receptors [38]. Two isoforms, CRABP1 

and CRABP2, exist that are highly similar, displaying about 74% sequence identity, 
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Figure 2. Intracellular vitamin A metabolic pathway.

Retinol is transported through the bloodstream by RBP. Cells expressing retinol-RBP binding receptors like 

STRA6 specifically bind RBP and mediate retinol uptake from the retinol-RBP complex into the cell. Within the 

cytoplasm, retinol forms a complex with CRBP and is subjected to conversion by ADH enzymes for metabolism 

of retinal. RALDH enzymes subsequently produce RA from the CRBP-retinal complex. RA is bound to either 

CRABP1 or CRABP2. CRABP1 functions by targeting RA to cytochrome P-450 CYP26 enzymes that degrade 

RA to inactive metabolites like 4-oxo-RA. CRABP2 undergoes rapid nuclear localization upon binding RA and 

delivers RA to its retinoic acid receptors (RARs and RXRs). These receptors bind to short DNA sequences in 

the vicinity of target genes known as RAREs. RA receptors act as transcription factors that will regulate the 

transcription of many target genes upon binding of RA. 

ADH, alcohol dehydrogenase; CRABP, cellular retinoic acid binding protein; CRBP, cellular retinol binding 

protein; RA, retinoic acid; RARE, retinoic acid response element; RALDH, retinaldehyde dehydrogenase;  RBP, 

retinol binding protein.

and are highly conserved between species. Yet, these isoforms display different 

patterns of expression across cells and have different specific functions. CRABP1 is 

almost ubiquitously expressed, while CRABP2 is more specific to certain cell types. 

CRABP1 is predominantly present in the cytoplasm and almost excluded from 

the nucleus. CRABP1 serves to target retinoic acid to cytochrome P-450 CYP26 

enzymes that degrade retinoic acid to inactive metabolites (Figure 2) [39,40]. 

Increased expression of CRABP1 leads to enhanced retinoic acid degradation rates 

[41]. CRABP1 binds retinoic acid with a 5-fold higher affinity than CRABP2 [38,42] 

and thus acts to decrease cellular retinoic acid concentrations and to diminish 

cellular responses to retinoic acid. CRABP2, a predominantly cytosolic protein, 

acts to deliver retinoic acid to the nucleus [43]. CRABP2 undergoes rapid nuclear 

localization upon retinoic acid binding and interacts with retinoic acid receptors 

(RARs) in a ligand-dependent fashion to deliver retinoic acid to its receptor for 

regulation of gene transcription (Figure 2) [44]. Overexpression of CRABP2, but not 

CRABP1, results in a marked stimulation of transcription of RAR-driven reporter 

genes [44-46]. Interestingly, cells that lack CRABP2 are not responsive to retinoic 
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acid [47,48], further corroborating that CRABP2, and not CRABP1, is responsible 

for delivery of retinoic acid to the nucleus. In conclusion, expression levels of 

CRBPs regulate retinol uptake and metabolism, while CRABPs control cellular 

retinoic acid concentrations and cellular responses to retinoic acid. Therefore, the 

expression levels of these binding proteins within cells are critically important for 

retinoid dependent signalling. 

1.4 Retinoic acid metabolism and catabolism

In order to fulfill its function vitamin A (retinol) must be metabolized to retinoic 

acid, the active form that can regulate gene expression by serving as a ligand 

for nuclear retinoic acid receptors. Retinol itself is inactive and does not bind to 

nuclear receptors. After cellular uptake, retinol, complexed with CRBP, is subjected 

to enzymatic metabolism. The major pathway of retinoic acid synthesis depends 

on two steps (Figure 2). In the first step, retinol is reversibly oxidized by alcohol 

dehydrogenases (ADH) to form retinaldehyde (retinal). Within the vertebrate ADH 

family, ADH1 and ADH4 have been demonstrated to metabolize retinol to retinal 

in both human and mouse [49-51]. In the second step, retinal is irreversibly 

metabolized to retinoic acid by retinaldehyde dehydrogenases (RALDH) [52-

54]. The vertebrate RALDH family consists of 16 distinct enzymes with RALDH1, 

RALDH2 and RALDH3 representing the three cytoplasmic enzymes producing 

retinoic acid from CRBP-retinal. RALDH1 through 3 are highly conserved between 

man and mouse. RALDH1 was the first enzyme found to oxidize retinal to retinoic 

acid in man, originally called ALDH1, as well as in mouse, originally called Ahd-2 

[55,56]. RALDH1 expression is found in a subset of retinoid-dependent embryonic 

tissues, as well as in many adult epithelia [57]. RALDH2 shares 72% sequence 

homology with RALDH1. The catalytic efficiency of RALDH2 for retinal oxidation 

is about 15-fold higher than that of RALDH1 [58,59]. RALDH2 expression occurs 

in many retinoid-dependent embryonic tissues and in adult reproductive organs 

[57]. RALDH3 was identified much later to be conserved between mouse and man 

and being able to metabolize retinoic acid from retinal [52]. All-trans retinoic 

acid is the most potent biologically active vitamin A metabolite produced by 

RALDH enzymes and can prevent and rescue the main defects caused by vitamin A 

deficiency in adult animals [60]. Other isoforms of retinoic acid are amongst others 

13-cis retinoic acid, specific for the eye, and 9-cis retinoic acid. The consideration 

of 9-cis retinoic acid as a natural bioactive metabolite remains controversial since 

9-cis retinoic acid has not been consistently detected in mammalian cells. 

Retinoic acid has a short half life
 
in vivo and in vitro of about 6-7 hours [61,62]. 

Cytochrome P-450 enzymes are involved in the degradation of endogenous 

retinoic acid into inactive metabolites, like 4-oxo retinoic acid, to regulate cellular 

retinoic acid levels and to protect cells from excess retinoic acid [39,40,63,64]. 
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1.5 Transcriptional gene regulation by retinoic acid 

Once formed, the vitamin A metabolite retinoic acid serves as a ligand for nuclear 

retinoic acid receptors (RARs and RXRs) for regulation of target gene expression. 

Nuclear receptors are ligand-dependent transcription factors and regulate gene 

expression of specific subsets of genes by binding to short DNA sequences in 

the vicinity of target genes known as retinoic acid response elements (RAREs) 

[65]. Most identified RAREs have been found to be direct or inverted repeats 

of consensus sequence (A)GGTCA spaced by 1, 2 or 5 basepairs [66-69]. Three 

genes encoding highly related RARs have been identified in mouse and human, 

RARα [70,71], RARβ [72] and RARγ [73,74]. The RAR genes are mapped on 

different chromosomes [74]. All-trans retinoic acid as well as synthetic retinoic 

acid analogues are high-affinity ligands for these three RARs. Other retinoic 

acid isomers, like 9-cis retinoic acid, bind RARs with low affinity and specifically 

bind (with higher affinity) to RXRs. Three distinct RXR genes (RXRα, RXRβ, and 

RXRγ) have been found in mouse and man [75-77]. RARs and RXRs belong to two 

different groups of the nuclear receptor family, but both are involved in retinoid 

signalling. RARs have been studied intensively, but multiple questions about the 

actual biological role of RXRs have still to be answered.

At least one of the RARs has been found in every cell type examined, and sometimes 

two or three of the RARs are expressed in a given cell type. For high affinity 

binding to RARE sequences, RARs heterodimerize with RXRs, while homodimers of 

RARs can only bind RARE sequences at high protein concentration [78-80]. In the 

absence of RAR ligand, the RAR-RXR dimers recruit corepressor proteins (like NCoR, 

Figure 3. Schematic representation of retinoic acid receptor proteins (adapted from [79]).

Retinoic acid receptors (RARs and RXRs) have a well-defined domain organization and structure composed 

of six conserved regions, A to F. Regions C and E are the most conserved and important domains for 

transcriptional regulation of target genes. The C region contains the central DNA-binding domain (DBD) that 

recognizes retinoic acid response elements (RAREs) composed of (A)GGTCA repeats in the DNA of target genes. 

The E region contains the ligand-binding domain (LBD) for retinoic acid (RA). The ligand-binding pocket in the 

LBD contains hydrophobic residues and the shape of the ligand binding pocket matches the volume of the RA 

ligand. This maximizes hydrophobic contacts and contributes to the selectivity of ligand binding [222, 223]. 

The E region also contains a heterodimerization surface for pairing of RARs and RXRs and sites that interact 

with coregulators. The N-terminal domain (NTD) corresponds to regions A and B that interact with specific 

coregulators. The D region is considered to serve as a hinge between the DBD and the LBD, allowing rotation 

of the DBD. It also harbors nuclear localization signals. The F region, which is absent in RXRs, has multiple 

phosphorylation sites that might modulate RAR function, but the exact functions of this region remain poorly 

understood. NTD, N-terminal domain; DBD, DNA-binding domain; LBD, ligand-binding domain. 
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SMRT, HDACs) that lead to an inactive condensed chromatin structure, preventing 

transcription. When retinoic acid binds to RAR-RXR dimers, corepressors are 

released and coactivator complexes (amongst others histone acetyltransferases 

or methyl transferases) are recruited to activate gene transcription [81] (Figure 

3). RARs have a well-defined domain organization and structure, consisting of a 

central DNA binding domain linked to a C-terminal ligand-binding domain (LBD) 

and an N-terminal domain, which interacts with specific coregulators [82] (Figure 

3). Degradation of RARs by the ubiquitin-proteasome controls the magnitude and 

duration of the retinoid response [83-85]. 

A large number of the retinoic acid-responsive genes encodes proteins that 

participate in the metabolic pathway of vitamin A. For instance, all three RAR 

genes contain a RARE site in their promoters [67,86-88]. Retinoic acid also 

regulates expression levels of CRBP1 and CRBP2 [89,90], LRAT [91,92] as well 

as CRABP2 [68,93]. We and others have demonstrated that the RALDH2 gene is 

also responsive to retinoic acid [58,94,95] (see chapter 4). Furthermore, retinoic 

acid induces its own catabolism by inducing CYP26 transcription [96]. In this 

way cellular retinol uptake is maintained by inducing CRBP, but retinoic acid 

concentrations are limited by accelerating its catabolism and preventing cellular 

retinoic acid toxicity. retinoic acid itself therefore functions as a regulator of its 

own synthesis and catabolism creating an autoregulatory loop.

Table 1. Players in retinoic acid-dependent signalling

Functions

Ligand All-trans retinoic acid Active vitamin A metabolite

Receptor specificity

Cell-specific synthesis

Binding proteins RBP Transport, Metabolism, Sequestration

CRBP1 and CRBP2

CRABP1 and CRABP2

Nuclear receptors RARα, RARβ, RARγ Transcription factors

RXRα, RXRβ, RXRγ DNA-binding

Ligand, cell and promoter specific 
activity

Receptor dimers RAR/RXR Combinatorial diversity

Response elements RARE and RXRE Regulation gene transcription

Direct or inverted Activation or repression

repeats of (A)GGTCA
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2. Global prevalence and intervention of vitamin A deficiency

The importance of vitamin A can clearly be inferred from situations of vitamin A 

deficiency where epithelial integrity, growth and immunity are impaired. Vitamin 

A deficiency weakens the host defense against infection, causing increases in the 

incidence and severity of infections and ultimately elevates the risk of mortality in 

early childhood [97,98]. Vitamin A deficiency contributes to the deaths of over a 

million children each year, especially from measles, diarrhea and malaria [99,100]. 

The most recent estimates from the World Health Organization report that in 

developing countries about 190 million preschool children (~32%) and nearly 20 

million pregnant mothers (~10%) are vitamin A deficient (Figure 4) [3]. Improving 

the vitamin A status of young children in developing countries has been shown to 

reduce child death rates by 20–50%, which suggests that a substantial portion of 

their mortality is attributable to vitamin A deficiency [101].

Vitamin A deficiency is defined when liver stores of vitamin A fall below 20 µg/g 

(0.07 µmol/g) and serum retinol levels below 20 µg/dL (0.70 µmol/L)  [102,103]. 

Under normal conditions, serum retinol levels are 1-3 µmol/L. As vitamin A 

status declines physiological functions become impaired. Initially, the integrity of 

epithelial barriers (surface linings of the gastrointestinal, respiratory, excretory 

and reproductive systems) is disturbed and the immune system becomes 

compromised, followed by impairment of the visual system. Consequently, 

there is progression to total blindness, increased severity of infections and an 

increased risk of death, especially among children. Other clinical signs of vitamin 

A deficiency include growth retardation and anemia [100,104].

The underlying cause of vitamin A deficiency is inadequate consumption of 

vitamin A rich foods which is related to poverty. In general, young children in 

industrialized countries receive most of their vitamin A from animal source 

food, whereas provitamin A in fruits and vegetables is the primary source of 

dietary vitamin A for children in underdeveloped countries [101,105]. Due to 

poverty, people turn to low priced food of lower quality and variety, which limits 

consumption of vitamin A rich foods [3]. This becomes evident when physiological 

needs are greatest, namely during early childhood, pregnancy, and lactation. 

Vitamin A deficiency in children is initially caused by the fact that their mothers 

are deficient and produce breast milk with very low concentrations of vitamin A 

[101]. Generally, all newborn children are physiologically vitamin A “depleted” at 

birth and need to build up adequate vitamin A stores in their livers. Breast fed 

babies of vitamin A-deficient women therefore remain depleted. Furthermore, 

if these children receive food after breast feeding that is also low in vitamin A, 

the child’s risk for developing vitamin A deficiency further increases when breast 

feeding stops. A third contributing factor is that they spend a substantial part 

of childhood being sick, suffering from diarrhea and infections. These illnesses 

involve loss of appetite and malabsorption of nutrients, which further deteriorate 
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their vitamin A status [101]. 

Young children in developing countries cannot build up adequate liver vitamin 

A stores in the liver from plant diets alone, since dietary intake is too low. The 

efficiency with which plant-derived provitamin A can be converted into vitamin A 

is much lower than that for preformed vitamin A in animal source foods [105]. To 

overcome or prevent vitamin A deficiency, consuming modest amounts of animal 

or fortified food sources of preformed vitamin A or vitamin A supplementation is 

required. The first randomized trial of vitamin A supplementation was started in 

1986 in Indonesia, after which it was repeated in other populations in the late 80s 

and early 90s [2]. These trials demonstrated a clinically and statistically significant 

reduction (~29-54%) in mortality among children from 6 months to 5 years of 

age [2]. By 1992, consensus was reached that vitamin A deficiency increased 

overall mortality and improving vitamin A status would reduce this. Vitamin A 

supplementation is a very effective approach to increase vitamin A intake and 

is being developed to correct vitamin A deficiency worldwide. The World Health 

Organization (WHO) recommends children to receive a defined dose of vitamin A 

once every four to six months. The great majority (78%) of countries where vitamin 

A deficiency is known to be a major public health problem have adopted this 

policy and vitamin A supplementation of children has been successfully integrated 

into routine maternal child health visits, or is often linked to community-based 

nutrition improvement programs like National Immunization Days or Vitamin 

A week [2]. Other effective means to control and prevent widespread vitamin A 

deficiency are fortification of foods with vitamin A and supplementing pregnant 

Figure 4. Global prevalence of vitamin A deficiency 

This map displays the prevalence of vitamin A deficiency (VAD) worldwide (from WHO Global database on 

vitamin A deficiency). Mainly in underdeveloped countries, vitamin A deficiency poses a major public health 

problem. Vitamin A deficiency is categorized in clinical (red) to severe (orange), moderate (yellow,) and mild 

(light green) subclinical symptoms in individuals. Vitamin A deficiency is under control  in western countries 

(green). 
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mothers with vitamin A resulting in improved health of the mothers and increased 

vitamin A levels in breast milk. This subsequently will reduce childhood mortality 

[100,106-108]. 

In conclusion, the prevention of vitamin A deficiency remains a global public health 

priority. With the continuation of present supplementation programs, clinical 

vitamin A deficiency may be eliminated in many parts of the world in the coming 

years. Nevertheless, many children will remain affected by sub-clinical vitamin 

A deficiency. Therefore, it will be necessary to pursue intervention programs to 

allow long-term control of vitamin A deficiency and improve health and nutritional 

status in developing countries. Although vitamin A supplementation has taken its 

place as a major health intervention, it is still not precisely known how it improves 

health and the immune system and increases resistance to infection. Research has 

now focused on the protective mechanisms of vitamin A to provide more insights 

into the role of vitamin A in immune function. 

Box 1. Hypervitaminosis 

Worldwide the incidence of vitamin A excess, or hypervitaminosis A, is a very minor problem 

compared with the incidence of vitamin A deficiency. A few hundred cases of hypervitaminosis 

A occur annually whereas an estimated 1 million people develop vitamin A deficiency each 

year. However, vitamin A toxicity may be a growing concern because intake from preformed 

sources of vitamin A often exceeds the recommended dietary allowances (RDA) [109]. 

Assessing vitamin A status in persons with vitamin A toxicity is difficult since serum retinol 

levels are tightly regulated and are therefore inadequate indicators of liver vitamin A stores 

[109]. Hypervitaminosis A may result from excessive consumption of animal source food or 

overconsumption of vitamin A supplements and can be divided into two categories: acute, 

resulting from ingestion of a very high dose over a short period of time, and chronic, resulting 

from continued ingestion of high doses for months or even years. 

Typical symptoms of acute hypervitaminosis A include bulging fontanels in infants, headache 

due to increased intracranial pressure in adults, nausea, vomiting, fever, vertigo, hemorrhages, 

joint pains, and visual disorientation [110-112]. The symptoms are generally transient and do 

not lead to permanent adverse effects. 

Chronic hypervitaminosis A is more common than acute hypervitaminosis A. Its symptoms 

are highly variable but anorexia, skin problems, loss of hair, increased intracranial pressure, 

and hepatomegaly are among the most common symptoms [110-112]. Osteoporosis and 

hip fractures have now also been associated with chronic overcomsumption of vitamin A of 

only twice the RDA [113-115]. This involves hypercalcemia, increased bone resorption and 

decreased bone formation [116-118]. Moreover, excessive intake of vitamin A by pregnant 

women can cause abnormal morphological development and birth defects in the newborn 

child [111,119].
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3. The mucosal immune system 

The intestinal immune system has to be non-responsive and be able to induce 

tolerance towards harmless food antigens and the commensal microflora, while 

robust immune responses are needed towards harmful pathogens. Maintenance 

of this critical balance is attributed to mucosal dendritic cells (DCs) residing 

in gut-associated lymphoid tissues, like Peyers’ Patches (PPs) and mesenteric 

lymph nodes (MLNs), and in the subepithelial lamina propria of the intestines. 

Dysregulation of this balance results in uncontrolled inflammatory disorders 

such as inflammatory bowel diseases in humans. Many studies have shown the 

beneficial effect of vitamin A on the mucosal immune system and research now 

concentrates on the mechanisms by which vitamin A and its metabolite retinoic 

acid maintain intestinal homeostasis.

3.1 Lymphocyte subsets and retinoic acid

Th1 versus Th2 cells

Naïve CD4+ T cells, produced in the thymus, can become Th1, Th2 or Th17 cells, 

which act as effector/memory cells to stimulate the immune system to clear 

pathogens and tumor cells, or can become regulatory T cells which function 

to suppress the immune system. The subset of T cells termed Th1 cells, which 

produce interleukin-2 (IL-2), interferon-γ (IFNγ) and lymphotoxin, are in particular 

important for immunity against intracellular pathogens, such as Leishmania Major. 

By their production of IFNγ, they deliver assistance to macrophages for enhanced 

pathogen clearance. In contrast, Th2 cells produce IL-4, IL-5, IL-10 and IL-13, which 

contributes to the direct enhancement of antibody-mediated immunity against 

extracellular pathogens. Dietary vitamin A has been shown to affect Th1 and Th2 

development as vitamin A deficiency causes IFNγ overproduction and shifts the 

immune response toward a Th1-type response and impairs the development of 

a Th2-type response [120,121]. On the other hand, high-level dietary vitamin A 

enhances Th2 cytokine and decreases Th1 cytokine production [122]. Moreover, 

it was shown that the vitamin A metabolite retinoic acid directly skews T cells 

upon their activation towards the Th2-type profile, while inhibiting Th1 cytokine 

production [123,124]. Via RAR signalling, retinoic acid can directly suppress IFNγ 
production and enhance IL-4 production in stimulated T cells in vitro. Specific 

blockade of RAR, and not RXR, further confirmed the crucial involvement of RAR 

signalling in retinoic acid-mediated Th2 skewing [124]. Therefore, the balance of 

Th1 and Th2 responses is highly dependent on vitamin A status.
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FoxP3 expressing regulatory T cells

In addition to Th1 and Th2 cells, regulatory T cell (Treg cells), identified by FoxP3 

expression, are an essential component of the immune system. Treg cells function 

to induce tolerance to harmless food antigens or commensal bacteria and prevent 

escalation of immune responses. FoxP3+ Treg cells are made in the thymus from 

progenitors. In addition, immunization through the oral route results in the 

induction of Treg cells from naïve CD4+ T cells in peripheral lymphoid organs 

[125-128]. 

The cytokine milieu is very important in the induction of FoxP3+ Treg cells. TGFβ 
and IL-2 are well known for their role in the induction and maintenance of FoxP3+ 

Treg cells [129-131]. More recently, retinoic acid was identified as a cofactor that 

controls peripheral induction of FoxP3+ Treg cells in mice [123,132-138]. Retinoic 

acid, in combination with TGFβ, is very effective in inducing FoxP3 expression in 

murine CD4+ as well as murine CD8+ T cells, while this induction could be blocked 

with RAR antagonists or neutralizing anti-TGFβ antibodies [135-138]. In contrast 

to the induction of Treg cells in mice, TGFβ is dispensable for human Treg cell 

conversion. Retinoic acid alone was shown to be sufficient to convert human naïve 

T cells into FoxP3+ Treg cells [135]. 

The mechanism by which retinoic acid regulates human naïve T cells to convert 

to Treg cells occurs at multiple levels. By binding to the RARE site in the promoter 

region of Foxp3, retinoic acid induces histone acetylation in the human FoxP3 

promoter [135,139], which is thought to open the promoter for enhanced 

transcription of the FoxP3 gene. In addition, retinoic acid enhances FoxP3 

induction indirectly by relieving inhibition from CD4+ CD44+ effector/memory 

T cells [134], through reducing the production of inflammatory cytokines [134]. 

Further proof for the role of retinoic acid in the generation of FoxP3+ Treg cells in 

mice has come from studies in which either retinoic acid or RAR antagonists were 

administered [135,136]. While administration of retinoic acid during antigenic 

stimulation resulted in an increase in Treg conversion [135,136], blockade of RAR 

signalling decreased the generation of FoxP3+ Treg cells [136]. 

Th17 cells

More recently, a subset of inflammatory T cells named Th17 has been identified 

[140-142]. Th17 cells secrete IL-17, IL-21, and IL-22 [143-145] and have an 

important role in protecting the host from bacterial and fungal infections, 

particularly at mucosal surfaces. IL-23, IL-6 and TGFβ promote the differentiation 

of naïve T cells into Th17 cells [146-149] and are under the control of the 

transcription factor RORγt [150]. Since both Th17 and Treg cells are dependent 

on TGF-β as an inductive cytokine controlling their development, the levels 

of IL-6 become important. It has been shown that retinoic acid can directly 

counteract the IL-6 effect in a dose-dependent manner and that it reduces the 

expression of RORγt in T cells activated under Th17 culture conditions [136]. 
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B lymphocytes

Retinoic acid is also physiologically important for immunoglobulin secretion by B 

cells. IgA is the most abundant immunoglobulin isotype produced in the body and 

serves to protect the host against the vast array of microbes constantly present 

in the intestinal lumen. Mice with defective or impaired IgA production are more 

susceptible for intestinal pathogens [153]. 

PPs and MLNs are the main secondary lymphoid tissues where naïve B cells will 

differentiate into IgA secreting plasma cells. Subsequently, these IgA producing B 

cells will migrate from MLNs and PPs to the lamina propria of the intestine where 

IgA is secreted into the lumen as part of the antimicrobial defense [154,155]. It has 

been shown that DCs from PPs, but not from spleen, promoted immunoglobulin 

class switching to the IgA isotype in activated B cells [156]. Furthermore, in the 

presence of retinoic acid, B cells displayed increased class switching to the IgA 

isotype [157] and IgA class switching induced by PP-DCs, MLN-DCs or lamina 

Figure 5. Retinoic acid synthesis 

by dendritic cells and its effects on 

lymphocytes.

Through the expression of ADH and 

RALDH enzymes, mucosal dendritic cells 

can produce retinoic acid from vitamin A. 

Retinoic acid acts on T cells and B cells by 

inducing the mucosal homing receptors 

a4b7 and CCR9. Moreover, retinoic 

acid in the presence of TGFb promotes 

the conversion of naïve T cells into 

Foxp3+ regulatory T cells and inhibits the 

differentiation of Th17 cells. In addition, 

retinoic acid synergizes with IL-6 and IL-5 

and promotes class switching to IgA in B 

cells. 

Whether inflammatory Th17 cells or suppressive FoxP3+ T cells are generated 

largely depends on the local cytokine milieu formed by IL-6, TGFβ and retinoic 

acid (Figure 5). Under physiological conditions, the retinoic acid-driven, TGFβ-
dependent Treg cell conversion might overrule the IL-6–driven TGFβ-dependent 

Th17 cell differentiation [136], while appropriate concentrations of TGF-β and IL-

6, IL-21, and IL-23 might skew T cells towards Th17 development [146,151,152]. 

It is now well established that retinoic acid is very important for the generation of 

these T cell subsets, either by promoting or blocking the differentiation of naïve 

T cells into Th1, Th2, Th17 or Treg cells. 
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propria DCs was diminished in the presence of RAR inhibitors [158-160]. 

Consistently, animals depleted of vitamin A show decreased IgA secretion and 

decreased mucosal antigen-specific IgA responses [159,161,162], while studies 

with high dietary vitamin A showed that IgA responses and IL-10 production were 

significantly enhanced [122]. Thus, retinoic acid has a direct IgA promoting effect 

on B cells which seems to be disturbed during vitamin A deficiency.

3.2 Immunomodulatory role of retinoic acid

Tissue-specific lymphocyte migration

It is well recognized that DCs play a central role in the priming and differentiation 

of naïve T cells into Th1, Th2, Th17 or regulatory T cells. Also, DCs can imprint 

trafficking programs in T cells that target their migration to specific peripheral 

tissues by the induction of specific combinations of adhesion molecules and 

chemokine receptors. Within the periphery, DCs acquire antigens from their 

surroundings, process it, and display the processed antigen on their surfaces 

using major histocompatibility class I or II molecules. When DCs arrive at the gut-

draining MLN, they expose naive T cells to antigen and initiate T cell activation and 

proliferation, either inducing effector/memory T cells or tolerogenic regulatory T 

cells depending on the nature of the antigen. Upon activation by DCs, T cells 

are induced to express adhesion molecules and chemokine receptors to ensure 

that activated T cells will preferentially migrate to the site where DCs initially 

encountered the antigen [163-167]. 

The induction of tissue-specific homing mlecules upon lymphocyte activation 

within the draining lymph nodes enhances the efficiency by which effector 

lymphocytes will arrive at the site where their action is needed. Studies have 

shown that DCs from gut-associated lymphoid tissue (GALT), like MLN-DCs, PP-

DCs or lamina propria DCs, have a selective ability to induce homing receptors  

on activated T cells specific for migration to the intestines, i.e. integrin α
4
β

7
 and 

chemokine receptor CCR9 [166,168-172]. Homing of IgA secreting plasma cells 

to the intestinal lamina propria is also mediated by α
4
β

7
 and CCR9 molecules 

[154,173,174]. 

The ligand for α
4
β

7
, mucosal addressin cell adhesion molecule-1 (MAdCAM-1), 

is expressed on endothelial cells in the lamina propria of the colon and small 

intestine [175-177], while CCL25, the ligand for CCR9, is produced by epithelial 

cells of the small intestine [178-183]. DCs in skin-draining lymph nodes or splenic 

DCs are unable to imprint gut homing molecules but instead induce skin-homing 

molecules on responding T cells. This imprinting results in the expression of 

the skin-homing molecules E- and P-selectin ligands as well as the chemokine 

receptors CCR4 and CCR10 on activated T cells [163,165,166,184-186]. 

Expression of these two chemokine receptors enables T cells to respond to CCL17 
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and CCL27 expressed by keratinocytes in the skin [187]. By expression of tissue-

specific homing molecules, migration of effector/memory T cells and B cells to 

peripheral tissues is ensured. 

Retinoic acid-dependent imprinting of gut-homing molecules

In 2004, it was discovered by Iwata et al. that the vitamin A metabolite retinoic 

acid directly affects gut-homing molecule expression on T cells. Gut-homing 

molecules α
4
β

7
 and CCR9 could easily be induced on both CD4+ and CD8+ T 

cells in vitro when they were activated in the presence of  retinoic acid [4]. Upon 

activation in the absence of retinoic acid, T cells expressed skin-specific homing 

molecules E- and P-selectin ligands, which were downregulated when retinoic 

acid was present [4]. In addition, the induction of α
4
β

7
 and CCR9 expression by 

activated B cells also requires retinoic acid [159]. Experiments with transgenic 

T cells from luciferase reporter mice, in which luciferase activity is under the 

control of a promoter with RARE sites, furthermore showed that the induction of 

CCR9 required signalling of retinoic acid through its nuclear receptors and CCR9 

induction was indeed blocked by the presence of a pan-RAR antagonist [188]. 

Further proof for the importance of vitamin A in the imprinting of lymphocytes 

with gut tropism came from studies with vitamin A deficient mice, in which 

secondary lymphoid organs as well as the intestinal lamina propria were depleted 

of α
4
β

7
+ CD4+ T cells and α

4
β

7
+ B cells [4,159]. Thus, the vitamin A metabolite 

retinoic acid appears to be a key molecules for controlling lymphocyte homing to 

the intestines. 

Mucosal dendritic cells

Expression of α
4
β

7
 and CCR9 molecules on activated T cells is specifically induced 

by MLN-DCs, PP-DCs or lamina propria DCs, but not by PLN-DCs or splenic DCs 

[168,169,189]. Additionally, these GALT-DCs are very efficient at inducing FoxP3+ 

Treg cells, while splenic DCs are unable to induce Treg cells [133,135,138]. As 

described above, induction of gut-homing molecules and FoxP3+ expressing Treg 

cells requires retinoic acid and thus DCs associated with the mucosal immune 

system must be especially well equipped to steer these processes. Indeed, GALT-

DCs were shown to express vitamin A metabolizing RALDH enzymes [4] and 

are thus able to produce retinoic acid (Figure 5). The enzyme RALDH2 has been 

described to be the most abundantly expressed vitamin A converting enzyme in 

MLN-DCs [133,190], while PP-DCs highly express RALDH1[4]. And since splenic 

and PLN-DCs only display very low expression levels of these enzymes [4,133,191], 

RALDH expression seems to be a special feature of DCs that are associated with 

the mucosal immune system. 

To identify which DC subset within gut-associated lymphoid tissues is responsible 

for regulation of gut-tropic T cells, DCs were sorted from PP and MLN based on 

the expression of conventional DC markers CD8, B220 and CD11b. Yet all DC 
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subsets were found to induce gut-homing molecules α

4
β

7
 and CCR9 on T cells 

[168,185]. This would suggest that all DCs within gut-associated lymphoid 

tissues are equally efficient at generating gut-tropic T cells. However, recently a 

distinct subset of DCs, based on the expression of CD103, has been identified 

in murine MLNs that represent ~50% of total MLN-DCs and are more efficient 

at inducing gut-tropic T cells compared to their CD103- counterparts [192,193]. 

These DCs express RALDH enzymes at higher levels when compared to CD103- 

MLN-DCs and are better at inducing retinoic acid receptor-dependent signalling 

in T cells [133,188]. Consequently, induction of gut-homing molecule expression 

on activated T cells and FoxP3+ Treg cell differentiation by CD103+ MLN-DCs is 

enhanced when compared to T cell priming by CD103- MLN-DCs [133,192,193]. A 

CD103+ DC subset with similar characteristics has also been identified in human 

MLNs [194,195]. 

Also a CD103+ DC subset resides within the small intestinal lamina propria that 

displays similar properties as the CD103+ DCs in MLNs [138]. This suggests that 

the CD103+ MLN-DCs represent a population of migratory DCs derived from the 

intestinal lamina propria. Studies have shown that indeed CD103+ DCs can be 

detected in lymph vessels draining the mesenteries [196] and can transport orally 

derived antigen from the intestine to the draining MLN. Within these LNs, CD103+ 

DCs will induce gut-tropic T cells and regulatory T cells upon their activation 

[138,193,195]. That indeed CD103+ MLN-DCs are derived from the intestinal 

lamina propria was shown in CCR7–/– mice [193]. CCR7 is required for DC migration 

from tissues to draining LNs and in the absence of CCR7, the numbers of CD103+ 

DCs were strongly reduced in the MLN.

Within the mucosal immune system additional cells express RALDH enzymes. 

Intestinal epithelial cells lining the gut are known to highly express RALDH1 [4,197] 

and these cells have been shown to produce retinoic acid from dietary vitamin A 

in vitro [198-200]. Furthermore, stromal cells from MLNs express retinoic acid 

metabolizing enzymes, and in vitro cultured MLN stromal cells can directly induce 

gut-homing molecule expression on activated T cells [191,201]. Thus, within the 

intestines and GALT, multiple cell types exist that express vitamin A metabolizing 

enzymes and thus produce retinoic acid, which is crucial for the maintenance and 

functioning of the mucosal microenvironment.

3.3 Differentiation of mucosal DCs

As described above, GALT-DCs, in particular the CD103+ subset, are able 

to produce retinoic acid, which enables them to preferentially promote Th2 

differentiation [202-204], gut-homing molecule expression and Treg cell 

conversion [133,135,138,168,189,194]. Therefore, RALDH expression by 

GALT-DCs is crucial for their retinoic acid producing capacity. The differential 

expression of RALDH enzymes by GALT-DCs, and not by splenic or PLN-DCs, 
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suggests a role for the mucosal environment in the induction and regulation of 

RALDH enzyme expression by DCs. Epithelial cells (ECs) are ideal candidates to 

educate mucosal DCs. Intestinal epithelial cells express E-cadherin, which is the 

ligand for CD103, on the basolateral surface of the cell [205,206]. This may allow 

cell-cell contact between intestinal DCs and the epithelial cells (Figure 6). In fact, 

CD103 has been reported to be induced under the influence of TGFβ, which can be 

produced by epithelial cells [207,208]. And thus, CD103 expression by DCs in the 

intestinal lamina propria could therefore be seen as a signature of their interaction 

Figure 6. DC conditioning by the mucosal microenvironment.

The functional properties of intestinal dendritic cells (DCs) are imprinted within the intestinal environment. 

Epithelial cells (ECs) are ideal candidates to condition mucosal DCs. These cells express E-cadherin on the 

basolateral surface of the cell [205, 206], which is the ligand for CD103 expressed by most mucosal DCs. 

Expression of these molecules allows cell-cell contact between mucosal DCs and intestinal epithelial cells. 

Intestinal epithelial cells, but possibly also other cell types present within the intestines, produce imprinting 

factors for the differentiation of mucosal DCs from blood-derived precursors. Retinoic acid (RA), transforming 

growth factor-b (TGFb), thymic stromal lymphopoietin (TSLP), IL-10, as well as GM-CSF, IL-13, and IL-4 are 

imprinting factors involved in conditioning of these DCs. These factors condition DCs to express RALDH2 

enzymes. Conditioned DCs downregulate IL-12 and IL-23 production and enhance production of RA, IL-10 and 

TGFb. In addition, signals through PRRs expressed by DCs and intestinal epithelial cells possibly contribute 

to mucosal imprinting of CD103+ lamina propria DCs by inducing RALDH enzyme expression in mucosal DCs 

or the production of imprinting factors by intestinal epithelial cells. Conditioned CD103+ lamina propria DCs 

preferentially drive Th2-type and regulatory T cell responses and efficiently induce gut-homing molecules on 

lymphocytes.
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with intestinal epithelial cells. Furthermore, in vitro experiments showed that 

contact with gut epithelial cells induces CD103 expression and RALDH enzyme 

expression in bone marrow- and monocyte-derived DCs. In addition, intestinal 

epithelial cells educated DCs to induce Th2 cell polarization as well as gut-homing 

molecule expression on activated T cells [94,194,204,209]. Also, conditioning 

by intestinal epithelial cells promoted DCs to drive the development of Foxp3+ 

Treg cells [94,194]. Factors that have been described to influence mucosal DC 

differentiation and that might be produced by intestinal epithelial cells, but 

possibly also by other cell types present within the intestines, are retinoic acid, 

TGFb, thymic stromal lymphopoietin (TSLP), IL-10, as well as GM-CSF, IL-13, and 

IL-4. Of these factors, retinoic acid and GM-CSF plus IL-4 have been shown to 

induce RALDH expression in DCs (Figure 6).  

A similar tissue-specific imprinting mechanism by peripheral tissue cells was 

shown for the skin. In coculture with dermal fibroblasts, DCs were imprinted to 

induce the expression of the skin-specific homing molecule E-selectin ligand on 

activated T cells [209]. Thus, it is thought that tissue-derived DCs, which develop 

from circulating DC precursors, acquire their tissue-specific imprinting capacity 

after having entered the tissue microenvironment. 

In addition to the exposure to intestinal imprinting factors, DCs come in contact 

with pathogens present within the intestinal lumen via their pattern recognition 

receptors (PRRs). This interaction may additionally influence the mucosal phenotype 

of DCs in the intestinal lamina propria. It has been shown with in vitro stimulated 

bone marrow-derived DCs that RALDH2 mRNA expression increases upon TLR5 

stimulation with flagellin or upon TLR2 stimulation with zymosan [160,210]. It 

is therefore possible that in the intestine also TLR-mediated signals or signals 

through other PPRs contribute to mucosal imprinting and RALDH expression in 

CD103+ lamina propria DCs. The literature indicates, however, that DCs, which 

are exposed to intestinal factors, express lower TLR levels and are thus less well 

able to respond to TLR ligands [133,211-213].

3.4 Retinoic acid in lymph node development

It has been known for a long time that retinoic acid is an important player in 

embryonic organogenesis (reviewed in [214]). Recently, it has been demonstrated 

that retinoic acid also plays a role in lymph node development [215]. 

Development of secondary lymphoid organs like PPs and MLNs involves clustering 

of hematopoietic lymphoid tissue–inducer (LTi) cells, characterized as CD4+ CD3- 

IL-7Rα+, with VCAM+ stromal organizer cells [216-218]. Subsequently, triggering 

of the lymphotoxin-β receptor (LTβR) on stromal organizer cells by lymphotoxin-αβ 
(LTαβ) on LTi cells [219] causes stromal organizer cells to synthesize chemokines 

and adhesion molecules that attract and retain more LTi cells [220]. This initiates 

a chain of events that involves further accumulation and signalling of LTi cells and 
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the organization of cell clusters to the complete development of the LN. Recently 

it was shown that the very first clustering of LTi cells and stromal organizer cells is 

controlled by the production of CXCL13 [215]. Retinoic acid was shown to be the 

inducing factor for CXCL13 expression in stromal cells and neurons adjacent to 

the location of lymph node development most likely are the providers of retinoic 

acid during LN development, because of their expression of RALDH enzymes 

[215]. These studies demonstrate that not only retinoic acid is crucial for mucosal 

immune homeostasis in adults, but also that retinoic acid is essential for the 

formation of the immune system during embryonic development. 

The mucosal immune system must remain silent to harmless antigens while allowing 

vigorous immune responses towards harmful pathogens. It is now becoming clear 

that vitamin A plays a crucial role in maintaining immune homeostasis since the 

vitamin A metabolite retinoic acid is essential in multiple immunological process 

like the balance of Treg cells versus Th17 cells, epithelial barrier function, mucosal 

DC differention and gut-homing of T cells and IgA+ B cells. In order to maintain the 

mucosal microenvironment and its immune balance, it is therefore of importance 

to learn how RALDH levels within the mucosal immune system are regulated and 

may be manipulated to correct dysregulation of immune homeostasis.

4. Thesis outline

Vitamin A plays an important role in maintaining mucosal immune homeostasis. 

Dysregulation of this balance, for instance by impaired vitamin A metabolism 

or vitamin A deficiency results in the development uncontrolled inflammatory 

conditions. The studies described in this thesis focus on the different cell types 

involved in maintainance of the mucosal microenvironment and immune balance. 

Furthermore, the effects of vitamin A deficiency and differences in vitamin A 

metabolism on the mucosal immune system in health and disease were addressed.

Chapter 2 describes the role of the LN microenvironment in providing signals for 

T cell tropism. Gut or skin draining LNs were transplanted into the popliteal fossa, 

so that DCs entering these LNs are bringing in antigen from the same peripheral 

site. These transplantations show that the microenvironment of mucosal MLNs 

and not peripheral LNs (PLNs), supports the induction of α
4
β

7
, but not CCR9, on T 

cells upon their activation. Furthermore, MLN stromal cells showed expression of 

vitamin A converting enzymes allowing production of retinoic acid by these cells. 

While in vitro cultured MLN stromal cells were able to induce gut-homing tropism 

on activated T cells directly, addition of RALDH-low unpulsed bone marrow-

derived DCs (BM-DCs) strongly enhanced the expression of gut-homing molecules 

α
4
β

7
 and CCR9. These results demonstrate a crucial role for MLN stromal cells 
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in creating an instructive mucosal microenvironment in lymph nodes and that 

stromal cells, DCs and lymphocytes cooperate for efficient differential imprinting 

of tissue tropism. 

Chapter 3 deals with the capacity of the peripheral tissue microenvironment to 

imprint DCs in such a way that they can induce skin and small intestine homing 

receptors on activated T cells. Upon activation by antigen-pulsed BM-DCs, CD8+ 

T cells up-regulated the skin homing receptor E-selectin ligand when co-cultured 

with dermal fibroblasts and gut homing receptors CCR9 and α
4
β

7
 when co-cultured 

with small intestinal epithelial cells. Soluble factors, such as retinoic acid, as 

well as cell-cell contact were essential for the induced tissue tropism imprinting 

capacity of DCs. This shows that peripheral tissue stromal and epithelial cells 

produce factors that license DC to induce tissue-specific homing receptors and 

thereby transmit information about their tissue of origin and the site of antigen 

capture to T cells. 

In chapter 4, we have investigated how the expression of RALDH enzymes in MLN-

DCs and MLN stromal cells is regulated postnatally. Studies with Trif mutant and 

MyD88-/- animals demonstrated that expression and activity of RALDH enzymes 

in MLN-DCs is independent of TLR signalling. On the contrary, dietary vitamin A 

appeared to be crucial for RALDH expression in MLN-DCs and MLN stromal cells. 

Furthermore, retinoic acid directly regulated the level of RALDH expression in BM-

DCs as well as lymph node stromal cells, thereby regulating RALDH expression 

within the mucosal immune system and consequently maintaining mucosal 

immune homeostasis. These data establish that dietary vitamin A plays a crucial 

role in proper functioning of the mucosal immune system. 

C57BL/6 and BALB/c mice are known as prototypical Th1- and Th2-type mice 

respectively, and retinoic acid has been described to skew T cells upon their 

activation towards the Th2-type profile. In chapter 5 of this thesis, we therefore 

investigated whether C57BL/6 and BALB/c mice differ in their capacity to 

produce retinoic acid. We demonstrated that BALB/c mice expressed higher 

levels of RALDH enzymes and had more retinoic acid-mediated signalling in the 

intestines. Consequently, MLN-DCs displayed higher RALDH activity, which led 

to increased induction of gut-homing molecule expression on CD4+ T cells and 

FoxP3+ regulatory T cells. The enhanced capacity to induce gut-homing molecules 

correlated with an increased accumulation of T cells and B cells in BALB/c small 

intestines when compared to C57BL/6 small intestines. Also, secretion of IgA into 

the lumen of the small intestines was higher in BALB/c mice when compared to 

C57BL/6 mice. Thus, these studies showed that the enhanced ability to convert 

vitamin A results in a better developed mucosal immune system.
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In chapter 6, we investigated whether the differences in retinoic acid production 

and retinoic acid receptor signalling observed in BALB/c and C57BL/6 mice could 

be correlated with the severity of inflammatory disease such as colitis. BALB/c 

mice suffered from less severe DSS colitis compared to C57BL/6 mice and 

recovered more quickly. During colitis, BALB/c mice showed an increased ability 

to form tertiary lymphoid tissue, which could contribute to IgA production and 

increased numbers of regulatory T cells. Retinoic acid has numerous beneficial 

effects on the mucosal immune system implicating that an increase in retinoic 

acid signalling could potentially improve the outcome of inflammatory disease 

and recovery from inflammation in BALB/c mice compared to C57BL/6 mice. 

Chapter 7 describes the investigation of LTi differentiation during LN development. 

We hypothesized that retinoic acid affects hematopoietic LTi differentiation in the 

embryo and demonstrated that oral supplementation of pregnant mothers with 

retinoic acid skewed the differentiation of hematopoietic precursors towards the 

final LTi phenotype. Consistently, administration of a vitamin A deficient diet to 

pregnant mothers led to a significant decrease of the LTi differentiation state 

in the developing LN of the embryo. Also, embryos from BALB/c mice, which 

displayed enhanced vitamin A metabolism when compared to C57BL/6 mice, 

had more mature LTi cells in their MLNs and adult BALB/c mice displayed larger 

mucosal lymphoid organs. Thus, retinoic acid is involved in local differentiation 

of LTi cells during LN development and we propose that vitamin A levels in the 

mother have a significant effect on the amount of LTi cells and the formation of 

LNs in the embryo. 

Finally, in chapter 8, the findings described in this thesis are summarized and 

discussed in the context of recent developments in the research on vitamin A and 

the mucosal immune system. Potential future research directions are indicated, 

which may resolve unanswered questions. This will give further insight in the 

mechanism of how the mucosal immune system operates and how it can be 

influenced.
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Abstract

T cells are imprinted to express tissue-specific homing receptors upon activation 

in tissue-draining lymph nodes, resulting in their migration to the site of antigen 

entry. Expression of gut-homing molecules a
4
b

7
 and CCR9 is induced by retinoic 

acid, a vitamin A metabolite produced by retinal dehydrogenases, which are 

specifically expressed in dendritic cells as well as stromal cells in mucosa-draining 

lymph nodes. Here, we demonstrate that mesenteric lymph node (MLN) stromal 

cell-derived retinoic acid can directly induce the expression of gut-homing 

molecules on proliferating T cells, a process strongly enhanced by DCs. Therefore, 

cooporation of sessile LN stromal cells with mobile dendritic cells warrants the 

imprinting of tissue specific homing receptors on activated T cells.
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Introduction

Upon activation by dendritic cells (DCs), coming from either peripheral or mucosal 

sites, T cells are induced to express adhesion molecules and chemokine receptors 

to ensure that activated T cells will preferentially migrate to the site where DCs 

initially encountered the antigen [1-5]. For migration to the intestines, T cells 

require expression of integrin a
4
b

7
 and chemokine receptor CCR9, although the 

requirement for CCR9 may not be absolute [6-11]. The ligand for a
4
b

7
, mucosal 

addressin cell adhesion molecule-1 (MAdCAM-1), is expressed in the lamina 

propria of the colon and small intestine [12-14], while CCL25, the ligand for CCR9, 

is mainly produced by epithelial cells of the small intestine [15-20]. 

In recent years more insight into the mechanisms by which homing receptors are 

induced has been obtained and an important role for the vitamin A metabolite 

retinoic acid (RA) in the upregulation of a
4
b

7
 and CCR9 on activated T and B 

cells has been described [6,21]. Vitamin A (retinol) is first reversibly oxidized by 

alcohol dehydrogenases to form retinal, which in turn is irreversibly metabolized 

to RA by three members of the aldehyde dehydrogenase gene family, the 

retinal dehydrogenases 1-3 (RALDH1-3) [22,23]. In mice, RALDH1 through 3 are 

differentially expressed in DCs from gut-draining lymphoid tissues, forming the 

basis for the RA-induced gut tropism [6]. This differential expression suggests 

a role for the mucosal environment in the induction of RALDH enzymes. This 

regulation could occur at the site where antigen is initially captured by DCs, for 

example the intestinal epithelium and lamina propria, as suggested by several 

reports [4,24-26]. In addition, it can be envisaged that the microenvironment of 

the draining mucosal LNs, where the interaction and activation of lymphocytes 

takes place, also provides the appropriate signals for induction of T cell tropism, 

as shown in a recent paper by Hammerschmidt et al. [27]. Such a role can further 

be inferred from our earlier experiments in which we showed with transplantation 

studies that mucosa-draining cervical LNs (CLNs) are unique in their capability 

to induce mucosa-associated immune tolerance, as peripheral, non-mucosal, LNs 

(PLNs) transplanted to the site of CLNs were not able to induce immune tolerance 

[28]. 

To elucidate the role of the LN microenvironment in providing signals for T cell 

tropism, either gut or skin draining LNs were transplanted into a peripheral site, 

the popliteal fossa, so that DCs entering these LNs are bringing in antigen from 

the periphery. These transplantations show that the microenvironment of mucosal 

mesenteric LNs (MLNs) and not peripheral LNs (PLNs), supports the induction of 

a
4
b

7
, but not CCR9, on T cells upon their activation. Furthermore, MLN stromal 

cells showed expression of vitamin A converting enzymes allowing production of 

RA by these cells. While in vitro cultured MLN stromal cells were able to induce 

gut-homing tropism on activated T cells directly, addition of RALDH-low unpulsed 

bone marrow-derived DCs (BM-DCs) strongly enhanced the expression of gut-

homing molecules a
4
b

7
 and CCR9. Altogether, our data demonstrates a crucial 
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role for MLN stromal cells in creating an instructive mucosal microenvironment in 

which three obligatory parties, the stromal cells, DCs and lymphocytes cooperate 

for efficient differential imprinting of tissue tropism. 

Materials and Methods

Mice

BALB/c and C57BL/6 mice aged 8 to 12 weeks were purchased from Charles River 

(Sulzfeld, Germany) and DO11.10, b-actin-GFP/C57BL/6, MHC-II-/-, OT-I, and OT-II 

transgenic mice and C57BL/6-CD45.1 and C57BL/6-CD45.2 congenic mice aged 

6 to 8 weeks were bred at our own facilities. The Animal Experiments Committee 

of the VU Medical Center approved all of the experiments described in this study.

Transplantation of LNs to the popliteal site

Transplantation of donor MLNs (mesenteric) or PLNs (from axial, brachial or 

inguinal sites) to the popliteal fossa was performed as described before [29]. 

T cell enrichment, CFSE labelling, transfer and antigenic stimulation

Spleens and LNs from DO11.10, OT-I, OT-II or C57BL/6 mice were minced through 

a 100-mm gauze to obtain single cell suspensions. To deplete erythrocytes from 

spleen cell suspension, cells were incubated for 2 minutes on ice in lysis buffer 

(150 mM NH
4
, 1 mM NaHCO

3
, pH 7.4). CD4+ or CD8+ T cells were enriched to 

at least 60% and 85% respectively, using the CD4 or CD8 negative selection kit 

(Dynal, Oslo, Norway). Cells were labelled with 5 mM of 5,6-carboxy-succinimidyl-

fluoresceine-ester (CFSE, Molecular Probes, Invitrogen, Breda, The Netherlands) 

at 3x107 cells/ml for 10 min at 37˚ C. Cells were used for in vitro cultures with 

stromal cells and/or DCs or used for in vivo intravenous injections. Transplanted 

and control BALB/c or C57BL/6 mice were injected with approximately 107 OVA-

specific T cells and were subsequently stimulated 24 hours later by intramuscular 

(i.m.) or intragastric (i.g.) administration of 200 mg OVA in 10 ml saline or 50 mg 

OVA in 200 ml saline, respectively. After antigenic stimulation, transplanted LNs 

were isolated and used as single cell suspensions for FACS analysis. 

Immunofluorescence and flow cytometry

Single cell suspensions were made by cutting LNs with scissors, followed by 

digestion at 37ºC for 20 min, using Blendzyme 2 (Roche, Penzberg, Germany) 

and 100 U/ml DNAse I (Roche). Antibodies used were anti-ERTR7 (affinity purified 

from hybridoma cell culture supernatant), anti-CD4 (clone GK1.5, BD Pharmingen, 
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Woerden, The Netherlands), biotinylated anti-mouse DO11.10 TCR (KJ1-26, Caltag 

Laboratories, Burlingame, CA), PE-Cy7 conjugated anti-CD8 (eBiosciences), PE-Cy7 

conjugated anti-CD4 (eBiosciences), PE conjugated anti-mouse OT-I/OT-II TCR 

(Va2, eBiosciences), anti-a
4
b

7
 integrin (clone DATK32, kindly provided by Dr. 

Alf Hamann, Charité Universitätsmedizin Berlin, Germany), rat anti-mouse CCR9 

(clone 7E7), rat anti-mouse PNAd (clone Meca-79, kindly provided by Dr. E.C. 

Butcher, Stanford University), anti-B220 (clone 6B2), PE conjugated anti-CD11c 

(clone N418, eBioscience), anti-CD3 (clone KT3), Alexa Fluor 647 conjugated CD45 

(clone MP33), biotin conjugated anti-MHC-II (clone M5/114) and 7-AAD (Molecular 

Probes, Invitrogen) or Sytox Blue (Invitrogen) to discriminate live versus dead 

cells. Secondary antibodies were Alexa conjugated goat anti-rat-IgG and Alexa 

conjugated streptavidin (Molecular Probes, Invitrogen). 

Cells were analyzed with a FACScalibur (BD Biosciences, Breda, The Netherlands) 

or with a Cyan Advanced Digital Processing High-Performance Research flow 

cytometer (Beckman Coulter, Mijdrecht, The Netherlands). Cells were sorted 

using a MoFlo sorter (DakoCytomation, Glostrup, Denmark). Tissue stainings 

were analyzed on a Leica TCS-SP2-AOBS confocal laser-scanning microscope (Leica 

Microsystems Nederland BV, The Netherlands) and images were obtained with 

Leica confocal software.

In vitro experiments

To obtain stromal cells for in vitro cultures, MLNs and PLNs from C57BL/6 mice 

were dissociated with Blendzyme 2 as described above. 1x106 or 4x106 LN cells 

were grown per well of 96-wells or 24-wells flat bottom plates, respectively 

(Greiner Bio One, Alphen a/d Rijn, The Netherlands) in IMDM medium (Iscove’s 

Modified Dulbecco’s Medium from Gibco, N.Y USA) containing 10% fetal calf 

serum (FCS, Hyclone, Utah, USA), 50 µM b-mercaptoethanol (Merck, Darmstadt, 

Germany), 1% L-glutamine and 1% Penicillin-Streptomycin (Biowhittaker Europe, 

Verviers, Belgium) for 24 hours. Subsequently, nonadherent cells were removed, 

fresh medium was added and the culture was continued for one week. 

Bone marrow was isolated from the femur and tibia using a mortar and cultured 

for one week in IMDM medium with 20 ng/ml GM-CSF to obtain BM-DCs. 1x105 

BM-DCs were cultured on stromal cells for 48 hours in a volume of 200 µl IMDM 

complete medium with 50 nM retinol (Fluka, Sigma-Aldrich, Zwijndrecht, The 

Netherlands). Subsequently, cells were FACS-sorted into MHC-II+ CD11c+ DCs and 

CD45- MHC-II- CD11c- stromal cells for RNA isolation.

5x104 purified C57BL/6 CD8+ T cells were cultured on a layer of stromal cells 

with 50 nM retinol (Sigma-Aldrich), 10 µM citral (RALDH enzyme inhibitor, Sigma-

Aldrich), 10 nM all-trans retinoic acid (RA, Sigma Aldrich), 1 µM LE135 (RA receptor 

inhibitor, Tocris Bioscience, Bristol, United Kingdom), and 1 µM LE540 (RA receptor 

inhibitor, Wako Chemicals, Neuss, Germany) as indicated and activated with 5x104 
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CD3/CD28 T cell expander Dynabeads (Dynal, Invitrogen, Breda, The Netherlands) 

in presence or absence of 1x104 unpulsed BM-DCs. 

In all T cell activation assays, responding T cells were analyzed with flow cytometry 

after 96 hours.

RNA isolation, cDNA synthesis and real time PCR

Sorted MHC-II+ CD11c+ DCs, CD45- MHC-II- CD11c- LN stromal cells, and stromal 

cells after 7 days of culture were lysed in Trizol (Gibco BRL, Breda, The Netherlands) 

or RLT buffer (Qiagen Benelux, Venlo, The Netherlands). RNA was isolated by 

precipitation with isopropanol or by using the RNeasy kit (Qiagen Benelux) according 

to the manufacturer’s protocol and cDNA was synthesized from total RNA using 

RevertAid First Strand cDNA Synthesis Kit (Fermentas Life Sciences, Burlington, 

Canada) according to the manufacturer’s protocol. RALDH1 (Aldh1A1), RALDH2 

(Aldh1A2), and RALDH3 (Aldh1A3) specific primers and primers for housekeeping 

genes b-actin, Ubiquitin C, HPRT and GAPDH were designed across exon-intron 

boundaries using Primer Express software (PE Applied Biosystems, Foster City, 

CA). Real time PCR was performed on an ABI Prism 7900HT Sequence Detection 

System (PE Applied Biosystems). Total volume of the reaction mixture was 10 ml, 

containing cDNA, 300 nM of each primer and SYBR Green Mastermix (PE Applied 

Biosystems). To correct for primer efficiency, a standard curve was generated for 

each primer set with cDNA from a pool of non-activated LNs. Expression levels 

of transcripts obtained with real time PCR were analyzed and normalized with 

geNORM v.3.4 software [30]. 

Statistics

Statistical analysis was conducted using 2 tailed Student’s t-test for differences in 

mean fluorescence intensity (MFI), ratio of a
4
b

7
 or CCR9 expression on activated T 

cells in LNs or cocultures, or differences in relative RALDH1, RALDH2, or RALDH3 

mRNA expression levels in sorted DCs and stromal cells. Differences were 

considered significant when p<0.05 or p<0.02 as indicated. 

Results

Donor-derived cells in transplanted LNs are stromal cells.

In earlier studies we showed by transplantation of LNs that differences exist 

between LNs with respect to their ability to allow the induction of mucosal 

tolerance [28]. Since DCs as well as lymphocytes are mobile cells that are likely to 

be replaced rapidly after transplantation these results suggested that the specific 

features that make up the differences between MLNs and PLNs reside within 

the stromal elements of the LN. To investigate this we transplanted MLNs from 
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b-actin-GFP/C57BL/6 mice into the popliteal fossa of C57BL/6 mice and addressed 

which cells were donor-derived at 12 weeks after transplantation. By staining for 

podoplanin (gp38) expressed on fibroblastic reticular cells (FRCs) and pericytes 

and for ERTR7, an extracellular matrix (ECM) glycoprotein produced by these 

cells, we could demonstrate that most podoplanin+ cells which co-localized with 

ERTR7+ ECM structures were GFP expressing donor-derived cells (Figure 1A, B), 

thus confirming that FRCs were donor-derived as reported for LN transplantations 

into gut mesenteries [27]. The majority of the high endothelial venules (HEVs) 

expressing PNAd (detected with MECA79) were of donor origin as well (Figure 

1C). Staining for haematopoietic cells revealed that CD4+ and CD8+ T cells, B 

cells, as well as DCs were lacking GFP expression and thus were host derived 

Figure 1. Non-haematopoietic cells remain in transplanted LNs, while all donor-derived 

haematopoietic cells disappear. 

A-D,  MLNs or PLNs from b-actin-GFP/C57BL/6 mice were transplanted into the popliteal fossa after removal 

of the popliteal LNs. Twelve weeks later, LNs were collected and stromal cells and haematopoietic cells in the 

transplanted LNs were analyzed with immunofluorescence for expression of (A) podoplanin (gp38, red), (B) 

ERTR7 (extracellular matrix marker, red), (C) PNAd (HEV marker, red), and (D) CD11c (DCs, red), while GFP+ 

donor-derived cells appear in green in all pictures. Results shown are representative for 6 LNs transplanted for 

each group. E, MLNs from C57BL/6-CD45.1 mice were transplanted into the popliteal fossa of C57BL/6-CD45.2 

recipients and collected after 5 weeks for FACS analysis of haematopoietic cells present in the transplanted 

MLN (tLN) or orthotopic PLN (coLN). The expression of B220, CD3 and CD11c on CD45.1+ cells and all (total) 

haematopoietic cells is shown for transplanted MLN (tLN). Results were comparable to transplanted PLN. 

Results shown are representative for 5 LNs transplanted for each group.
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(Figure 1D and data not shown). To further prove that indeed haematopoietic cells 

were derived from the host, we transplanted LNs from CD45.1 mice into CD45.2 

congenic hosts and observed that 5 weeks after transplantation very few donor-

derived hematopoietic CD45.1+ cells, predominantly B cells, could be detected in 

the transplanted LNs (Figure 1E). 

In conclusion, we established that after transplantation of lymph nodes virtually 

all haematopoietic cells were derived from the host, while the stromal cells were 

donor-derived.

Activation of T cells in transplanted MLNs results in increased expression of 

a
4
b

7
 but not CCR9.

To study the mechanism of tissue tropism induction guided by stromal cells in vivo, 

independent of mucosal tissue drainage, MLNs and PLNs were transplanted to the 

popliteal fossa of C57BL/6 mice. At twelve weeks after transplantation, C57BL/6 

mice were injected with CFSE-labelled ovalbumin (OVA) specific transgenic CD8+ 

Va2+ T cells (OT-I cells) and immunized with OVA in the sural muscle 24 hours 

later. At 72 hours after antigen administration, expression of mucosal homing 

molecules a
4
b

7
 and CCR9 was analyzed on proliferating OT-I cells by flow cytometry. 

We observed a significant difference between expression of a
4
b

7
 on

 
OT-I cells 

activated in transplanted MLNs (tMLNs) versus transplanted  PLNs (tPLNs) (Figure 

2A). Induced expression in tMLN was comparable to levels on activated OT-I cells in 

the orthotopic MLNs (coMLN) upon intragastric administration of OVA (Figure 2A). 

No difference in a
4
b

7 
expression was visible on the CFSE-labelled non-proliferating 

T cell populations in tMLN versus tPLN, indicative of a uniform entry of injected 

cells in both types of transplanted LNs and the necessity of T cell activation for 

indcution of this gut-homing molecule. Remarkably, the mucosal homing receptor 

CCR9 was not induced on proliferating OT-I cells in tMLNs, while its expression 

was readily induced in the orthotopic MLNs upon intragastric administration of 

OVA (Figure 2B). Identical results were obtained when transplanted mice were 

injected with CFSE-labelled OVA specific CD4+ Va2+ T cells (OT-II cells). To rule 

out strain-specific effects the transplantations were also performed in the BALB/c 

mouse strain in combination with the DO11.10 transgenic T cells, giving similar 

results on the induction of a
4
b

7
 expression (not shown). To exclude the possibility 

that donor-derived mucosal DCs might still be present after transplantation and 

interfere with T cell activation in the transplanted LNs, LNs from MHC-II deficient 

mice were transplanted to the popliteal fossa of C57BL/6 mice. These experiments 

showed similar induction of a
4
b

7
 integrin on activated OT-II cells as observed in 

wild-type transplanted LNs (Figure 2A). Together, these results indicate that the 

mucosal microenvironment in the transplanted MLNs is partially preserved and 

allows for the induction of the gut-homing molecule a
4
b

7
, but not CCR9, by host-

derived DCs on antigen-specific T cells. For the induction of CCR9 on activated T 

cells additional factors might be required, presumably derived from the intestines 
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and present within the intestinal lamina propria as well as in the lymph draining 

from the gut into the MLNs. 

RALDH enzymes are expressed in mucosal DCs and MLN stromal cells.

Since the induction of gut-homing molecules on T cells has been described to 

be dependent on RA [6], we analyzed mRNA expression levels of RA producing 

RALDH enzymes in sorted CD45+ MHC-II+ CD11c+ DCs versus CD45- stromal cells. 

As expected, sorted DCs from MLN (MLN-DCs) expressed high levels of RALDH2 

as well as RALDH3, as shown before [6], while PLN-DCs expressed RALDH2 at 

much lower levels (Figure 3A). Notably, RALDH2 and RALDH3 were found to 

be expressed by freshly sorted CD45- stromal cells from MLNs, but not by PLN 

stromal cells (Figure 3C). Expression of RALDH1 was barely detectable in both PLN 

Figure 2. Transplanted MLNs provide a microenvironment for induction of  a4b7 integrin on 

stimulated antigen-specific T cells. 
A and B, C57BL/6 mice were transplanted with PLN (tPLN) or MLN (tMLN) from C57BL/6 (WT) or MHCII-/- donor 

mice and received CFSE-labelled OVA-specific CD8+ OT-I cells or CD4+ OT-II cells respectively at 12 weeks after 

transplantation. Activated OT-I cells or OT-II cells in tMLNs, tPLNs, and orthotopic PLNs (coPLN) were analyzed 

by flow cytometry 3 days after immunization with OVA antigen in the sural muscle and activated OT-I or 

OT-II cells in orthotopic MLNs (coMLN) were analyzed after intragastric OVA immunization. Shown are flow 

cytometry plots of cell proliferation and expression of a
4
b

7
 (A, top) and CCR9 (B, top) by proliferating OT-I 

cells in coLNs and WT tLNs. Data represent MFI ± SD of a
4
b

7
 expression (A, bottom) and CCR9 expression (B, 

bottom) on activated OT-I cells in WT tLN and activated OT-II cells in MHCII-/- tLN. For each transplanted group 

3 LNs were analyzed, while in each experiment one MLN and two popliteal LNs served as controls. Experiments 

were performed three times. Significant differences between tMLN and tPLN (p<0.02) are indicated by *. 
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Figure 3. RALDH enzymes are expressed in MLN stromal cells and MLN DCs. 
RNA was isolated from indicated cell types. Relative expression levels of RALDH1, RALDH2, and RALDH3 

enzymes were measured by real time PCR. Expression of transcripts was normalized to endogenous references 

genes using geNORM v.3.4 software. Relative expression levels in PLN-DCs (A) and PLN stroma (B, C) was set at 

1,0. Significant differences (p<0.02) are indicated by *. A, CD11c+ MHC-II+ DCs were FACS-sorted from PLNs and 

MLNs from 6 C57BL/6 mice of age 5-9 weeks, analyzed for RALDH1, RALDH2, and RALDH3 mRNA expression 

levels and normalized to GAPDH and HPRT. RALDH1 and RALDH3 expression were not detectable in these cells. 

The experiment was performed three times. B, 7 days cultured MLN stromal cells and PLN stromal cells were 

analyzed for relative expression levels of RALDH1, RALDH2, and RALDH3 enzymes and normalized to GAPDH 

and HPRT. The experiment was performed seven times. C, CD45- MLN stromal cells and PLN stromal cells, FACS 

sorted from freshly isolated MLN and PLN, were analyzed for relative expression levels of RALDH1, RALDH2, 

and RALDH3 enzymes and normalized to GAPDH and Ubiquitin C. RALDH1 expression was not detectable in 

these cells. RALDH2 was not detectable in PLN stroma. The experiment was performed three times. D, After 

7 days of culture, LN stromal cells were trypsinized and analyzed with flow cytometry for expression of CD45, 

CD11c, CD11b, CD4, CD8 and 6B2. Shown are percentages of the total cell suspension. 3 wells were pooled for 

analysis and experiment was performed 4 times.

and MLN stroma (not shown). Therefore, MLN stromal cells may contribute to the 

generation of gut-homing T cells by producing RA, either by directly influencing 

T cells as suggested before [27], through instruction of DCs or by affecting both. 

Gut-homing molecules are induced on activated T cells in the presence of 

MLN stromal cells and BM-DCs in vitro.

To see whether indeed stromal cells are instrumental to an instructive environment 

for induction of T cell tropism, we set up an in vitro assay to address this 

question. Since the low number of freshly sorted stromal cells would limit such 

in vitro studies, we addressed whether MLN stromal cells maintained RALDH 

levels after 7 days of culture. Indeed, RALDH1, RALDH2 and RALDH3 expression 



Stromal and dendritic cells synergize to induce gut tropism 53

2

was detected in cultured MLN stromal cells, and at very low levels in cultured 

PLN stromal cells (Figure 3B). Flow cytometric analysis of these stromal cultures 

showed that the majority of the cells were CD45-negative. Only a small percentage 

of haematopoietic cells was present after 7 days of culture (Figure 3D). 

To investigate the effect of LN stromal cells on the induction of T cell tropism, 

stromal cells from PLNs versus MLNs were cultured for 7 days, after which OVA 

peptide-loaded BM-DCs and CFSE-labelled OT-I cells were added. Although all our 

cultures were performed in the presence of 10% FCS, which should account for 

approximately 40 nM retinol, experiments were carried out in the presence or 

absence of additional retinol to circumvent potential loss of bioactivity of FCS-

derived retinol. After 96 hours, expression of mucosal homing molecules a
4
b

7
 

and CCR9 on proliferating antigen-specific T cells was analyzed by flow cytometry. 

When OT-I cells were stimulated in the presence of MLN stromal cells, the ratio 

of a
4
b

7
+ to a

4
b

7
- T cells increased with each cell division upon addition of retinol, 

suggesting that RA production from retinol was involved in the induction of a
4
b

7
 

expression (Figure 4A). This effect was not seen with stromal cells from PLNs, 

where a stable ratio of a
4
b

7
+ to a

4
b

7
- T cells was found. Similar results were found 

for the induction of CCR9. Only in the presence of MLN stromal cells and retinol, 

a robust expression of CCR9 on dividing T cells was seen (Figure 4B). Addition 

of retinol to the PLN stromal cell cultures allowed a slight induction of CCR9 

on activated T cells, however not to the levels seen on T cells activated on MLN 

stromal cells. These results suggest that only in the presence of MLN stromal cells, 

but not PLN stromal cells, peptide-pulsed BM-DCs can strongly induce a
4
b

7 
and 

CCR9 expression on activated T cells and that this process requires the addition 

of retinol, which is converted to RA by RALDH enzymes.

BM-DCs are not induced to express RALDH enzymes in vitro.

Since we have observed that BM-DCs, which were cultured together with small 

intestinal epithelial cells, were induced to express RALDH enzymes [25], we 

reasoned that a similar instruction could be mediated by MLN stromal cells. 

Therefore BM-DCs were co-cultured with MLN stromal cells or PLN stromal cells 

for 48 hours, after which stromal cells and DCs were sorted and analyzed for 

RALDH2 mRNA expression levels. BM-DCs cultured with PLN stromal cells express 

very low levels of RALDH2 mRNA, either in the presence or absence of added 

retinol. Moreover, MLN stromal cells were unable to further induce RALDH2 mRNA 

levels in BM-DCs, while MLN stromal cells expressed high levels of RALDH2 (Figure 

4C). Therefore, in the in vitro cultures that allow the induction of gut-homing 

molecules on activated T cells, MLN stromal cells are the main source of RALDH 

enzymes, which are needed to convert retinol into RA.
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Figure 4. MLN stromal cells support induction of gut-homing molecules on activated CD8+ T 
cells, which is greatly enhanced by the presence of BM-DCs. 
A and B, 1x105 CFSE-labelled OT-I cells were cultured in vitro with 5x104 OVA peptide-pulsed BM-DCs on a 

layer of MLN or PLN stromal cells in absence or presence of 50 nM retinol. After 96 hours, activated OT-I cells 

were analyzed by FACS for the expression of gut-homing molecules α4β7 (A) and CCR9 (B). Representative 

FACS plots are shown. Boxes indicate percentage of α4β7 or CCR9 expressing dividing T cells of total cell 

suspension. Experiment was performed two times. Data are calculated as the ratio of α4β7
+ to α4β7

- (A, right 

column) and CCR9+ to CCR9- (B, right column) activated antigen-specific T cells upon cell division on MLN or 

PLN stroma in absence (grey dots) or presence (black dots) of 50 nM retinol. C, 1x105 BM-DCs per well were 

cultured on a layer of MLN stromal cells or PLN stromal cells in presence of 50 nM retinol for 48 hours. Per 
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RALDH-low BM-DCs greatly enhance induction of gut-homing molecules by 

MLN stromal cells. 

To address whether indeed stromal cells alone are sufficient for the induction 

of gut-homing molecules on T cells, CD8+ T cells were activated with anti-CD3 

and anti-CD28 coated beads on LN stromal cells in the absence or presence of 

BM-DCs. Retinol was either added as a substrate for RA production by stromal 

cells or omitted from the cultures. After 96 hours, a
4
b

7
 and CCR9 expression on 

activated CD8+ T cells was determined. When CD8+ T cells were stimulated on MLN 

stromal cells in the absence of BM-DCs and retinol, the ratio of a
4
b

7
+ to a

4
b

7
- T 

cells was significantly higher when compared to T cells activated on PLN stromal 

cells. Addition of retinol slightly increased the ratio of a
4
b

7
+ to a

4
b

7
- T cells when 

activated on MLN stromal cells (Figure 4D). 

Notably, addition of unpulsed BM-DCs strongly increased the expression of 

a
4
b

7
 on bead-activated CD8+ T cells in MLN stromal co-cultures. This increased 

expression was already observed when no retinol was added, suggesting that 

BM-DCs have a synergizing effect on the induction of gut-homing molecules on 

T cells (Figure 4D). Increased expression levels were not seen in PLN stromal 

cocultures, where a stable ratio of a
4
b

7
+ to a

4
b

7
- T cells was observed and thus did 

the low levels of RALDH in BM-DCs not contribute to this induction. Similarly, only 

in the presence of stromal cells from MLNs an increasing expression of CCR9 on 

activated T cells was seen upon addition of retinol, while this was not observed on 

PLN stromal cells. Also, addition of unpulsed BM-DCs increased the expression of 

CCR9 on activated T cells in presence of MLN stromal cells. Remarkably, the ratio 

of CCR9+ to CCR9- activated T cells was greatly increased upon addition of retinol 

(Figure 4E). These results show that MLN stromal cells can support the generation 

of gut-homing T cells directly, however the presence of DCs makes this process 

much more efficient.

condition 4 wells were pooled for FACS sorting. CD45+ CD11c+ MHC-II+ DCs and CD45- stromal cells were sorted 

from the co-cultures. Relative mRNA expression levels of RALDH2 were measured by real time PCR. Expression 

of transcripts was normalized to HPRT and Ubiquitin C using geNORM v.3.4 software. Relative expression in 

PLN stroma was set at 1,0. The experiment was performed five times. D and E, 5x104 CD8+ T cells were cultured 

in vitro with 5x104 T cell expander Dynabeads on a layer of MLN stromal cells (black bars) or PLN stromal cells 

(grey bars) in the absence or presence of unloaded BM-DCs as indicated. 50 nM retinol, 10 µM citral plus 1 µM 

of RA receptor β inhibitors LE540 and LE135 was added to the cultures as indicated. After 96 hours, activated 

CD8+ T cells were analyzed by flow cytometry for the expression of gut-homing molecules α4β7 and CCR9. Data 

represent the ratio of α4β7
+ to α4β7

- (D) and CCR9+ to CCR9- (E) of activated CD8+ T cells. Per condition 2 wells 

were pooled for analysis. The experiments have been performed three times. *, p<0.05, **, p<0.02. 
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Discussion

We have demonstrated here that stromal cells within MLNs mediate the induction 

of gut tropism by influencing proliferating T cells directly, a process strongly 

enhanced by DCs. We were able to show that, in spite of the fact that a MLN was 

transplanted to a site where it drains the skin rather than the intestine, MLN 

stromal cells can still provide the necessary microenvironment for the induction of 

gut-homing molecule a
4
b

7
 expression on T cells, regardless of antigen transport 

by DCs from the intestine. Our in vitro studies revealed that MLN stromal cells 

can directly induce expression of gut-homing molecules on T cells, supporting 

the recent publication by Hammerschmidt et al. [27]. However, our data extend 

their observation since we showed that in the presence of DCs the induction of 

these molecules was markedly increased, while these DCs failed to upregulate the 

expression of RALDH enzymes. 

Since an intimate interaction between LN stromal cells and DCs has been observed 

by immunofluorescence as well as by intravital microscopy [31-33], we propose 

that activation of T cells by DCs within organized lymphoid tissues also involves 

LN stromal cells. We therefore conclude that activation of lymphocytes within 

organized lymphoid tissues should no longer be viewed as an interaction between 

antigen presenting cells and lymphocytes, but rather as a response that involves 

three obligatory parties, namely stromal cells, DCs and lymphocytes. 

Within the MLNs, CD103+ DCs are able to induce the expression of both a
4
b

7
 and 

CCR9, while CD103- DCs are only capable of inducing a
4
b

7
 [34,35]. Since also 

a
4
b

7
+ CCR9- cells were shown to migrate to the intestines, both DC subsets can 

induce gut-homing tropism [9]. It has been suggested that CD103+ DCs form the 

subset that constantly migrates from the intestinal lamina propria into the MLNs, 

while CD103- DCs enter the MLN via the blood [1,34-37]. In our experimental 

setting, the lamina propria-derived CD103+ DCs are absent from the transplanted 

MLNs, suggesting that the absence of CCR9 expression on OVA-specific T cells 

is due to absence of this DC subset. However, in our in vitro cultures, LN-derived 

stromal cells by themselves are able to induce both a
4
b

7
 and CCR9 expression on 

activated T cells, suggesting that stromal cells that have recently been removed 

from the intestinal environment are better equipped to induce gut-homing on T 

cells, possibly by producing higher amounts of RA. Although stromal cells within 

MLNs can directly induce gut-homing tropism on proliferating T cells, this process 

is markedly enhanced by DCs. And since DCs will initiate T cell activation by their 

presentation of antigen, we propose that stromal-derived RA might be transferred 

to and presented by DCs to T cells, perhaps through the immunological synapse 

formed between T cells and DCs during T cell activation. Compatible with this 

are the reported observations that uptake and presentation of RA to T cells can 

occur by DCs upon pre-incubation with RA. This process did not involve newly 

formed RA, since RALDH blockade did not affect induction of a
4
b

7
 and CCR9 
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expression on T cells [38]. Similarly, a cell-cell interaction between MLN stromal 

cells and mucosal DCs might be required for the transfer of RA to mucosal DCs. 

Alternatively, DCs may somehow increase, by their interaction with MLN stromal 

cells, RALDH activity within MLN stromal cells without augmenting mRNA levels, 

resulting in the enhanced induction of gut tropism in T cells. 

The stromal cells within LNs have been thought of as cells that simply provide a 

structure for immune cells to optimally interact with each other. However, recently 

it was shown that these stromal components also provide migratory guidance 

for T and B cells, while DCs have been reported to adhere to these cells [31,32]. 

In addition, stromal cells within the T cell area of LN, the fibroblastic reticular 

cells (FRCs), secrete extracellular matrix molecules as part of the conduit system, 

through which small size molecules can get rapid access to the LNs [33,39], while 

FRCs can mediate T cell survival through production of IL7 [40]. Furthermore, 

LN stromal cells can present endogenous antigen to T cells, hereby promoting 

peripheral tolerance induction [41,42]. Additionally, our studies have provided 

evidence that MLN stromal cells influence the final differentiation of T cells by 

differential expression of RALDH enzymes leading to the production of RA which 

creates an instructive mucosal microenvironment. Thus, our findings that unique 

stromal microenvironments exist in anatomically distinct LNs and that this may 

direct tissue-specific lymphocyte homing properties adds to the role stromal cells 

have in controlling immune responses. 

Acknowledgements

We thank Hakan Kalay for determination of retinol and RA in FCS by HPLC analysis. 

This work was supported by a VICI grant (918.56.612) from the Netherlands 

Organization for Scientific Research (R.M., M.J.G., R.R., and R.E.M.) and Deutsche 

Forschungsgemeinschaft, DFG grants MA1567/8-1 (S.F.M. and F.E.) and SFB621-A1 

(R.F.). 



Stromal and dendritic cells synergize to induce gut tropism58

2

	 1. 	 Agace, W. W. 2006. Tissue-tropic 

effector T cells: generation and 

targeting opportunities. Nat. Rev. 

Immunol. 6:682.

	 2. 	 Campbell, D. J., and E. C. Butcher. 

2002. Rapid acquisition of tissue-

specific homing phenotypes by CD4(+) 

T cells activated in cutaneous or 

mucosal lymphoid tissues. J. Exp. Med. 

195:135.

	 3. 	 Dudda, J. C., and S. F. Martin. 2004. 

Tissue targeting of T cells by DCs and 

microenvironments. Trends Immunol. 

25:417.

	 4. 	 Dudda, J. C., A. Lembo, E. Bachtanian, 

J. Huehn, C. Siewert, A. Hamann, E. 

Kremmer, R. Forster, and S. F. Martin. 

2005. Dendritic cells govern induction 

and reprogramming of polarized tissue-

selective homing receptor patterns of T 

cells: important roles for soluble factors 

and tissue microenvironments. Eur. J. 

Immunol. 35:1056.

	 5. 	 MartIn-Fontecha, A., S. Sebastiani, U. 

E. Hopken, M. Uguccioni, M. Lipp, A. 

Lanzavecchia, and F. Sallusto. 2003. 

Regulation of dendritic cell migration to 

the draining lymph node: impact on T 

lymphocyte traffic and priming. J. Exp. 

Med. 198:615.

	 6. 	 Iwata, M., A. Hirakiyama, Y. Eshima, 

H. Kagechika, C. Kato, and S. Y. Song. 

2004. Retinoic acid imprints gut-

homing specificity on T cells. Immunity. 

21:527.

	 7. 	 Johansson-Lindbom, B., M. Svensson, M. 

A. Wurbel, B. Malissen, G. Marquez, and 

W. Agace. 2003. Selective generation 

of gut tropic T cells in gut-associated 

lymphoid tissue (GALT): requirement 

for GALT dendritic cells and adjuvant. J. 

Exp. Med. 198:963.

	 8. 	 Mora, J. R., M. R. Bono, N. Manjunath, 

W. Weninger, L. L. Cavanagh, M. 

Rosemblatt, and U. H. Von Andrian. 

2003. Selective imprinting of gut-

homing T cells by Peyer’s patch 

dendritic cells. Nature 424:88.

	 9. 	 Stenstad, H., A. Ericsson, B. Johansson-

Lindbom, M. Svensson, J. Marsal, M. 

Mack, D. Picarella, D. Soler, G. Marquez, 

M. Briskin, and W. W. Agace. 2006. 

Gut-associated lymphoid tissue-primed 

CD4+ T cells display CCR9-dependent 

and -independent homing to the small 

intestine. Blood 107:3447.

	 10. 	 Svensson, M., J. Marsal, A. Ericsson, L. 

Carramolino, T. Broden, G. Marquez, 

and W. W. Agace. 2002. CCL25 

mediates the localization of recently 

activated CD8alphabeta(+) lymphocytes 

to the small-intestinal mucosa. J. Clin. 

Invest 110:1113.

	 11. 	 Wurbel, M. A., M. Malissen, D. Guy-

Grand, B. Malissen, and J. J. Campbell. 

2007. Impaired accumulation of 

antigen-specific CD8 lymphocytes in 

chemokine CCL25-deficient intestinal 

epithelium and lamina propria. J. 

Immunol. 178:7598.

	 12. 	 Berlin, C., E. L. Berg, M. J. Briskin, D. 

P. Andrew, P. J. Kilshaw, B. Holzmann, 

I. L. Weissman, A. Hamann, and E. C. 

Butcher. 1993. Alpha 4 beta 7 integrin 

mediates lymphocyte binding to the 

mucosal vascular addressin MAdCAM-1. 

Cell 74:185.

	 13. 	 Berlin, C., R. F. Bargatze, J. J. Campbell, 

U. H. Von Andrian, M. C. Szabo, S. R. 

Hasslen, R. D. Nelson, E. L. Berg, S. L. 

Erlandsen, and E. C. Butcher. 1995. 

alpha 4 integrins mediate lymphocyte 

attachment and rolling under 

physiologic flow. Cell 80:413.

	 14. 	 Streeter, P. R., E. L. Berg, B. T. Rouse, R. 

F. Bargatze, and E. C. Butcher. 1988. A 

tissue-specific endothelial cell molecule 

involved in lymphocyte homing. Nature 

331:41.

	 15. 	 Kunkel, E. J., J. J. Campbell, G. 

Haraldsen, J. Pan, J. Boisvert, A. I. 

Roberts, E. C. Ebert, M. A. Vierra, 

S. B. Goodman, M. C. Genovese, A. 

J. Wardlaw, H. B. Greenberg, C. M. 

Parker, E. C. Butcher, D. P. Andrew, and 

W. W. Agace. 2000. Lymphocyte CC 

chemokine receptor 9 and epithelial 

thymus-expressed chemokine (TECK) 

expression distinguish the small 

intestinal immune compartment: 

References



Stromal and dendritic cells synergize to induce gut tropism 59

2

Epithelial expression of tissue-specific 

chemokines as an organizing principle 

in regional immunity. J. Exp. Med. 

192:761.

	 16. 	 Marsal, J., M. Svensson, A. Ericsson, 

A. H. Iranpour, L. Carramolino, G. 

Marquez, and W. W. Agace. 2002. 

Involvement of CCL25 (TECK) in 

the generation of the murine small-

intestinal CD8alpha alpha+CD3+ 

intraepithelial lymphocyte 

compartment. Eur. J. Immunol. 

32:3488.

	 17. 	 Papadakis, K. A., J. Prehn, V. Nelson, L. 

Cheng, S. W. Binder, P. D. Ponath, D. P. 

Andrew, and S. R. Targan. 2000. The 

role of thymus-expressed chemokine 

and its receptor CCR9 on lymphocytes 

in the regional specialization of the 

mucosal immune system. J. Immunol. 

165:5069.

	 18. 	 Stenstad, H., M. Svensson, H. Cucak, 

K. Kotarsky, and W. W. Agace. 2007. 

Differential homing mechanisms 

regulate regionalized effector 

CD8alphabeta+ T cell accumulation 

within the small intestine. Proc. Natl. 

Acad. Sci. U. S. A 104:10122.

	 19. 	 Vicari, A. P., D. J. Figueroa, J. A. 

Hedrick, J. S. Foster, K. P. Singh, S. 

Menon, N. G. Copeland, D. J. Gilbert, N. 

A. Jenkins, K. B. Bacon, and A. Zlotnik. 

1997. TECK: a novel CC chemokine 

specifically expressed by thymic 

dendritic cells and potentially involved 

in T cell development. Immunity. 7:291.

	 20. 	 Wurbel, M. A., J. M. Philippe, C. Nguyen, 

G. Victorero, T. Freeman, P. Wooding, 

A. Miazek, M. G. Mattei, M. Malissen, B. 

R. Jordan, B. Malissen, A. Carrier, and 

P. Naquet. 2000. The chemokine TECK 

is expressed by thymic and intestinal 

epithelial cells and attracts double- and 

single-positive thymocytes expressing 

the TECK receptor CCR9. Eur. J. 

Immunol. 30:262.

	 21. 	 Mora, J. R., M. Iwata, B. Eksteen, S. 

Y. Song, T. Junt, B. Senman, K. L. 

Otipoby, A. Yokota, H. Takeuchi, P. 

Ricciardi-Castagnoli, K. Rajewsky, D. H. 

Adams, and U. H. Von Andrian. 2006. 

Generation of gut-homing IgA-secreting 

B cells by intestinal dendritic cells. 

Science 314:1157.

	 22. 	 Duester, G. 2000. Families of retinoid 

dehydrogenases regulating vitamin A 

function: production of visual pigment 

and retinoic acid. Eur. J. Biochem. 

267:4315.

	 23. 	 Duester, G. 2001. Genetic dissection of 

retinoid dehydrogenases. Chem. Biol. 

Interact. 130-132:469.

	 24. 	 Dudda, J. C., J. C. Simon, and S. Martin. 

2004. Dendritic cell immunization route 

determines CD8+ T cell trafficking 

to inflamed skin: role for tissue 

microenvironment and dendritic cells in 

establishment of T cell-homing subsets. 

J. Immunol. 172:857.

	 25. 	 Edele, F., R. Molenaar, D. Gutle, J. 

C. Dudda, T. Jakob, B. Homey, R. 

Mebius, M. Hornef, and S. F. Martin. 

2008. Cutting edge: instructive role of 

peripheral tissue cells in the imprinting 

of T cell homing receptor patterns. J. 

Immunol. 181:3745.

	 26. 	 Sun, C. M., J. A. Hall, R. B. Blank, N. 

Bouladoux, M. Oukka, J. R. Mora, and 

Y. Belkaid. 2007. Small intestine lamina 

propria dendritic cells promote de novo 

generation of Foxp3 T reg cells via 

retinoic acid. J. Exp. Med. 204:1775.

	 27. 	 Hammerschmidt, S. I., M. Ahrendt, U. 

Bode, B. Wahl, E. Kremmer, R. Forster, 

and O. Pabst. 2008. Stromal mesenteric 

lymph node cells are essential for the 

generation of gut-homing T cells in 

vivo. J. Exp. Med. 205:2483.

	 28. 	 Wolvers, D. A., C. J. Coenen-de Roo, 

R. E. Mebius, M. J. van der Cammen, 

F. Tirion, A. M. Miltenburg, and G. 

Kraal. 1999. Intranasally induced 

immunological tolerance is determined 

by characteristics of the draining lymph 

nodes: studies with OVA and human 

cartilage gp-39. J. Immunol. 162:1994.

	 29. 	 Mebius, R. E., J. Breve, G. Kraal, and 

P. R. Streeter. 1993. Developmental 

regulation of vascular addressin 

expression: a possible role for site-

associated environments. Int. Immunol. 

5:443.

	 30. 	 Vandesompele, J., P. K. De, F. 

Pattyn, B. Poppe, R. N. Van, P. A. De, 

and F. Speleman. 2002. Accurate 

normalization of real-time quantitative 

RT-PCR data by geometric averaging of 

multiple internal control genes. Genome 



Stromal and dendritic cells synergize to induce gut tropism60

2

Biol. 3:RESEARCH0034.

	 31. 	 Bajenoff, M., J. G. Egen, L. Y. Koo, J. P. 

Laugier, F. Brau, N. Glaichenhaus, and R. 

N. Germain. 2006. Stromal cell networks 

regulate lymphocyte entry, migration, 

and territoriality in lymph nodes. 

Immunity. 25:989.

	 32. 	 Katakai, T., T. Hara, M. Sugai, H. Gonda, 

and A. Shimizu. 2004. Lymph node 

fibroblastic reticular cells construct 

the stromal reticulum via contact with 

lymphocytes. J. Exp. Med. 200:783.

	 33. 	 Sixt, M., N. Kanazawa, M. Selg, T. 

Samson, G. Roos, D. P. Reinhardt, R. 

Pabst, M. B. Lutz, and L. Sorokin. 2005. 

The conduit system transports soluble 

antigens from the afferent lymph to 

resident dendritic cells in the T cell area 

of the lymph node. Immunity. 22:19.

	 34. 	 Annacker, O., J. L. Coombes, V. 

Malmstrom, H. H. Uhlig, T. Bourne, B. 

Johansson-Lindbom, W. W. Agace, C. M. 

Parker, and F. Powrie. 2005. Essential 

role for CD103 in the T cell-mediated 

regulation of experimental colitis. J. Exp. 

Med. 202:1051.

	 35. 	 Johansson-Lindbom, B., M. Svensson, 

O. Pabst, C. Palmqvist, G. Marquez, 

R. Forster, and W. W. Agace. 2005. 

Functional specialization of gut CD103+ 

dendritic cells in the regulation of tissue-

selective T cell homing. J. Exp. Med. 

202:1063.

	 36. 	 Coombes, J. L., K. R. Siddiqui, C. V. 

rancibia-Carcamo, J. Hall, C. M. Sun, 

Y. Belkaid, and F. Powrie. 2007. A 

functionally specialized population of 

mucosal CD103+ DCs induces Foxp3+ 

regulatory T cells via a TGF-{beta} and 

retinoic acid dependent mechanism. J. 

Exp. Med. 204:1757.

	 37. 	 Jaensson, E., H. Uronen-Hansson, O. 

Pabst, B. Eksteen, J. Tian, J. L. Coombes, 

P. L. Berg, T. Davidsson, F. Powrie, B. 

Johansson-Lindbom, and W. W. Agace. 

2008. Small intestinal CD103+ dendritic 

cells display unique functional properties 

that are conserved between mice and 

humans. J. Exp. Med. 205:2139.

	 38. 	 Saurer, L., K. C. McCullough, and A. 

Summerfield. 2007. In vitro induction of 

mucosa-type dendritic cells by all-trans 

retinoic acid. J. Immunol. 179:3504.

	 39. 	 Itano, A. A., and M. K. Jenkins. 2003. 

Antigen presentation to naive CD4 T cells 

in the lymph node. Nat. Immunol. 4:733.

	 40. 	 Link, A., T. K. Vogt, S. Favre, M. R. 

Britschgi, H. cha-Orbea, B. Hinz, J. 

G. Cyster, and S. A. Luther. 2007. 

Fibroblastic reticular cells in lymph 

nodes regulate the homeostasis of naive 

T cells. Nat. Immunol. 8:1255.

	 41. 	 Gardner, J. M., J. J. Devoss, R. S. 

Friedman, D. J. Wong, Y. X. Tan, X. Zhou, 

K. P. Johannes, M. A. Su, H. Y. Chang, 

M. F. Krummel, and M. S. Anderson. 

2008. Deletional tolerance mediated 

by extrathymic Aire-expressing cells. 

Science 321:843.

	 42. 	 Lee, J. W., M. Epardaud, J. Sun, J. E. 

Becker, A. C. Cheng, A. R. Yonekura, J. K. 

Heath, and S. J. Turley. 2007. Peripheral 

antigen display by lymph node stroma 

promotes T cell tolerance to intestinal 

self. Nat. Immunol. 8:181.



Stromal and dendritic cells synergize to induce gut tropism 61

2





* Allergy Research Group, Department of Dermatology, University Medical 
Center
† University of Freiburg, Faculty of Biology, Freiburg, Germany 
‡ Department of Molecular Cell Biology and Immunology, VU Medical Center, 
Amsterdam, The Netherlands 
§ Department of Medical Microbiology and Hospital Hygiene, Hannover, Ger-
many 
¶ Benaroya Research Institute, Seattle, WA, USA 
# Department of Dermatology, Heinrich-Heine-University, D-40225 Düsseldorf, 
Germany

J Immunol. 2008 Sep 15;181(6):3745-9.

3
Instructive role of peripheral tissue 
cells in the imprinting of T cell homing 
receptor patterns

Fanny Edele*†, Rosalie Molenaar‡, Dominique Gütle§, Jan C. Dudda¶, 
Thilo Jakob*, Bernhard Homey#, Reina Mebius‡, Mathias Hornef§ 
and Stefan F. Martin*



Peripheral tissue cells in homing receptor imprinting64

3

Abstract

Tissue-specific homing of effector and memory T cells to skin and small intestine 

requires the imprinting of specific combinations of adhesion molecules and 

chemokine receptors by dendritic cells in the draining lymph nodes. Here, we 

demonstrate that CD8+ T cells activated by antigen-pulsed bone marrow-derived 

dendritic cells were induced to express the small intestine homing receptors 

a4b7 integrin and chemokine receptor CCR9 in co-culture with small intestinal 

epithelial cells. In contrast, in co-culture with dermal fibroblasts the skin homing 

receptor E-selectin ligand was induced. Interestingly, the imprinting of gut homing 

receptors on anti-CD3/anti-CD28 stimulated T cells was induced by soluble 

factors produced by small intestinal epithelial cells. Retinoic acid was identified as 

a crucial factor. These findings show that peripheral tissue cells directly produce 

homing receptor imprinting factors and suggest that dendritic cells can acquire 

their imprinting potential already in the peripheral tissue of origin.
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Introduction

Upon activation by dendritic cells (DC) in skin-draining lymph nodes, T cells 

up-regulate the skin homing receptors E- (E-lig) and P-selectin ligands (P-lig) as 

well as the chemokine receptors CCR4 and CCR10 [1-6]. Activation by DC from 

mesenteric lymph nodes (MLN) and Peyer’s patches (PP) results in the gut-homing 

receptors a4b7 integrin and CCR9 [4-9]. The role of lymph node resident DC 

versus DC that immigrated from peripheral tissues has not been addressed yet. 

DC from MLN and PP express retinal dehydrogenases (RALDH). They produce the 

vitamin A metabolite retinoic acid (RA) that induces up-regulation of a4b7 and 

CCR9 [10]. Lamina propria-derived CD103+ DC are responsible for the imprinting 

of gut homing receptors on T cells in PP and MLN [11,12]. Epidermal Langerhans 

cells (LC) were most efficient in the induction of skin homing receptors on CD8+ 

T cells in vitro as compared to DC from skin-draining lymph nodes [4,6]. These 

findings suggest that the DC immigrating into draining lymph nodes from 

peripheral tissues, rather than the lymph node resident DC, are responsible for 

homing receptor imprinting. In support of this view, two independent homing 

phenotypes can be induced on T cells in the same lymph node by DC immigrated 

from different peripheral sites [13]. Moreover, the majority of DC in skin draining 

lymph nodes consists of immigrants, i.e. Langerhans cells and dermal DC [14].

Here, we have studied the role of the peripheral tissue microenvironment in 

the imprinting of skin and small intestine homing receptors by DC in co-culture 

systems. CD8+ P14 T cells [15,16] upon activation with antigen-pulsed bone 

marrow-derived DC (BM-DC) up-regulated the skin homing receptor E-lig in co-

culture with dermal fibroblasts or the gut homing receptors CCR9 and a4b7 in 

co-culture with small intestinal epithelial cells (SIEC). Soluble factors such as RA 

induced the imprinting of the gut homing phenotype whereas cell-cell contact with 

dermal fibroblasts was important for the induction of E-lig on T cells. Our findings 

suggest that peripheral tissue stromal and epithelial cells produce factors that can 

directly induce homing receptors on T cells. These factors may license DC to also 

produce such factors and/or allow for the DC to shuttle these imprinting factors 

to the naive T cells in the regional draining lymph nodes.

Materials and Methods

Mice

C57BL/6 and TCR-transgenic Thy1.1 congenic P14 mice [15,16] were provided 

by the breeding facility of the University Medical Center Freiburg. All of the 

experimental procedures were in accordance with institutional, state and federal 

guidelines on animal welfare.
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Media and chemicals

BM-DC, P14 cells and dermal fibroblasts were cultured in RP-10 [4]. Small intestinal 

epithelial cells (m-IC
c12

) were cultured in m-IC medium as described [16].

The LCMV peptide GP33 (KAVYNFATM) was from Hermann GbR (Freiburg, 

Germany). All-trans RA was from Sigma-Aldrich (Munich, Germany). 9-cis RA and 

RA receptor antagonists (RAR, RXR26) were provided by Bernhard Homey. 

Antibodies and flow cytometry

All antibodies were from BD Biosciences (Heidelberg, Germany) unless stated 

otherwise and used as FITC, PE or biotin conjugates. Biotin conjugated antibodies 

were revealed with PE-Cy5 conjugated streptavidin. Antibodies used here: anti-

CD16/CD32 (FcγR II/III) (2.4G2), anti-CD90 (Thy1.1) (HIS51), anti-CD8a (53-6.7), 

anti-IAb (AF6-120.1), anti-CD11c (HL3), anti-CD103 (M290), anti-a4b7 (DATK32), 

E-selectin/human IgG-Fc-Chimera (R&D Systems, Wiesbaden, Germany), anti-

hu-IgG-FITC (DakoCytomation, Hamburg, Germany), rat anti-CCR9 [18], kindly 

provided by Reinhold Förster (Hannover, Germany), mouse anti-rat IgG (H+L) 

(Jackson ImmunoResearch, Newmarket, UK). FACS staining was done as 

described [4,6]. Data were acquired and analyzed on a FACScan instrument using 

CellQuestPro software (BD Biosciences). Anti-pan TGFβ was purchased from R&D 

systems (Wiesbaden, Germany).

Isolation and preparation of cells

BM-DC were prepared as described [4] but without IL-4. m-IC
c12

 cells were 

differentiated for 6 days on collagen in 24-well plates and cultured as described 

previously [17]. Primary SIEC were isolated as described [19]. Dermal fibroblasts 

were isolated from the skin of 2 day old mice with 5 U/ml dispase (Invitrogen, 

Karlsruhe, Germany) for 1 h at 37°C. The dermis was separated from the epidermis, 

washed in PBS and incubated in collagenase I (500 U/ML) (Worthington Biochemical 

Corporation, Lakewood, USA) for 45 min at 37°C. Cells were singularized, washed 

in PBS and resuspended in medium. Medium was changed after 24 h and cells 

were cultured until confluent. P14 spleen cells were prepared as described [4,6]. 

Total splenocytes were used (referred to as P14 cells) or CD8a (Ly-2) MicroBeads 

(Miltenyi Biotech, Bergisch Gladbach, Germany)-purified CD8+ P14 T cells were 

used in some experiments to exclude bystander cell effects. 

In vitro priming of T cells

BM-DC were harvested on day 7-9 and pulsed with 1 µM GP33 peptide (BM-DC-

GP33) [4,6] or used unpulsed. 1x105 BM-DC-GP33/well were incubated with P14 

splenocytes (2x105/well) with or without m-IC
c12

 in 24-well plates (Greiner bio-one, 

Frickenhausen, Germany) for 4 days in a volume of 2 ml RP-10/m-IC medium (1:1 

vol/vol). Retinoic acid receptor antagonists (8 µM RAR or 3 µM RXR) were added to 
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these co-cultures from the beginning. Co-cultures using BM-DC-GP33 (1x104/well) 

were incubated with 2x104 splenocytes and 1x104 dermal fibroblasts in round 

bottom 96-well plates (Corning Life Science, Wiesbaden, Germany) for 6 days in a 

total volume of 200 µl RP-10. Supernatants were collected at day 4 of co-culture 

and stored at –20°C. Cells were analysed by flow cytometry. Cell culture inserts 

(1 µm pore diameter; BD Falcon, Heidelberg, Germany) were used in transwell 

experiments. m-IC
c12

 or dermal fibroblasts were cultured at the bottom of 24-

well plates, BM-DC-GP33 and P14 splenocytes were co-cultured in the cell culture 

inserts. Cell numbers were as described above.

Antibody activated splenocytes (soluble anti-CD3ε (145-2C11, 3 µg/ml) and anti-

CD28 (37.51, 1.5 µg/ml) (BD Biosciences) were primed by addition of all-trans or 

9-cis RA (10 nM and 7.5 µM, respectively).

Isolation of RNA and real time-PCR

Total RNA was isolated from BM-DC, m-IC
c12

 and from BM-DC co-cultured with 

m-IC
c12

 for 4 days using RNeasy Mini Kit 50 (Qiagen, Hilden, Germany). DC were re-

isolated with CD11c MicroBeads using an AutoMACS following the manufacturer’s 

instructions or have been seperated from m-IC
c12

 by transwell culture inserts. 

cDNA was prepared from 1 µg template RNA using Qiagen Omniscript Reverse 

Transcription Kit (Qiagen, Hilden, Germany). RALDH-1,-2 and -3 specific primers 

and primers for housekeeping gene 18S RNA were designed using Roche www.

universalprobelibrary.com and were purchased from TIB Molbiol Syntheselabor 

GmbH (Berlin, Germany). The corresponding probes were obtained by Molecular 

Biochemicals (Mannheim, Germany). Real time PCR was performed on a Light 

Cycler 1.5 (Roche Molecular Biochemicals, Manheim, Germany) using LightCycler 

TaqMan Master (Roche Molecular Biochemicals, Mannheim, Germany). Total 

volume of reaction mixture was 20 µl, containing 1 µl cDNA, 4 µl Master Mix 

(TaqMan Master, see above) 1 µl of each primer (forward and reverse, end 

concentration 0.33 µM respectively), 1 µl probe in a final concentration of 0.1 µM 

and 12 µl RNase free water. A negative control was always included consisting of 

the same ingredients without any cDNA. The expression of transcripts was related 

to 18S RNA. CT values for 18S were subtracted from CT values for RALDH 1, 2 and 

3, respectively (∆CT) and normalized to values to ∆CT of DC alone (∆∆CT). Fold 

increase was calculated by 2-(∆∆CT).

Statistics and statistical analysis

Statistical analysis was conducted using Student’s t test or ANOVA (non parametric) 

for the PCR data. Differences were statistically significant at p<0.05.
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Figure 1: Induction of α4β7 and CCR9 on activated CD8+ T cells in the presence of small intestinal 

epithelial cells. 
(A) P14 splenocytes were cultured for 4 days alone (top), co-cultured with BM-DC-GP33 (second row), co-

cultured with BM-DC-GP33 and SIEC (m-ICc12) (third row) or co-cultured with BM-DC-GP33 and separated from 

m-ICc12 by using transwell culture inserts (bottom). Homing receptor induction on P14 cells was measured by 

flow cytometry. One representative of five independent experiments is shown. Gated on live Thy1.1+ cells. 

(B) Similar results were obtained with freshly isolated SIEC. Data are representative for three independent 

experiments. Gated on live Thy1.1+ cells. n.d.: not detected. (C) Supernatants from DC, P14 splenocytes, 

m-ICc12 or freshly isolated SIEC (co-)cultures were added as conditioned media (CM) to P14 cells activated with 

anti-CD3ε and anti-CD28. Live Thy1.1+ cells were analysed by FACS. Double positive cells (α4β7/CCR9) were 

normalized to double positive splenocytes cultured without supernatants. Data represents the mean of three 

independent experiments. * = significant difference to CM from P14 cultures (p<0.05). TW: transwell. n.d.: not 

detected.

Results and Discussion

Small intestinal epithelial cells induce a4b7 and CCR9 in T cell-BM-DC co-

cultures by soluble factors.

It is conceivable that the antigen-loaded DC immigrating from peripheral tissues 

confer the information about their tissue of origin to T cells in local draining lymph 

nodes. In order to analyse the role of the peripheral tissue microenvironment 

in homing receptor imprinting, TCR transgenic P14 splenocytes (P14 cells) as a 

source for GP33 specific CD8+ T cells were co-cultured with BM-DC-GP33 in the 

presence or absence of the SIEC line m-IC
C12

. Cells were analysed by flow cytometry 

on day 4 of co-culture (Figure 1A). Almost all CD8+ T cells expressed both a4b7 

integrin and CCR9 in the presence of m-IC
c12

 when compared to controls. A role 

for soluble factors was shown in transwell experiments separating co-cultures 

of P14 splenocytes and BM-DC-GP33 from m-IC
c12 

cells. The extent of homing 
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receptor up-regulation was comparable to the cultures without transwells (Figure 

1A, left column). E-lig was not detected (Figure 1A, right column). Similar results 

were obtained with freshly isolated primary SIEC (Figure 1B) using purified CD8+ 

P14 T cells instead of splenocytes (data not shown).

Supernatants from co-cultures were used as conditioned medium (CM). P14 cells 

activated by anti-CD3ε and anti-CD28, and incubated with CM from co-cultures 

that contained either m-IC
c12

 or primary SIEC significantly up-regulated a4b7 

integrin and CCR9 compared to CM from P14 cells only (Figure 1C). Interestingly, 

even CM from m-IC
c12

 cells alone and to a lesser extent from primary SIEC alone 

were able to induce gut homing receptor expression on CD8+ T cells (Figure 1C). 

These findings indicate that SIEC release soluble factors that can induce small 

intestine homing receptors on T cells. It remains to be determined whether the 

difference between primary SIEC alone and SIEC + DC (Figure 1C) is indicative of 

an imprinting of DC by SIEC.

Figure 2: Effects of RA-receptor antagonists on the expression of gut homing receptors and 

induction of a gut-associated phenotype of DC by m-ICc12. 
(A) P14 splenocytes were co-cultured with BM-DC-GP33 and m-ICc12 in the absence (top), or presence of RAR 

antagonist (middle), or RXR antagonist (bottom). Gated on live Thy1.1+ cells. (B) Total RNA was isolated on day 

4 of culture from BM-DC, mICc12, BM-DC from transwell (TW) cultures with mICc12 and from BM-DC previously 

co-cultured with m-ICc12 re-isolated using CD11c MACS separation. cDNA was prepared and real time-PCR 

for RALDH1, 2 and 3 and the housekeeping gene 18S was performed in triplicates. n.d.: not detected. (C) 

Expression of CD103 on DC after co-culture with m-ICc12. BM-DC were cultured in presence (shaded area) or 

absence of m-ICc12 (bold line), harvested and stained at day 4. Cells were gated on CD11c/IAb double positive 

cells. Histogram is representative for four independent experiments. Numbers indicate the mean fluorescence 

intensity (MFI).
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Retinoic acid is involved in homing receptor imprinting in SIEC co-cultures.

Both isoforms of the vitamin A metabolite retinoic acid (RA), all-trans and 9-cis RA, 

efficiently induced a4b7 integrin and CCR9 on P14 T cells activated with anti-CD3 

and anti-CD28 (data not shown) as previously reported [10]. All-trans RA binds 

to RA receptor (RAR) only whereas 9-cis RA binds to RAR and RX receptor (RXR). 

Both receptors mainly function as heterodimeric, ligand-inducible transcription 

factors [20].

To test a potential role of RA, m-IC
c12

 were co-cultured with P14 cells and BM-DC-

GP33 in the presence or absence of RA receptor antagonists. The upregulation of 

CCR9 was completely blocked in the co-cultures by both RAR and RXR antagonists 

whereas the expression level of a4b7 was only reduced in presence of RAR 

antagonist (Figure 2A). In contrast to the antagonists used here, inhibition of 

RALDH by citral or of RAR by the antagonist LE135 efficiently suppresses RA- or 

MLN-DC-induced a4b7 upregulation [10]. It has been reported that TGFβ is a potent 

regulator of a4b7 [21]. Neutralization of TGF-β in the presence or absence of RAR 

and RXR ntagonists had no effect on the expression of a4b7 in our co-cultures 

(supplementary figure S1). These results suggest that SIEC play an important role 

in the induction of gut homing receptors on T cells by production of imprinting 

factors such as RA. RA production by human intestinal epithelium has been 

reported [22] and seems to be crucial for gut homing receptor induction.

BM-DC show a gut-associated phenotype after co-culture with m-IC
c12

.

CD103+ DC isolated from MLN were the most potent in inducing a gut homing 

phenotype on T cells compared to CD103- MLN DC [11, 12]. They express RALDH  

enzymes and can produce the imprinting factor RA [10]. Furthermore, almost all 

lamina propria DC but only a subpopulation of DC from MLN express CD103 (aE 

chain of the integrin aEb7). These CD103+ lamina propria DC produce RA [23]. 

To evaluate whether BM-DC adopt a gut DC phenotype in the presence of SIEC in 

vitro, BM-DC were stained for CD11c, I-Ab and CD103 before and after co-culture 

with m-IC
c12

. At day 4 of co-culture, only a slight, but reproducible upregulation 

of CD103 could be detected compared to BM-DC cultured alone (Figure 2C). We 

also observed the induction of RALDH1 in DC after co-culture with m-IC
c12

 (Figure 

2B). These data show a bias towards a gut-associated phenotype of the BM-DC 

induced by SIEC. This implies that DC may acquire the ability to produce RA 

in the tissue microenvironment of the lamina propria. Positive feedback loops 

for the production of RA have been defined [24,25]. Thus, interactions of DC 

with peripheral tissue cells may induce a differentiation program resulting in 

the tissue-specific phenotype of the DC [4-9]. It is also possible that DC shuttle 

soluble factors produced by peripheral tissue cells, in this case SIEC, to the lymph 

nodes as suggested for RA [21].
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BM-DC induce E-selectin ligands in the presence of dermal fibroblasts.

In order to test whether dermal fibroblasts from mouse skin have a similar impact 

on the imprinting of skin homing receptors on T cells, co-cultures with dermal 

fibroblasts, BM-DC-GP33 and P14 cells were set up and analyzed after 6 days. 

The skin homing receptor E-lig was induced in these co-cultures, in contrast to 

cultures without dermal fibroblasts (Figure 3, left column). Induction of skin 

homing receptors was not observed when cell culture inserts were used to 

separate DC and P14 cells from the fibroblasts (Figure 3, left bottom panel). These 

results suggest that cell-cell contact is necessary for the induction of skin homing 

receptors on T cells, although IL-12 can induce E-lig in vitro [26]. Most likely this 

cell interaction takes place between DC and skin cells as naive T cells do not have 

access to dermal fibroblasts before they are primed for skin homing in the lymph 

node in vivo. We did not see any effects on E-lig expression by the Vitamin D3 

metabolite calcitriol (data not shown) which helps to induce CCR10 expression 

on human T cells [27]. CCR4 was upregulated in an activation-dependent manner 

(data not shown) [4]. Similar results were obtained in all of these settings when 

purified CD8 T cells were used instead of splenocytes, excluding bystander effects 

of non-T cells. Expression of the gut homing receptors a4b7 integrin or CCR9 was 

not observed in these experiments (Figure 3, right column).

Our findings demonstrate an instructive role for peripheral tissue cells in the 

imprinting of skin and small intestine homing receptors on T cells. It has been 

Figure 3. Induction of E-selectin ligand on DC-activated CD8+ T cells in the presence of dermal 

fibroblasts. 
Expression levels of E-lig, a4b7 and CCR9 on P14 cells cultured with BM-DC-GP33 in the absence (top) or 

presence of dermal fibroblasts (middle). Dermal fibroblasts were separated from splenocytes co-cultured with 

BM-DC-GP33 by transwell culture inserts (TW, bottom). All plots are representative for three experiments. 

Gated on live Thy1.1+ cells.
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reported that stromal cells can influence DC differentiation [28-30] (reviewed in 

[31]). For Langerhans cells that differentiate in the skin from monocyte precursors 

[32, 33], a role for both contact-dependent mechanisms and soluble factors in 

the acquisition of tissue-specific characteristics has been described [34,35]. In 

summary, we suggest that the peripheral tissue microenvironment conditions DC 

to shuttle topographical information to the lymph node in a bimodal fashion. As 

reported, DC may themselves be induced to produce factors for homing receptor 

imprinting [10] and, in addition, may transport factors produced by peripheral 

tissue cells to the draining lymph nodes [21]. This would license the DC to induce 

tissue-specific homing receptors and thereby pass the information about their 

tissue of origin and the site of antigen entry on to the T cells.
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Supplemental data

Supplementary figure 1: Effect of TGF-β on homing receptor 

expression.

P14 splenocytes were co-cultured for 4 days with BM-DC-GP33 and 

m-ICc12 in the presence (bold line) or absence (shaded area) of 5 µg/

ml anti-pan TGF-β antibodies and the expression levels of CCR9, α4β7 

and E-lig were analysed on Thy1.1+ CD8+ T cells by flow cytometry. One 

representative of five independent experiments is shown.
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Abstract

The vitamin A metabolite retinoic acid (RA) plays a crucial role in mucosal 

immune responses. We demonstrate here that RA-producing RALDH enzymes are 

postnatally induced in mesenteric lymph node (MLN) dendritic cells (DCs) and 

MLN stromal cells. RALDH enzyme activity in migratory CD103+ MLN-DCs did 

not depend on Toll-like receptor signalling. Remarkably, RA itself could directly 

induce RALDH2 in both DCs and stromal cells in vitro. Furthermore, using vitamin 

A deficient mice, it was found that RA-mediated signalling was strongly reduced 

within the small intestines, and that RALDH2 mRNA expression in both migratory 

CD103+ MLN-DCs and MLN stromal cells was strongly diminished. Moreover, 

supply of vitamin A to vitamin A deficient mice restored RA-mediated signalling in 

the intestine and RALDH activity in migratory CD103+ MLN-DCs. Our results show 

that RA-dependent signalling within the intestine is indispensable for RALDH 

activity in  the draining MLN. 
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Introduction

Vitamin A has long been recognized for its role in immunity. It is currently estimated 

that 190 million preschool-aged children and 20 million pregnant women in 

developing countries are vitamin A deficient [1], leading to increased risk of night 

blindness and mortality [2,3]. Vitamin A deficiency compromises mucosal barriers 

of the respiratory and gastrointestinal tracts [4]. It has also been described that 

vitamin A deficiency affects the ability of macrophages and neutrophils to migrate 

to sites of infection, phagocytose and kill bacteria [4,5]. Vitamin A also plays a 

critical role in the development of adaptive immune responses in the intestines. 

Through expression of the vitamin A converting aldehyde dehydrogenase 1A 

(ALDH1A, also called retinaldehyde dehydrogenase (RALDH)) enzymes, dendritic 

cells (DCs) and stromal cells in gut-associated lymphoid organs, like Peyer’s 

patches (PP) and mesenteric lymph nodes (MLN), are able to produce the active 

metabolite retinoic acid (RA) necessary to induce gut-homing specificity on 

activated T cells [6-11], FoxP3-expressing regulatory T (Treg) cells [12-18] and 

IgA producing B cells [19-21], and to suppress the differentiation of Th17 cells 

[13,16,17]. Therefore, RA appears to be a key molecule that controls lymphocyte 

homing properties and mucosal immune responses. It is thus of importance to 

know how RALDH levels are regulated within the mucosal immune system.

The major pathway of RA synthesis depends on two steps. Vitamin A is first 

reversibly oxidized by alcohol dehydrogenases (ADH) to form retinaldehyde. 

These enzymes are expressed in most cells including DCs. Next, retinaldehyde is 

irreversibly metabolized to RA by three members of the aldehyde dehydrogenase 

gene family, ALDH1A1 (RALDH1, ALDH1A2 (RALDH2) and ALDH1A3 (RALDH3) 

[22-24]. RALDH expression is limited to certain cell types, like intestinal epithelial 

cells [7,25-27], nerve fibers [28] and MLN stromal cells as well as DCs in PPs, 

MLNs and intestinal lamina propria, while splenic or peripheral lymph node 

(PLN)-DCs display only very low expression levels of these enzymes [6,7,10,12]. 

The differential expression of RALDH enzymes by DCs associated with mucosal 

tissues, suggests a role for the mucosal environment in the induction of these 

enzymes. It has not been fully established how and when intestinal DCs acquire 

the RA-producing capacity. 

In MLNs, a distinct subset of DCs has been identified that express RALDH enzymes 

at high levels and are marked by the expression of CD103 [12]. These CD103+ 

DCs are better equipped to induce retinoic acid receptor (RAR) signalling in T 

cells [29], FoxP3+ Treg cell differentiation, and gut-homing receptor expression 

on activated T cells when compared to CD103– DCs [9,12]. CD103+ MLN-DCs 

represent a lamina propria-derived migratory population, which acquire the 

mucosal phenotype within the intestinal environment [9,18,30-33]. Indeed, we 

[34] and others [35] have shown that contact of bone marrow-derived (BM)-DCs 

with gut epithelial cells induced expression of RALDH enzymes and educated BM-
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DCs to induce gut-homing molecules on T cells in vitro. Similar data have been 

published for human DCs [36]. Factors involved in mucosal DC imprinting include 

RA, as well as GM-CSF, IL-13, TGFb, TSLP and IL-4 [33,35-37]. Of these factors, RA 

and GM-CSF plus IL-4 have been described to contribute to RALDH expression in 

DCs [37]. 

In addition to contact with intestinal epithelial cells, DCs are in contact with microbes 

present in the intestinal lumen via pattern recognition receptors which include 

Toll like receptors (TLRs) [38,39], C-type lectin receptors [40] and intracellular 

Nod-like receptors [41]. Recently it was described that RALDH2 expression in 

both BM-DCs and splenic DCs was induced upon zymosan stimulation [42]. It is 

therefore possible that also in the intestine, TLR-mediated signals contribute to 

RALDH expression in CD103+ lamina propria DCs.

It remains to be determined how RALDH expression is regulated in MLN stromal 

cells. However, RALDH expression by adult MLN stromal cells might represent an 

intrinsic capacity, since transplanted MLN retained expression of RALDH in a skin-

draining location [10]. Also, PLN transplanted into the mesenteries maintained 

low RALDH levels compared to MLN, irrespective of intestinal-derived factors 

draining to these transplanted LN [6].

Here we show that RALDH enzymes are postnatally induced in MLN-DCs and MLN 

stromal cells suggesting that external factors during postnatal development 

are involved in maturation of the RALDH-dependent intestinal immune system. 

We found that expression and activity of RALDH enzymes is independent of 

TLR signalling, because MLN-DCs from Trif mutant, MyD88-/- and C57BL/6 WT 

animals exhibit similar RALDH activity. Remarkably, dietary vitamin A appeared 

to be crucial for RALDH expression in MLN-DCs and MLN stromal cells and loss of 

RALDH activity in mice that were deficient for vitamin A could be quickly restored 

by vitamin A supplementation. These data point to an essential role of dietary 

vitamin A for a proper functioning of the mucosal immune system.

Materials and Methods

Mice

C57BL/6 mice aged 1 to 14 weeks, MyD88-/- mice [43] and Triflps2/lps2 mice aged 10-

14 weeks were bred at our own animal facilities and were housed under specific-

pathogen-free conditions (SPF). In Triflps2/lps2 mice, the Trif protein is modified by 

a single base-pair deletion resulting in a dysfunctional protein [44]. The Animal 

Experiments Committee of the VU Medical Center approved all of the experiments 

described in this study.
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Generation of Vitamin A-deficient, -control and –high mice

C57BL/6 mice obtained from Charles River (Charles River, Maastricht, The 

Netherlands) were mated and pregnant females either received a chemically 

defined diet that lacked vitamin A (the modified AIN-93M feed, MP Biomedical, 

Solon, Ohio, USA; vitamin A deficient (VAD)), contained vitamin A (2800 IU/kg in 

the modified AIN-93M feed, MP Biomedical; vitamin A control (VAC)) or contained 

double the amount of vitamin A (5600 IU/kg in the modified AIN-93M feed, MP 

Biomedical; vitamin A high (VAH)). These diets started at 8-9 days of gestation. 

The pups were weaned at 4 weeks of age and maintained on the same diet at least 

until 10 weeks of age before analysis was performed. All mice were housed under 

SPF conditions.

Cell sorting, ALDEFLUOR assay and flow cytometry

Single cell suspensions were made by cutting LNs with scissors, followed by 

digestion at 37ºC for 20 min, using 0.5 mg/ml Blendzyme 2 (Roche, Penzberg, 

Germany) and 0.2 mg/ml DNAse I (Roche) in PBS, while constantly stirring. Cell 

clumps were removed by pipetting the cells over a nylon mesh. LN cells were 

washed and resuspended in PBS with 2% NBCS. 

For sorting of DCs and stromal cells, cells were stained with biotin conjugated 

anti-MHC-II (clone M5/114), PE conjugated anti-CD11c (clone N418, eBioscience, 

Immunosource, Halle-Zoersel, Belgium), Alexa fluor 647 (Invitrogen, Breda, The 

Netherlands) conjugated anti-CD45 (clone MP33) and 7AAD (Molecular Probes, 

Invitrogen) to discriminate between live versus dead cells. CD45+ MHC-II+ CD11c+ 

DCs and CD45– MHC-II– CD11c– stromal cells were sorted using a MoFlo XDP cell 

sorter (Beckman Coulter, Woerden, The Netherlands). 

RALDH activity in individual cells was measured using ALDEFLUOR staining kits 

(StemCell Technologies, Grenoble, France), according to the manufacturer’s 

protocol with modifications. Briefly, cells suspended at 106 cells per ml in 

ALDEFLUOR assay buffer containing activated ALDEFLUOR substrate (365 nM) with 

or without the RALDH inhibitor diethylaminobenzaldehyde (DEAB, 7.5 μM) were 

incubated for 40 min at 37°C. For flow cytometric analysis of ALDEFLUOR-reacted 

cells, cells were subsequently stained with PE conjugated anti-CD11c (clone N418, 

eBioscience), biotin conjugated anti-CD103 (clone M290, BD Bioscience, Breda, 

The Netherlands), Alexa fluor 647 conjugated anti-MHC-II (clone M5/114) and with 

Sytox Blue (Invitrogen) to discriminate between live versus dead cells. Secondary 

antibody used was PERCP conjugated (BD Bioscience) or PE-Cy7 conjugated 

streptavidin (eBioscience). Cells were analyzed with a Cyan ADP flow cytometer 

(Beckman Coulter). 
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In vitro experiments 

Bone marrow was isolated from femurs and tibia using a mortar and cultured for 

one week in IMDM medium containing 10% FCS, 50 µM b-mercaptoethanol, 1% 

L-glutamine, 1% Penicillin-Streptomycin (IMDM complete medium) and 20 ng/ml 

GM-CSF (clone X63) to obtain bone marrow derived DCs (BM-DCs). 

1x105 BM-DCs were cultured in 96-wells plates (Greiner Bio One, Alphen aan den 

Rijn, The Netherlands) for 24 hours in a volume of 200 µl IMDM complete medium 

in presence or absence of 100 nM all-trans retinoic acid (RA, Sigma-Aldrich, 

Zwijndrecht, The Netherlands). 1x106 BM-DCs were cultured for 24 hours in a 

volume of 1 ml IMDM complete medium with anti CD40 antibody (8 µg/ml, clone 

1C10), imiquimod (5 µg/ml, Cayla InvivoGen, Toulouse, France), LPS (1µg/ml, 

Sigma-Aldrich), PAM3CSK4 (100 ng/ml, Cayla InvivoGen), Phorbol 12-myristate 

13-acetate (PMA, 100 ng/ml, Sigma-Aldrich), curdlan (33 µg/ml, Sigma-Aldrich), 

Polyinosinic–polycytidylic acid sodium salt (Poly I:C, 10 µg/ml, Sigma-Aldrich) or 

zymosan (5 µg/ml, Sigma-Aldrich). 

Stromal cells from PLNs and MLNs were cultured in 96-wells plates (Greiner Bio 

One) for 7 days as described earlier [10] and incubated with 5 nM all trans-RA, 

50 nM all trans-RA and 500 nM all trans-RA in a volume of 200 µl complete IMDM 

medium for 24 hours. Cells were lysed in RLT buffer from RNeasy kit (Qiagen 

Benelux, Venlo, The Netherlands) or lysis buffer from mRNA Capture kit (Roche, 

Woerden, The Netherlands) for RNA isolation and analysis with Real time PCR.

RNA isolation and real time PCR

RNA was isolated from sorted CD45+ MHC-II+CD11c+ DCs, CD45- MHC-II- CD11c- 

LN stromal cells and stimulated BM-DCs and LN stromal cells using RNeasy kit 

(Qiagen Benelux) or mRNA Capture kit (Roche) according to the manufacturer’s 

protocol. cDNA was synthesized using RevertAid First Strand cDNA Synthesis Kit 

(Fermentas Life Sciences, Burlington, Canada) or with the Reverse Transcription 

System (Promega Benelux, Leiden, The Netherlands), respectively. Primers for 

RALDH1 (Aldh1A1), RALDH2 (Aldh1A2), RALDH3 (Aldh1A3), RARb, GM-CSF (Csf2), 

IL-4 and TGF-b1 and for housekeeping genes ubiquitin C, hprt, and GAPDH 

(Isogen Life Science, De Meern, Netherlands; Invitrogen) were designed across 

exon-intron boundaries using Primer Express software (PE Applied Biosystems, 

Foster City, CA). Real time PCR was performed on an ABI Prism 7900HT Sequence 

Detection System (PE Applied Biosystems). Total volume of the reaction mixture 

was 10 ml, containing cDNA, 300 nM of each primer and SYBR Green Mastermix 

(PE Applied Biosystems). The comparative Ct method (ΔCt) was used to assess 

relative changes in mRNA levels between samples. 

Statistics

Results are given as the mean ± SD. Statistical analyses were perfomed using the 

2-tailed Student’s t test. 
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Figure 1. RALDH expression and activity in MLN-DCs is increased during postnatal development.

(A) CD45+ MHC-II+ CD11chigh DCs were FACS-sorted from MLN and PLN from female C57BL/6 mice aged 2-3 

weeks and aged 7-9 weeks. Sorted DCs were analyzed for expression of RALDH1, RALDH2 and RALDH3 by 

real-time PCR. Relative expression levels in young PLN-DCs was set at 1. Per group 3-6 animals were used 

for FACS-sorting. Experiment was performed two times. RALDH1 expression was not detectable in these LN, 

while RALDH3 expression was too low to give any consistent difference. Significant difference is indicated by * 

(p<0.01). (B) MLN cell suspensions from C57BL/6 mice aged 1, 3, or 9 weeks were analyzed for MHC-II, CD11c 

and CD103 expression. Data represent percentage ± SD of MHC-II+ CD11chigh DCs of total LN cells (top) and 

percentage of MHC-II+ CD11chigh DCs expressing CD103 (bottom). Per group 6-7 animals were used for analysis. 

(C) CD103+ MHC-II+ CD11chigh DCs in LN cell suspensions from C57BL/6 mice aged 1, 3, or 9 weeks were analyzed 

for RALDH activity using ALDEFLUOR assay. Representative FACS plots are shown for ALDEFLUOR signal and 

CD103 expression by MHC-II+ CD11chigh DCs in PLN and MLN. Box indicates CD103 gate for calculations of 

ALDEFLUOR MFI shown in D. (D) Data represent ALDEFLUOR MFI ± SD in CD103+ LN-DCs in absence (black 

bars) or presence (grey bars) of RALDH inhibitor DEAB. Per group 7 animals were used for analysis. Significant 

differences are indicated by * (p<0.01). MLN, mesenteric lymph node; PLN, peripheral lymph node.
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Results

RALDH expression and activity is increased during postnatal development.

The enzyme RALDH2 has been described to be the most abundantly expressed 

vitamin A converting enzyme in MLN-DCs and MLN stromal cells [6,10,12,37] and 

its expression is crucial for the induction of gut-homing T cells within adult MLNs. 

In order to determine how RALDH expression in these cells is controlled we first 

investigated at what point after birth MLN-DCs and MLN stromal cells started 

to express and showed functional activity of RALDH enzymes. Hereto, MHC-II+ 

CD11c+ DCs and CD45– MLN stromal cells were sorted from MLNs and PLNs from 

C57BL/6 mice, 2-3 weeks and 7-9 weeks of age and analyzed for RALDH2 mRNA 

expression. Remarkably, at an early age, MLN-DCs showed low expression levels 

of RALDH2 with levels that were similar as measured in PLN-DCs, while adult 

MLN-DCs highly expressed RALDH2 (Figure 1A). A similar age-related distribution 

was found for CD45– MLN stromal cells sorted from mice at the age of 2-3 weeks, 

which showed significantly lower expression of RALDH2 when compared to adult 

MLN stromal cells (Supplementary Figure 1). Notably, RALDH2 expression in PLN 

stromal cells was hardly detectable and expression of RALDH1 and RALDH3 mRNA 

was undetectable in all DC and stromal cell samples. In conclusion, RALDH2 

expression in MLN-DCs and MLN stromal cells is postnatally induced over the 

course of 2-7 weeks. 

Low expression of RALDH2 in MLN-DCs at the age of 2-3 weeks could simply be 

due to a failure of lamina propria-derived DCs to migrate to the draining MLN at 

this age. However, staining for CD103, which is now a well established marker for 

lamina propria-derived DCs [9,18,31], showed that already at 1 week after birth 

approximately 50% of MHC-II+ CD11c+ DCs expressed CD103 (Fig. 1B, bottom). 

Furthermore, the percentages of MHC-II+ CD11c+ DCs (Fig. 1B, top) and of CD103+-

expressing DCs (Fig. 1B, bottom) were not different between the different ages. 

This strongly suggests that already within the first week after birth lamina propria-

derived DCs are migrating to MLNs and that RALDH levels must be lower in these 

DCs in the first weeks after birth. 

To ensure that indeed mRNA for RALDH was translated into functional protein 

RALDH enzyme activity was analyzed in MLN cells from mice at different ages 

using the ALDEFLUOR assay. With this assay RALDH activity can be measured in 

individual cells by flow cytometry with a fluorescent substrate, specific for RALDH 

enzymes. Among MLN cells, RALDH activity was detected almost exclusively in 

CD103+ MHCII+ CD11c+ cells of MLNs (Fig. 1C, left), corroborating that CD103+ 

MLN-DCs have higher RALDH mRNA levels compared to CD103- DCs in MLNs 

[12]. Notably, we were not able to detect RALDH activity in MLN stromal cells, 

since the ALDEFLUOR assay was not suitable for stromal cell analysis. At 1 and 

3 weeks of age, CD103+ MLN-DCs showed significantly lower levels of RALDH 

activity than measured in adult CD103+ MLN-DCs (Figure 1D). In addition, CD103+ 
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PLN-DCs showed very low RALDH activity at all ages analyzed. In conclusion, not 

only RALDH expression, but also RALDH activity increased in MLN-DCs during 

postnatal development. 

RALDH enzyme activity is not dependent on TLR signalling.

Next, we questioned how the expression and activity of RALDH is regulated 

during postnatal development. Mice are essentially born germ-free, but soon after 

birth, mucosal surfaces are colonized with high numbers of bacteria [45,46]. It is 

therefore conceivable that the induction of RALDH in MLN-DCs and MLN stromal 

cells is linked to postnatal colonization of the intestine by commensal bacteria. 

Also, recently it was described that both bone marrow derived DCs (BM-DCs) and 

splenic DCs were induced to express RALDH2 upon zymosan stimulation [42]. 

Indeed, we confirmed that RALDH2 expression was induced in zymosan-treated 

BM-DCs (Figure 2A), but we also observed a significant induction upon stimulation 

with PAM3CSK4, PMA, curdlan and LPS (Figure 2A). Since we and others [42] found 

Figure 2. RALDH activity in MLN-DCs is independent of MyD88- and Trif-dependent signalling.
(A) BM-DCs from C57BL/6 mice were incubated with different TLR ligands for 24 hours. Relative mRNA 

expression levels of RALDH2 were measured by real time PCR. Relative expression in control BM-DCs (co) was 

set at 1. The experiment was performed 3 times. Significant differences are indicated by * (p<0.05) and ** 

(p<0.02).  (B,C) MHC-II+ CD11chigh DCs in MLN and PLN cell suspensions from 10-14 week old C57BL/6, MyD88-

/- mice and Trif mutant were analyzed for RALDH activity using ALDEFLUOR assay. Data represent ALDEFLUOR 

MFI ± SD in CD103+ MLN- and PLN-DCs in absence or presence of RALDH inhibitor DEAB for MyD88-/- animals 

(A) and Trif mutant animals (B) compared to C57BL/6. For each experiment 5 MyD88-/-, 6 Trif mutant mice and 

5 C57BL/6 mice were used. 
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TLR-induced upregulation of RALDH2 expression in DCs in vitro, we analyzed 

that RALDH enzyme activity in MLN-DCs from MyD88-/- and Trif mutant mice. 

Analysis of MLN-DCs from MyD88-/- (Figure 2B) and Trif mutant mice (Figure 2C) 

showed that normal RALDH enzyme activity could be measured in these DCs, 

substantiating that TLR signalling via these adaptor proteins is not mandatory for 

induction of RALDH in MLN-DCs in vivo [47]. 

RALDH enzyme activity was abrogated in vitamin A deficient mice.

Since it has been shown that intestinal epithelial factors, among which the vitamin 

A metabolite retinoic acid (RA), induce RALDH expression in BM-DCs [35], we 

decided to address whether dietary vitamin A is crucial for the postnatal induction 

of RALDH enzyme activity. C57BL/6 mice were raised on a vitamin A deficient 

(VAD) and compared with animals raised on vitamin A control diet (VAC) or vitamin 

A high diet (VAH, containing double the amount of vitamin A). Serum retinol levels 

in 10 week-old VAC and VAH mice were 1.30 ± 0.01 μM and 1.43 ± 0.17 μM 

respectively, while serum retinol levels in VAD mice were undetectable at this 

age (detection limit 0.10 μM). Within the MLN, the proportion of DCs expressing 

CD103 was comparable in all 3 groups, showing that lamina propria-derived 

DCs were normally present in the MLNs (Figure 3A). Remarkably, the absence 

of dietary vitamin A almost abrogated RALDH enzyme activity, since ALDEFLUOR 

levels measured in MLN-DCs from VAD mice were reduced by 94% when compared 

Figure 3. Dietary vitamin A regulates RALDH enzyme expression and activity in MLN-DCs. 
(A,B) MHC-II+ CD11chigh DCs in MLN from C57BL/6 mice on vitamin A deficient (VAD), vitamin A control (VAC) 

or vitamin A high (VAH) diet aged 10 weeks were analyzed for CD103 expression and RALDH activity using 

ALDEFLUOR assay. Per group 7 animals were used for analysis. (A) Data represent percentage ± SD of MHC-II+ 

CD11chigh DCs expressing CD103 in individual MLNs. (B) Graphs show ALDEFLUOR MFI ± SD in CD103+ MLN-DCs 

and PLN-DCs from VAD, VAC and VAH mice in absence (black bars) or presence (grey bars) of RALDH inhibitor 

DEAB. (C,D) CD45+ MHC-II+ CD11chigh MLN-DCs and CD45– MLN stromal cells were FACS-sorted from male VAD 

and VAC C57BL/6 mice, aged 11 weeks. Sorted cells were analyzed for expression of RALDH1, RALDH2 and 

RALDH3 by real-time PCR. Relative expression levels in VAC MLN-DCs (C) or in VAC MLN stromal cells (D) was 

set at 1. RALDH1 and RALDH3 expression were too low to give any consistent difference. Per group 6 animals 

were used for FACS-sorting. Experiment was performed two times. Significant differences are indicated by * 

(p=0.01), ** (p<0.001) and *** (p=0.05).



Vitamin A controls RALDH expression in lymph nodes 87

4

to MLN-DCs from VAC and VAH mice and comparable to levels observed in PLN-

DCs (Figure 3B). In addition, RALDH enzyme activity in MLN-DCs from VAC and 

VAH mice was comparable, indicating that extra dietary vitamin A did not further 

increase RALDH enzyme activity in MLN-DCs (Figure 3B). 

To evaluate whether dietary vitamin A also influenced RALDH mRNA expression, 

both CD45– MLN stromal cells and MHC-II+ CD11c+ MLN-DCs were sorted from 

VAD and VAC mice and analyzed for RALDH2 mRNA expression. In agreement 

with our observation that RALDH enzyme activity in DCs required dietary vitamin 

A, RALDH2 mRNA expression levels in MLN-DCs from VAD mice were significantly 

reduced when compared to MLN-DCs from VAC mice (Figure 3C). In addition, 

CD45- MLN stromal cells sorted from VAD mice also showed significantly lower 

levels of RALDH2 mRNA when compared to VAC mice (Figure 3B). In conclusion, 

dietary vitamin A is crucial for RALDH2 mRNA expression in both MLN-DCs and 

MLN stromal cells. 

Figure 4. RALDH activity in VAD MLN-DCs is restored upon vitamin A supplementation. 
MHC-II+ CD11chigh DCs in MLN cell suspensions from C57BL/6 mice, aged 12 weeks, on vitamin A deficient (VAD), 

vitamin A high (VAH) diet or from VAD mice that received VAH diet for 7 days (VAD>VAH) were analyzed for 

CD103 expression and RALDH activity using ALDEFLUOR assay. (A) Shown are representative flow cytometry 

plots of ALDEFLUOR activity and CD103 expression of MHC-II+ CD11chigh DCs from PLN and MLN. Box indicates 

CD103 gate for calculations of ALDEFLUOR MFI shown in B. (B) Graphs show ALDEFLUOR MFI ± SD in MLN-DCs 

from VAH, VAD and VAD > VAH mice in absence (black bars) or presence (grey bars) of RALDH inhibitor DEAB. 

Per group 8 animals were used for analysis. Experiment was performed two times. (C) RNA was isolated from 

MLN suspensions from VAH, VAD and VAD > VAH mice and analyzed for RALDH2 expression with real time 

PCR. Per group 3 MLNs were used for analysis. RALDH1 and RALDH3 expression were undetectable in these 

samples. Significant differences are indicated by * (p=0.05) and ** (p<0.002). 
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Restoration of RALDH enzyme activity in MLN-DCs upon vitamin A 

supplementation.

As the lack of vitamin A in food abrogates RALDH activity in both MLN-DCs and 

MLN stromal cells, we questioned whether we could rescue this by feeding the 

VAD animals a vitamin A high (VAH) diet for 7 days (VAD>VAH). Surprisingly, 

supplementation with vitamin A resulted in a significant increase of ALDEFLUOR+ 

CD103+ MLN-DCs in these mice when compared to VAD animals (Figure 4A, B). 

Moreover, RALDH2 mRNA expression levels in total MLN, to which both DCs 

and stromal cells contribute, were increased upon vitamin A supplementation 

of VAD mice (Figure 4C). These results show that already after 7 days of vitamin 

A supplementation, the effects of vitamin A deficiency on RALDH enzymes were 

reverted and that MLN-DCs were able to quickly respond to nutritional status. 

Retinoic acid directly regulated RALDH enzyme expression in LN stromal 

cells and dendritic cells.

Our data suggest that RA, derived from vitamin A, is crucial for RALDH expression 

in MLN-DCs and MLN stromal cells and we hypothesized that RA itself may directly 

induce RALDH expression in these cells. Indeed, several of the genes involved in the 

metabolic pathway of vitamin A are positively induced by RA [48-51], thus creating 

a positive feedback loop. We therefore determined whether RALDH expression in 

LN stromal cells and BM-DCs could be induced by addition of increasing amounts 

of RA in vitro. Expression of RALDH2 was significantly induced in PLN stromal 

cells by addition of 50 nM RA (Figure 5A, left), while at high RA concentrations 

Figure 5. Regulation of RALDH expression in dendritic cells and LN stromal cells by RA. 
(A) PLN and MLN stromal cells were cultured for 7 days and subsequently stimulated with 5 nM, 50 nM or 500 

nM RA. After 24 hours, PLN stromal cells (A, left) and MLN stromal cells (A, right) were analyzed for RALDH2 

expression with real time PCR. Relative expression levels in unstimulated MLN stromal cells (control) was set 

at 1. Experiment was performed 3 times. (B) BM-DCs were cultured alone or in presence of 100 nM RA. After 

24 hours, BM-DCs were analyzed for expression of RALDH1, RALDH2 and RALDH3 by real-time PCR. Relative 

expression levels in control DCs (DC only) was set at 1 for each RALDH gene. Experiment was performed 4 

times. Significant differences are indicated by * (p<0.001), ** (p=0.01) and *** (p=0.05).
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Figure 6. Expression of RALDH enzymes in small intestines is not affected by dietary vitamin A 

deficiency. 
Expression of RALDH1, RALDH2, RALDH3 mRNA (A) and RARmRNA (B) were analyzed in small intestine 

samples from VAD and VAC mice by real time PCR. Expression of transcripts was normalized to Cyclophilin A 

and Ubiquitin C. Relative expression levels in VAC small intestines was set at 1.0 for each gene analyzed. Per 

group 3 animals were used. Significant differences are indicated by * (p=0.02) and ** (p=0.001). (C) Expression 

levels of RARmRNA were analyzed in small intestine samples from VAD, VAH and VAD mice supplemented 

with vitamin A (VAD>VAH) by real time PCR. Expression of transcripts was normalized to Cyclophilin A and 

Ubiquitin C. Relative expression levels in VAH small intestines was set at 1.0 for each gene analyzed. Per group 

5 animals were used. Significant differences are indicated by * (p=0.02) and ** (p<0.001). 

(500 nM), no induction of RALDH expression could be observed. Additionally, 

analysis of MLN stromal cells demonstrated a reduction of RALDH2 expression 

with increasing amounts of RA (Figure 5A, right). Furthermore, BM-DCs stimulated 

in vitro with 100 nM RA showed a 5-fold higher expression of RALDH2 mRNA, 

while induction of RALDH1 and RALDH3 enzymes was not significantly affected 

(Fig 5B). Since epithelial cells express RALDH1 enzymes and can thus produce 

RA [25-27,52], epithelial-derived RA might be an important imprinting factor for 

inducing RALDH2 expression in lamina propria-DCs. For MLN stromal cells the 

transport of vitamin A by the lymph may be of importance [53,54]. Overall, these 

data imply that RA can imprint both DCs and LN stromal cells in a dose dependent 

manner.

RALDH expression in small intestines is not affected by vitamin A deficiency.

Since RALDH expression in MLN-DCs and MLN stromal cells is dependent on vitamin 

A, we reasoned that the levels of RALDH expression in epithelial cells within the 

small intestine may also depend on dietary vitamin A. We tested small intestines 

from VAD and VAH mice for mRNA expression of RALDH1, RALDH2 and RALDH3 

enzymes using real time PCR. Remarkably, during vitamin A deficiency, RALDH1 

and RALDH2 mRNA expression levels were not altered and were comparable to 

levels observed in VAC small intestines (Figure 6A). RALDH3 expression was 

significantly increased during vitamin A deficiency, indicating the presence of a 

compensatory mechanism for RA production by increasing RALDH3 expression.
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RARβ is a nuclear receptor for RA and known to be a direct target gene of RA 

[48,50]. Expression levels of RARb mRNA can thus be viewed as an indicator of 

RA-mediated signalling within cells. Analysis of RARb showed that mRNA levels 

were indeed strongly reduced in VAD small intestine (Figure 6B), showing that RA-

mediated signalling is absent within the intestine of VAD mice. The absence of RA-

mediated signalling within the intestine could be restored by supplementation of 

VAD mice with dietary vitamin A for 7 days since RARb expression was significantly 

induced in the supplemented VAD mice (VAD>VAH) when compared to VAD 

animals (Figure 6C). From this we can conclude that vitamin A supplementation of 

VAD mice leads to its conversion to RA and induction of RA-mediated signalling, 

resulting in the induction of RALDH expression MLN-DCs and MLN stromal cells.

Discussion

We have demonstrated that during postnatal development RALDH enzymes are 

upregulated in MLN-DCs and MLN stromal cells, pointing to environmental factors 

involved in the induction. RALDH activity in MLN-DCs was not affected when 

microbial triggering via TLRs was diminished, as seen in mice defective in Trif- 

and MyD88-dependent signalling, while the intake of vitamin A turned out to be 

instrumental for RALDH activity within the mucosal immune system. Not only 

RALDH expression in DCs, but also in MLN stromal cells was critically dependent 

on vitamin A consumption. Notably, RALDH enzyme activity in MLN-DCs could 

quickly be restored in vitamin A deficient animals by vitamin A supplementation. 

These data give further insight in the mechanisms of how vitamin A affects the 

functioning of the mucosal immune system.

Mice are essentially born germ-free, but soon after birth, mucosal surfaces are 

colonized with high numbers of bacteria [45,46]. Germ-free mice show reduced 

numbers of lamina propria CD4+ T cells, IgA producing B cells and intra epithelial 

lymphocytes [55,56], and MLNs and spleens are smaller and less cellular [57]. 

This indicates that commensal bacteria play a crucial role in the maturation of the 

mucosal immune system during postnatal development. Therefore, we speculated 

that TLR triggering might be involved in the induction of RALDH expression, as 

suggested previously [37,42]. However, MLN-DCs from both MyD88-/- and Trif 

mutant animals had comparable levels of RALDH activity to WT animals in vivo. 

This suggests that the regulation of RALDH activity in MLN-DCs in vivo does 

not involve MyD88- and Trif-dependent TLR signalling, confirming the recent 

findings that MLN-DCs from mice deficient for both MyD88 and Trif still showed 

ALDELFUOR activity [47]. Nevertheless, it is conceivable that other pattern 

recognition receptor pathways may overcome the deficiency of Trif or MyD88 

proteins in vivo. The literature indicates however that DCs, which are exposed to 

intestinal factors, express lower TLR levels and are thus less well able to respond 
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to TLR ligands [12,32,32,58,59]. This could explain our finding that MyD88 and 

Trif are dispensable for RALDH expression in CD103+ MLN-DCs in vivo. In contrast, 

our data showed that vitamin A-derived RA is mandatory for RALDH expression 

and activity in MLN-DCs. Remarkably, in addition to the inhibitory effect of RA on 

TLR responsiveness in DCs, RA has been shown to increase intestinal epithelial 

barrier function [60,61]. Therefore, in case of vitamin A deficiency, the intestinal 

barrier might be compromised resulting in enhanced invasion of bacteria and 

enhanced exposure of DCs to TLR ligands. Despite potentially enhanced bacterial 

invasion and exposure, we could not observe RALDH enzyme activity in lamina 

propria-derived DCs during vitamin A deficiency. 

Intestinal epithelial cells produce a vast array of soluble factors which are thought 

to license lamina propria DCs to induce gut-homing T cells through the expression 

of RALDH enzymes [34,35]. Factors produced by epithelial cells include RA, as well 

as GM-CSF, IL13, TGFb, TSLP and IL-4. Of these factors, RA was shown to be crucial 

for the imprinting of the mucosal DCs phenotype (this paper and [35]). At first this 

seems to be contradicted by statements that RA could only weakly induce RALDH 

expression FLt3L derived BM-DCs [37], however the concentration used (1μM RA) 

was within the range at which we also fail to induce RALDH expression in BM-DCs. 

Both our data and data from others [35] showed that RA used at concentrations 

around 100 nM can significantly induce RALDH2 expression in BM-DCs while a 

further increase of RA seems to inhibit expression of RALDH2. Negative regulation 

of RALDH2 by RA has indeed been described to occur upon excessive RA 

administration during embryonic development [62]. Moreover, GM-CSF plus IL-4 

have been described to contribute to the expression of RALDH enzymes in Flt3L-

BM-DCs [37]. GM-CSF is produced in the intestines and MLNs by macrophages and 

granulocytes [37]. MLN-DCs from beta-c-/- animals, lacking the GM-CSF receptor, 

showed a reduction of approximately 50%, while the absence of dietary vitamin A 

resulted in a 94% reduction (Figure 3B). It is conceivable that GM-CSF within the 

small intestine is also controlled by RA and that VAD mice produce low levels of 

GM-CSF leading to lack of RALDH2 induction. We tested this hypothesis and found 

that, on the contrary, GM-CSF levels were not different in the small intestines and 

MLNs of VAD mice and VAC mice (Supplementary Figure 2). In addition to GM-

CSF, IL-4 and TGF-b1 were tested and, although TGF-b1 was significantly lower 

in MLNs from VAD mice, levels of IL-4 and TGF-b1 were found not to be different 

in the small intestines of VAD mice and VAC mice (Supplementary Figure 2). We 

therefore conclude that lack of RALDH2 in MLN-DCs does not correlate with the 

absence of GM-CSF, IL-4 and TGF-b1 in VAD mice.

It is intriguing that RALDH levels in MLN DCs and stromal cells are slowly induced 

after birth. Vitamin A-derived RA is crucial for embryonic development and is 

transplacentally delivered from the mother to the embryo. Embryos, however, do 

not store this vitamin A and embryos and newborn mice have very low levels of 

vitamin A in their livers compared to adult mice [63,64]. Postnatally, newborn mice 
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receive high amounts of vitamin A via breast milk allowing to build up vitamin A 

stores in the liver. Perhaps that first sufficient liver stores need to be generated 

before vitamin A, bound to its transporter protein RBP4, can be transported 

through the blood in sufficient amounts to other tissues like intestines and MLNs. 

During vitamin A deficiency, RALDH expression could still be detected in the small 

intestines, while RARb expression was virtually absent, indicating that RA-mediated 

signalling no longer occurred. Thus, although epithelial cells of VAD mice were 

still capable of converting vitamin A, lack of vitamin A resulted in the absence of 

RA and consequently in the failure to induce RALDH expression in lamina propria-

derived DCs and MLN stromal cells. These data showed that dietary vitamin A has 

a profound effect on RALDH enzymes in DCs and stromal cells, while it does not 

regulate RALDH expression in the small intestine. Other factors, possibly present 

in the intestinal lumen, may contribute to RALDH expression by epithelial cells. 

Since intestinal epithelial cells express RALDH1 and have been shown to be able 

to imprint DCs in a RA-dependent manner [7,26,35], these cells are most likely the 

providers of RA for induction of RALDH in lamina propria DCs. It will therefore be 

of importance to establish whether RALDH levels in the intestinal epithelial cells 

are constant or whether they are also controlled by environmental factors.
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Supplementary figure 1. RALDH expression in MLN stromal cells is increased during postnatal 

development.
RNA was isolated from FACS-sorted CD45- PLN and MLN stromal cells from young female C57BL/6 mice, 

aged 2-3 weeks, and from adult female C57BL/6 mice, aged 7-9 weeks. Cells were analyzed for relative 

expression levels of RALDH enzymes by real-time PCR. RALDH1 and RALDH3 expression were too low to give 

any consistent difference. Experiment was performed two times. Per group 3-6 animals were used for FACS-

sorting. Significant difference is indicated by * (p<0.001).

Supplementary figure 2. GM-CSF levels in small intestines and MLNs remain unchanged during 

vitamin A deficiency.
Expression levels of GM-CSF, IL-4 and TGF-β1 mRNA were analyzed in small intestines (A) and MLNs (B) from 

VAD and VAH by real time PCR. Expression of transcripts was normalized Ubiquitin C. Relative expression 

levels in VAH small intestines (A) and VAH MLNs (B) was set at 1.0. In this experiment small intestines from 

5 animals and MLNs from 3 animals were used for mRNA analysis. Significant difference is indicated by * 

(p=0.003).

Supplemental data
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Abstract

The vitamin A metabolite retinoic acid (RA) has been reported to suppress Th1 

responses and enhance Th2 responses. Here we investigated whether differences 

in vitamin A metabolism could underlie the differences between C57BL/6 and 

BALB/c mice, which are reportedly seen as Th1 and Th2 responders, respectively. 

BALB/c mice were shown to have higher RALDH activity in MLN-DCs, increased 

ability to induce CCR9 expression on CD4+ T cells and more FoxP3 regulatory T 

cells. Within BALB/c small intestines, higher expression levels of RALDH enzymes, 

RA-mediated signalling and IgA secretion was observed, as well as increased 

accumulation of T cells and B cells in the small intestinal lamina propria. Therefore, 

the level of RA production and consequently the degree of RA-mediated signalling 

is crucial for the efficiency of the mucosal immune system.
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Introduction

Vitamin A has long been known for its role in immunity, especially since vitamin 

A deficiency ablates proper mucosal immune responses, leading to diarrhea, 

infections and early childhood mortality [1-3]. Vitamin A is a fat soluble vitamin 

and is absorbed from the gastrointestinal tract. It can be consumed preformed as 

retinyl esters, as found in animal source foods such as liver, egg, fish and whole 

fat dairy products [3]. Dietary vitamin A can also be obtained from provitamin 

A carotenoids as found in vegetables and fruits. Vitamin A is metabolized into 

the active metabolite retinoic acid (RA) in two oxidative steps. Vitamin A is first 

reversibly oxidized by alcohol dehydrogenases (ADH) to form retinaldehyde. 

Next, retinaldehyde is irreversibly metabolized to RA by three members of the 

aldehyde dehydrogenase gene family, ALDH1A1 (RALDH1), ALDH1A2 (RALDH2) 

and ALDH1A3 (RALDH3) [4-6]. The active metabolite RA binds to retinoic acid 

receptors (RARs) which in turn act as transcription factors that bind retinoic acid 

responsive elements within the promoter regions of target genes [7-9].

RALDH expression is associated with the mucosal immune system and reported 

to be functionally active within intestinal epithelial cells [10-12]. Also, dendritic 

cells (DCs) in Peyers’ patches (PPs), mesenteric lymph nodes (MLNs) and intestinal 

lamina propria express RALDH enzymes, while splenic or peripheral LN (PLN)-DCs 

display only very low expression [13-17]. Furthermore, stromal cells within MLNs 

express RALDH enzymes [14,16]. We have shown that RA itself directly regulates 

the level of RALDH expression in BM-DCs as well as LNstromal cells in vitro, and 

that RALDH expression within the mucosal immune system requires dietary intake 

of vitamin A (chapter 4). Generation of RA is crucial for the induction gut-homing 

molecules a4b7 and CCR9 on activated T cells [17]. Furthermore, the induction 

of FoxP3 regulatory T cells relies on RA, in combination with TGFb [13,18-23], 

while it suppresses the differentiation of Th17 cells [18,21,22]. Moreover, RA 

is reported to skew immunoglobulin class switching in B cells to an increased 

secretory IgA production [24-26], which protects the host against the vast array of 

microbes constantly present in the intestinal lumen. Therefore, RA appears to be 

a key molecule that controls mucosal immune responses. 

The genetic background of inbred mice was found to be a determing factor in 

the preferential induction of either a Th1 or Th2 immune response [27,28]. The 

subset of T cells termed Th1 cells, which produce interleukin-2 (IL-2), interferon-g 
(IFNg) and lymphotoxin, are important mostly for immunity against intracellular 

pathogens, such as Leishmania major. In contrast, Th2 cells produce IL-4, IL-

5, IL-10 and IL-13, which contributes to the direct enhancement of humoral-

mediated immunity. T cells from C57BL/6 mice preferentially produce Th1 

cytokines with high IFNg and low IL-4, whereas T cells from BALB/c mice favor 

Th2 cytokine production with low IFNg and high IL-4 when stimulated in vitro [27]. 

Interestingly, it has been shown that RA can suppress Th1 responses and enhance 
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Th2 responses [15]. In this study we therefore investigated whether C57BL/6 

and BALB/c mice differ in the metabolism of vitamin A and in mucosal immune 

functions that are RA-dependent. We demonstrate that MLN-DCs from BALB/c 

mice displayed higher RALDH activity, which correlated with increased induction 

of gut-homing molecules on CD4+ T cells and more FoxP3+ regulatory T cells. In 

addition, BALB/c mice showed higher expression levels of RALDH enzymes and 

RA-mediated signalling within the small intestines compared to C57BL/6 mice. 

Within the lamina propria of the small intestines, an increased accumulation of 

T cells and B cells was observed in BALB/c mice, with a concomitantly enhanced 

secretion of IgA into the intestinal lumen. In conclusion, enhanced RA production 

in BALB/c mice is associated with the development of a more efficient mucosal 

immune system. 

Materials and Methods

Mice

C57BL/6 mice and BALB/c mice aged 10-14 weeks were obtained from Charles 

River (Charles River, Maastricht, The Netherlands). DO11.10 transgenic mice and 

OT-II transgenic mice were bred at the animal facility of the VU Medical center 

and used at the age of 7 weeks. Both DO11.10 mice, generated on a BALB/c 

background, and OT-II mice, generated on a C57BL/6 background, have CD4 

T cells with a transgenic T cell receptor specific for the ovalbumin (OVA) 323-

339 peptide. All mice were kept under standard animal housing conditions. The 

Animal Experiments Committee of the VU Medical Center approved all of the 

experiments described in this study.

T cell enrichment, CFSE labelling, transfer and antigenic stimulation

Spleens and LNs from DO11.10 and OT-II mice were minced through a 100-mm 

gauze to obtain single cell suspensions. To deplete erythrocytes from spleen cell 

suspensions, cells were incubated for 2 minutes on ice in lysis buffer (150 mM NH
4
, 

1 mM NaHCO
3
, pH 7.4). CD4+ cells were enriched using the CD4 negative selection 

kit (Dynal, Invitrogen, Breda, The Netherlands). Cells were labelled with 5 mM of 

5,6-carboxyfluorescein succinimidyl ester (CFSE; Molecular Probes, Invitrogen) at 

3x107 cells/ml for 10 min at 37˚ C, after which the cells were washed. BALB/c 

and C57BL/6 mice were injected with approximately 4x106 OVA-specific T cells 

and received 50 mg OVA (Sigma-Aldrich, Zwijndrecht, The Netherlands) in 200 ml 

saline 24 hours later by intragastric (i.g.) administration. Seventy-two hours after 

antigenic stimulation, MLNs were dissected and used as single cell suspensions 

for FACS analysis. 
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Flow cytometry and ALDEFLUOR assay

Single cell suspensions were made by cutting LNs with scissors, followed by 

digestion at 37ºC for 25 min while constantly stirring, using 0.5 mg/ml Blendzyme 

2 (Roche, Penzberg, Germany) and 0.2 mg/ml DNAse I (Roche) in PBS. Cell clumps 

were removed by pipetting the cells over a nylon mesh. The LN cells were washed 

and resuspended in PBS with 2% NBCS. 

RALDH activity in individual cells was measured using the ALDEFLUOR assay 

kit (StemCell Technologies, Grenoble, France), according to the manufacturer’s 

protocol with modifications. Briefly, cells resuspended at 106 cells per ml in 

ALDEFLUOR assay buffer containing activated ALDEFLUOR substrate (365 nM) with 

or without the RALDH inhibitor diethylaminobenzaldehyde (DEAB, 7.5 μM) were 

incubated for 40 min at 37°C. For flow cytometric analysis of ALDEFLUOR-reacted 

cells, cells were subsequently stained with PE conjugated anti-CD11c (clone 

N418, eBioscience, Immunosource, Halle-Zoersel, Belgium), biotin conjugated 

anti-CD103 (clone M290, BD Bioscience, Breda, The Netherlands) Alexa fluor 

(Invitrogen, Breda, The Netherlands) 647 conjugated anti-MHC-II (clone M5/114) 

and with Sytox Blue (Invitrogen) to discriminate between live versus dead cells. 

Secondary antibody used was Percp conjugated (BD Bioscience) or PE-Cy7 

conjugated streptavidin (eBioscience).

Upon OVA administration, MLNs were isolated from BALB/c and C57BL/6 

mice and single cell suspensions were made by digestion as described above. 

Subsequently, cells were stained with biotin conjugated anti-mouse DO11.10 

TCR (KJ1-26, Caltag Laboratories, Burlingame, CA) or PE conjugated anti-mouse 

Va2 TCR (clone B20.1, eBioscience) to identify OVA-specific T cells in BALB/c and 

C57BL/6 mice, respectively. To analyze expression of gut-homing molecules, 

cells were also stained with anti-a4b7integrin (clone DATK32, kindly provided 

by Dr. Alf Hamann, Charité Universitätsmedizin Berlin, Germany) and anti-CCR9 

(clone 7E7, kindly provided by Prof. Dr. Reinhold Förster, Hannover Medical 

School, Hannover, Germany), in combination with PE-Cy7 conjugated anti-CD4 

(clone GK1.5, eBioscience) and Sytox Blue (Invitrogen) to discriminate between 

live versus dead cells. Secondary antibody used was Alexa 647 conjugated anti-

rat antibody (Invitrogen). Cells were analyzed with a Cyan ADP flow cytometer 

(Beckman Coulter, Mijdrecht, The Netherlands). 

Intracellular FoxP3 staining 

Cell suspensions were prepared from C57BL/6 and BALB/c MLNs by digestion as 

described above. Cells were stained with Alexa 488 conjugated anti-CD4 (clone 

GK1.5) and biotin conjugated anti-CD25 (clone 7D4, BD Bioscience). Secondary 

antibody used was PE-Cy7 conjugated streptavidin (eBioscience). For Foxp3 

staining, cells were subsequently fixed in Fix/Perm buffer (eBioscience), followed 

by permeabilization and staining for Foxp3 with Alexa 647 conjugated anti-
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Foxp3 (clone FJK-16s, eBioscience) according to the manufacturer’s instructions 

(eBioscience). Cells were analyzed with a Cyan ADP flow cytometer (Beckman 

Coulter).

Enzyme-linked immunosorbent assay for secretory IgA

The faeces of the small intestines (SI) of C57BL/6 and BALB/c mice were collected 

in cold PBS buffer (faecal content of 33 cm SI in 2 ml PBS). Debris was removed by 

cold centrifugation for 20 min at 2000 rpm to harvest the supernatant for analysis 

of secretory IgA after an appropriate dilution. Secretory IgA was determined 

by sandwich-ELISA according to the manufacturer’s protocol (Gentaur Europe, 

Brussels, Belgium), in which the anti-mouse IgA capture antibody was coated on 

the plate and bound faecal IgA was detected with horseradish peroxidase labeled 

anti-mouse IgA detecting antibody. Samples were analyzed with a Fluostar Optima 

microplate reader (BMG Labtech, Isogen Lifescience, de Meern, The Netherlands). 

The concentration of secretory IgA was expressed as µg/ml PBS-dissolved faeces. 

RNA isolation and real time PCR

Small intestines were dissected from C57BL/6 and BALB/c mice, flushed with 

PBS and homogenized in TRIZOL (Gibco, Invitrogen). RNA was isolated by 

precipitation with isopropanol. The concentration of RNA was measured with the 

Nanodrop Spectrophotometer (Nanodrop Technologies, Wilmington, DE). cDNA 

was synthesized from total RNA using RevertAid First Strand cDNA Synthesis Kit 

(Fermentas Life Sciences, Burlington, Canada) according to the manufacturer’s 

protocol. 

Mesenteric lymph node cells from C57BL/6 and BALB/c were lysed and mRNA 

was isolated using the mRNA capture kit (Roche). cDNA was synthesized with the 

Reverse Transcriptase kit (Promega, Leiden, The Netherlands) according to the 

manufacturer’s protocol. 

Specific primers for CD45, CD3, CD19, Foxp3, Csf2 (GM-CSF), IL-4, IFNg, RARb, 

RALDH1 (Aldh1A1), RALDH2 (Aldh1A2), and RALDH3 (Aldh1A3) and primers for 

housekeeping genes Ubiquitin C and GAPDH (Isogen Life Science, De Meern, 

Netherlands; Invitrogen) were designed across exon-intron boundaries using 

Primer Express software (PE Applied Biosystems, Foster City, CA) and Vector NTI 

software (Invitrogen). Real time PCR analysis was performed on an ABI Prism 

7900HT Sequence Detection System (PE Applied Biosystems). Total volume of the 

reaction mixture was 10 ml, containing cDNA, 300 nM of each primer and SYBR 

Green Mastermix (PE Applied Biosystems).

Statistics

Results are given as the mean ± SD. Statistical analyses were perfomed using the 

2-tailed Student’s t test. 
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Results

BALB/c express higher levels of RALDH enzymes in small intestines compared 

to C57BL/6.

Since BALB/c mice are known as prototypical Th2-type mice and RA has been 

described to skew T cells towards the Th2-type profile upon activation, while 

inhibiting Th1 cytokine production [15,18], we hypothesized that the expression 

of RA-producing enzymes may be differentially expressed by BALB/c and C57BL/6 

mice. Since epithelial cells from the small intestines are known to express RALDH 

enzymes [10-12], we decided to compare RALDH mRNA levels in the small intestines 

of both mouse strains with real time PCR. Indeed, expression of RALDH1, -2, and 

-3 was significantly enhanced in BALB/c small intestines compared to C57BL/6 

(Figure 1A). The largest difference was observed for RALDH1, which is known 

to be highly expressed by epithelial cells lining the gut [17,29]. Remarkably, 

Figure 1. RALDH enzyme expression is increased in BALB/c small intestine.
Expression levels of RALDH1, RALDH2, RALDH3 mRNA (A), RARb mRNA (C) and GM-CSF (D) were analyzed 

in small intestine samples from C57BL/6 (black bars) and BALB/c (grey bars) by real time PCR. Expression of 

transcripts was normalized to Ubiquitin C. Relative expression levels in C57BL/6 small intestines was set at 

1.0 for each gene analyzed. Per group 5 animals were used. (B) Expression of RALDH1 mRNA was analyzed in 

proximal, middle and distal parts of the small intestine. Expression of transcripts was normalized to Ubiquitin 

C. Relative expression levels in the proximal C57BL/6 small intestine was set at 1.0. Five animals were used 

for analysis. (E) Expression levels of IFNg and IL-4 mRNA were analyzed in whole small intestine samples from 

C57BL/6 and BALB/c by real time PCR. Expression of transcripts was normalized to CD3 mRNA levels. Relative 

expression levels in C57BL/6 small intestines was set at 1.0 for both genes analyzed. Per group 5 animals were 

used. Significant differences are indicated by * (p<0.05), ** (p=0.02), or *** (p=0.001).
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when expression of RALDH1 was analyzed along the gut axis, starting at the 

stomach, we observed the highest expression in the proximal small intestine, 

while expression decreased towards the distal part of the small intestines (Figure 

1B). In all three parts analyzed, RALDH1 expression was significantly higher in 

BALB/c mice compared to C57BL/6 mice.

RARb is a retinoic acid receptor, known to be a direct target gene of RA [30,31]. 

Expression levels of RARb mRNA can therefore be viewed as an indicator of RA-

mediated signalling in cells. Analysis of RARb showed that mRNA levels were 

significantly increased in BALB/c small intestine compared to C57BL/6, indicating 

that within the small intestines of BALB/c mice more RA-mediated signalling is 

taking place (Figure 1C). Since a relation between GM-CSF-mediated signalling 

and RALDH expression in DCs has been suggested in literature [32] we also 

checked whether GM-CSF levels were different between the 2 mouse strains. No 

significant difference could be found (Figure 1D). As a control, we analyzed IFNg 
and IL-4 mRNA levels, corrected for CD3 mRNA expression, in small intestines as 

markers for Th1- and Th2-skewing, respectively. As expected, IFNg expression 

was significantly higher in C57BL/6 small intestines, while the expression of 

IL-4 mRNA was significantly higher in small intestine samples from BALB/c mice 

(Figure 1E). 

BALB/c MLN-DCs show higher RALDH activity than C57BL/6 MLN-DCs.

Studies have shown that CD103+ MLN-DCs represent a population of migratory DCs 

derived from the lamina propria, transporting orally derived Ag from the intestine 

to the MLN and inducing gut-tropic T cells and regulatory T cells [33,34]. It has 

been hypothesized that DC acquire the mucosal phenotype within the intestinal 

environment, which is created by the epithelial cells. Indeed, we and others have 

shown that contact of BM-derived DCs with gut epithelial cells induced expression 

of RALDH enzymes and educated BM-derived DCs to induce gut-homing T cells in 

vitro [35,36]. Furthermore, we have shown that RA directly induces RALDH enzyme 

expression levels in BM-DCs in vitro (chapter 4) and that in the absence of RA, 

RALDH expression is lacking in CD103+ DCs in MLNs. We therefore tested whether 

the increased RA-mediated signalling observed in small intestines of BALB/c mice 

could result in higher RALDH enzyme activity in CD103+ MLN-DCs when compared 

to C57BL/6 mice. RALDH activity was measured using the ALDEFLUOR assay, 

a flow cytometry-based assay with a fluorescent substrate which is specific for 

RALDH enzymes. Notably, the percentage of MHCII+ CD11c+ DCs was decreased 

(Fig. 2A, left), but the proportion of DCs expressing CD103 was higher in MLNs 

from BALB/c compared to C57BL/6 mice (Figure 2A, right). Flow cytometry plots 

of ALDEFLUOR and CD103 showed that most of the ALDEFLUOR signal could be 

observed in the CD103+ DC population of MLNs in both BALB/c and C57BL/6 mice 

(Figure 2B), confirming the report that CD103+ MLN-DCs express higher RALDH 

mRNA levels compared to CD103- DCs in MLNs [13]. In addition, calculations of 
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ALDEFLUOR MFI revealed that RALDH activity was significantly higher in BALB/c 

CD103+ MLN-DCs compared to C57BL/6. This activity was RALDH specific, since 

ALDEFLUOR MFI was highly decreased in presence of RALDH inhibitor DEAB and 

no difference between BALB/c and C57BL/6 could be observed (Figure 2C).

Induction of gut-homing T cells is enhanced in BALB/c MLNs.

Due to their highest RALDH2 expression, CD103+ MLN-DCs are now being 

recognized as the DC subset that is best equipped to induce RA-mediated 

signalling in T cells, leading to FoxP3 T cell differentiation, and the induction of 

gut homing molecules [13,37,38]. Since BALB/c mice displayed higher RALDH 

activity in MLN-DCs when compared to C57BL/6, we addressed whether the 

induction of gut-homing T cells was different in BALB/c mice when compared to 

C57BL/6 mice. Hereto, CFSE-labelled ovalbumin (OVA) specific transgenic CD4+ 

Va2+ T cells (OT-II cells) and OVA-specific CD4+ KJ1+ T cells (DO.11.10 T cells) were 

transferred to C57BL/6 and BALB/c mice, respectively. Twenty four hours later, 

mice received 50 mg ovalbumin intragastrically and at 72 hours after antigen 

Figure 2. RALDH activity is increased in 

MLN-DCs from BALB/c mice.
(A-C) MHC-II+ CD11chigh DCs in MLN cell suspensions 

from C57BL/6 and BALB/c mice were analyzed for 

CD103 expression and RALDH activity using the 

ALDEFLUOR assay. Data represent percentage 

MHC-II+ CD11chigh DCs of total LN cells in individual 

MLNs (A, left) and average percentage ± SD of 

MHC-II+ CD11chigh DCs expressing CD103 (A, right). 

(B) Representative FACS plots are shown for 

ALDEFLUOR signal and CD103 expression by MHC-

II+ CD11chigh DCs in PLN and MLN. Box indicates 

CD103+ gate for calculations of ALDEFLUOR MFI in 

C. (C) Graph shows average ALDEFLUOR MFI ± SD 

in CD103+ MHC-II+ CD11chigh MLN-DCs in absence 

or presence of RALDH inhibitor DEAB. Per group 

a total of 10 animals were used for analysis in two 

separate experiments. Significant differences are 

indicated by * (p=0.03), ** (p<0.001).
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Figure 3. Induction of gut-homing molecules is enhanced in BALB/c MLNs.
(A-D) C57BL/6 and BALB/c mice received 4x106 OVA-specific CD4+ OT-II or CD4+ DO11.10 T cells respectively. 

Activated OT-II cells and DO11.10 cells in MLNs were analyzed by flow cytometry 3 days after intragastric 

OVA administration. Shown are flow cytometry plots of cell proliferation and expression of a4b7 (A, top) and 

CCR9 (A, bottom) by proliferating OT-II cells in C57BL/6 MLNs and proliferating DO11.10 cells in BALB/c MLNs. 

(B) Data represent average fold induction ± SD of α4β7 and CCR9 expression on activated OVA-specific T cells 

compared to undivided T cells in C57BL/6 MLNs (black bars) and BALB/c MLNs (grey bars). (C, D) Data are 

calculated as average fold induction ± SD of a4b7 expression (C) and CCR9 expression (D) by activated OVA-

specific T cells per cell division in MLNs from C57BL/6 (black squares) and BALB/c (white squares). Per group 

a total of 10 animals were used for analysis in two separate experiments. Significant differences are indicated 

by * (p<0.003), ** (p=0.02).

administration, expression of mucosal homing molecules a
4
b

7
 and CCR9 was 

analyzed on proliferating OT-II and DO.11.10 T cells in MLNs by flow cytometry. 

No difference in a4b7 and CCR9 expression was visible on the CFSE-labeled non-

proliferating T cell populations in MLNs from both mouse strains, indicative of a 

uniform entry of injected cells in both BALB/c MLNs and C57BL/6 MLNs (Figure 3A). 

Flow cytometry plots also showed that in both BALB/c MLNs and C57BL/6 MLNs T 

cell activation is necessary for induction of gut-homing molecules a4b7 
and CCR9 

(Fig. 3A). We observed that the fold induction of a4b7 expression by proliferating 

OVA-specific T cells in C57BL/6 MLNs is similar to the fold induction in BALB/c 

MLNs (Figure 3B, left). Moreover, the fold induction of this gut-homing molecule 

analyzed per cell division showed a similar pattern in both mouse strains (Figure 

3C, left). Surprisingly, the fold induction of CCR9 expression by proliferating OVA-

specific T cells in BALB/c MLNs was much higher when compared to C57BL/6 
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MLNs (Figure 3B, right). Examining the fold induction of CCR9 expression per cell 

division revealed that CCR9 was induced on OVA-specific T cells in C57BL/6 mice 

during the first cell divisions, but then reached levels similar to the undivided 

peak (Figure 3C). Lack of a significant induction of CCR9 is probably caused by 

the generation of both CCR9- and CCR9+ OVA-specific T cells in later cell divisions, 

which decreased the MFI of CCR9 expression of the entire dividing population 

(Figure 3A, left bottom). In BALB/c MLNs, however, CCR9 expression levels 

continued to increase with every cell division (Figure 3D). Unfortunately, we could 

not compare the induction of gut-homing molecules on CD8+ T cells, because 

no transgenic mouse strain that recognizes OVA in the context of MHC-I on the 

BALB/c background exists. In conclusion, the results strongly suggest that higher 

RALDH acitivity in BALB/c mice correlated with a more efficient induction of gut-

homing molecule CCR9 on T cells.

BALB/c mice display higher FoxP3 expression than C57BL/6 mice.

In addition to the essential role of RA in the induction of gut-homing molecules 

on T cells, RA also has been reported to be involved in the induction of FoxP3 

expressing CD4+ regulatory T cells [13,18-23]. We therefore tested FoxP3 mRNA 

levels in small intestine and MLN samples of both C57BL/6 and BALB/c mice with 

real time PCR. FoxP3 mRNA levels were significantly enhanced in both BALB/c 

MLN (Figure 4A) and BALB/c small intestines (Figure 4B) compared to the same 

tissues derived from C57BL/6. Moreover, FACS analysis of intracellular FoxP3 

expression by T cells showed that the percentage of CD25+ FoxP3+ T cells was 

significantly higher in MLNs from BALB/c mice compared to C57BL/6 mice (Figure 

4C). In conclusion, higher RALDH activity in BALB/c mice correlated with higher 

percentages of FoxP3+ T cells present in MLNs. 

Figure 4. FoxP3 expression is increased in BALB/c small intestines and MLNs.
(A, B) Expression of FoxP3 mRNA was analyzed in MLN (A) and small intestine (B) samples from C57BL/6 (black 

bars) and BALB/c mice (grey bars) by real time PCR. Expression of transcripts was normalized to Ubiquitin C 

for small intestine and to GAPDH and Ubiquitin C for MLN. Relative expression levels in small intestines and 

MLNs from C57BL/6 mice was set at 1.0. Per group 5 animals were used. (C) Single cell suspensions of MLNs 

from C57BL/6 (black bars) and BALB/c mice (grey bars) were stained for CD4 and Foxp3 and analyzed by FACS. 

Data represent average percentage ± SD of CD25+ FoxP3+ among CD4+ T cells. Per group 6 animals were used. 

Significant differences are indicated by * (p<0.003), ** (p<0.05).
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BALB/c mice display increased lymphocyte levels and IgA secretion in small 

intestines.

Since the induction of gut-homing T cells occurred with greater efficiency in BALB/c 

MLNs when compared to C57BL/6 MLNs, we questioned whether this would result 

in increased numbers of immune cells in the small intestinal lamina propria. With 

immunostainings we observed more hematopoietic cells in the lamina propria of 

small intestines of BALB/c mice when compared to C57BL/6 (data not shown). To 

quantify this, expression levels of CD45 (haematopoietic cells), CD3 (marker for 

T cells) and CD19 (marker for B cells) were analyzed in the small intestines from 

C57BL/6 and BALB/c mice with real time PCR. Data showed that the expression 

of CD45 mRNA in BALB/c small intestine was increased about 2-fold compared to 

C57BL/6 (Figure 4A). In addition, mRNA levels for CD3 and CD19 were significantly 

higher in BALB/c small intestines when compared to C57BL/6 small intestines. 

Since RA has been demonstrated to promote class switching of immunoglobulins 

to the IgA isotype in B cells [24-26], we wondered whether the secretion IgA into 

the intestinal lumen would differ between BALB/c and C57BL/6 mice. Faeces 

was collected from the small intestines of BALB/c and C57BL6 mice in which 

secretory IgA was measured by ELISA. We observed that the concentration of IgA 

within the faeces of BALB/c mice was remarkably higher compared to C57BL/6 

mice (p=2.96E-10, Figure 5B). This could be the result of increased RA-mediated 

signalling within BALB/c small intestines as well as of increased numbers of B cells 

present in the small intestines. In conclusion, enhanced RA-mediated signalling 

in BALB/c mice correlated with increased induction of gut-homing molecules, 

with enhanced migration of lymphocytes to the small intestines, as well as with 

elevated levels of secretory IgA within the intestinal lumen. 

Figure 5. Increased lymphocyte levels and IgA secretion in BALB/c small intestines. 
(A) Expression of CD45, CD3, and CD19 mRNA was analyzed in whole small intestine from C57BL/6 and BALB/c 

by real time PCR. Expression of transcripts was normalized to Ubiquitin C. Per group 5 animals were used. 

Relative expression levels in C57BL/6 small intestines was set at 1.0 for each gene analyzed. (B) Concentration 

of secretory IgA (mg/ml of PBS-dissolved faeces) in faeces from C57BL/6 mice (black bars) and BALB/c mice 

(grey bars) measured by ELISA. Per group 6 animals were used. Significant differences are indicated by * 

(p<0.05), ** (p=0.003), *** (p=2.96E-10).



Vitamin A metabolism and the mucosal immune system 111

5

Discussion

In this study we demonstrated that C57BL/6 and BALB/c mice differ in the 

expression and activity of RALDH enzymes and consequently in RA-induced 

immune functions which are crucial for the mucosal immune system. BALB/c 

mice displayed enhanced vitamin A metabolism, since expression levels of RALDH 

enzymes and RA-mediated signalling in small intestines were increased, as well 

as RALDH activity in CD103+ MLN-DCs. Consequently, increased induction of 

CCR9 expression on CD4+ T cells was observed, suggesting that activated T cells 

from BALB/c MLNs are better equipped to migrate to the intestines. Indeed, we 

observed increased mRNA levels for T cells and B cells in the small intestines of 

these mice. In addition, higher levels of secretory IgA were found in the intestinal 

lumen of BALB/c mice when compared to C57BL/6 mice. Moreover, FoxP3 mRNA 

was increased in small intestines and MLNs of BALB/c mice. Although we observed 

a difference in percentage of FoxP3+ T cells in MLNs from BALB/c versus B6 mice, 

we did not discriminate between naturally occurring regulatory T cells, which 

are thymus derived, and regulatory T cells that differentiated in the periphery 

towards FoxP3 expressing T cells. Whether there is a role for RA in the induction 

of regulatory T cells in the thymus is not clear.

Since RA-mediated signalling is crucial in shaping the mucosal immune system, 

it becomes important what the underlying cause of the observed differences 

between BALB/c and C57BL/6 is. Notably, it has been published that GM-CSF is an 

important factor involved in imprinting of RALDH expression in mucosal DCs [32]. 

However, in contrast to the difference in RALDH levels, we observed no significant 

difference in GM-CSF mRNA levels in BALB/c and C57BL/6 small intestines (Figure 

1D). We therefore propose that GM-CSF is not directly involved in imprinting of 

intestinal DCs, but that it may contribute at another level to RALDH expression. 

What other factors are responsible for the difference in RA production and 

signalling in these mouse strains remains unknown. Cellular RA availability is 

regulated by the vitamin A nutritional status and the tightly regulated balance 

between RA synthesis and catabolism. Notably, BALB/c mice and C57BL/6 mice 

used in these studies were kept under similar housing conditions and nutritional 

status. Possibly, factors that regulate the balance between RA synthesis and 

catabolism are differentially expressed in BALB/c and C57BL/6. Polymorphisms 

and mutations have been reported to exist in some genes that encode these 

factors [39-46]. Future research is needed to establish whether these mutations 

or polymorphisms indeed affect the levels of RA synthesis. 

We propose that enhanced RA-mediated signalling seen in BALB/c mice when 

compared to C57BL/6 mice may lead to a more efficient mucosal immune system. 

Consequently, BALB/c may combat mucosa-associated pathology better. In fact, 

it has been shown that BALB/c mice are more resistant to developing colitis 

and require a higher dose of DSS compared to C57BL/6 to induce a comparable 

disease severity [47-49]. Even with the higher dose of DSS, BALB/c mice lose less 
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weight and recover more rapidly after withdrawal of DSS compared to C57BL/6 

mice. These differences are often attributed to a difference in Th1-Th2 balance 

in these mice, since BALB/c mice are known as prototypical Th2-type mice, while 

C57BL/6 mice show a more Th1-driven response. In addition, treatment with RA 

ameliorated human and murine colitis by increasing the number of Treg cells 

[50]. We propose here that variation in RA metabolism might determine disease 

susceptibility in these mice, since RA affects homing of T cells to the intestines as 

well as the generation of FoxP3+ regulatory T cells and isotype switching toward 

IgA. Moreover, RA availability determines epithelial integrity and increases the 

barrier function of the intestinal epithelial cells [51,52]. 

Although BALB/c mice are resistant to developing DSS-induced colitis, these 

mice are more susceptible when compared to C57BL/6 to infections that require 

a typical Th1 type response, such as Leishmania major infection in the skin. 

Resistant C57BL/6 T lymphocytes produce IFNg that activates macrophages to 

produce NO and kill the parasite, while susceptible BALB/c T lymphocytes instead 

produce more IL-4 that suppresses macrophages [53,54]. Therefore, BALB/c mice 

show enhanced mucosal immune system at the expense of the peripheral immune 

system.

An example of a typical Th17-driven immune disease is experimental autoimmune 

encephalomyelitis (EAE), an animal model for multiple sclerosis (MS) [55]. Strain 

specific differences have been reported to exist in C57BL/6 and BALB/c mice 

during EAE [56,57]. Disease onset in BALB/c mice was delayed when compared 

to C57BL/6 mice. Clinical signs of EAE rapidly decreased in BALB/c mice while 

C57BL/6 mice showed a slow decline of disease severity [56]. Given the fact that 

RA has been described to skew T cells upon their activation towards the Th2-type 

profile, while inhibiting Th1 and Th17 cytokine production [15,18], a number 

of research groups have investigated the effect of RA treatment on EAE disease 

progression and severity. RA was shown to strongly inhibit pathogenic Th17 and 

Th1 responses during EAE. Treatment with RA dramatically delayed disease onset 

and strongly decreased disease severity [58-61]. Other Th17-driven infectious 

diseases might therefore also benefit from RA treatment as was reported for the 

murine model for rheumatoid arthritis [62].

Since enhanced RA-mediated signalling may lead to a decreased Th1-Th2 balance, 

increased induction of Foxp3+ regulatory T cells and epithelial barrier function, 

modulation of RA availability would be beneficial to increase the mucosal immune 

response and resistance to infections and immune diseases. Studies in vitamin A–

deficient patients showed indeed a compromised Th2-type immune response and 

a cytokine imbalance skewed towards Th1 [63]. 

In conclusion, our data suggest that the enhanced RA synthesis in BALB/c mice 

when compared to C57BL/6 mice results in the development of a more efficient 

mucosal immune system. Control of RALDH levels may therefore be an attractive 

way to regulate the mucosal immune response.
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Abstract

Dextran sulphate sodium (DSS)-induced colitis is a widely used animal model for 

inflammatory bowel diseases. The BALB/c inbred strain of mice is more resistant to 

DSS-induced colitis than C57BL/6 mice; however, the mechanism underlying this 

phenomenon is largely unknown. In this paper, we show that BALB/c mice have 

more organized gut associated lymphoid tissue (GALT) in the colon compared 

to C57BL/6 mice. Furthermore, decreased susceptibility to colitis is paralleled 

by increased colonic expression of retinaldehyde dehydrogenase 1 (RALDH1) in 

BALB/c mice. RALDH1 is an enzyme responsible for the conversion of vitamin A 

to its active metabolite retinoic acid (RA), which is involved in the induction of 

FoxP3+ regulatory T cells and IgA producing B cells. As we show here, removal of 

vitamin A from the diet of C57BL/6 mice, which will decrease RA levels, gave rise 

to a more severe form of DSS-induced colitis. This illustrates the importance of 

vitamin A for the control of the disease. Higher levels of RA-mediated signalling in 

the colon may thus serve as an explanation as to why BALB/c mice are resistant to 

DSS colitis and highlights the role of vitamin A and its metabolite in inflammatory 

bowel disease.
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Introduction

Ulcerative colitis and Crohn’s disease, collectively referred to as inflammatory 

bowel disease (IBD), are characterized by chronic inflammation of the intestinal 

tract. A variety of animals models exists for IBD. Dextran sulphate sodium (DSS) 

is a chemical compound, which is thought to have toxic effects on the epithelial 

cells lining the intestines, resulting in altered gut permeability and superficial 

intestinal inflammation that resembles, to a certain extent, ulcerative colitis [1, 2]. 

It has been reported by various independent research groups that strain specific 

differences exist in susceptibility to DSS-induced colitis between C57BL/6 and 

BALB/c inbred strains of mice [3-5]. In short, it has been shown that BALB/c mice 

are more resistant to developing colitis and require a higher dose of DSS compared 

to C57BL/6 to induce a comparable severity of disease. Even with higher doses 

of DSS, BALB/c mice generally lose less weight and recover more quickly after 

withdrawal of DSS as than C57BL/6 mice.

Vitamin A (retinol) is a fat soluble vitamin which has a variety of effects on 

the immune system. Vitamin A is absorbed from the gastrointestinal tract and 

converted to its active form retinoic acid (RA) through two oxidative steps. Retinol 

is converted to retinaldehyde by alcohol dehyrogenase enzymes. Retinaldehyde is 

subsequently oxidized by retinaldehyde dehyrogenases (RALDH) to form RA, which 

is an irreversible process [6-12]. RA then binds to retinoic acid receptors (RARs) 

which act as transcription factors and bind retinoic acid responsive elements 

(RAREs) within the promoter region of their target gene, leading to a variety of 

downstream effects [13, 14].

Retinoic acid has numerous effects on the immune system. Iwata and colleagues 

have shown that RA can suppress Th1 response and enhance Th2 responses [15]. 

Furthermore, RA is described to have an effect on lymphocyte homing to the 

intestine by inducing expression of the gut homing molecules α4β7 and CCR9 on 

activated T cells [16, 17]. In combination with TGFβ, RA has also been shown to 

greatly enhance the differentiation, expansion and gut homing of T regulatory cells 

which serve to suppress immune responses [18-20]. RA not only affects T cells in 

the intestines but has also been reported to have numerous effects on B cells in 

the gut. RA aids in isotype class switching of immunoglobulins by B cells in gut-

associated lymphoid tissue (GALT) leading to an increase in IgA production [21]. 

IgA is the most abundant immunoglobulin present in the intestines and secretory 

IgA forms a protective layer which lines the intestines and protects the host against 

the vast array of microflora constantly present in the intestines [22, 23]. RA has also 

been shown to induce the expression of CXCL13 during lymph node development 

and upon vagus nerve stimulation in the intestine [24]. Upregulation of CXCL13 

in the intestine could lead to the attraction of more B cells to the intestine [25]. 

Thus RA has numerous beneficial effects on the mucosal immune system and an 

increase in RA-mediated signalling may aid the host in recovering from colitis.
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Interestingly, it has been shown that BALB/c mice tend to have a more Th2 skewed 

cytokine profile whereas C57BL/6 mice tend to have a more Th1 skewed cytokine 

profile [26-30]. Taken together with the data showing that RA can suppress Th1 

responses and enhance Th2 responses, this suggests that differences in RA 

production between these mouse strains may be responsible for the differences 

observed in colitis susceptibility. In this study we aimed to investigate this 

hypothesis by relating the expression levels of RALDH and RA-mediated signalling 

in the colon of C57BL/6 mice versus BALB/c to differences in DSS-induced colitis 

susceptibility.

Materials and Methods

Mice

Specific pathogen free (SPF) BALB/c, C57BL/6 female mice and C57BL/6 breeding 

pairs were obtained from Charles River (Charles River Laboratories, Maastricht, 

The Netherlands) and housed in the animal facility at the Vrije Universiteit 

(Amsterdam, The Netherlands). Animals were housed under standard laboratory 

conditions, only female mice were used in experiments. The starting age of the 

animals was 8-10 weeks with a weight range of 18-20 grams. 

Generation of vitamin A deficient and vitamin A control animals was based on a 

method previously described by Iwata et al [17]. In short, females were mated 

and pregnant females were switched to the relevant vitamin A diet at 7-10 days 

of gestation and kept on the relevant diet until the pups were weaned. The 

offspring was subsequently placed on the same diet throughout the duration of 

the experiment. Two different custom made diets were based on modified AIN-

93M diet (MP Biomedicals United States, Solon OH, United States): (1) vitamin A 

deficient diet containing no vitamin A and (2) vitamin A control diet containing 

2800 IU/kg vitamin A. Ethics committee approval for all animal experiments was 

obtained from the Vrije Universiteit Animal Ethics Committee.

Induction of DSS colitis

We made use of a previously described single dose DSS colitis model by Melgar et 

al [3]. As previously established by other research groups BALB/c mice are more 

resistant to DSS-induced colitis than C57BL/6 mice [3-5]. Thus in order to induce 

a comparable severity of disease in both mouse strains we administered 2% DSS 

in C57BL/6 mice and 5% in BALB/c mice. A DSS titration (2%, 3%, 4% and 5%) was 

performed in BALB/c mice to confirm that in our facility 5% DSS in drinking water 

did indeed give a comparable severity of disease in BALB/c when compared to 

C57BL/6 mice given 2% DSS in drinking water, as reported (Melgar et al). C57BL/6 
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mice were thus given 2% DSS and BALB/c mice were given 5% DSS in drinking 

water ad libitum which was changed on a daily basis. For the acute colitis time 

point, analyzed at day 7, mice were given DSS for 7 days prior to euthanasia. 

For the chronic colitis time point mice were given DSS for the first 5 days of the 

experiment and then changed to normal drinking water for a 30 day rest period 

and euthanized at day 35.

Immunofluorescence

Mice were euthanized, colons were removed and embedded in OCT compound 

(Sakura Finetek Europe) and stored at -80oC. Tissues were subsequently 

sectioned on the cryostat (7 microns), and either stained with hematoxylin and 

eosin (H&E staining) or acetone fixed after which immunofluorescence stainings 

were performed. For an overview, pictures of a representative length of colon 

were visualized making use of the stitch picture function of the DM6000 Leica 

Immunofluorescence Microscope Leica (Leica Microsystems) with a 20x objective. 

For higher magnification pictures use was made of the Leica TCS-SP2-AOBS 

Confocal Laser Scaninning Microscope (Leica Microsystems).

Antibodies

Anti-gp38 (clone 8.1.1, anti-podoplanin) and anti-CD3 (clone KT3) were used as 

supernatants and visualized by means of the appropriate secondary antibody 

labeled with Alexa-Flour 488, Alexa-Flour 546 or Alexa-Flour 647 (Invitrogen 

Life Technologies, Breda, The Netherlands). Anti-B220 (clone 6B2) antibodies 

were affinity purified from hybridoma cell culture supernatants with protein 

G-Sepharose (Pharmacia, Uppsala, Sweden) and labeled with Alexa-Fluor 488 

or Alexa-Fluor 647 (Invitrogen, Breda, The Netherlands). Anti-CXCL13-bio (R&D 

Systems, Minnneapolis, USA) was visualized using the TSA signal amplification 

Kit with HRP-streptavidin and Alexa Fluor 546 tyramide (Invitrogen). Anti IgA-

bio (Invitrogen, Breda, The Netherlands) was used in combination with Alexa-

Fluor-647 conjugated streptavidin (Invitrogen, Breda, The Netherlands) and 

Alexa-647 conjugated anti-FoxP3 was used (eBioscience, San Diego, CA, USA).

Real time PCR

Whole colons were removed and placed in TRIZOL (Gibco, Invitrogen Lifes 

Sciences,Breda, The Netherlands) and stored at –800 C. Entire colons were 

homogenized and RNA was isolated according to the manufacturer’s instruction. The 

concentration of RNA was assessed by means of the Nanodrop Spectrophotometer 

(Nanodrop Technologies, Wilmington, DE). cDNA was synthesized by making use 

of a reverse transcriptase reaction which was performed according to the MBI 

Fermentas cDNA synthesis kit (Vilnius, Lithuania), using both the oligo(dT)18 and 

the D(N)6 primers. 
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Quantitative real time PCR was performed on the ABI Prism 7900 Sequence 

Detection System (Applied Biosystems , Foster City, CA). The reactions were 

performed with 0.25ng cDNA in a total volume of 10 μl containing SYBR Green 

PCR Master Mix (Applied Biosystems, Foster City, CA) and 300nM of each primer 

according to the manufacturer’s instructions. Primers were designed using Primer 

Express Software (Applied Biosystems) according to the guidelines provided by the 

manufacturer. Data obtained by real-time PCR were normalized for the geometric 

mean of the two most stable house-keeping genes (cyclophilin, ubiquitin) as 

determined by analysis with geNorm method software (http://medgen.ugent.

be/~jvdesomp/genorm/).

Statistics

Data obtained for percentage of daily weight loss and/or weight gain was 

analyzed by means of repeated measurement statistics to assess effect of day 

and effect of group and an independent student t-test was performed (Advanced 

Statistics, SPSS 16). A two-tailed unpaired student’s t-test was used to analyze 

differences between groups with * significant, if p<0.05; ** significant, if p<0.01; 

*** significant, if p<0.001. 

Figure 1. Daily changes in body weight 

of DSS- induced colitis in C57BL/6 and 

BALB/c mice. 
Average of daily weight +/– SEM of control 

animals is indicated with circles and of 

animals with colitis with squares. C57BL/6 

mice are indicated with black circles and 

squares and BALB/c mice are indicated 

with white circles and squares. Daily weight 

graphs are shown for C57BL/6 control 

animals and C57BL/6 chronic colitis animals 

(A), BALB/c control and BALB/c chronic 

colitis animals (B), and for C57BL/6 chronic 

colitis mice compared to BALB/c chronic 

colitis mice (C). C57BL/6 chronic colitis 

mice received 2% DSS in drinking water 

for the first five days of the experiment 

followed by a thirty day period on normal 

drinking water. BALB/c chronic colitis mice 

received 5% DSS in drinking water for the 

first five days of the experiment followed 

by a 30 day rest period on normal drinking 

water. Both control groups included in the 

experiment received normal drinking water 

without DSS throughout the experiment.
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Results

BALB/c mice are more resistant to DSS-induced colitis than C57BL/6 mice.

To further investigate the differences observed in BALB/c mice versus C57BL/6 

mice in developing DSS-induced colitis we first needed to establish DSS-induced 

colitis in both mouse strains in our own facilities. C57BL/6 mice were given 2% 

DSS in drinking water for five days followed by a 30 day consecutive period on 

normal drinking water. Daily weight graphs showed that C57BL/6 mice started 

to lose weight on day 6 with a maximum weight loss of 7.6% on day 8, which 

was followed by a recovery phase (Figure 1A). DSS colitis in BALB/c mice was 

induced in a similar manner. However, due to the fact that BALB/c mice were 

more resistant to developing colitis, we used 5% DSS in drinking water for five 

days, after having established that upon administration of 2%, 3%, 4% or 5% DSS, 

5% DSS resulted in a disease score most comparable to C57BL/6 mice (data not 

shown). The kinetics of DSS-induced colitis was different in BALB/c mice compared 

to C57BL/6 mice. The daily weight graphs for BALB/c mice revealed that these 

mice started to lose weight on day 3 with a maximum weight loss of 3.8% which 

occurred on day 6 (Figure 1B). Thus, BALB/c mice tended to lose less weight 

at an earlier stage and recovered more quickly than C57BL/6 mice (Figure 1C). 

Macroscopic scoring of the colon revealed that, although BALB/c mice received a 

higher DSS % in the drinking water, C57BL/6 and BALB/c showed a comparable 

reduction in colon length during both acute colitis (day 7) and chronic colitis (day 

35) (Figure 2A). Both inflammatory and diarrhea scores revealed a comparable 

form of disease in C57BL/6 and BALB/c mice (Figure 2B and C). Comparable 

results have been obtained by two other independent research groups using the 

same DSS administration protocol for these two mouse strains [3, 5]. 

Figure 2. Macroscopic scores of DSS-induced colitis in C57BL/6 and BALB/c mice. 
(A) Graphs shows percentage of reduction in colon length, which is used as an indication for the severity of 

the disease. (B) Graph shows the inflammatory score (0-4) which is also used as an indication of the severity 

of disease along with (C) the diarrhea scores (0-4). C57BL/6 mice are indicated by black bars and BALB/c mice 

are indicated by white bars. Mice in the acute phase are analyzed at day 7 of DSS-induced colitis and mice in 

the chronic phase are analyzed at day 35 of DSS-induced colitis. Bars indicated are represented by an average 

+/- SEM of seven animals per group.
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BALB/c mice contain more colonic lymphoid tissue than C57BL/6 mice.

Since the observed differences in disease severity could be a result of a difference  

in the ability of the mucosal immune system to respond to tissue injury induced 

by DSS, we wanted to determine whether similar numbers of haematopietic cells 

were present within the colon. First, we determined the expression of CD45 

(haematopietic marker) within healthy control colons of C57BL/6 and BALB/c mice. 

BALB/c control colons contained significantly more mRNA for CD45 than C57BL/6 

control colons which indicated that more haematopietic cells were present within 

the non-inflamed BALB/c colon (Figure 3A). Further analysis of mRNA levels by 

real time PCR of the colons revealed an increased expression of both CD19 (B 

cells) and CD3 (T cells) in BALB/c control versus C57BL/6 control colons (Figure 

3B and C). While these cells can be found as single isolated cells within the colon, 

most cells are present in organized lymphoid structures. Cryptopatches and 

isolated lymphoid follicles, referred to as immature and mature solitary isolated 

lymphoid tissue (SILTs) respectively, along with colonic patches (CPs) make up 

the organized GALT of the colon, which provide a microenvironment for immune 

responses to occur in an efficient manner [31, 32]. It has previously been shown 

that adult BALB/c mice contain more SILTs than C57BL/6 mice [33]. The increased 

mRNA expression levels for CD45, CD19 and CD3 could indicate that BALB/c 

mice have more organized GALT structures, i.e. colonic patches and SILTs, than 

C57BL/6 mice. To quantify this, we counted the total number of SILTs and CPs 

Figure 3. BALB/c mice contain more organized GALT structures in the healthy colon compared 

to C57BL/6 mice. 
(A -C) Real time PCR analysis showing relative mRNA expression levels of (A) CD45, (B) CD19 and (C) CD3 

detected in whole colon of healthy control C57BL/6 and BALB/c mice. Data represent the average per group 

+/- SEM. Per group 5 mice were used. (D) Table shows the number of SILTs and colonic patches (CPs) present 

in healthy colon of C57BL/6 and BALB/c mice (n=2 per group). In all figures, results obtained for C57BL/6 mice 

and BALB/c mice are indicated in black bars and white bars, respectively. Significant differences are indicated 

by * (p<0.05), ** (p<0.01) and *** (p < 0.001). 
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Figure 4. Colonic patches and SILTs contain CXCL13 producing stromal cells and consist mainly 

of B cells. 
(A-D) Immunofluorescence analysis of control colons from BALB/c mice showing colonic patches (A and C) and 

SILTs (B and D). Representative overviews of colonic tissue taken with 20x magnification stitch picture function 

(A and B) and relevant area of interest (C and D). Pictures show organized GALT of the colon with stromal cells 

producing CXCL13 (B220 in green, CXCL13 in red and gp38 in blue, scale bars represent 250 μm). All pictures 

were taken on DM6000 Leica Immunofluorescence Microscope Leica (Leica Microsystems). (E) CXCL13 mRNA 

levels in colons of healthy BALB/c and C57BL/6 mice analyzed by real time PCR. C57BL/6 mice and BALB/c mice 

are indicated by black bars and white bars, respectively. Result represents the average per group +/- SEM. Per 

group 5 mice were used. Significant difference is indicated with * (p<0.05).
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present in C57BL/6 versus BALB/c control colons by sectioning through the 

entire colon and screening every 20th section for the presence of organized GALT 

structures. Indeed, BALB/c control colons contained more CPs (9) and SILTs (>31) 

than C57BL/6 animals that have 3 CPs and >25 SILTs (Figure 3D). 

Colonic patches and mature SILTs consist mainly of B cells, which cluster together 

to form follicles. The formation of these structures is principally controlled by 

stromal cells which express lymphotoxin β receptor (LTβR) [34-36]. The triggering 

of this receptor leads to the increased expression of a major B cell attracting 

chemokine, CXCL13, needed for SILT formation in the small intestine [37, 38]. The 

expression of CXCL13 might be restricted to mature SILTs and colonic patches 

and could serve as an additional measure for organized GALT within the colon. 

Indeed, upon analysis of CXCL13 expression within the tissue, we observed that 

CXCL13 colocalized with gp38+ stromal cells within B cell areas in mature SILTs 

and colonic patches (Figure 4A–D). To support our observation that more B cell 

follicles are present in BALB/c colons, we measured mRNA expression levels of 

CXCL13 in colons from healthy BALB/c and C57BL/6 mice with real time PCR. 

We detected higher expression levels of CXCL13 in BALB/c healthy colons when 

compared to C57BL/6, indicating that they express more CXCL13 needed for the 

formation of organized GALT present in the colons (Figure 4E).

Organized GALT structures contain IgA producing B cells and regulatory T 

cells.

The larger SILT structures in the small intestine have been shown to contain IgA+ 

B cells [33]. We have previously shown that SILTs and colonic patches in colons 

from healthy adult mice contain follicular dendritic cell networks with germinal 

centers, which should be capable to induce IgA isotype switching (Olivier et al. 

manuscript in preparation). We thus performed immunofluorescence stainings on 

colonic patches, which showed that colonic patches indeed consisted of distinct B 

cell follicles and T cell areas (Figure 5A). Within the B cell follicles, we could detect 

IgA+ B cells (Figure 5B). 

Stainings of the T cell areas in colonic patches showed that these structures 

contained FoxP3 expressing regulatory T cells (Figure 5C). Thus, an increase of 

organized GALT structures may be beneficial for the host with regards to IgA 

production and Treg cell generation, which is of importance for maintaining 

tolerance to the microflora and suppressing unwanted immune responses.

During inflammation, BALB/c colons contain more haematopietic cells than 

C57BL/6 colons.

In the healthy setting, BALB/c colons contain more T and B cells than C57BL/6 

colons, which may help to respond to DSS-induced colitis. We tested whether this 

difference was still present during inflammation at both the acute and chronic 

phase of the disease. 
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In the acute phase (day 7), real time PCR analysis revealed that also at this stage 

BALB/c mice have an increased mRNA expression of CD45, CD3 and CD19 when 

compared to C57BL/6 mice (Figure 6A–C). At this time point, BALB/c mice have 

already entered the recovery phase of colitis whereas C57BL/6 mice have not. 

Interestingly, during the chronic phase of inflammation, when both mouse strains 

are recovering from the disease, CD45 and CD3 mRNA analysis revealed no 

significant differences in expression levels in BALB/c and C57BL/6 mice. However, 

CD19 expression remained increased in BALB/c mice in the chronic phase of 

the disease. CXCL13, as a measure for B cells follicles present in the colon, also 

remained increased in both the acute and chronic phase in BALB/c mice (Figure 

6D). 

Another cell subset that is considered as protective for the intestinal integrity is 

formed by RORγt-expressing NKp46+ lymphoid tissue inducer (LTi) cells [25, 39, 

40]. In addition, RORγt is also expressed by Th17 cells, which were also shown to 

have a protective effect [41-43]. To assess if RORγt-expressing cells, which could 

be beneficial in dealing with colitis, were increased in BALB/c mice, we measured 

expression of RORγt in colons with real time PCR. Indeed, the results show an 

increased mRNA expression of RORγt in BALB/c mice compared to C57BL/6 mice 

in the healthy, acute and chronic inflammatory setting indicating that BALB/c mice 

have an increase in a variety of immune cells which can be of benefit in dealing 

with colitis (Figure 6E).

Figure 5. Organized GALT structures 

contain IgA producing B cells and 

regulatory T cells. 
(A) Representative picture of 

immunofluorescence analysis of a colonic 

patch in a BALB/c mouse with both T cell 

and B cell areas. B220 is shown in green 

and anti-CD3 in red (scale bars = 250 μm). 

(B) Magnification of a B cell follicle which 

contains IgA producing B cells (B220 in 

green and IgA in blue, scale bars = 50 μm). 

(C) Magnification of the T cell area which 

contains regulatory T cells (CD3 in red 

and FoxP3 in blue. Scale bars = 50 μm). 

All pictures were taken on DM6000 Leica 

Immunofluoresence Microscope Leica 

(Leica Microsystems). 
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BALB/c control colons have higher levels of RALDH enzymes and more RA-

mediated signalling.

The migration of lymphocytes to the intestine, along with the production of IgA 

and differentiation of regulatory T cells have all been shown to be under the 

influence of retinoic acid (RA), which is the active metabolite of vitamin A. The 

formation of RA is dependent on enzymes called retinaldehyde dehydrogenases 

(RALDH). Upon RA formation, RA binds nuclear retinoic acid receptors (RARs) which 

become active transcription factors that bind RAREs within the promoter region 

of their target genes. To see whether differences in RALDH expression between 

Figure 6. BALB/c colons contain more haematopoietic cells in both the acute and chronic 
inflammatory setting than C57BL/6 colons. 
(A-D) Real time PCR analysis of colons in the control, acute (day 7) and chronic (day 35) inflammatory setting. 

Graphs show mRNA expression levels of CD45 (A; haematopoietic cells), CD3 (B; T cells) CD19 (C; B cells), 

CXCL13 (D) and RORγt (E). In all figures results obtained for C57BL/6 mice are indicated in black bars and 

BALB/c mice are indicated in white bars. All averages +/– SEM are representative of 5 mice per group. 

Significant differences are indicated by * (p<0.05), ** (p<0.01) and *** (p < 0.001).
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Figure 7. BALB/c mice have more retinoic acid-mediated signalling than C57BL/6 mice.
Real time PCR analysis of C57BL/6 and BALB/c control colons showing mRNA expression levels of RALDH1 (A), 

RALDH2 (B), RALDH3 (C) and RARβ (D). In all figures, results obtained for C57BL/6 mice are indicated in black 

bars and BALB/c mice are indicated in white bars. All averages +/– SEM are representative of 5 mice per group. 

Significant differences are indicated by * (p<0.05).

the two mouse strains existed, we analyzed the expression of the 3 isoforms of 

the RA converting enzymes, i.e. RALDH-1, -2 and -3 by real time PCR in healthy 

colons of BALB/c and C57BL/6 mice. Analysis revealed a significant increase in 

the expression of RALDH1 in BALB/c colons compared to C57BL/6 colons (Figure 

7A). For the remaining two isoforms, i.e. RALDH-2 and -3, there was no significant 

difference observed (Figure 7B and C). To address whether indeed enhanced RA-

mediated signalling occurred within BALB/c colons, we addressed expression 

levels of RARβ, which is a direct target gene of RA and shown to be an indicator of 

the level of RA-mediated signalling both in vivo and in vitro [44]. Analysis of RARβ 

mRNA levels showed that expression levels for RARβ were significantly increased 

in control colons of BALB/c mice when compared to C57BL/6 mice, indicating that 

indeed more RA-mediated signalling takes place within the colon of BALB/c mice 

when compared to C57BL/6 (Figure 7D).

Vitamin A deficiency increases the severity of chronic colitis.

To assess if the level of RA synthesis indeed correlates with the severity of colitis, 

mice were raised either on a diet containing a normal vitamin A concentration or 

on a diet deficient in vitamin A. Subsequently, colitis was induced and their health 

status was monitored. Vitamin A deficient mice suffered from a more severe 

colitis than mice on a vitamin A control diet as indicated by the weight loss and 

diarrhea (Figure 8A and B). In fact, 5 of the 7 animals in these experiments had 

to be euthanized before the end of the experiment because of severe disease. 
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Figure 8. Vitamin A deficiency increases the severity of DSS-induced colitis. 
Daily weight graphs of animals on a vitamin A control diet (A) and a vitamin A deficient diet (B) given 2% DSS in 

drinking water for the first five days of the experiment followed by a 30 day period on normal drinking water. 

Number of organized GALT structures was counted by macroscopic scoring (C). Colons of vitamin A control (D, 

F) and vitamin A deficient (E, G) without or with DSS administration were analyzed by H&E stainings at 35 days 

after initiation of DSS administration.
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The remaining two animals only returned to their starting weight at the end of 

the experiment. Macroscopic inspection of the colons showed large lymphoid 

structures in vitamin A deficient control mice, which were not visible in control 

mice on vitamin A sufficient diet (Figure 8C). Upon histological examination these 

larger lymphoid structures in colons of vitamin A control mice were confirmed 

(Figure 8D and 8E). DSS administration resulted in histological signs of colitis in 

both vitamin A deficient and vitamin A control animals with more profound cellular 

infiltrates and bowel thickening in vitamin A deficient mice when compared to 

mice on vitamin A control diets (Figure 8F and G). These results suggested that 

vitamin A deficiency already leads to an enhanced cellular influx into the colon 

of untreated vitamin A deficient mice, while upon DSS treatment the animals get 

a more severe colitis than animals on a vitamin A control diet. This confirms our 

hypothesis that dietary intake of vitamin A is indeed needed for a protective effect 

on inflammatory disease within the colon.

Discussion

BALB/c mice suffer from less severe DSS-induced colitis compared to C57BL/6 

mice and tend to recover more quickly after the withdrawal of DSS. Here we show 

that in the healthy setting BALB/c mice have more organized GALT structures in 

the colon and this may be responsible for the less severe colitis and the quicker 

recovery observed in this mouse strain. It has been shown that inducible bronchus 

associated lymphoid tissue (iBALT) in the lung has a protective effect and helps 

animals clear influenza virus at an enhanced rate [45, 46]. It has also been shown 

that these iBALT structures contain germinal centers, which act as additional 

ectopic sites that promote immunoglobulin class switching and thus promote 

IgA production, which aids the host in clearing infection [45]. In the context of 

the intestine, Lorenz and Newberry have shown that larger SILTs containing B 

cells play a role in the production of antigen-specific IgA [47]. Peyers’ Patches of 

the small intestine have also been shown to be involved in antigen-specific IgA 

production [48] and in this paper we show that colonic patches, which are the 

counterpart of Peyers’ Patches, present in the colon also contain B cells which 

are capable of IgA production. Intriguingly, it has also been shown that RA is 

needed for immunoglobulin class switching by B cells to be able to produce IgA 

[21, 49]. RA has also been shown to aid in the differentiation of regulatory T cells, 

which are known to suppress inflammation, and the induction of gut homing 

molecules needed for these cells to return to the intestines [18-20]. In this paper 

we have shown that FoxP3+ regulatory T cells are largely present in colonic 

patches. Organized GALT structures, i.e. SILTs and colonic patches containing 

IgA-producing B cells and regulatory T cells, provide a micro environment in which 

numerous beneficial immune responses may occur, which may be responsible for 

the decreased severity of colitis in BALB/c mice. 
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RA is not only involved in the production of IgA by B cells and the differentiation 

and gut homing of regulatory T cells to the intestine but can also potentially play 

a role in the formation of organized GALT. It has been shown that RA can induce 

CXCL13 expression in stromal organizer cells, which is the initial event in the 

formation of peripheral lymph nodes during embryonic development [24]. In the 

context of the adult intestine, transgenic overexpression of CXCL13 in epithelial 

cells leads to an increase of both B cells and LTi cells and promotes the formation 

of SILTs [25]. Considering that adult BALB/c mice have more organized GALT in 

the healthy setting, in combination with higher RA-mediated signalling and higher 

levels of CXCL13, it is tempting to speculate that the higher levels of RA-mediated 

signalling in BALB/c mice is responsible for the observed increase in organized 

GALT in these animals. Interestingly, we show that in addition to more organized 

GALT structures containing T and B cells, BALB/c mice express higher levels of 

RORγt. RORγt is expressed by various cell subsets in the intestine i.e. LTi cells, 

NKp46+ cells and Th17 cells [41-43, 50]. All of these cell types have been shown 

to have beneficial or protective effects in helping the host cope with infection. It 

is likely that also the presence of these cells will further aid in the resistance that 

BALB/c mice show towards DSS-induced colitis. Whether RA-mediated signalling 

is involved in their existence within the intestine will need further study. It has 

been shown that RA can mediate the balance between pro- and anti-inflammatory 

responses [51]. In the context of TNBS colitis, it has been shown that the 

administration of RA ameliorates colitis by shifting the balance from a Th1 to 

a Th2 response [52]. Furthermore, there is evidence to support the fact that RA 

can shift the Treg/Th17 balance in both TNBS colitis and human ulcerative colitis 

[53]. Confirming the effects of vitamin A and RA in our study, we show that the 

removal of vitamin A from the diet, and thus a decrease in RA levels, gives rise 

to a more severe form of colitis. The fact that BALB/c mice express higher levels 

of RALDH enzymes and display higher RA-mediated signalling could serve as an 

explanation as to why BALB/c mice are more resistant to DSS-induced colitis than 

C57BL/6 mice.

Taken together, BALB/c mice have more organized GALT structures, containing 

more T cells, B cells and regulatory T cells, and display higher RA-mediated 

signalling when compared to C57BL/6 mice. It is tempting to speculate that 

inherent differences in RA-mediated signalling are responsible for this increase, 

and could explain why BALB/c mice suffer from less severe colitis and have a 

quicker recovery than C57BL/6 mice. Intriguingly, in the context of the human 

form of disease, it has been shown that IBD patients frequently suffer from 

vitamin A deficiency [54]. This raises the attractive hypothesis that administration 

of vitamin A and or RA to patients suffering from IBD could serve as an effective 

treatment or alleviation of disease in these patients. 
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Abstract

The vitamin A metabolite retinoic acid (RA) has been reported to have numerous 

effects on haematopoietic cells. Here we demonstrate that RA promoted 

differentiation of haematopoietic LTi cells during embryonic development. Both 

addition of RA to embryonic cells in vitro as well as supplementing pregnant 

mice with RA in vivo, mediated the differentiation of haematopoietic precursors 

from CD4– IL-7Ra+ to CD4+ IL-7Ra+ mature LTi cells. On the contrary, withdrawal 

of vitamin A from pregnant mice resulted in a significant decrease of mature LTi 

cells. Furthermore, mice with enhanced vitamin A metabolism displayed more 

mature LTi cells and larger mucosal lymphoid organs. Therefore, our data showed 

that RA mediates local differentiation of LTi cells and that the availability of RA 

has a measurable effect on haematopoietic differentiation during embryonic 

development. 
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Introduction

Development of secondary lymphoid organs like Peyers’ patches (PPs) and 

mesenteric lymph nodes (MLNs) involves clustering of haematopoietic lymphoid 

tissue–inducer (LTi) cells, characterized as CD45+ CD4+ CD3– IL-7Ra+ RORgt+, with 

VCAM+ mesenchymal stromal organizer cells [1-3]. At specific locations in the 

embryo, LTi cells expressing membrane bound lymphotoxin-ab, cluster together 

and interact with the lymphotoxin-b receptor (LTbR) on stromal organizer cells 

[4]. LTbR triggering causes stromal organizer cells to synthesize chemokines 

and adhesion molecules that attract and retain more LTi cells [5]. This initiates a 

chain of events that involves further accumulation and signalling of LTi cells and 

organization of the cell clusters into complete lymph nodes. 

A number of factors are crucial for lymph node development by promoting the 

differentiation and survival of LTi cells. Mice deficient in the retinoic orphan receptor 

RORgt or the inhibitor of transcription Id2 lack LTi cells and consequently, the 

development of lymph nodes is disturbed [6-8]. In addition, deletion or inhibition 

of the interleukin-7 receptor a (IL-7Ra) also affected lymph node development [6, 

9], while enhanced expression of IL-7 promoted the survival and accumulation of 

LTi cells and resulted in the formation of larger lymph nodes as well as ectopic 

lymph nodes [10]. Furthermore, TRANCE deficient mice showed defective lymph 

node formation and reduced numbers of LTi cells which both could be rescued 

by transgenic overexpression of TRANCE [11]. Therefore, the formation of both 

normal and ectopic lymphoid organs can be regulated by controlling LTi cell 

numbers.

IL-7Ra and CD4 are expressed at the final differentiation stages of the LTi lineage 

[4], but not all LTi cells present within the lymph node anlagen are CD4+ [5, 6, 12, 

13]. This suggests that CD45+ IL-7Ra+ CD4– CD3– LTi cells form the precursors of 

mature CD45+ IL-7Ra+ CD4+ CD3– LTi cells and probably differentiate locally into 

mature LTi cells [5, 13, 14].

Vitamin A plays a critical role in the development and function of the immune 

system. Previously, we have shown that the initiation of embryonic lymph node 

development is controlled by the vitamin A metabolite retinoic acid (RA). RA 

induced expression of CXCL13, which is necessary for the first clustering of 

LTi cells [12]. Nerve fibers adjacent to the location of lymph node development 

expressed RALDH enzymes necessary for conversion of vitamin A into RA [12] and 

are therefore most likely the source for RA and responsible for CXCL13 induction 

in stromal organizer cells. Furthermore, in the adult, differentiation of mucosal 

DCs in the intestinal lamina propria has been shown to involve RA (Chapter 4 

and [15, 16]). Moreover, RA coordinates the function of lymphocytes within 

the mucosal immune system at multiple levels, such as regulating gut-homing 

molecule expression on T and B cells [17, 18] and the balance between regulatory 

T cells and Th17 cells [19-21]. 
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These studies demonstrate that RA is of vital importance during embryonic 

development of the immune system as well as proper functioning of the immune 

system in the adult by affecting the differentiation and function of multiple 

haematopoietic cell subsets. Since LTi-like cells are also identified in adult intestines 

and thus associated with a retinoic acid-rich environment [22, 23], we hypothesized 

that RA may influence haematopoietic LTi differentiation in the embryo. Here we 

demonstrate that RA promoted the differentiation of LTi cells from CD4– IL-7Ra+ 

to CD4+ IL-7Ra+ LTi cells both in vivo and in vitro. Supplementation of pregnant 

mice with RA skewed the differentiation of haematopoietic precursors towards 

the mature LTi phenotype in the embryo. On the contrary, embryos from mothers 

that received vitamin A deficient diet showed a reduced LTi cell differentiation 

towards the mature LTi phenotype. We could correlate differences in vitamin A 

metabolism between mouse strains with the presence of more mature LTi cells 

and larger mucosal lymphoid organs. Therefore, our data supports the hypothesis 

that RA regulates local differentiation of LTi cells, suggesting that the level of RA 

production during pregnancy can affect the formation of lymphoid tissue in the 

offspring.

Materials and methods

Animals

C57BL/6 mice and BALB/c mice aged 10-14 weeks were obtained from Charles 

River (Charles River, Maastricht, The Netherlands) and kept at our own facilities 

under standard animal housing conditions. The Animal Experiments Committee 

of the VU Medical Center approved all of the experiments described in this study.

To obtain vitamin A deficient (VAD) and vitamin A control (VAC) embryos, pregnant 

C57BL/6 mice either received a chemically defined diet that lacked vitamin A 

(the modified AIN-93M feed, MP Biomedical, Solon, Ohio, USA), or that contained 

vitamin A (2800 IU/kg in the modified AIN-93M feed, MP Biomedical) from E8.5 

until sacrifice at E18.5. 

To generate RA supplemented embryos, pregnant C57BL/6 mice were provided 

with 250µg retinoic acid/g food (RA; Sigma-Aldrich, Zwijndrecht, The Netherlands) 

from E10.5 until sacrifice at E13.5 [24, 25]. RA was dissolved in 100% ethanol at 

5 mg/ml. Either 250 µg/g chow was made by diluting 8 ml stock to 100 ml with 

water to which 60 g of ground chow was added. Food was refreshed every day 

until sacrifice.

In vitro retinoic acid stimulation

For in vitro stimulation, embryonic cells were harvested as described before [12]. 

In short, E13.5 C57BL/6 embryos were used and all extremities including the 
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head above the eyes and internal organs including haematopoietic cell containing 

organs and mesenteric lymph nodes (MLNs) were removed. The tissue was digested 

with 0.5 mg/ml Blendzyme 2 (Roche, Penzberg, Germany), 0.2 mg/ml DNase-I 

(Roche) in PBS for 15 min at 37°C while constantly stirring. Cell suspensions were 

washed with RPMI (Invitrogen, Breda, The Netherlands), supplemented with 2% 

heat-inactivated FCS, 100 U/ml penicillin, and 100 µg/ml streptomycin. Cells were 

allowed to adhere for 2 hours at 37°C. For RA stimulation experiments, all-trans 

retinoic acid (RA, Sigma-Aldrich, Zwijndrecht, The Netherlands, dissolved as 10 

mM in 100% ethanol) was added at 100 nM. After incubation for 24 hours at 37°C 

and 5% CO
2
, cells were analyzed by flow cytometry.

Flow cytometry 

MLNs were isolated from VAD and VAC embryos at E18.5, or from C57BL/6 

and BALB/c embryos at E18.5. Embryos from RA supplemented mothers were 

collected at E13.5 and dissected as described above. Single cell suspensions 

were made by cutting tissues with scissors, followed by digestion at 37ºC for 

20 min, using 0.5 mg/ml Blendzyme 2 (Roche) and 0.2 mg/ml DNase-I (Roche) 

in PBS while constantly stirring. Cell clumps were removed by pipetting the cells 

over a nylon mesh. Lymph node cells were washed and resuspended in PBS with 

2% NBCS. Subsequently, cells were stained with anti-IL-7R antibody (anti-CD127, 

clone A7R34, eBioscience, Immunosource, Halle-Zoersel, Belgium), Alexa fluor 

488 (Invitrogen, Breda, the Netherlands) conjugated anti-CD45 (clone MP33), 

Alexa fluor 488 conjugated anti-CD4 (clone GK1.5), Alexa fluor 488 conjugated 

anti-CD3 (clone 145-2C11, eBioscience), PE conjugated anti-CD4 (clone GK1.5, 

eBioscience), PE-Cy7 conjugated anti-CD45 (clone 30-F11, eBioscience) and with 

Sytox Blue (Invitrogen) to discriminate between live versus dead cells. Secondary 

antibody used was Alexa fluor 647 conjugated goat anti-rat antibody (Invitrogen). 

Cells were analyzed with a Cyan ADP flow cytometer (Beckman Coulter, Woerden, 

The Netherlands). 

Macroscopic analyis of lymph nodes and Peyer’s Patches

MLNs were carefully dissected from 10-14 week old BALB/c and C57BL/6 mice and 

the length of the mesenteric lymph node string was measured. Peyer’s patches 

(PPs) were excised and the number of PPs per small intestine were counted. The 

weight of MLNs and PPs was determined.

Statistics

The data shown in figure 1B and 1C were analyzed with a paired Student’s t-test. 

A two-tailed unpaired Student’s t-test was used for all other analyses. 
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Results

Retinoic acid influences differentiation of haematopoietic LTi cells.

Since RA is involved in haematopoietic differentiation [15, 18, 20, 26, 27] and 

important for the induction of CXCL13 in mesenchymal cells of lymph node 

anlagen [12], we hypothesized that RA could also influence haematopoietic LTi 

differentiation in developing lymph nodes. To test this, we made cell suspensions 

from embryonic tissues enriched for peripheral lymph node anlagen [12]. After 

adherence of mesenchymal cells, RA was added to these cultures and 24 hours 

later the percentages of precursor LTi and mature LTi cells were analyzed by flow 

cytometry. Representative flow cytometry plots show gating for CD45+ cells and 

expression of CD4 and IL-7Ra (Figure 1A). Since CD45+ CD3– IL-7Ra+ CD4– LTi 

Figure 1. RA promotes differentiation of precursor LTi cells to mature LTi cells.
(A) Shown are representative flow cytometry plots of CD45, CD4 and IL-7Ra expression by PLN enriched 

embryonic cells from E13.5 C57BL/6 embryos. Boxes indicates CD45+ gate and CD4+ and CD4– gate for 

calculations of LTi ratios shown in B, C and D. (B) In vitro cultures of PLN enriched embryonic cells from 

E13.5 C57BL/6 embryos stimulated with 100 nM RA for 24 hours. 3 individual experiments with n=7. (C) 

PLN enriched embryonic cells (E13.5 C57BL/6) from pregnant mice supplemented with 250 µg RA/g food. 2 

individual experiments with n=9. (D) MLN suspensions from vitamin A deficient (VAD) and vitamin A control 

(VAC) embryos at E18.5. 2 individual experiments with n=10. Cells were analyzed for expression of CD45, 

CD3, IL-7Ra, and CD4. The ratio of the percentage of CD45+ CD3– IL-7Ra+ CD4+ cells over CD45+ CD3– IL-7Ra+ 

CD4– cells was calculated. Data represent average ratio ± SEM. Significant differences are indicated as * 

(p=3.25E-08) or ** (p=0.02).
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cells represent immature LTi cells and form the precursors to CD45+ CD3– IL-7Ra 

+ CD4+ mature LTi cells [5, 13, 14], we calculated the ratio of CD45+ IL-7Ra+ CD4+ 

mature LTi cells over CD45+ IL-7Ra+ CD4– precursor LTi cells. Upon RA stimulation, 

the ratio of mature LTi cells versus precursor LTi cells was significantly skewed 

towards the mature CD4+ population (Figure 1B). To confirm in vivo that indeed 

RA can mediate the differentiation of LTi cells, we provided pregnant mice with 

RA in their food, starting at E10.5 [24, 25], 3 days before sacrifice at E13.5. After 

isolating peripheral lymph node anlagen enriched embryonic tissue, cells were 

analyzed by flow cytometry for LTi cells and their precursors. We observed that 

in vivo supplementation of RA dramatically increased the mature CD4+ population 

(Figure 1C). Therefore, we conclude that RA can mediate the differentiation of 

immature CD45+ CD3– IL-7Ra+ CD4– LTi cells towards mature CD45+ CD3– IL-7Ra+ 

CD4+ LTi cells. 

Absence of vitamin A in diet of pregnant mice affects LTi cell differentiation 

in the offspring.

Since we observed that RA supplementation to pregnant females increased the 

differentiation of LTi cells during embryonic development, we reasoned that 

reducing the availability of RA should result in decreased embryonic LTi cell 

differentiation. To test this hypothesis, we provided vitamin A, from which RA 

is metabolized, deficient food (VAD) to pregnant mice at E8.5 and isolated the 

mesenteric lymph nodes (MLNs) at E18.5. VAD diet gradually depletes liver 

stores of pregnant mothers and thus reduces RA availability during embryonic 

development. FACS analysis on digested E18.5 MLNs indeed showed that deprival 

of vitamin A led to a significant decrease of CD45+ IL-7Ra+ CD4+ mature LTi cells 

(Figure 1D). 

Differentiation towards mature LTi cells is enhanced in BALB/c mice.

Since we have observed that BALB/c and C57BL/6 mice differ in vitamin A 

metabolism and RA-mediated signalling (Chapter 5)and that RA increases the 

amount of mature LTi cells, we reasoned that the amount of mature LTi cells 

might be different in BALB/c versus C57BL/6 mice. Therefore, the developmental 

stage of LTi cells in E18.5 MLNs derived from either BALB/c or C57BL/6 embryos 

was determined by flow cytometry. The percentage of CD45+ haematopoietic cells 

in these MLNs was similar in both mouse strains (Figure 2A). At this age, few B 

cells and hardly any T cells were present within MLNs (4.4% ± 1.4 and 3.0% ± 0.6 

of CD45+ cells in C57BL/6 and BALB/c, respectively) and therefore nearly all of 

the CD45+ cells were LTi cells. Next, we analyzed the developmental stage of LTi 

cells by measuring CD4 expression on CD45+ CD3– IL-7Ra+ LTi cells. C57BL/6 

mice contained more immature CD4– IL-7Ra+ LTi cells (Figure 2B, left) and less 

mature CD4+ IL-7Ra+ LTi cells (Figure 2B, right) in MLNs when compared to BALB/c 
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mice. As a result, the ratio of mature CD4+ IL-7Ra+ LTi cells over precursor CD4– 

IL-7Ra+ LTi cells was significantly lower in C57BL/6 MLNs than in BALB/c MLNs. 

And thus, enhanced vitamin A metabolism and RA-mediated signalling in BALB/c 

mice correlated with enhanced LTi differentiation towards more mature LTi cells 

(Figure 2C). 

Transgenic overexpression of IL-7 has been shown to lead to increased numbers 

of LTi cells resulting in enlarged Peyers Patches (PPs) and MLNs and ectopic lymph 

nodes [10]. We described in chapter 6 that the colon of BALB/c mice contained 

much more isolated lymphoid follicles and cryptopatches than C57BL/6 mice. In 

addition, we observed that PPs and MLNs in BALB/c mice were larger than those 

in C57BL/6 mice. To quantify this we investigated the size of mucosal secondary 

lymphoid organs in both mouse strains by measuring length and weight of both 

MLNs and PPs. Representative pictures show PPs on small intestines of C57BL/6 

and BALB/c mice (Figure 3A) and dissected MLNs from both mouse strains (Figure 

3B). Upon measurement, MLNs from BALB/c mice were significantly larger than 

from C57BL/6 mice and by weight BALB/c MLNs were significantly heavier when 

compared to C57BL/6 MLNs (Figure 3C). We could detect slightly more PPs in BALB/c 

small intestines than in C57BL/6 small intestine (Figure 3D, left). Moreover, the 

weight of pooled PPs per BALB/c mouse was increased more than 2-fold compared 

to C57BL/6 PPs (Figure 3D, right). These data indicate that the generation of 

higher numbers of mature LTi cells in BALB/c mice may consequently not only 

lead to the formation of larger lymphoid tissues but also to more lymphoid tissues 

within the mucosal immune system.

Figure 2. Differentiation of LTi cells is increased in BALB/c mice.
MLNs were isolated from C57BL/6 and BALB/c mice at day of birth. MLN cell suspensions were analyzed for 

expression of CD45, CD3, IL7Ra, and CD4. (A) Data represent the average percentage ± SD of CD45+ cells in 

C57BL/6 and BALB/c MLNs. (B) Shown is the average percentage of CD45+ cells that are IL7Rα+ CD4– (left), and 

are IL7Ra+ CD4+ (right) of individual MLNs. (C) The ratio of the percentage of IL7Ra+ CD4+ cells over IL7Ra+ CD4– 

cells of individual animals was calculated (right). A total of 15 C57BL/6 derived from 3 different litters and 12 

BALB/c mice derived from 2 different litters were used for analysis in two separate experiments. Significant 

differences are indicated by * (p<0.0001).
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Discussion

The vitamin A metabolite RA has numerous effects on haematopoietic cells, such as 

the migration of lymphocytes towards the intestines [17, 18] and the development 

of regulatory T cells [19-21]. Here we have shown that increased RA availability 

results in enhanced LTi differentiation and the development of more mucosal 

lymphoid tissue. By using several approaches, we showed that RA stimulation 

resulted in more mature LTi cells, defined as IL-7Ra+ CD4+, at the expense of the 

IL-7Ra+ CD4– precursor population. This differentiation was affected by withdrawal 

of vitamin A from pregnant females, resulting in a significant decrease of mature 

LTi cells. Moreover, by studying mouse strains that differ in vitamin A metabolism 

we discovered that differentiation of LTi cells is enhanced in mice with higher 

RALDH expression and RA-mediated signalling (Chapter 5). This increased RA-

mediated signalling is most likely responsible for increased mature LTi numbers 

in the BALB/c mice. In conclusion, RA is important for the differentiation of the 

progenitor LTi cells towards their final phenotype and is therefore essential for 

embryonic lymph node development.

Figure 3. BALB/c mice have larger secondary 
lymphoid organs.
Representative pictures for PPs (A) and MLNs 

(B) from 14 week old C57BL/6 and BALB/c mice. 

(C) Data represent average length ± SD (left) and 

weight of individual MLNs (right). (D) Results 

show average number ± SD of PPs per animal 

(left) and weight of pooled PPs from individual 

animals (right). Per group 10 animals were used for 

analysis in two separate experiments. Significant 

differences are indicated by * (p=0.02),** 

(p<0.0001). Peyers’ patches, PP; mesenteric lymph 

node, MLN.
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Previously, we have shown that nerve fibers adjacent to lymph node anlagen 

express RA-metabolizing RALDH2 enzymes and are likely producers of RA leading 

to the induction of CXCL13 expression in mesenchymal cells [12]. RA-induced 

CXCL13 attracts CXCR5 expressing LTi progenitor cells towards the anlagen. 

Additionally, LTi differentiation towards the mature LTi phenotype might also be 

promoted directly by RA derived from adjacent nerve fibers. In that case, nerve-

derived RA will not only affect LTi cell attraction to lymph node anlagen, but 

will also promote LTi cell differentiation and survival. Alternatively, in addition 

to CXCL13 induction, nerve-derived RA might induce RALDH expression in 

mesenchymal stromal organizer cells within the lymph node anlagen. We have 

shown that RALDH enzyme expression was induced in RA stimulated adult stromal 

cells in vitro (Chapter 4). Within lymph node anlagen, stromal organizer cells and 

LTi cells are in close contact and stromal organizer cells might provide LTi cells 

with RA for their differentiation upon RALDH induction. 

Multiple factors are required for LTi cell differentiation like RORgt, TRANCE, and 

Id2 [6, 8, 11]. It remains unknown how RA is involved in LTi cell differentiation. 

Possibly RA affects LTi differentiation by regulating the expression levels of one or 

more of these factors. A good candidate is the helix-loop-helix repressor protein 

Id2. Id2 is an early regulator of LTi cell differentiation [8]. It inhibits T and B cell 

development [28] and promotes the differentiation of haematopoietic precursors 

into NK cells and LTi cells [29]. It has been shown that Id2 is a RA-responsive 

gene [30], thus RA might control LTi cell differentiation by positively regulating 

expression levels of Id2 proteins during lymph node development.  

BALB/c mice showed enhanced LTi differentiation and displayed larger mucosal 

lymphoid tissues when compared to C57BL/6 mice. Others have reported that the 

number of LTi cells correlated with the amount of lymphoid tissue [10]. This allows 

for the hypothesis that maternal vitamin A metabolism may promote mucosal 

lymphoid tissue development in the fetus. Therefore, the amount of RA produced 

and the level of RA-mediated signalling may be instrumental for the development 

of the mucosal immune system during embryonic development. Since the 

production of RA is mostly dependent on conversion by RALDH enzymes, the 

levels of RALDH expression will determine the efficiency of LTi cell differentiation. 

It is therefore of importance to know why BALB/c and C57BL/6 mice differ in 

RALDH enzymes levels, and thus to dissect what controls RALDH expression levels 

within the developing embryo and pregnant mothers. This could potentially lead 

to therapeutic applications to stimulate the development of the mucosal immune 

system in the unborn child. 
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Summary

Mucosal immune system

The mucosal immune system protects us from harmful pathogens and at the same 

time maintains tolerance to harmless food antigens and commensal bacteria. The 

vitamin A metabolite retinoic acid (RA) is crucial for the mucosal immune system 

in maintaining this balance. In studies described in this thesis, several beneficial 

effects of RA have been investigated. We demonstrated that intestinal epithelial 

cells are involved in educating dendritic cells (DCs) to acquire a mucosal phenotype 

by upregulating RALDH enzyme expression. By omission of vitamin A from the diet 

we showed that dietary vitamin A is mandatory for RALDH expression in mucosal 

DCs and mesenteric lymph node (MLN) stromal cells. We subsequently showed 

that RA can directly regulate RALDH expression in DCs and stromal cells and we 

propose that intestinal epithelial cells are most likely the providers of RA for DCs. 

And thus, these intestinal epithelial cells provide an instructive environment that 

licenses DCs to transfer information about their tissue of origin and their site of 

antigen capture to the T cells. In addition, these imprinted DCs are crucial for 

other aspects of the mucosal immune system like the induction of regulatory T 

cells and IgA-producing B cells.

Developing immune system

Not only is dietary vitamin A of importance for the mucosal immune system, 

we also showed that it is affecting the formation of secondary lymphoid organs 

during ontogeny. We showed that RA was involved in embryonic lymph node  

development by promoting differentiation of lymphoid tissue inducer (LTi) cells. 

RA-supplemented mothers displayed increased numbers of mature LTi cells. 

Consistently, deprival of vitamin A led to a significant decrease of LTi differentiation 

status in developing LN of the embryos of vitamin A deficient (VAD) mothers.

Different levels of vitamin A converting RALDH enzymes

Differences in vitamin A metabolism will most likely result in altered functioning 

of the mucosal immune system. Inbred mouse strains show differences in RALDH 

activity. In the BALB/c mice, showing a higher RALDH activity when compared to 

C57BL/6 mice, a correlation was found between increased RALDH activity and 

enhanced induction of gut-homing molecule expression on CD4+ T cells, higher 

FoxP3 levels in intestines and MLNs, increased IgA production, enhanced LTi 

differentiation, and larger MLNs and Peyers’ patches (PPs). Moreover, in a disease 

setting, BALB/c mice showed an increased capacity to form tertiary lymphoid 

tissue that could contribute to IgA production and increased differentiation of 

regulatory T cells. Taken together, these data demonstrate that vitamin A is 
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of vital importance for proper functioning of the mucosal immune system and 

vitamin A status might be a determinant in disease susceptibility and severity. 

Paracrine retinoic acid-mediated signalling

We have suggested that during embryonic lymph node development expression 

of CXCL13 by mesenchymal stromal organizer cells is induced by RA provided 

by adjacent nerves [1]. Also, many other examples of a paracrine function for RA 

come from studies regarding embryonic organogenesis (reviewed in [2]), while 

no genetic support for autocrine RA signalling exists. In addition, increasing 

numbers of examples of a paracrine mode of action for RA are described in the 

adult mouse. Intestinal epithelial cells are now thought to be the providers of 

RA during the differentiation and imprinting of mucosal DCs [3-5]. Moreover, we 

(chapter 2 and [6]) and others [7-10] have shown that the induction of gut-homing 

T cells depends on RA presented by DCs and MLN stromal cells. Since DCs are in 

close contact with T cells during T cell activation for presentation of antigen, we 

hypothesized that RA is transferred to and presented by DCs to T cells through 

the immunological synapse formed between T cells and DCs. Compatible with this 

idea are the reported observations that uptake and presentation of RA to T cells 

can occur by DCs upon pre-incubation with RA which did not involve newly formed 

RA [11]. However, it remains unknown how RA is secreted and transferred from 

one cell to another. 

For transfer from DCs to T cells RA will have to be transported over both cell 

membranes. Molecules described to be especially equipped to perform such a 

function are ATP-binding cassette (ABC) transporters. ABC transporters are known 

to be expressed by a variety of immune cells like macrophages, DCs and T cells 

[12-17] and are thought to transport a wide variety of substrates across cellular 

membranes, including inflammatory molecules such as cytokines as well as 

lipids and drugs. Since RA is a lipid-soluble vitamin metabolite, ABC transporters 

might be good candidates for RA secretion. Indeed, overexpression of the 

ABC transporter MRP1 has been shown to block neuritogenic effects of RA in a 

neuroblastoma cell line, showing that MRP1 might have acted as an efflux pump 

for RA [18]. In addition, RA has been shown to regulate the expression of multiple 

ABC transporters, like P-glycoprotein (P-gp) [19, 20] or ABCA1 [21]. In this way, RA 

might regulate its own secretion. Similarly, expression of ABC transporters on T 

cells might be necessary for uptake of RA into the cell. Future research is needed 

to identify whether ABC transporters are involved in secretion and presentation of 

RA to neighboring T cells. Increasing the expression of ABC transporters on DCs, 

thereby enhancing RA secretion and presentation, may be beneficial to enhance 

the mucosal immune response necessary to overcome intestinal inflammation. 
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Modification of retinoic acid levels in the small intestine

Since RALDH expression in DCs is crucial for the mucosal immune system, it is of 

importance that we understand how RALDH levels in DCs are controlled. We have 

demonstrated in chapter 4 that after birth RALDH enzyme levels are upregulated 

in MLN-DCs and MLN stromal cells. This suggested to us that external factors are 

involved in inducing RALDH expression by these cells. Soon after birth, mucosal 

surfaces are colonized with high numbers of bacteria [22, 23], that play a crucial 

role in the maturation of the mucosal immune system [24-26]. Also, during the 

first week of life pups are solely fed with maternal milk, which is rich in vitamin A. 

In chapter 4, the role of these factors in regulating RALDH levels in mucosal DCs 

was investigated. We discovered that Toll-like receptor signalling was not crucial 

for RALDH enzyme expression since MLN-DCs from both MyD88-/- and Trif mutant 

animals had comparable levels of RALDH activity to WT animals, confirming the 

recent findings that MLN-DCs from MyD88-/- Trif-/- double knock-out mice still 

showed RALDH activity [27]. Remarkably, the intake of dietary vitamin A turned 

out to be mandatory for RALDH expression and enzyme activity within the 

mucosal immune system. Surprisingly, while RALDH mRNA levels in both MLN-

DCs and MLN stromal cells were affected by the lack of vitamin A absorption, 

RALDH expression levels within the small intestine remained unchanged. This 

indicates that RALDH expression in mucosal DCs and intestinal epithelial cells 

is regulated differently. However, factors regulating RALDH levels within the 

intestinal epithelial cells are still unidentified. Since we did not observe an effect 

of the absence of MyD88- or Trif-dependent TLR signalling on epithelial-mediated 

imprinting of RALDH expression in mucosal DCs, we suspect that also in epithelial 

cells RALDH levels are not regulated by TLR-dependent signals. It is plausible that 

other pattern recognition receptor pathways or that secreted bacterial products 

are involved in regulation of RALDH enzymes in intestinal epithelial cells. 

Being able to modify RALDH levels might be a beneficial tool to enhance RA 

production in the intestines, thereby promoting epithelial barrier function [28, 

29], mucosal DC imprinting and mucosal tolerance induction. Moreover, adjusting 

vitamin A levels and RA production in pregnant mothers will likely have a 

significant effect on the development of the mucosal immune system of newborns. 

In chapter 7, we demonstrated that RA is involved in local differentiation of LTi 

cells during LN development. Increased intake of RA by pregnant mice correlated 

with higher numbers of mature LTi cells in the developing embryos, while LTi 

differentiation in developing embryos was reduced when vitamin A was omitted 

from the diet of the mothers. Because the numbers of LTi cells is associated with 

size and number of LNs ([30] and chapter 7), we expect that increased RA levels 

in pregnant mothers will promote the development of larger LNs in newborns. 

Additionally, after birth, LTi cells are thought to give rise to NKp46 mucosal cells, 

a cell type that has recently been described to enhance the antimicrobial response 

and epithelial barrier function by inducing anti-bacterial peptide production by 
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intestinal epithelial cells [31-33]. Modification of RA levels in pregnant mothers 

might therefore be beneficial to improve the mucosal immune system of their 

children.

Clinical implications

To demonstrate the significance of having increased RA-mediated signalling 

within the intestines, BALB/c and C57BL/6 mice were compared in chapter 5 and 

6. These two mouse strains differ in RALDH activity and RA production in MLNs 

and small intestines. From these studies we can learn that increased RA-mediated 

signalling affected the mucosal immune system at multiple levels. The induction 

of gut-homing molecules and differentiation of regulatory T cells was enhanced in 

MLNs from BALB/c mice when compared to C57BL/6 mice. In addition, BALB/c mice 

displayed the accumulation of more T cells, FoxP3+ Treg cells and IgA secreting B 

cells in the lamina propria of the small intestine. In addition, the presence of more 

mature LTi cells in BALB/c mice correlated with the formation of more secondary 

lymphoid tissue and the development of tertiary lymphoid structures during 

colitis when compared to C57BL/6. Taken together, enhanced RA production, and 

concomitant RA-mediated signalling, is associated with a more efficient mucosal 

immune system in BALB/c mice. 

Cellular RA availability is regulated by the vitamin A nutritional status and the 

tightly regulated balance between RA synthesis and catabolism. Genetic variation 

(polymorphisms, SNPs and mutations) has been reported for a number of factors 

involved in maintaining this balance [34-39] like Cyp26A1 [37] or RALDH2 

[36] and this may result in higher or lower RA synthesis. Variation in RA levels 

caused by mutations or polymorphisms in the genes encoding these factors 

in humans might determine the efficacy of the mucosal immune system and 

susceptibility for infectious disease. Possibly, factors like these are differentially 

expressed in BALB/c and C57BL/6, like RALDH enzymes shown in chapter 5 and 

6. Consequently, BALB/c may have a better defense against mucosal infection and 

this might explain why these mice suffer from less severe colitis and recover more 

quickly than C57BL/6 mice. 

This raises the attractive hypothesis that administration of RA to patients could 

serve as an effective treatment or alleviation of disease. A number of research 

groups have investigated the effect of RA treatment on several inflammatory 

diseases like colitis, experimental autoimmune encephalomyelitis (EAE), collagen-

induced arthritis (CIA), psoriasis and acne [40-47]. Indeed, RA downregulated 

inflammatory responses in colon biopsies cultured from patients with ulcerative 

colitis in vitro and in mice suffering from colitis in vivo by increasing the number 

of regulatory T cells [40]. EAE, an experimental model for multiple sclerosis, is 

an example of a typical Th17-driven immune disease in which RA was shown to 

strongly inhibit pathogenic Th17 responses during the disease. Treatment with RA 
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dramatically delayed disease onset but also strongly decreased disease severity 

[41, 42, 44, 45]. Also, RA treatment markedly ameliorated CIA, an experimental 

model for rheumatoid arthritis, in mice [43]. Disease onset was delayed and RA 

improved the clinical course by reducing the production of inflammatory cytokines, 

immunoglobulin, and chemokines. Taken together, these results support the 

hypothesis that RA could serve as a new therapeutic agent in the treatment of 

human inflammatory diseases. 

Notably, the modification of RA availability must be approached with great 

carefulness. Because of the Th1-inhibiting effect of RA, Th1-driven immune 

responses like Leishmania major infection might be impaired. Also, excessive 

levels of RA may lead to disturbed embryonic development and birth defects. 

Recently involvement of RA in allergic responses has been described, where it 

is suggested that vitamin A deficiency or a high vitamin A intake may contribute 

to a lower or higher prevalence of allergic diseases, respectively [48-50]. In 

addition, as discussed in the introduction of this thesis, typical symptoms that are 

associated with high RA levels are weight loss, osteoporosis, liver damage, kidney 

damage, or loss of hair [51-57]. Therefore, when using RA as a therapeutic agent 

in patients, careful monitoring of adverse reactions must be pursued. Perhaps a 

more biological approach would be to modulate the levels of vitamin A converting 

RALDH enzymes within the intestines, since this may result in a more specific 

regulation of the amount of RA available to regulate the mucosal immune system. 

Future studies are needed to investigate how enzyme expression in the intestines 

can be modulated.

Concluding remarks

Based on the data presented in this thesis, we can conclude that vitamin A is of 

vital importance for mucosal immune homeostasis and vitamin A status in man 

might determine disease susceptibility and severity. In conclusion, the beneficial 

effect of RA on inflammatory disease in experimental models raises the attractive 

hypothesis that administration of RA to or enhanced intestinal RALDH expression 

in patients could serve as an effective treatment of inflammatory disease. 
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Nederlandse samenvatting

Het mucosale immuunsysteem

De taak van ons afweersysteem is om ziekmakende bacteriën en virussen die ons 
lichaam binnendringen, op te ruimen en te verwijderen. In ons maag-darmstelsel 
wordt dit principe echter veel subtieler toegepast. Hierin leven miljoenen bacteriën, 
de darmflora. Veel van deze bacteriën zijn niet ziekmakend, maar juist gunstig 
omdat deze bacteriën noodzakelijk zijn voor de vertering van voedsel dat ons eigen 
lichaam niet kan afbreken. Echter, wanneer schadelijke bacteriën binnenkomen, 
kunnen zij infecties veroorzaken. Een goed functionerend afweersysteem in het 
maag-darmstelstel (vanaf nu het mucosale afweersysteem genoemd) zal dus 
tegen schadelijke bacteriën in onze darm een afweerreactie opwekken om zo het 
lichaam te beschermen tegen infecties en ziekten, maar zal tegelijkertijd tolerant 
zijn voor de onmisbare bacteriën die daar continu aanwezig zijn. 
Het mechanisme waarmee ons afweersysteem onderscheid maakt tussen 
schadelijke en onschadelijke bacteriën is nog niet geheel duidelijk. Toch is het wel 
duidelijk dat een goede balans van het afweersysteem in de darmen zeer belangrijk 
is voor onze gezondheid, omdat verstoring van deze balans kan resulteren in 
chronische darmontstekingen zoals ulceratieve colitis en de ziekte van Crohn. Een 
beter begrip van deze balans is van groot belang voor de ontwikkeling van nieuwe 
therapieën voor de behandeling van dit soort ziekten.

Vitamine A is zeer belangrijk voor onze gezondheid. Het is essentieel voor veel 
processen zoals de embryonale ontwikkeling, voortplanting, groei, zicht en het 
mucosale afweersysteem. Ontoereikende consumptie van voedsel met vitamine 
A in ontwikkelingslanden resulteert in vitamine A deficiëntie dat voornamelijk 
voorkomt bij kinderen en zwangere vrouwen. Vitamine A deficiëntie leidt tot o.a. 
blindheid en groeistoornissen. Vitamine A deficiëntie ook tot een verslechterd 
afweersysteem waardoor diarree en darmontstekingen verhoogd en in ernstigere 
vorm voorkomen. Hierdoor overlijden jaarlijks meer dan een miljoen kinderen. Om 
vitamine A deficiëntie te voorkomen en te verhelpen heeft de Wereldgezondheidsraad 
programma’s opgezet om kinderen in ontwikkelingslanden twee tot drie keer 
per jaar vitamine A toe te dienen. Dit heeft tot gevolg gehad dat kindersterfte is 
gedaald met 20-50%. 
Vitamine A kan niet door ons lichaam geproduceerd worden en is een micronutriënt 
dat in de darmen wordt geabsorbeerd uit groente, fruit (wortels, pompoen, 
spinazie, boerenkool), dierlijk voedsel (lever, eieren) en zuivel. Vitamine A wordt 
in het lichaam omgezet tot retinolzuur. Retinolzuur is de werkzame stof die de 
hierboven beschreven processen beinvloeden. Voor de omzetting van vitamine A 
naar retinolzuur zijn enzymen nodig. Deze enzymen worden retinal dehydrogenase 
(afgekort RALDH) genoemd.
Dendritische cellen zijn belangrijke cellen van het afweersysteem die in de huid, 
longen en darmen continu op zoek zijn naar ziekteverwekkers waartegen ons 
immuunsysteem moet optreden. Wanneer deze zijn waargenomen, dan wordt de 



Dutch summary - Nederlandse samenvatting166

9

informatie over de locatie en type gevaar door dendritische cellen gepresenteerd 
aan andere cellen van het immuunsysteem die de specifieke afweer moeten leveren. 
Dit zijn de T- en B-lymfocyten. De plek waar dit met grote efficiëntie gebeurd 
zijn de lymfoïde organen zoals de lymfeklieren en de milt. Wanneer lymfocyten 
in deze lymfoide organen de eiwitten afkomstig van de ziekteverwekkers 
kunnen herkennen, raken ze geactiveerd, waarna ze in staat zijn om tegen de 
ziekteverwekkers op te treden. 
Wanneer lymfocyten in de darm drainerende lymfeklieren worden geactiveerd 
krijgen ze vervolgens specifieke eiwitten op hun cel oppervlak, waarmee ze 
uitermate goed naar de darmen kunnen migreren. Dit is belangrijk omdat hier 
de ziekteverwekkers zijn binnengedrongen en vervolgens onschadelijk gemaakt 
moeten worden. Wanneer ziekteverwekkers via de huid binnendringen, dan gaan 
de lymfocyten die geactiveerd worden in de huid drainerende lymfeklieren juist 
moleculen tot expressie brengen waardoor ze naar de huid kunnen migreren.  
Vitamine A, in de vorm van de biologisch actieve metaboliet retinolzuur, reguleert 
de expressie van de moleculen die lymfocyten nodig hebben om naar de darm 
te migreren, de zogenaamde darmspecifieke homingsreceptoren. De benodigde 
RALDH enzymen voor de synthese van retinolzuur uit vitamine A worden specifiek 
door dendritische cellen van de darmen en in de darm drainerende lymfeklieren 
(mucosale dendritische cellen) tot expressie gebracht, terwijl de dendritische 
cellen buiten de darm en andere mucosa niet beschikken over deze enzymen. 
Naast de inductie van darmspecifieke homingsreceptoren is retinolzuur ook 
belangrijk voor de productie van het type A antilichamen (IgA). Antilichamen 
worden door B lymfocyten geproduceerd en IgA wordt voornamelijk in mucosale 
weefsels, zoals de darm, geproduceerd om bescherming te bieden tegen de 
bacteriën die aanwezig zijn in de darm. Retinolzuur is zeer belangrijk voor de 
productie van IgA door B cellen.

Kort samengevat, vitamine A is zeer belangrijk voor het functioneren van het 
mucosale afweersysteem, omdat verschillende immunologische processen 
beïnvloedt worden door de biologische werkzame metaboliet retinolzuur. Toch 
is er nog veel onbekend over de specifieke mechanismes waarmee vitamine A 
de gezondheid en het afweersysteem bevorderd en de ontwikkeling van infecties 
verlaagd. 
In dit proefschrift worden studies beschreven waarin we de rol van vitamine A 
in verschillende onderdelen van het afweersysteem hebben onderzocht. Onze 
resultaten dragen bij aan een beter inzicht in de beschermende rol van vitamine 
A in het mucosale immuunsysteem. 

Samenvatting van het proefschrift

In hoofdstuk 2 laten wij zien dat naast mucosale dendritische cellen ook stromale 
cellen (of steuncellen) in mesenteriale lymfeklieren RALDH enzymen produceren. 
Dit betekent dat stromale cellen ook retinolzuur kunnen produceren en T en B 
lymfocyten kunnen beïnvloeden. Om dit te onderzoeken hebben we mesenteriale 
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lymfeklieren getransplanteerd naar een gebied buiten de mucosa, namelijk de 
knieholte van de muis. Vervolgens hebben we onderzocht of T cellen in deze 
lymfeklieren worden gestimuleerd om darmspecifieke eiwitten tot expressie 
te brengen. De lymfeklier in de knieholte draineert de huid en  en hier worden 
normaal gesproken alleen de huidspecifieke homingsreceptoren geinduceerd 
op geactiveerde lymfocyten. Na transplantatie verdwijnen de afweercellen uit de 
getransplanteerde lymfeklier verdwijnen en hiermee dus ook de mucosale RALDH-
positieve dendritische cellen. De stromale cellen blijven achter en zijn dan het enige 
celtype verantwoordelijk voor de productie van retinolzuur. Wanneer lymfocyten in 
de getransplanteerde mesenteriale lymfeklier worden geactiveerd dan resulteert 
dit in de expressie van een deel van de darmspecifieke homingsreceptoren, terwijl 
een ander deel afhankelijk bleek te zijn van de mucosale dendritische cellen. 
Onze experimenten tonen dus aan dat dendritische cellen en stromale cellen in 
mesenteriale lymfeklieren beide T cellen kunnen instrueren om darmspecificieke 
eiwitten tot expressie te brengen en om zo efficient mogelijk T cellen naar de 
juiste weefsels te sturen. 

In hoofdstuk 3 hebben we onderzocht hoe darmepitheelcellen de ontwikkeling 
van mucosale DCs beïnvloeden. We hebben laten zien dat de darmepitheel cellen 
de dendritische cellen aanzetten om de vitamine A metaboliserende enzymen 
RALDH tot expressie te brengen. Deze dendritische cellen stimuleerden vervolgens 
T cellen om de darm-specifieke homingsreceptoren tot expressie te brengen. 
Retinolzuur, afkomstig uit de darm epitheel cellen, bleek in dit proces een cruciale 
factor te zijn. Daarentegen werden dendritische cellen door steuncellen uit de 
huid juist zo beinvloed, dat zij lymfocyten stimuleerden om de huid-specifieke 
homingsreceptoren tot expressie te brengen. 

In hoofdstuk 4 hebben we onderzocht hoe de expressie van RALDH enzymen in 
dendritische cellen en stromale cellen wordt gereguleerd. Onze resultaten lieten 
zien dat vlak na de geboorte zowel dendritische cellen als stromale cellen zeer 
lage expressie van RALDH enzymen vertoonden en dat tijdens de ontwikkeling na 
de geboorte de expressieniveaus in beiden celtypen verder omhoog gingen. 
Parallel aan de verhoging van de RALDH expressie vindt na de geboorte ook de 
bacteriële kolonisatie van de darmen plaats, waarbij allerlei immunologische 
veranderingen in de darm plaatsvinden. Daarom hebben wij onderzocht of er 
een verband is tussen bacteriële activatie van dendritische cellen en de inductie 
van RALDH enzymen. Stimulatie van dendritische cellen in kweekschaaltjes met 
verschillende bacteriële componenten leidde in een aantal gevallen inderdaad tot 
het aanzetten van RALDH expressie in de dendritische cellen. Echter, in een levende 
muis (in vivo) lijkt bacteriële signalering minder belangrijk voor de inductie van 
RALDH enzymen. Dit bleek uit experimenten met mucosale dendritische cellen uit 
transgene muizen waarin bacteriële signalering is platgelegd. Hierdoor worden 
de dendritische cellen niet door bacteriën geactiveerd, maar deze vertoonden 
desondanks nog steeds actieve RALDH enzymen. 
Omdat we in hoofdstuk 3 hadden gevonden dat epitheelcellen dendritische 
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cellen kunnen stimuleren om RALDH tot expressie te brengen  en dat dit proces 
afhankelijk was van retinolzuur, hebben wij vervolgens onderzocht of vitamine 
A de RALDH expressie in dendritische cellen kan beïnvloeden. Om dit te 
onderzoeken hebben we vitamine A deficiënte muizen gegenereerd door muizen 
op een vitamine A-vrij dieet te zetten. Als controle werden ook muizen op diëten 
met verschillende hoeveelheden vitamine A gegenereerd. Tot onze verbazing 
vertoonden de mucosale dendritische cellen uit de vitamine A deficiënte muizen 
helemaal geen RALDH activiteit meer, terwijl deze cellen uit de controle dieren wel 
beschikten over actieve RALDH enzymen. Dit fenomeen was te herstellen door de 
vitamine A deficiënte dieren voor een periode van 7 dagen op vitamine A controle 
voer te zetten. Deze resultaten laten zien dat de expressie van RALDH enzymen 
in mucosale dendritische cellen volledig afhankelijk is van de aanwezigheid van 
vitamine A in het voer. 

In hoofdstuk 5 hebben we het vitamine A metabolisme van twee verschillende 
muizenstammen vergeleken, namelijk BALB/c en C57BL/6 muizen. De BALB/c 
muizen hadden hogere expressie niveaus van RALDH enzymen in zowel darmen 
als mesenteriale lymfeklieren. Hierdoor zijn BALB/c muizen in staat zijn om 
meer retinolzuur te produceren in de darmen en de mesenteriale lymfeklieren 
dan C57BL/6 muizen. Als gevolg hiervan is de inductie van de darmspecifieke 
homingsreceptoren hoger in BALB/c muizen in vergelijking met C57BL/6 muizen. 
De consequentie hiervan is dat er meer lymfocyten aanwezig zijn in de darmen 
van BALB/c muizen in vergelijking met C57BL/6 muizen Door de verhoogde 
retinolzuur productie lijken BALB/c muizen dus te beschikken over een beter 
functionerend mucosaal afweersysteem dan C57BL/6 muizen. 

Dit laatste blijkt ook uit onze colitis studie, welke is beschreven in hoofdstuk 
6. Hierin hebben we de BALB/c muizen en C57BL/6 muizen opnieuw met elkaar 
vergeleken in een model waarin colitis werd geinduceerd. Colitis is een chronische 
ontsteking van de darmen en wordt in onze muismodellen geinduceerd door aan 
drinkwater het stofje dextraan sulfaat sodium (DSS) toe te voegen, waardoor 
een beschadiging van het darm epitheel ontstaat, welke leidt tot een tijdelijke 
ontsteking. BALB/c en C57BL/6 muizen verschilden in gevoeligheid voor de 
ontwikkeling van deze ziekte. Het bleek dat BALB/c muizen een hogere dosis van 
DSS nodig hadden om een vergelijkbaar ziektebeeld te ontwikkelen als C57BL/6 
muizen. Daarnaast herstelden BALB/c muizen sneller van colitis wanneer DSS uit 
het drinkwater werd verwijderd, zelfs na toediening van de hoge dosis DSS. We 
toonden aan dat BALB/c muizen tijdens colitis meer lymfoide structuren in de 
dikke darm ontwikkelden dan C57BL/6 muizen en dat deze lymfoide structuren 
veel IgA producerende B lymfocyten  en en beschermende T lymfocyten bevatten. 
Om te bewijzen dat vitamine A daadwerkelijk belangrijk is voor bescherming 
tegen colitis hebben we colitis geïnduceerd in vitamine A deficiënte dieren en deze 
vergeleken met vitamine A controle dieren. Beide groepen ontwikkelden colitis, 
echter het ziektebeeld in de vitamine A deficiënte dieren was vele malen slechter 
dan in de vitamine A controle dieren. Deze resultaten tonen aan dat vitamine A een 
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beschermende invloed heeft op colitis en dat een hogere retinolzuurproductie, 
zoals in BALB/c muizen, correleert met een lagere gevoeligheid voor de 
ontwikkeling van colitis en dus bijdraagt aan een beter functionerend mucosaal 
afweersysteem. 

In hoofdstuk 7 van mijn proefschrift wordt besproken hoe retinolzuur de 
embryonale ontwikkeling van lymfeklieren beïnvloedt. Voor de embryonale 
ontwikkeling van lymfeklieren zijn lymphoid tissue inducer (LTi) cellen en stromale 
organizer cellen nodig. Wij toonden in vitro aan dat de differentiatie van precursor 
LTi cellen tot volledig uitgerijpte LTi cellen werd bevorderd door de aanwezigheid 
van retinolzuur. Wanneer retinolzuur werd toegediend aan het voer van zwangere 
muizen leidde dit tot de ontwikkeling van meer uitgerijpte LTi cellen in het embryo. 
Echter, wanneer een zwangere muis op vitamine A deficiënt voer werd gezet, 
nam het aantal uitgerijpte LTi cellen in het embryo af. Ook in de BALB/c muizen 
die meer retinolzuur kunnen produceren waren meer uitgerijpte LTi cellen in de 
embryo’s aanwezig dan in C57BL/6 embryo’s. Het aantal uitgerijpte LTi cellen 
correleerde met de grootte van lymfeklieren na de geboorte. Uit deze analyses 
komt zeer duidelijk naar voren dat BALB/c muizen meer lymfoide structuren in de 
darmen hebben en grotere Peyerse platen en mesenteriale lymfeklieren hebben 
dan C57BL/6 muizen. Dit impliceert dat de vitamine A status (retinolzuurproductie 
en bloedspiegel) van de moeder invloed kan hebben op de ontwikkeling van het 
mucosale afweersysteem van haar kind. 

Conclusie

De studies beschreven in dit proefschrift laten zien dat vitamine A zeer belangrijk 
is voor het functioneren van ons mucosale afweersysteem vanwege de positieve 
invloed van het vitamine A metaboliet retinolzuur op verschillende onderdelen 
van het mucosale afweersysteem. Onvoldoende inname van vitamine A kan leiden 
tot een verstoorde balans van het mucosale afweersysteem wat de ontwikkeling 
van darmontstekingen en infecties tot gevolg kan hebben. Dit impliceert dat de 
effectiviteit van het mucosale afweersysteem en de gevoeligheid voor darminfecties 
en ontstekingen in mensen mede bepaald wordt door de inname en omzetting van 
vitamine A. Daarom kan de toediening van retinolzuur of mogelijkheid om RALDH 
niveaus te reguleren in patiënten een effectieve methode zijn om retinolzuur 
niveaus in de darmen te verhogen en zo het mucosale afweersysteem te versterken 
tijdens de behandeling van chronische darmontstekingen zoals ulceratieve colitis 
of de ziekte van Crohn. 
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Dankwoord

Na 4,5 jaar is het dan zover: mijn promotieonderzoek is afgerond en mijn 

proefschrift is geschreven! Uiteraard hoort daar ook het dankwoord bij, want dit is 

de gelegenheid om een aantal mensen persoonlijk te bedanken voor hun bijdrage 

aan mijn promotieonderzoek. 

Mijn promoter prof.dr. R.E. Mebius, beste Reina, allereerst wil ik je bedanken voor 

de mogelijkheid om in jouw groep te promoveren. Door jouw enthousiasme voor 

dit vak en persoonlijke manier van begeleiden heb ik heel veel van je geleerd. 

Bedankt voor alle werkbesprekingen waarin we samen heerlijk hebben zitten 

discussiëren en fantaseren over wat vitamine A allemaal doet in die darmen. Want 

wij weten wel hoe het zit, de rest van de wereld alleen nog niet! 

Mijn tweede promoter prof.dr. G. Kraal, beste Georg, bedankt voor alles wat ik van 

je heb geleerd. Jouw stimulerende ideeën en kritische blik op het onderzoek hebben 

sterk bijgedragen aan de kwaliteit en de totstandkoming van dit proefschrift. 

De leden van de leescommissie wil ik bedanken voor hun tijd en aandacht die ze 

hebben besteed aan het beoordelen van mijn proefschrift. 

Uiteraard gaat mijn dank ook uit naar de (oud-)collega’s uit groep Reina. 

Mascha, jij hebt me in het begin van mijn promotieonderzoek op sleeptouw 

genomen. Samen hebben we hele mooie transplantatie-experimenten gedaan en 

daarnaast hebben we als een van de eersten uitgezocht hoe we met dat nieuwe 

FACS apparaat, de Cyan, konden werken. Ik heb toen ontzettend veel van je geleerd 

en waardeer je hulp enorm. Veel succes met verdere carrière en ik vertrouw erop 

dat je heel succesvol zal worden in de fotografie. 

Marlene, de Nederlandse Duitse. Nadat ik jou geholpen heb om een DEC protocol 

in het Nederlands te schrijven besloot je dat Nederlands helemaal niet zo moeilijk 

is en sprak je vanaf die dag vloeiend Nederlands. Je bent twee jaar lang als post-

doc werkzaam geweest in groep Reina en we hebben intensief samengewerkt 

tijdens vele vitamine A experimenten. Ik ben erg blij dat je mijn paranimf wilt zijn 

op mijn promotie. Veel succes met je vervolg-carrière buiten de wetenschap. Ik 

heb gehoord dat je nu na zo’n korte tijd al een zeer gewaardeerde collega bent 

bij Elsevier.

Mijn andere paranimf Gera, jij kwam groep Reina versterken als analist. Samen 

met Marlene en Brenda hebben we een aantal zware en lange dagen meegemaakt 

tijdens de vitamine A studies. Gelukkig maakten we er altijd wat gezelligs van 

door met z’n allen in de koffiekamer een kleine maaltijd in elkaar te draaien 

(met af en toe een glaasje bubbels) om zo die lange experimentdagen een beetje 

dragelijk te maken. Daarnaast heb je me erg veel geholpen met de vele PCRs en 

coupekleuringen die in mijn proefschrift terug te vinden zijn. Ik vind het ontzettend 

leuk dat je hebt besloten om ook te gaan promoveren en ik ben ervan overtuigd 

dat dat je erg goed af zal gaan. Je hebt nu al veel meegekregen hoe het is om AIO 
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te zijn en straks kan je alvast meemaken hoe het is om op dat podium te staan. 

Heel veel succes tijdens je promotieonderzoek en bedankt voor al je hulp!

Brenda, you already started before I joined the Reina-group and learned me a lot 

about intestines, DSS experiments and digestions. I really enjoyed working with 

you on the BALB/c versus C57/BL6 stories and I also appreciate that we worked 

together on the vitamin A breeding and experiments. Thanks for all the fun at 

the lab and also at the cheese fondues together with Mascha, Marlene and Gera. 

Good luck with finalizing your PhD. We definitely have to drink some bubbles to 

celebrate our PhDs! 

Ook alle andere (oud-)collega’s van groep Reina, bedankt voor jullie hulp, 

wetenschappelijke input, discussies en samenwerkingen. Jasper, veel succes 

met jouw laatste loodjes als AIO. Ramon, bedankt voor je hulp bij de laatste 

transplantatie-experimenten. Succes met je nieuwe carrière bij Crucell. Serge, 

leuk dat ik nu ook wat heb gedaan met LTi cellen. We zullen er een mooi artikel 

van maken! Anna, ondanks de korte tijd dat je bij ons hebt gewerkt vond ik het 

erg gezellig om met jou samen te werken en te proberen om die lastige stromale 

cellen te kunnen sorteren. Veel succes met je verdere carrière. Antonio, good luck 

with your PhD project. Don’t forget to also spend some time to enjoy the city of 

Amsterdam!

Verder de (oud-)collega’s uit groep Geel, waar groep Reina onderdeel van 

is; Joke, Ida, Marieke, Tanja, Henrike, Kyra, Aram, Joost, Tom, Petros, Toon, 

Ronald, Erik, Ellen, Timo, Alice en Arnold. Bedankt voor wetenschappelijke 

discussies en hulp bij praktische zaken, maar ook voor de gezelligheid tijdens de 

vrijdagochtendbesprekingen en de gele groep uitjes. Ik vind het erg leuk om bij 

groep Geel te horen!

Naast de gele groep bevat de afdeling nog meer werkgroepen in verschillende 

kleuren. Ik wil iedereen van de afdeling MCBI bedanken voor hun stimulerende en 

kritische commentaren tijdens werkbesprekingen en voor alle gezelligheid op het 

lab maar ook tijdens de afdelingsuitjes, borrels en kerstfeesten.

Zeker niet onbelangrijk voor het slagen van mijn experimenten zijn de 

mensen die mij hebben geholpen met het proefdierwerk; Erwin, Carla, en 

Eelco. Eelco, ontzettend bedankt voor je hulp bij een aantal in vivo proeven en 

voor het beantwoorden van al mijn vragen over DEC protocollen, procedures, 

muizenbestellingen etc, etc. Erwin en Carla, enorm bedankt voor jullie hulp bij het 

opzetten en bijhouden van de vitamine A fok. 

Buiten de afdeling heb ik samengewerkt met Stefan Martin en Fanny Edele. Dear 

Stefan, thanks for working together on epithelial-DC imprinting project and for 

the nice paper we published. Hopefully we will continue our collaboration in the 

future. Dear Fanny, good luck with your post-doc in Toronto. I hope you’ll have a 

great time in Canada.
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In mijn periode als AIO heb ik met vele mensen een werkkamer mogen delen. 

Ten eerste H-269 waar ik tegelijk met Elly op de kabouterkamer terecht kwam bij 

Ronald, Erik en later Margot. Bedankt voor de gezelligheid, alle kabouterborrels 

en de heerlijke frituurlucht die vervolgens nog een week rond je computer bleef 

hangen. 

Mijn tweede AIO-kamer, J-283, mocht ik delen met Gijs, Nuray, Lydia, Ida, Jasper, 

Ellen en natuurlijk onze eigen rivierkreeft Ricardo (†) met zijn guppy familie. 

Bedankt voor de gezellige tijd, de heerlijke koekjes en tips tijdens het afronden 

van mijn promotieonderzoek. 

Inmiddels ben ik terecht gekomen op de post-doc kamer J-290, waar ik warm ben 

onthaald door Renate en Jack en inmiddels ben versterkt door Henrike. Ik ben 

erg blij dat jullie alle promotiestress die Henrike en ik af en toe meebrachten vol 

begrip hebben aangehoord. Gelukkig was er ook voldoende tijd voor thee-(oh 

nee, jullie drinken alleen maar koffie!)-leuten en verhalen over kokkerellen, luxe 

dinertjes en steeds groter wordende karpers met de geluiden van “Veronica top 

1000 Allertijden” op de achtergrond.

Tenslotte wil ik mijn familie en schoonfamilie bedanken. Mijn schoonfamilie Paul, 

Ronnie en Ralph, bedankt voor jullie continue belangstelling en interesse voor mijn 

promotieonderzoek. De jaarlijkse wintersportvakantie heeft zeker bijgedragen 

aan de totstandkoming van mijn proefschrift!

Mijn ouders en broers, lieve papa en Sandra, lieve mama en Hans en mijn beide 

broers Jur en Maurice, bedankt voor jullie onvoorwaardelijke steun, liefde en 

vertrouwen. Ik ben trots op jullie! 

En tenslotte, lieve Jules, inmiddels weet je hoe het is om met een AIO getrouwd 

te zijn. Bedankt voor het aanhoren van mijn frustraties, voor je onvoorwaardelijke 

steun maar ook voor het samen kunnen vieren van successen en je spontane 

verrassingen. Zonder jou was dit boekje er niet geweest, je stond altijd achter me. 

Je bent geweldig!

Rosalie
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Curriculum Vitae

Rosalie Molenaar werd op 1 december 1981 geboren te Alkmaar. Zij behaalde haar 

VWO diploma in 2000 aan het Petrus Canisius College te Alkmaar, waarna zij in 

september van dat jaar begon met de opleiding Biomedische Wetenschappen aan 

de Vrije Universiteit te Amsterdam. Tijdens deze opleiding verrichte zij haar eerste 

wetenschappelijke stage op de afdeling Moleculaire Celbiologie en Immunologie 

van het VU Medisch Centrum te Amsterdam onder begeleiding van dr. Janneke 

Samsom, waar zij heeft meegewerkt aan het onderzoek naar regulatoire T cellen. 

Tijdens de master-fase van de opleiding Biomedische Wetenschappen heeft Rosalie 

zich gespecialiseerd in de immunologie. Tijdens deze fase heeft zij als stagiaire 

onderzoek gedaan naar de functie en detectie van granzyme B en proteinase 

inhibitor 9 in serum tijdens transplantatie afstotingsreacties in nierpatienten. Dit 

onderzoek werd uitgevoerd op de afdeling Experimentele Immunologie op het 

Academisch Medisch Centrum te Amsterdam onder supervisie van prof.dr. Ineke 

ten Berge en dr. Ajda Rowshani en op de afdeling Plasma Eiwitten van Sanquin 

Research onder begeleiding van prof. dr. Erik Hack. De afrondende stage heeft 

Rosalie gedaan op het Nederlands Kanker Instituut op de afdeling Moleculaire 

Genetica, onder supervisie van dr. Jacqueline Jacobs en prof.dr. Anton Berns, 

waar onderzoek werd verricht naar factoren die de telomeren van chromosomen 

beschermen. In september 2005 heeft Rosalie haar master diploma Biomedische 

Wetenschappen behaald en is zij vervolgens in december van hetzelfde jaar 

gestart met haar promotieonderzoek bij de afdeling Moleculaire Celbiologie en 

Immunologie van het VU Medisch Centrum te Amsterdam onder begeleiding 

van promoteren prof.dr. R.E. Mebius en prof.dr. G. Kraal. De resultaten van dit 

onderzoek staan beschreven in dit proefschrift met de titel: Control of mucosal 

immune responses by vitamin A. Sinds 1 april 2010 is Rosalie als post-doc 

werkzaam op de afdeling Moleculaire Celbiologie en Immunologie van het VU 

Medisch Centrum te Amsterdam om het onderzoek wat is opgezet tijdens haar 

promotie voort te zetten.
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