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1. Introduction

The empirical measure Pn and empirical process Gn of a sample of observations
X1, . . . , Xn from a probability measure P on a measurable space (X ,A) attach
to a given measurable function f :X → R the numbers

Pnf =
1

n

n
∑

i=1

f(Xi), Gnf =
1√
n

n
∑

i=1

(

f(Xi)− Pf
)

.

It is often useful to study the suprema of these stochastic processes over a given
class F of measurable functions. The distribution of the supremum

‖Gn‖F : = sup
f∈F

|Gnf |

is known to concentrate near its mean value, at a rate depending on the size of
the envelope function of the class F , but irrespective of its complexity. On the
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other hand, the mean value of ‖Gn‖F depends on the size of the class F . Entropy
integrals, of which there are two basic versions, are useful tools to bound this
mean value.

The uniform entropy integral was introduced in [9] and [5], following [3], in
their study of the abstract version of Donsker’s theorem. We define an Lr-version
of it as

J(δ,F , Lr) = sup
Q

∫ δ

0

√

1 + logN
(

ε‖F‖Q,r,F , Lr(Q)
)

dε.

Here the supremum is taken over all finitely discrete probability distributions
Q on (X ,A), the covering number N

(

ε,F , Lr(Q)
)

is the minimal number of
balls of radius ε in Lr(Q) needed to cover F , F is an envelope function of F ,
and ‖f‖Q,r denotes the norm of a function f in Lr(Q). The integral is defined
relative to an envelope function, which need not be the minimal one, but can
be any measurable function F :X → R such that |f | ≤ F for every f ∈ F . If
multiple envelope functions are under consideration, then we write J(δ,F|F,Lr)
to stress this dependence. An inequality, due to Pollard (also see [12], 2.14.1),
says, under some measurability assumptions, that

E∗
P‖Gn‖F . J(1,F , L2) ‖F‖P,2. (1.1)

Here.means smaller than up to a universal constant. This shows that for a class
F with finite uniform entropy integral, the supremum ‖Gn‖F is not essentially
bigger than a multiple of the empirical process GnF at the envelope function
F . The inequality is particularly useful if this envelope function is small.

The bracketing entropy integral has its roots in the Donsker theorem of [8],
again following initial work by Dudley. For a given norm it can be defined as

J[ ]
(

δ,F , ‖ · ‖
)

=

∫ δ

0

√

1 + logN[ ]

(

ε‖F‖,F , ‖ · ‖
)

dε.

Here the bracketing number N[ ]

(

ε,F , ‖ · ‖
)

is the minimal number of brackets
[l, u] = {f :X → R: l ≤ f ≤ u} of size ‖u− l‖ smaller than ε needed to cover F .
A useful inequality, due to Pollard (also see [12], 2.14.2), is

E∗
P‖Gn‖F . J[ ]

(

1,F , L2(P )
)

‖F‖P,2. (1.2)

Bracketing numbers are bigger than covering numbers (at twice the size), and
hence the bracketing integral is bigger than a multiple of the corresponding
entropy integral. However, the bracketing integral involves only the single dis-
tribution P , whereas the uniform entropy integral takes a supremum over all
(discrete) distributions, making the two integrals incomparable in general. Apart
from this difference the two maximal inequalities have the same message.

The two inequalities (1.1) and (1.2) involve the size of the envelope function,
but not the sizes of the individual functions in the class F . They also exploit
finiteness of the entropy integrals only, roughly requiring that the entropy grows
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at smaller order than ε−2 as ε ↓ 0, and not the precise size of the entropy. In
the case of the bracketing integral this is remedied in the equality (see [12],
3.4.2), valid for any class of functions f :X → [−1, 1] with Pf2 ≤ δ2PF 2 and
any δ ∈ (0, 1),

E∗
P ‖Gn‖F . J[ ]

(

δ,F , L2(P )
)

‖F‖P,2

(

1 +
J[ ]
(

δ,F , L2(P )
)

δ2
√
n‖F‖P,2

)

. (1.3)

Here the assumption that the class of functions is uniformly bounded is too
restrictive for some applications, but can be removed if the entropy integral is
computed relative to the stronger “norm”

‖f‖P,B =
(

2P
(

e|f | − 1− |f |
)

)1/2

.

Although it is not a norm, this quantity can be used to define the size of brackets
and hence bracketing numbers. Inequality (1.3) is valid for an arbitrary class
of functions with ‖f‖P,B ≤ δ‖F‖P,B if the L2(P )-norm is replaced by ‖ · ‖P,B

in its right side (at four appearances) (see Theorem 3.4.3 of [12]). The “norm”
‖ ·‖P,B derives from the refined version of Bernstein’s inequality, which was first
used in the literature on rates of convergence of minimum contrast estimators
in [1] (also see [11]).

Maximal inequalities of type (1.3) using uniform entropy are thus far un-
available. In this note we derive an exact parallel of (1.3) for uniformly bounded
functions, and investigate similar inequalities for unbounded functions. The va-
lidity of these results seems unexpected, as the stronger control given by brack-
eting has often been thought necessary for estimates of moduli of continuity. It
was suggested to us by Theorem 3.1 and its proof in [4].

1.1. Application to minimum contrast estimators

Inequalities involving the sizes of the functions f are of particular interest in
the investigation of empirical minimum contrast estimators. Suppose that θ̂n
mimimizes a criterion of the type

θ 7→ Pnmθ,

for given measurable functions mθ:X → R indexed by a parameter θ, and that
the population contrast satisfies, for a “true” parameter θ0 and some metric d
on the parameter set,

Pmθ − Pmθ0 & d2(θ, θ0).

A bound on the rate of convergence of θ̂n to θ0 can then be derived from the
modulus of continuity of the empirical process Gnmθ indexed by the functions
mθ. Specifically (see e.g. [12], 3.2.5) if φn is a function such that δ 7→ φn(δ)/δ

α

is decreasing for some α < 2 and

E sup
θ:d(θ,θ0)<δ

∣

∣Gn(mθ −mθ0)
∣

∣ . φn(δ), (1.4)
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then d(θ̂n, θ0) = OP (δn), for δn any solution to

φn(δn) ≤
√
nδ2n. (1.5)

Inequality (1.4) involves the empirical process indexed by the class of functions
Mδ = {mθ−mθ0 : d(θ, θ0) < δ}. If d dominates the L2(P )-norm, or another norm
‖ · ‖ that can be used in an equality of the type (1.3), such as the Bernstein
norm, and the norms of the envelopes of the classes Mδ are bounded in δ, then
we can choose

φn(δ) = J
(

δ,Mδ, ‖ · ‖
)

(

1 +
J
(

δ,Mδ, ‖ · ‖
)

δ2
√
n

)

,

where J is an appropriate entropy integral. For this choice the inequality (1.5)
is equivalent to

J
(

δn,Mδn , ‖ · ‖
)

≤
√
nδ2n. (1.6)

Thus a rate of convergence can be read off directly from the entropy integral.
We note that an inequality of type (1.3) is unattractive for very small δ, as

the bound may even increase to infinity as δ ↓ 0. However, it is accurate for the
range of δ that are important in the application to moduli of continuity.

Moduli of continuity also play an important role in model selection theorems.
See for instance [7].

Inequalities involving uniform entropy permit for instance the immediate
derivation of rates of convergence for minimum contrast functions that form
VC-classes. Furthermore, uniform entropy is preserved under various (combina-
torial) operations to make new classes of functions. This makes uniform entropy
integrals a useful tool in situations where bracketing numbers may be difficult to
handle. Equation (1.6) gives an elegant characterization of rates of convergence
in these situations, where thus far ad-hoc arguments were necessary.

2. Uniformly bounded classes

Call the class F of functions P -measurable if the map

(X1, . . . , Xn) 7→ sup
f∈F

∣

∣

∣

n
∑

i=1

eif(Xi)
∣

∣

∣

on the completion of the probability space (Xn,An, Pn) is measurable, for every
sequence e1, e2, . . . , en ∈ {−1, 1}.
Theorem 2.1. Let F be a P -measurable class of measurable functions with
envelope function F ≤ 1 and such that F2 is P -measurable. If Pf2 < δ2PF 2,
for every f and some δ ∈ (0, 1), then

E∗
P‖Gn‖F . J

(

δ,F , L2

)

(

1 +
J(δ,F , L2)

δ2
√
n‖F‖P,2

)

‖F‖P,2.
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Proof. We use the following refinement of (1.1) (see e.g. [12], 2.14.1): for any
P -measurable class F ,

E∗
P ‖Gn‖F . E∗

PJ

(

supf (Pnf
2)1/2

(PnF 2)1/2
,F , L2

)

(PnF
2)1/2. (2.1)

Because δ 7→ J(δ,F , L2) is the integral of a nonincreasing nonnegative function,
it is a concave function such that the map t 7→ J(t)/t, which is the average of its
derivative over [0, t], is nonincreasing. The concavity shows that its perspective
(x, t) 7→ tJ(x/t,F , L2) is a concave function of its two arguments (cf. [2], page
89). Furthermore, the “extended-value extension” of this function (which by
definition is −∞ if x ≤ 0 or t ≤ 0) is obviously nondecreasing in its first
argument and was noted to be nondecreasing in its second argument. Therefore,
by the vector composition rules for concave functions ([2], pages 83–87, especially
lines -2 and -1 of page 86), the function (x, y) 7→ H(x, y): = J

(√

x/y,F , L2

)√
y

is concave. We have that E∗
PPnF

2 = ‖F‖2P,2. Therefore, by an application of
Jensen’s inequality to the right side of the preceding display we obtain, for
σ2
n = supf Pnf

2,

E∗
P ‖Gn‖F . J

(

√

E∗
Pσ

2
n

‖F‖P,2
,F , L2

)

‖F‖P,2. (2.2)

The application of Jensen’s inequality with outer expectations can be justified
here by the monotonicity of the function H , which shows that the measurable
majorant of a variable H(U, V ) is bounded above by H(U∗, V ∗), for U∗ and V ∗

measurable majorants of U and V . Thus E∗H(U, V ) ≤ EH(U∗, V ∗), after which
Jensen’s inequality can be applied in its usual (measurable) form.

The second step of the proof is to bound E∗
Pσ

2
n. Because Pnf

2 = Pf2 +
n−1/2

Gnf
2 and Pf2 ≤ δ2PF 2 for every f , we have

E∗
Pσ

2
n ≤ δ2‖F‖2P,2 +

1√
n
E∗
P ‖Gn‖F2 . (2.3)

Here the empirical process in the second term can be replaced by the sym-
metrized empirical process Go

n (defined as Go
nf = n−1/2

∑n
i=1εif(Xi) for inde-

pendent Rademacher variables ε1, ε2, . . . , εn) at the cost of adding a multiplica-
tive factor 2 (e.g. [12], 2.3.1). The expectation can be factorized as the expecta-
tion on the Rademacher variables ε followed by the expectation on X1, . . . , Xn,
and Eε‖Go

n‖F2 ≤ 2Eε‖Go
n‖F by the contraction principle for Rademacher vari-

ables ([6], Theorem 4.12), and the fact that F ≤ 1 by assumption. Taking the
expectation on X1, . . . , Xn, we obtain that E∗

P‖Gn‖F2 ≤ 4E∗
P‖Go

n‖F , which in
turn is bounded above by 8E∗

P ‖Gn‖F by the desymmetrization inequality (e.g.
2.36 in [12]).

Thus F2 in the last term of (2.3) can be replaced by F , at the cost of
inserting a constant. Next we apply (2.2) to this term, and conclude that
z2: = E∗

Pσ
2
n/‖F‖2P,2 satisfies the inequality

z2 . δ2 +
J(z,F , L2)√
n‖F‖P,2

. (2.4)
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We apply Lemma 2.1 with r = 1, A = δ and B2 = 1/(
√
n‖F‖P,2) to see that

J(z,F , L2) . J(δ,F , L2) +
J2(δ,F , L2)

δ2
√
n‖F‖P,2

.

We insert this in (2.2) to complete the proof.

Lemma 2.1. Let J : (0,∞) → R be a concave, nondecreasing function with
J(0) = 0. If z2 ≤ A2 +B2J(zr) for some r ∈ (0, 2) and A,B > 0, then

J(z) . J(A)

[

1 + J(Ar)

(

B

A

)2]1/(2−r)

.

Proof. For t > s > 0 we can write s as the convex combination s = (s/t)t+(1−
s/t)0 of t and 0. Since J(0) = 0, the concavity of J gives that J(s) ≥ (s/t)J(t).
Thus the function t 7→ J(t)/t is decreasing, which implies that J(Ct) ≤ CJ(t)
for C ≥ 1 and any t > 0.

By the monotonicity of J and the assumption on z it follows that

J(zr) ≤ J
(

(

A2 +B2J(zr)
)r/2

)

≤ J(Ar)

(

1 +

(

B

A

)2

J(zr)

)r/2

.

This implies that J(zr) is bounded by a multiple of the maximum of J(Ar) and
J(Ar)(B/A)rJ(zr)r/2. If it is bounded by the second one, then J(zr)1−r/2 .

J(Ar)(B/A)r . We conclude that

J(zr) . J(Ar) + J(Ar)2/(2−r)

(

B

A

)2r/(2−r)

.

Next again by the monotonicity of J ,

J(z) ≤ J
(

√

A2 +B2J(zr)
)

≤ J(A)

√

1 +

(

B

A

)2

J(zr)

. J(A)

[

1 +

(

B

A

)2(

J(Ar) + J(Ar)2/(2−r)

(

B

A

)2r/(2−r))]1/2

. J(A)

[

1 +
√

J(Ar)

(

B

A

)

+

(

B

A

)2/(2−r)

J(Ar)1/(2−r)

]

.

The middle term on the right side is bounded by a multiple of the sum of the
first and third terms, since x . 1p + xq for any conjugate pair (p, q) and any
x > 0, in particular x =

√

J(Ar)B/A.

For values of δ such that δ‖F‖P,2 ≪ 1/
√
n Theorem 2.1 can be improved.

(This seems not to be of prime interest for statistical applications.) Its bound can
be written in the form J(δ,F , L2)‖F‖P,2 + J2(δ,F , L2)/(δ

2
√
n). In the second

term δ can be replaced by 1/(‖F‖P,2
√
n), which is better if δ is smaller than

the latter number, as the function δ 7→ J(δ,F , L2)/δ is decreasing.
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Lemma 2.2. Under the conditions of Theorem 2.1,

E∗
P ‖Gn‖F . J

(

δ,F , L2

)

‖F‖P,2 + J2

(

1√
n‖F‖P,2

,F , L2

)√
n‖F‖2P,2.

Proof. We follow the proof of Theorem 2.1 up to (2.4), but next use the alter-
native bounds

J(z,F , L2) . J

(
√

δ2 +
J(z,F , L2)√
n‖F‖P,2

,F , L2

)

≤ J(δ,F , L2) + J

(
√

J(z,F , L2)√
n‖F‖P,2

,F , L2

)

≤ J(δ,F , L2) + J(δn,F , L2)

√

J(z,F , L2)

δn
∨ 1,

for 1/δn =
√
n‖F‖P,2. Here we have used the subadditivity of the map δ 7→

J(δ,F , L2), and the inequality J(Cδ,F , l2) ≤ CJ(δ,F , L2) for C ≥ 1 in the last
step. We can bound the sum of the three terms on the right side by a multiple
of the maximum of these terms and conclude that the left side is smaller than
at least one of the three terms. Solving next yields that

J(z,F , L2) . J(δ,F , L2) ∨
J2(δn,F , L2)

δn
∨ J(δn,F , L2).

Because J(δn,F , L2) ≥ δn for every δn > 0, by the definition of the entropy in-
tegral, the third term on the right is bounded by the second term. We substitute
the bound in (2.2) to finish the proof.

3. Unbounded classes

In this section we investigate relaxations of the assumption that the class F of
functions is uniformly bounded, made in Theorem 2.1. We start with a moment
bound on the envelope.

Theorem 3.1. Let F be a P -measurable class of measurable functions with
envelope function F such that PF (4p−2)/(p−1) < ∞ for some p > 1 and such
that F2 and F4 are P -measurable. If Pf2 < δ2PF 2 for every f and some
δ ∈ (0, 1), then

E∗
P ‖Gn‖F . J

(

δ,F , L2

)

(

1 +
J(δ1/p,F , L2)

δ2
√
n

‖F‖2−1/p
P,(4p−2)/(p−1)

‖F‖2−1/p
P,2

)p/(2p−1)

‖F‖P,2.

Proof. Application of (2.1) to the functions f2, forming the class F2 with enve-
lope function F 2, yields

E∗
P ‖Gn‖F2 . E∗

PJ

(

σ2
n,4

(PnF 4)1/2
,F2|F 2, L2

)

(PnF
4)1/2, (3.1)



Maximal inequality 199

for σn,r the diameter of F in Lr(Pn), i.e.

σr
n,r = sup

f
Pn|f |r. (3.2)

Preservation properties of uniform entropy (see [10], or [12], 2.10.20, where
the supremum over Q can also be moved outside the integral to match our
current definition of entropy integral, applied to φ(f) = f2 with L = 2F )
show that J(δ,F2|F 2, L2) . J(δ,F|F,L2), for every δ > 0. Because Pnf

2 =
Pf2 + n−1/2Gnf

2 and Pf2 ≤ δ2PF 2 by assumption, we find that

E∗
Pσ

2
n,2 . δ2PF 2 +

1√
n
E∗
PJ

(

σ2
n,4

(PnF 4)1/2
,F , L2

)

(PnF
4)1/2. (3.3)

The next step is to bound σn,4 in terms of σn,2.
By Hölder’s inequality, for any conjugate pair (p, q) and any 0 < s < 4,

Pnf
4 ≤ Pn|f |4−sF s ≤

(

Pn|f |(4−s)p
)1/p(

PnF
sq
)1/q

.

Choosing s such that (4 − s)p = 2 (and hence sq = (4p − 2)/(p − 1)), we find
that

σ4
n,4 ≤ σ

2/p
n,2

(

PnF
sq
)1/q

.

We insert this bound in (3.3). The function (x, y) 7→ x1/py1/q is concave, and

hence the function (x, y, z) 7→ J(
√

x1/py1/q/z,F , L2)
√
z can be seen to be con-

cave by the same arguments as in the proof of Theorem 2.1. Therefore, we can
apply Jensen’s inequality to see that

E∗
Pσ

2
n,2 . δ2PF 2 +

1√
n
J

(

(E∗
Pσ

2
n,2)

1/(2p)
(

PF sq
)1/(2q)

(PF 4)1/2
,F , L2

)

(PF 4)1/2.

We conclude that z: = (E∗
Pσ

2
n,2)

1/2/‖F‖P,2 satisfies

z2 . δ2 +
1√
n
J

(

z1/p
(PF 2)1/(2p)(PF sq)1/(2q)

(PF 4)1/2
,F , L2

)

(PF 4)1/2

PF 2

. δ2 + J(z1/p,F , L2)
(PF sq)1/(2q)√
n(PF 2)1−1/(2p)

.

In the last step we use that J(Cδ,F , L2) ≤ CJ(δ,F , L2) for C ≥ 1, and Hölder’s
inequality as previously to see that the present C satisfies this condition. We
next apply Lemma 2.1 (with r = 1/p) to obtain a bound on J(z,F , L2), and
conclude the proof by substituting this bound in (2.2).

The preceding theorem assumes only a finite moment of the envelope func-
tion, but in comparison to Theorem 2.1 substitutes J(δ1/p,F , L2) in the cor-
rection term of the upper bound, where p > 1 and hence δ1/p ≫ δ for small
δ. In applications to moduli of continuity of minimum contrast criteria this is
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sufficient to obtain consistency with a rate, but typically the rate will be subop-
timal. The rate improves as p ↓ 1, which requires finite moments of the envelope
function of order increasing to infinity, the limiting case p = 1 corresponding
to a bounded envelope, as in Theorem 2.1. The following theorem interpolates
between finite moments of any order and a bounded envelope function. If ap-
plied to obtaining rates of convergence it gives rates that are optimal up to a
logarithmic factor.

Theorem 3.2. Let F be a P -measurable class of measurable functions with
envelope function F such that P exp(F p+ρ) < ∞ for some p, ρ > 0 and such
that F2 and F4 are P -measurable. If Pf2 < δ2PF 2 for every f and some
δ ∈ (0, 1/2), then for a constant c depending on p, PF 2, PF 4 and P exp(F p+ρ),

E∗
P ‖Gn‖F ≤ cJ

(

δ,F , L2

)

(

1 +
J
(

δ(log(1/δ))1/p,F , L2

)

δ2
√
n

)

.

Proof. Fix r = 2/p. The functions ψ, ψ: [0,∞) → [0,∞) defined by

ψ(f) = logr(1 + f), ψ(f) = ef
1/r − 1,

are each other’s inverses, and are increasing from ψ(0) = ψ(0) = 0 to infinity.

Thus their primitive functions Ψ(f) =
∫ f

0 ψ(s) ds and Ψ(f) =
∫ f

0 ψ(s) ds satisfy

Young’s inequality fg ≤ Ψ(f) + Ψ(g), for every f, g ≥ 0 (e.g. [2], page 120,
3.38).

The function t 7→ t logr(1/t) is concave in a neighbourhood of 0 (specifi-
cally: on the interval (0, e1−r ∧ 1)), with limit from the right equal to 0 at 0,
and derivative tending to infinity at this point. Therefore, there exists a con-
cave, increasing function k: (0,∞) → (0,∞) that is identical to t 7→ t logr(1/t)
near 0 and bounded below and above by a positive constant times the identity
throughout its domain. (E.g. extend t 7→ t logr(1/t) linearly with slope 1 from
the point where the derivative of the latter function has decreased to 1.) Write
k(t) = tℓr(t), so that ℓr is bounded below by a constant and ℓ(t) = log(1/t)
near 0. Then, for every t > 0,

log(2 + t/C)

ℓ(C)
. log(2 + t). (3.4)

(The constant in . may depend on r.) To see this, note that for C > c the left
side is bounded by a multiple of log(2 + t/c), whereas for small C the left side
is bounded by a multiple of

[

log(2 + t) + log(1 + 1/C)
]

/ℓ(C) . log(2 + t) + 1.

From the inequality Ψ(f) ≤ fψ(f), we obtain that, for f > 0,

Ψ

(

f

logr(2 + f)

)

. f.
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Therefore, by (3.4) followed by Young’s inequality,

f4

k(C2)
=

f2/C2

logr(2 + f2/C2)

f2 logr(2 + f2/C2)

ℓr(C2)

.
f2

C2
+Ψ

(

F 2 logr(2 + F 2)
)

.

On integrating this with respect to the empirical measure, with C2 = Pnf
2, we

see that, with G = Ψ
(

F 2 logr(2 + F 2)
)

,

Pnf
4 . k(Pnf

2)
(

1 + PnG
)

.

We take the supremum over f to bound σ4
n,4 as in (3.2) in terms of k(σ2

n,2), and
next substitute this bound in (3.3) to find that

E∗
Pσ

2
n,2 ≤ δ2PF 2 +

1√
n
E∗
PJ

(

√

k(σ2
n,2)

√
1 + PnG

(PnF 4)1/2
,F , L2

)

(PnF
4)1/2

≤ δ2PF 2 +
1√
n
J

(

√

k(E∗
Pσ

2
n,2)

√
1 + PG

(PF 4)1/2
,F , L2

)

(PF 4)1/2,

where we have used the concavity of k, and the concavity of the other maps,
as previously. By assumption the expected value PG is finite for r = 2/p. It
follows that z2 = E∗

Pσ
2
n,2/PF

2 satisfies, for suitable constants a, b, c depending
on r, PF 2, PF 4 and PG,

z2 . δ2 +
a√
n
J(
√

k(z2b)c,F , L2).

By concavity and the fact that k(0) = 0, we have k(Cz) ≤ Ck(z), for C ≥ 1 and
z > 0. The function z 7→

√

k(z2b)c inherits this property. Therefore we can apply

Lemma 3.1, with k of the lemma equal to the present function z 7→
√

k(z2b)c, to

obtain a bound on J(z,F , L2) in terms of J(δ,F , L2) and J
(√

k(δ2b)c,F , L2),
which we substitute in (2.2). Here k(δ2) = δ2 logr(1/δ) for sufficiently small
δ > 0 and κ(δ2) . δ2 . δ2 logr(1/δ) for δ < 1/2 and bounded away from 0.
Thus we can simplify the bound to the one in the statement of the theorem,
possibly after increasing the constants a, b, c to be at least 1, to complete the
proof.

Lemma 3.1. Let J : (0,∞) → R be a concave, nondecreasing function with
J(0) = 0, and let k: (0,∞) → (0,∞) be nondecreasing and satisfy k(Cz) ≤
Ck(z) for C ≥ 1 and z > 0. If z2 ≤ A2 +B2J

(

k(z)
)

for some A,B > 0, then

J(z) . J(A)

[

1 + J
(

k(A)
)

(

B

A

)2]

.
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Proof. As noted in the proof of Lemma 2.1 the properties of J imply that
J(Cz) ≤ CJ(z) for C ≥ 1 and any z > 0. In view of the assumed property of k
and the monotonicity of J it follows that J ◦k(Cz) ≤ CJ ◦k(z) for every C ≥ 1
and z > 0. Therefore, by the monotonicity of J and k, and the assumption on z,

J ◦ k(z) ≤ J ◦ k
(

√

A2 +B2J ◦ k(z)
)

≤ J ◦ k(A)
√

1 + (B/A)2J ◦ k(z).

As in the proof of Lemma 2.1 we can solve this for J ◦ k(z) to find that

J ◦ k(z) . J ◦ k(A) + J ◦ k(A)2
(

B

A

)2

.

Next again by the monotonicity of J ,

J(z) ≤ J
(

√

A2 +B2J ◦ k(z)
)

≤ J(A)
√

1 + (B/A)2J ◦ k(z)

. J(A)

[

1 +

(

B

A

)

√

J ◦ k(A) +
(

B

A

)2

J ◦ k(A)
]

.

The middle term on the right side is bounded by the sum of the first and third
terms.
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