
Semantic Web 2 (2011) 71–87 71
DOI 10.3233/SW-2011-0034
IOS Press

Comparison of reasoners for large ontologies
in the OWL 2 EL profile
Editor(s): Bernardo Cuenca Grau, Oxford University, UK
Solicited review(s): Julian Mendez, Dresden University of Technology, Germany; anonymous reviewer

Kathrin Dentler a,b,*, Ronald Cornet a, Annette ten Teije b and Nicolette de Keizer a

a Department of Medical Informatics, Academic Medical Center, University of Amsterdam, The Netherlands
b Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

Abstract. This paper provides a survey to and a comparison of state-of-the-art Semantic Web reasoners that succeed in classify-
ing large ontologies expressed in the tractable OWL 2 EL profile. Reasoners are characterized along several dimensions: The first
dimension comprises underlying reasoning characteristics, such as the employed reasoning method and its correctness as well
as the expressivity and worst-case computational complexity of its supported language and whether the reasoner supports incre-
mental classification, rules, justifications for inconsistent concepts and ABox reasoning tasks. The second dimension is practical
usability: whether the reasoner implements the OWL API and can be used via OWLlink, whether it is available as Protégé plugin,
on which platforms it runs, whether its source is open or closed and which license it comes with. The last dimension contains
performance indicators that can be evaluated empirically, such as classification, concept satisfiability, subsumption checking and
consistency checking performance as well as required heap space and practical correctness, which is determined by comparing
the computed concept hierarchies with each other. For the very large ontology SNOMED CT, which is released both in stated
and inferred form, we test whether the computed concept hierarchies are correct by comparing them to the inferred form of
the official distribution. The reasoners are categorized along the defined characteristics and benchmarked against well-known
biomedical ontologies. The main conclusion from this study is that reasoners vary significantly with regard to all included char-
acteristics, and therefore a critical assessment and evaluation of requirements is needed before selecting a reasoner for a real-life
application.

Keywords: Semantic Web, DL reasoners, OWL 2 EL, biomedical ontologies, SNOMED CT

1. Introduction

Ontologies are formal definitions of concepts and
the relationships between them. The ontology lan-
guage OWL 21 is a W3C Recommendation since 2009.
It is based on Description Logics (DLs) [7], a fam-
ily of knowledge representation formalisms. OWL 2
has three tractable profiles2, i.e. logical fragments that
trade expressive power for the efficiency of reasoning.
Each profile is restricted to a different sublanguage of
OWL 2. Which profile to choose for a given appli-

*Corresponding author. E-mail: k.dentler@vu.nl.
1http://www.w3.org/TR/owl2-overview/
2http://www.w3.org/TR/owl2-profiles/

cation scenario depends on the structure of the em-
ployed ontology and on the required reasoning tasks.
The three profiles are OWL 2 RL, OWL 2 QL and
OWL 2 EL. OWL 2 RL (Rule Language) reasoning
systems allow for rule-based reasoning. OWL 2 QL
(Query Language) supports conjunctive query answer-
ing against large volumes of instance data that is stored
in relational database systems. OWL 2 EL aims at ap-
plications that employ large ontologies. This profile
is sufficiently expressive for many biomedical ontolo-
gies, such as the very large ontology SNOMED CT
[13], and basic reasoning problems for OWL 2 EL
can be decided in polynomial time. As indicated by its
acronym EL, the profile is based on the EL family of

1570-0844/11/$27.50 c© 2011 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15470443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

72 K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile

description logics that provide only existential (and no
universal) quantification.

A reasoner is a program that infers logical con-
sequences from a set of explicitly asserted facts or
axioms and typically provides automated support for
reasoning tasks such as classification, debugging and
querying. For OWL 2 EL, scalable implementations of
dedicated reasoning algorithms are available. A ques-
tion is whether these implementations perform bet-
ter on OWL 2 EL ontologies than traditional rea-
soning engines, which have been designed for much
more expressive languages. Tableau algorithms can be
highly optimized [7], so that they are not necessarily
outperformed by straightforward implementations of
polynomial-time algorithms [3].

Ontologies consist of two different types of state-
ments: TBox statements describe intensional knowl-
edge, that is terminological background knowledge,
while ABox statements describe extensional knowl-
edge about individuals. The experiments of this study
are limited to (very large) TBoxes.

The main contribution of this paper is the identi-
fication of reasoner characteristics that influence the
choice of a particular reasoner for a given applica-
tion scenario. A second contribution is the categoriza-
tion of dedicated OWL 2 EL and tableau-based rea-
soners along these characteristics. To categorize the
reasoners along performance indicators, a benchmark
is employed that is based on three biomedical ontolo-
gies and comprises several TBox reasoning tasks. This
categorization can be used to make a well-motivated
choice for a particular application. The remainder of
this paper is organized as follows: The next section
summarizes related work. Section 3 gives an overview
of characteristics that are relevant to compare rea-
soning engines. Those characteristics are grouped in
the three dimensions reasoning characteristics, prac-
tical usability and performance indicators. Section 4
presents the eight reasoners that are included in this
study. Section 5 contains the classification of the rea-
soners as well as the experimental results on their per-
formance. Section 6 discusses the results and their im-
plications.

2. Related work

A benchmark typically comprises a selection of em-
ployed ontologies and a number of standard TBox and
ABox reasoning tasks and serves as a basis to evalu-
ate and compare reasoners. With the increasing avail-

ability of reasoners for OWL and OWL 2 EL, several
benchmarks have been proposed.

The Lehigh University Benchmark (LUBM) [17]
and the University Ontology Benchmark (UOBM)
[34], which is an extension of the LUBM, are based on
synthetically generated ontologies. LUBM evaluates
the performance of answering conjunctive queries over
an ABox of varying size that commits to an OWL Lite
ontology. Additionally, LUBM measures correctness
by examining query completeness and soundness.

A framework for an automated comparison of DL
reasoners that focusses on TBox classification is pre-
sented in [15]. It is based on real-life ontologies and
allows users to compare the classification performance
of reasoners as well as to analyze the “correctness”
of classification by comparing computed concept hi-
erarchies. This benchmarking system is based on the
DIG standard [53], which facilitates the comparison
of DIG-compliant reasoners such as FaCT++ [52],
KAON2 [38], Pellet [45] and RacerPro [19].

The authors of [9] aim at providing guidance for
the nontrivial task of choosing an appropriate reasoner
for a given application scenario. The paper surveys the
ontology landscape and defines a benchmark, which
includes classification as representative TBox reason-
ing task and conjunctive query answering as ABox
reasoning task. Employed performance measures con-
tain load time and response time for ontologies that
are representative for identified language fragments.
The OWL 2 EL fragment is not included in this study,
but the authors state that the investigation of tractable
fragments of OWL and the development of reason-
ers specialized for these fragments is an important re-
search topic. Reasoners are grouped into three cate-
gories according to their underlying reasoning tech-
niques: tableau-based algorithms (HermiT [43], Rac-
erPro and Pellet), datalog engines (KAON2) and stan-
dard rule engines (Sesame [11] and OWLIM [26]).

A comprehensive survey of OWL reasoners that
aims to serve as a decision help for Semantic Web
application designers is provided by [31]. Reasoners
are described in the categories “official OWL speci-
fication language conformity”, correctness, efficiency,
interface capabilities and inference services. Included
reasoners are FaCT++, RacerPro, Pellet, KAON2 and
Hoolet, an OWL DL reasoner that uses the first-order
theorem prover Vampire [41]. The correctness of rea-
soners is evaluated by running inference test cases for
selected language features.

The survey [33] employs a benchmark suite for large
ABox data, as well as a selection of small but difficult

K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile 73

T- and ABox test cases. It analyzes the correctness of
the results of FaCT++, Pellet, RacerPro, KAON2 and
HermiT. The authors extend the challenge of finding
an optimal OWL reasoner for a specific application by
finding an optimal service interface. The performance
of several protocols is compared in different comput-
ing environments, which leads to the conclusion that
those components may have a high impact. Addition-
ally, the paper contains a feature matrix of selected sys-
tem characteristics including available interfaces such
as the OWL API, Jena [12], DIG and OWLlink, lan-
guage support in terms of expressivity, retraction, in-
cremental reasoning, SWRL support, query language
and query entailment, as well as available licenses and
implementation language.

The SEALS (Semantic Evaluation at Large Scale)
project provides an infrastructure to evaluate semantic
technologies. Its Storage and Reasoning Systems Eval-
uation Campaign 20103 includes evaluation scenarios
for standard inference services such as classification,
concept satisfiability, ontology satisfiability and log-
ical entailment. In the scope of the 2010 campaign,
the reasoning engines HermiT, FaCT++ and jcel4 have
been evaluated based on an OWL 2 repository and
widely-used real-world ontologies.

Recently, Mishra et al. [36] presented an extensive
survey of nineteen reasoners that have been released
between 1975 and 2009. The authors compare these
reasoners with respect to their inference support, com-
pleteness and algorithm, implementation language and
supported Semantic Web languages.

Developers of dedicated OWL 2 EL reasoners have
been comparing their classification performance to
other reasoners. All these comparisons employ life-
science ontologies in OWL 2 EL as benchmark ontolo-
gies: the Gene Ontology (GO), a large ontology from
the US National Cancer Institute (NCI), the Founda-
tional Model of Anatomy (FMA), the Generalized Ar-
chitecture for Languages, Encyclopaedias and Nomen-
clatures in medicine (GALEN) and the Systematized
Nomenclature of Medicine, Clinical Terms (SNOMED
CT). All mentioned experiments except [47] (that sum-
marizes common characteristics of several life-science
ontologies and suggests that the use of DLs in the
EL family is beneficial both in terms of expressiv-
ity and of scalability, and also promotes CEL’s rea-
soning services) have been performed with the goal

3http://www.seals-project.eu/seals-evaluation-
campaigns/storage-and-reasoning

4http://jcel.sourceforge.net/

to demonstrate that the respective newly introduced or
re-introduced reasoner outperforms existing reasoners,
with TBox classification performance as the only di-
mension for comparison. In the following, the classifi-
cation performance with regard to SNOMED CT mea-
sured in these studies is briefly outlined.

CEL (Classifier for EL) [35] has been compared to
FaCT and Racer in 2005 [3]. In this study, CEL was
the only reasoner successful in classifying SNOMED
CT, which took around 3.5 hours. FaCT and Racer
failed due to memory exhaustion (the test machine had
2GB memory). The fact that CEL succeeded in classi-
fying SNOMED CT motivated the DL community to
investigate optimizations that exploit the simple struc-
ture of biomedical ontologies. In 2006, CEL was com-
pared to FaCT++, RacerMaster and Pellet [5]. CEL
and FaCT++ were successful in classifying SNOMED
CT, while RacerMaster and Pellet failed (512MB; Java
heap space set to 256MB). FaCT++ needed a little
more than an hour and CEL completed just under
half an hour. CEL was compared to FaCT++, HermiT,
KAON2, Pellet and RacerPro in 2008 [47]. Here, CEL
(around 20 minutes), FaCT++ (around 10 minutes)
and RacerPro (around 20 minutes) succeeded. KAON2
failed due to a timeout after 24 hours, while HermiT
and Pellet failed due to memory exhaustion (machine
with 2GB memory, heap space set to 1.5GB). The
same results are presented in [35]. The consequence-
based reasoner CB has been compared to FaCT++,
Pellet, HermiT and CEL in 2009 [25]. CB classified
SNOMED CT in less than a minute, FaCT++ in around
10 minutes and CEL in around 20 minutes, while
HermiT and Pellet failed to return a result (1.5GB
RAM, 1GB heap space; timeout 1 hour). Finally, var-
ious Protégé Plugins (Snorocket, FaCT++, Pellet and
CEL) have been compared in 2010 [30]. CEL and
Pellet failed due to memory exhaustion (4GB mem-
ory, 1,900MB maximum heap space). Snorocket clas-
sified SNOMED CT in under a minute and FaCT++ in
around 20 minutes. Figure 1 shows how the classifica-
tion performance for SNOMED CT has been improv-
ing over the recent years. Only successful outcomes
(i.e. no timeout or memory exhaustion results) are in-
cluded in this figure.

Classification performance is indeed essential and
the fact that very large ontologies such as GALEN or
SNOMED CT can be classified at all and within a rea-
sonable time is a remarkable achievement of the recent
years. But when a reasoner is to be applied in a real-
world setting, many more orthogonal aspects are rel-

74 K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile

Fig. 1. Classification performance for SNOMED CT over time.

evant. In the following section, we will identify those
characteristics and group them into three dimensions.

3. Characteristics

The characteristics described in this section stem
from a literature review that included the related work.
We analyzed papers that describe the reasoners con-
tained in this study (see Section 4) as well as short ad-
vertising descriptions of reasoners, which usually out-
line the respective reasoner’s strong points. Addition-
ally, many characteristics in the dimension of prac-
tical usability arose while the reasoning experiments
have been performed. The characteristics are arranged
in three dimensions: reasoning characteristics, practi-
cal usability and performance indicators.

3.1. Dimension reasoning characteristics

Methodology Most DL reasoners are based on (hy-
per)tableau calculi [23,37], which are sound and com-
plete. Such procedures aim at large expressivity and,
according to [25], classify an ontology by iterating
over all necessary pairs of concepts and trying to build
a model of the ontology that violates the subsump-
tion relation between them. New kinds of reasoning
procedures have been developed for less expressive,
tractable DLs such as EL++ [1,2]. The procedure for

EL++ infers subsumption relations by using so-called
completion rules in a goal-directed way.

Soundness and completeness in theory This property
evaluates whether the inferences of the employed rea-
soning methods are sound based on the underlying se-
mantics and whether they are complete, i.e. whether
all possible inferences are inferred. Soundness or com-
pleteness can be sacrificed for a significant speed-up
of reasoning [42]. Thus, to employ a reasoner in a real-
world application, it is not always important that its
underlying reasoning method is sound and complete,
but it is important to know whether it is sound and
complete. Most of the methods underlying the reason-
ers included in this study have been proven to be sound
and complete, i.e. correct. This does not imply that
their implementations are correct.

Expressivity and computational complexity For de-
scription logics, a tradeoff exists between logical ex-
pressivity and computational complexity: the more ex-
pressive a language, the higher its computational com-
plexity. Reasoning problems in OWL DL and OWL 2
are, in the worst case, solvable in time that is (double)
exponential with respect to the size of the input. How-
ever, hard cases that lead to worst-case behavior rarely
occur in practice [22,23]. When the input ontology is
in a tractable profile such as OWL 2 EL, it is theoreti-
cally possible for reasoners that support a more expres-
sive language to terminate in polynomial time. Table 1

K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile 75

Table 1

Worst-case complexities of concept satisfiability checking

Logic Worst-Case Complexity

EL++ PTime [1,2]

Horn SHIQ ExpTime[25]

SHIQ ExpTime [51]

SHOIQ (OWL DL) NExpTime [51]

SROIQ (OWL 2) N2ExpTime [24]

lists several DLs with their corresponding worst-case
complexities for concept satisfiability checking taken
from the literature.

The expressivity of a particular DL is determined
by the concept constructors it provides. The informal
naming convention for DLs describes the constructors
that can be used: E (existential restrictions), Q (quali-
fied number restrictions), O (nominals, objects), I (in-
verse roles), H (role hierarchies) and S is the abbrevi-
ation for ALC with transitive roles. The basic descrip-
tion logic ALC uses the constructors ¬C (negation),
C � D (conjunction), C � D (disjunction), ∃R.C (ex-
istential restriction) and ∀R.C (value restriction).
The description logic EL++ The language EL [10]
allows for concepts constructed from atomic concepts
A and the top concept � (i.e. owl:Thing) by using
the constructors conjunction C � D (i.e. owl:Object-
IntersectionOf) and existential restriction ∃r.C (i.e.
owl:ObjectSomeValuesFrom), where r is an atomic
role. Axioms of EL are general concept inclusions
(GCI) C � D. A primitive concept definition (PCD,
necessary but not sufficient) A � D is a GCI with a
concept name on the left-hand side, while a full con-
cept definition (FCD, necessary and sufficient) A ≡ D
can be expressed by the two GCIs A � D and D � A.
A finite set of GCIs is called a TBox. Concepts and
roles correspond to OWL classes and properties. A �
D corresponds to owl:SubClassOf(A, D) and A ≡ D
corresponds to owl:EquivalentClasses(A, D).

EL+ [3] extends EL by complex role inclusions
which allow to express role hierarchies, transitive roles
and right identities, such as: r ◦ s � t, e.g. has-parent
◦ has-sister � has-aunt. The example expresses that
two individuals that are connected by a chain of roles
(has-parent ◦ has-sister) are necessarily connected by
the role on the right-hand side (has-aunt). EL+ is suf-
ficiently expressive for many well-known biomedical
ontologies such as the ones in our test-suite.

EL++ [1,2] extends EL+ by nominals (and thus
ABoxes), the bottom concept ⊥ (and thus disjointness
constraints on concepts in the form of C � D � ⊥),
reflexive roles and range restrictions range(r) � C (a

Fracture � Traumatic abnormality by morphology
Traumatic abnormality by morphology � Traumatic abnormality
Traumatic abnormality � Damage

Bone structure of foot � Bone structure of ankle and/or foot
Bone structure of ankle and/or foot � Bone structure of lower limb

Fracture of bone ≡ Disorder of bone � ∃rolegroup.
(∃associated morphology.Fracture
� ∃finding site.Bone structure)

Fracture of lower limb ≡ Fracture of bone � ∃rolegroup.
(∃associated morphology.Fracture
� ∃finding site.Bone structure of lower limb)

Fracture of foot ≡ Fracture of lower limb � ∃.rolegroup
(∃associated morphology.Fracture
� ∃finding site.Bone structure of foot)

Inferred:

Fracture � Damage
Bone structure of foot � Bone structure of lower limb
Fracture of foot � Fracture of lower limb

Pellet’s explanation for Fracture of foot � Fracture of lower limb:

Fracture of foot ≡ Fracture of lower limb � ∃.rolegroup
(∃associated morphology.Fracture
� ∃finding site.Bone structure of foot)

Fig. 2. An example EL ontology (motivated by SNOMED CT).

global syntactic restriction applies to guarantee poly-
nomiality) and a restricted form of concrete domains
(e.g. references to numbers and strings; datatypes in
OWL). EL++ is one of the few description logics for
which standard reasoning problems such as ontology
consistency, concept subsumption, and instance check-
ing are decidable in polynomial time. To gain this
tractability, commonly-used constructors such as uni-
versal value restrictions and inverse and functional
roles have been sacrificed. For most biomedical on-
tologies, scalable reasoning seems to be more impor-
tant than the expressivity of the language [49]. A com-
plete description of EL++ and its formal semantics is
given in [2], and the structure of OWL 2 EL ontolo-
gies is specified in the OWL 2 EL profile specifica-
tion5. Mappings between EL++ and OWL 2 EL can be
found in [35]. Further tractable extensions on EL++ ex-
ist [28,29].

As an example, let us consider the ontology in
Fig. 2. In SNOMED CT, concepts form logical group-
ings, which are expressed by nested existential restric-
tions. All concepts that are allowed to be grouped
are included under an existential restriction that rep-
resents the (potential) grouping. This restriction is la-
beled with an owl:ObjectProperty named rolegroup.

5http://www.w3.org/TR/owl2-profiles/#OWL_2_EL

76 K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile

Attributes (i.e. Object Properties or roles) are pre-
sented in lower case. The figure contains five partially
defined concepts (Fracture, Traumatic abnormality by
morphology and Traumatic abnormality, Bone struc-
ture of foot and Bone structure of ankle and/or foot)
that form hierarchies. The three fully defined concepts
are Fracture of bone, Fracture of lower limb and Frac-
ture of foot. It can be inferred that a Fracture is a Dam-
age, i.e. Fracture � Damage, that Bone structure of
foot � Bone structure of lower limb and that Fracture
of foot is a Fracture of lower limb, i.e. Fracture of foot
� Fracture of lower limb.

Incremental classification When an ontology has
been classified and is updated afterwards (by additions
or removals), it makes sense for a reasoner to reuse
the previous classification information together with
the updated axioms to produce the new concept hierar-
chy. This is especially reasonable in typical ontology
development scenarios that involve only minor modi-
fications between classifications that are performed to
check whether the developed ontology is (still) con-
sistent. Alternatively, the reasoner has to re-start the
whole classification from scratch, which can be time-
consuming.

Rule support Rule support enables the combina-
tion of ontologies with rules. Some reasoners sup-
port SWRL6 rules. SWRL, the Semantic Web Rule
Language, extends the set of OWL axioms to in-
clude Horn-like rules. A simple exemplary rule is
to assert that the combination of the hasParent and
hasBrother properties implies the hasUncle property:
hasParent(?x1,?x2) ∧ hasBrother(?x2,?x3) ⇒ has-
Uncle(?x1,?x3). In contrast to most other rules, this
simple example can also be expressed by a complex
role inclusion (i.e. owl:ObjectPropertyChain).

Justifications Justifications are minimal entailing
subsets of an ontology [21]. Given an ontology and
an unclear consequence, may it be a subsumption re-
lationship or an unsatisfiable concept, it can be very
helpful if a reasoner computes a justification (or all
justifications) for the consequence, which can subse-
quently be used to explain or debug that consequence.
The OWL API contains a method that returns all expla-
nations for a given unsatisfiable concept, or an empty
set if the concept is satisfiable.

6http://www.w3.org/Submission/SWRL/

Support of ABox reasoning tasks ABox reasoning
is reasoning with individuals and comprises instance
checking, (conjunctive) query answering and ABox
consistency checking. Instance checking tests whether
a knowledge base entails that an individual is an in-
stance of a concept. It is the basis of query answering,
which can be performed by iterating instance checking
for all individuals in a knowledge base [14]. Whether
a reasoner supports ABox reasoning tasks or not is a
characteristic that, depending on the intended applica-
tion, can be very relevant.

3.2. Dimension practical usability

OWL API The OWL API [20] is an Application Pro-
gramming Interface (API) for working with OWL on-
tologies. It supports parsing and writing in the syntaxes
that are defined in the OWL 2 specification. The open
source reference implementation in Java includes val-
idators for OWL 2 profiles. It also provides a standard
interface to OWL reasoners, so that an application can
embed different reasoners without having to change its
implementation. A number of existing reasoners pro-
vide OWL API wrappers and are thus easily integrated
into OWL API based applications such as Protégé 4.

OWLlink OWLlink [32] provides an extensible, im-
plementation-neutral protocol to interact with OWL
2 reasoners. It succeeds the DL-oriented DIG inter-
face. OWLlink facilitates client applications to man-
age reasoners, to assert axioms and to access reason-
ing services via a set of standard queries. The OWL
API based OWLlink API implements the OWLlink
protocol. It allows to turn OWL API aware reasoners
into OWLlink servers and to access remote OWLlink
servers from OWL API based applications (such as
Protégé).

Availability as Protégé plugin Protégé is an open
source ontology editor. The new version 4.1 fully con-
forms with the OWL 2 language specification and is
built on top of the OWL API. It is a common practice
of reasoner developers to release a plugin for Protégé.
OWL API aware reasoners can also be used from Pro-
tégé via OWLlink.

License Many reasoners come with a dual license.
This means that they are free under certain conditions,
and that for different use, arrangements have to be
made with their developers. The major distinguishing

K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile 77

feature concerning licenses is whether the license is a
recognized open source license7 or not.

Further characteristics The remaining character-
istics are self-explanatory and include whether the
source of the reasoner is open or closed, the program-
ming language the reasoner is implemented in, the sup-
ported platforms, whether the reasoner has a native
Jena8 interface and the kind of institution (academic,
governmental or commercial) it has been developed in.
Jena is a Java framework for building Semantic Web
applications.

3.3. Dimension performance indicators

The dimension performance indicators contains
characteristics that depend on the input ontology and
that can be measured empirically. At the ontology
level, fundamental reasoning services include classifi-
cation and consistency checking. The two most impor-
tant reasoning services at the concept level are satisfi-
ability checking and subsumption. In our experiments,
performance indicators are measured based on these
reasoning tasks. The performance of ABox reasoning
tasks is not included in this study. Another character-
istic that is included is the minimum required amount
of heap space for Java reasoners. Finally, we analyze
classification results in order to check whether the rea-
soners’ theoretical correctness is confirmed in practice.

Classification performance Classification, i.e. the
computation of the concept hierarchy, is one of the
most important reasoning services and supported by
all modern DL systems. Thus, its duration is often
used as a performance indicator to benchmark reason-
ing engines. From a practical perspective, an ontology
should be classified regularly during its development
and maintenance in order to detect unwanted subsump-
tions as soon as possible. To make this feasible also for
large ontologies, classification should be fast.

TBox consistency checking performance An inter-
pretation I is a model of an ontology O if the inter-
pretation satisfies all implications in O. An ontology is
consistent if it has a model [4].

Concept satisfiability checking performance A con-
cept satisfiability check tests whether a concept C can
have instances. According to [7], satisfiability is for-
mally defined as follows: A concept C is satisfiable

7http://www.opensource.org/licenses
8http://jena.sourceforge.net/

with respect to a TBox T if there exists a model I
of T such that C I is nonempty. Concept satisfiabil-
ity checks are a special case of concept subsumption
checks, because a concept C is unsatisfiable if, and
only if, C � ⊥ [49].

Subsumption query performance Subsumption que-
ries check whether one concept subsumes another con-
cept or return all concepts subsuming or subsumed by
a concept. According to [7], a concept C is subsumed
by a concept D with respect to T if C I ⊆ DI for every
model I of T . This is written as T � C � D.

Soundness and completeness in practice We analyze
the output of reasoners in Section 5. For most ontolo-
gies, their closure, i.e. the set of all statements that
follow from the underlying semantics, is not given. In
such cases, the only way to evaluate the output of a
reasoner is by comparing it to the output of other rea-
soners. All reasoners that correctly implement a sound
and complete reasoning method that supports the ex-
pressivity of the input ontology should produce the
same output for the same input. Thus, if the outputs
of the reasoners differ from each other, we can infer
that not all implemented methods are sound and com-
plete in practice. For SNOMED CT, an advantageous
situation applies: It is released both in stated and in in-
ferred form, so that we can employ the inferred form as
gold standard and compare it to the concept hierarchies
computed by the reasoners. The inferred form has been
generated with Apelon’s9 Ontylog DL classifier.

4. Reasoners

The reasoners which are compared based on the de-
fined characteristics include the newly introduced rea-
soner TrOWL and all reasoners that occur in previous
comparisons except KAON2, because it is not being
maintained any longer. This section briefly describes
each reasoner.

CB (Consequence-based reasoner, University of Ox-
ford) is an implementation of a reasoning procedure
[25] for Horn SHIQ ontologies, i.e. SHIQ ontolo-
gies that can be translated to the Horn fragment of
first-order logic. CB’s reasoning procedure can be re-
garded as an extension of the completion-based proce-
dure for EL++ ontologies and works by deriving new
consequent axioms. It is theoretically optimal for Horn

9http://www.apelon.com

78 K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile

SHIQ ontologies as well as for the common fragment
of EL++ and SHIQ [25].

CEL (Classifier for EL, TU Dresden) [5,35] im-
plements a refined polynomial-time algorithm [1–3]
which allows it to process very large EL+ ontologies
in reasonable time.

FaCT++ (Fast Classification of Terminologies, Uni-
versity of Manchester) [52] is the new generation of
the OWL DL reasoner FaCT. It supports OWL DL and
a subset of OWL 2 that is more expressive than the on-
tologies in our test suite. FaCT++ is implemented in
C++ and based on optimized tableaux algorithms.

HermiT (University of Oxford) [43] can determine
whether or not a given ontology is consistent and
identify subsumption relationships between concepts,
among other features. HermiT is based on a “hyper-
tableau” calculus.

Pellet (Clark & Parsia) [45] was the first reasoner
that supported all of OWL DL (SHOIN (D)) and has
been extended to OWL 2 (SROIQ(D)). Pellet sup-
ports OWL 2 profiles including OWL 2 EL.

RacerPro (Renamed ABox and Concept Expression
Reasoner, Racer Systems) [19] implements the de-
scription logic SHIQ. Dedicated optimizations for
OWL 2 EL have been added (structural subsump-
tion tests [18]), enabling practical reasoning with
SNOMED CT.

Snorocket (CSIRO) [30] is a high-performance im-
plementation of the polynomial-time classification al-
gorithm for EL+ [3]. It was primarily optimized for
classifying SNOMED CT, and was licensed to the
IHTSDO10 for integration into the Workbench soft-
ware used to maintain and produce SNOMED CT.

TrOWL (Tractable reasoning infrastructure for OWL
2, University of Aberdeen) [50] is the common inter-
face to a number of reasoners. TrOWL Quill provides
reasoning services over OWL 2 QL. TrOWL REL is
an optimized implementation of the CEL algorithm
that provides reasoning over OWL 2 EL. It employs
a syntactic approximation from OWL 2 DL to OWL
2 EL to enable OWL 2 DL ontologies to be classi-
fied within polynomial time [40]. This approximation
is soundness-preserving but sacrifices completeness.
To support full DL reasoning, TrOWL allows for the
use of heavyweight plugin reasoners, such as FaCT++,
Pellet, HermiT and RacerPro.

10http://www.ihtsdo.org/

5. Categorization of reasoners

In this section, the eight reasoners are categorized
along the defined characteristics. The evaluation of
the performance indicators is based on our test suite,
which comprises the three biomedical ontologies GO,
NCI and SNOMED CT. Concluding, we analyze the
tradeoff between a reasoner’s supported expressivity
and its classification performance.

5.1. Dimension reasoning characteristics

Table 2 summarizes the reasoning properties for the
included reasoners.

Methodology The first characteristic is the underly-
ing reasoning methodology. Most reasoners rely on
tableau-based methods or on (extensions of) comple-
tion rules for EL. Pellet and TrOWL both implement
optimized support for OWL 2 EL and their EL reason-
ers are activated based on the profile of the current on-
tology.

Soundness and completeness in theory Most of the
underlying reasoning methodologies have been proven
to be sound and complete. The tableaux and hyper-
tableaux calculi are sound and complete, the proce-
dure for EL++ has been shown to be sound and com-
plete in [1] and the procedure for Horn SHIQ is
sound and complete according to [25]. TrOWL REL is
based on the procedure for EL++. TrOWL REL’s syn-
tactic approximation from OWL 2 DL to OWL 2 EL is
soundness-preserving but possibly incomplete.

Expressivity and computational complexity Table 2
lists the languages that the reasoners support. CB’s
reasoning procedure described in [25] supports Horn
SHIQ, but its implementation supports only Horn
SHIF , which is a subset of Horn SHIQ that does
not include cardinality restrictions. The expressiv-
ity of TrOWL depends on its configuration. TrOWL
REL implements EL++ without datatypes and supports
SROIQ by approximation. If a third-party reasoner
is used, then its supported expressivity is the one of
this reasoner.

Incremental classification CEL, Pellet and Snorocket
support incremental reasoning. CEL and Snorocket
both have a partial incremental classification function-
ality that only supports additions. Pellet supports in-
cremental classification and incremental consistency
checking. Pellet’s incremental classification is based
on module extraction: The first time an ontology is

K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile 79

Table 2

Reasoning characteristics

CB CEL FaCT++ HermiT Pellet RP SR TrOWL (REL)

Methodology consequence-
based

completion
rules

tableau-based hypertableau tableau-based tableau-based completion
rules

approximation
(completion rules)

Soundness + + + + + + + + (+)

Completeness + + + + + + + − (+)

Expressivity Horn SHIF EL+ SROIQ(D) SROIQ(D) SROIQ(D) SHIQ(D−) EL+ third-party reasoner
(approximating
SROIQ;
subset of EL++)

Incremental
Classification
(addition/removal)

−/− +/− −/− −/− +/+ −/− +/− −/−

Rule Support − − − +
(SWRL)

+
(SWRL)

+
(SWRL,
nRQL)

− −

Justifications − + − − + + − −
ABox
Reasoning

− + + + +

(SPARQL)
+

(SPARQL,
nRQL)

− +

(SPARQL)

RacerPro (RP) and Snorocket (SR) had to be abbreviated due to space limitations. + stands for yes and − for no.

classified, Pellet computes modules for each concept.
A module is a subset of an ontology which captures
“everything” an ontology has to say about a particular
sub-signature of the ontology [8]. By current methods,
modules contain all justifications for all entailments
expressible in their signature [8]. When the concept hi-
erarchy of the ontology is changed, Pellet reclassifies
only the affected module. Pellet’s incremental reason-
ing supports axiom addition and removal [39].

The reasoner interfaces of the OWL API facili-
tate reasoners to expose incremental reasoning sup-
port. The API allows a reasoner to listen for ontology
changes and to either immediately processes them or
to queue them to processes them later [20].

Rule support Only HermiT, Pellet and RacerPro of-
fer rule support. All of them support SWRL. HermiT
and Pellet support SWRL in the DL-Safe Rules notion,
which means rules will be applied only to named in-
dividuals in the ontology. RacerPro partially supports
SWRL. SWRL is mapped to nRQL, which is Racer-
Pro’s native rule and query language.

Justifications CEL, Pellet and RacerPro support jus-
tifications for inconsistent concepts. RacerPro allows
to check an ontology for inconsistent (unsatisfiable)
concepts and generates an explanation for each incon-
sistency. Pellet can give a justification for any infer-
ence which it can compute.

Support of ABox reasoning tasks In contrast to all
other reasoners, CB and Snorocket do not support
ABox reasoning tasks. The reasoners that implement
OWL API reasoner interfaces should (in theory) sup-
port all ABox reasoning tasks that are specified by the
OWL API, such as retrieving the set of individuals that
have been asserted to be an instance of a concept or
retrieving the asserted types of an individual. Racer-
Pro supports nRQL ABox queries and Pellet, RacerPro
and TrOWL support SPARQL queries. SPARQL11, the
Query Language for RDF, is a W3C Recommenda-
tion since 2008. SPARQL allows to query required and
optional graph patterns along with their conjunctions
and disjunctions, to test values, to constrain queries by
source RDF graph and to specify whether the result
should be an RDF graph or a set.

5.2. Dimension practical usability

Table 3 shows how the reasoners are categorized
along the defined usability characteristics.

OWL API All reasoners except CB are accessible via
the OWL API, which is advantageous for applications
that wish to access several reasoners via the same in-
terface. The use of the OWL API highly facilitated the
execution of our experiments.

11http://www.w3.org/TR/rdf-sparql-query/

80 K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile

Table 3

Practical usability

CB CEL FaCT++ HermiT Pellet RP SR TrOWL

OWL API − + + + + + + +

OWLlink API − + + + + + − −
Protégé Plugin − + + + + − + +

License DuLi: GLGPL AP 2.0 GLGPL GLGPL DuLi: AGPL own own DuLi: AGPL

Open Source + + + + + − − −
Language OCaml Common Lisp C++ Java Java Lisp Java Java

Platforms all Linux all all all all all all

Jena − − − − + − − −
Institution a a a a c c g a

DuLi stands for dual license. + stands for yes and − for no. All platforms means that the reasoner is available for Windows, Linux, and Mac
OS X. n/a abbreviates not applicable. Regarding the institution, a stands for academic, c for commercial and g for governmental.

OWLlink Most reasoners are accessible via OWLlink,
and future protocol bindings might ease the integration
of further reasoners like CB.

Protégé plugin All reasoners except CB and Racer-
Pro can be plugged into Protégé. The RacerPro engine
can be used as back-end inference system for Protégé
via the RACER Protégé Plugin12 or via OWLlink.

License CB can be redistributed and / or modified
under the terms of the GNU Lesser General Public Li-
cense (GLGPL) for non-commercial use. Pellet also
comes with a dual license: software that is released
under a recognized open source license can use Pel-
let under the terms of the Affero General Public Li-
cense (AGPL), for other software, another license has
to be arranged. This has the advantage that the com-
munity benefits from source code that uses Pellet un-
der its open source license. TrOWL may be used under
the terms of the AGPL for open source applications
and is available under alternative license terms for pro-
prietary, closed-source applications and other commer-
cial applications. CEL comes with the Apache License
2.0 (AP 2.0), FaCT++ and HermiT with the GLGPL.
Racer Systems offers several license types, includ-
ing time-limited educational licenses, trial licenses and
commercial licenses. Snorocket formulates its own li-
cense13. GLGPL, AGPL and AP 2.0 are open source
licenses.

Further characteristics The remaining rows of Ta-
ble 3 show further characteristics including whether
the source of the reasoner is open or not and the pro-
gramming language the reasoner is implemented in.

12http://www.uni-ulm.de/in/ki/semantics/owltools
13http://research.ict.csiro.au/software/snorocket/LICENCE.txt

Only Pellet has a native Jena interface. Further charac-
teristics are the platforms the reasoner supports and the
kind of institution (academic, governmental or com-
mercial) it has been developed in.

5.3. Dimension performance indicators

In this section, the biomedical ontology test suite
and the experimental setup are being presented. Sub-
sequently, we present the results of our experiments.

Biomedical ontology test suite The biomedical on-
tologies presented in this section are well-established
and have been used in previous benchmarks. All on-
tologies are in the tractable OWL 2 profile EL, so that
especially in the case of SNOMED CT, the challenge
for the reasoners lies in the sheer size of the ontolo-
gies. Consult [47] for additional information. The on-
tologies mainly differ in size, but also in whether they
employ fully defined concepts or not. Biomedical on-
tologies are a typical use-case for OWL 2 EL, but this
profile is also applicable in other domains where fast
reasoning outweighs expressivity.
GO The Gene Ontology14 project is an initiative
which aims to standardize the representation of genes
and gene product attributes. The Gene Ontology (GO)
is a controlled vocabulary to describe gene product
characteristics and annotation data.
NCI The National Cancer Institute thesaurus15 is a
terminology that covers clinical care and research, as
well as public information and administrative activi-
ties.

14http://www.geneontology.org/
15http://ncit.nci.nih.gov/

K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile 81

Table 4

Benchmark ontologies

|NLA| |NR| |NC | PDC FDC

GO 28,897 1 20,465 19,465 0

NCI 46,940 70 27,652 27,635 0

SNOMED CT 292,023 62 292,012 227,315 64,696

|NLA| is the number of logical axioms, |NR| the number of roles
and |NC | the number of concepts. PDC stands for the number of
primitively defined concepts and FDC for the number of fully de-
fined concepts.

SNOMED CT SNOMED CT16 consists of around
300,000 primitively and fully defined concepts. It is
mainly used to represent clinical information in elec-
tronic health records. SNOMED CT contains one
property chain (complex role inclusion) which is not
used in the TBox.

GO, NCI and SNOMED CT can be regarded as
acyclic EL TBoxes, i.e. sets of concept definitions
without cyclic dependencies. GO has one transitive
role, which is a special case of a role inclusion [1].
Also SNOMED CT is extended with role inclusion ax-
ioms. Table 4 provides an overview of the properties of
the benchmark ontologies. The 1,000 concepts of GO
that are neither fully nor primitively defined are just
declared as concepts and thus direct subclasses of the
top concept, without further definitions. 997 of those
concepts are annotated as being obsolete and the 3 re-
maining concepts are the top-level concepts biological
process, molecular function and cellular component.
The 17 concepts in the NCI ontology that are neither
fully nor primitively defined are Kinds, i.e. the top-
level superclasses for all of the concepts defined in the
thesaurus. They represent the possible categories that
concepts can belong to, such as Anatomy, Biological
Processes, Chemicals and Drugs, and Diagnostic and
Prognostic Factors. In SNOMED CT, the root concept
is neither fully nor partially defined.

Experimental setup For the experiments to measure
performance indicators, the latest available versions of
the included reasoners have been used: CB17 build 6,
CEL18 plugin 0.4.0 for Protégé 4.1, FaCT++19 1.5.0,
HermiT20 1.3.0, Pellet21 2.2.2, RacerPro22 2.0 pre-

16http://www.ihtsdo.org/snomed-ct/
17http://code.google.com/p/cb-reasoner/
18http://lat.inf.tu-dresden.de/systems/cel/
19http://owl.man.ac.uk/factplusplus/
20http://www.hermit-reasoner.com/
21http://clarkparsia.com/pellet/
22http://www.racer-systems.com/

view, Snorocket Protégé plugin 23 version 1.3.2 and
TrOWL24 0.5.1. We generated the SNOMED CT on-
tology with the OWL transformation script from the
Stated Relationships Table of the latest (July 2010)
SNOMED CT distribution. GO and NCI have been
employed in other benchmarks and are available on
http://reasonerben.ch.

For an ideal comparison, it would be desirable to
run all reasoners via the same interface, such as the
OWL API or OWLlink. Unfortunately, there is no in-
terface that has been implemented by all reasoners.
Thus, reasoners were tested separately: CB and Racer-
Pro in batch mode and all other reasoners via the OWL
API. For the reasoners which are called via the com-
mand line, their runtime-outputs are employed to mea-
sure the classification performance. For the reasoners
which are used by a Java program via the OWL API,
external time measurement is applied. All ontologies
in the test suite are employed to compare the perfor-
mance of the reasoners.

The experiments were performed under Linux 64-
bit on a 4x AMD Opteron 8220 dual core, 2800 MHz
CPU system with 16GB memory. For Java reasoners,
Sun’s Java Runtime Environment (JRE) version 1.6.0
was used with a Java HotSpot(TM) 64-Bit Server VM.
We did not set a fixed maximum heap space but mea-
sured the minimum amount of heap space required to
classify SNOMED CT in a separate experiment. The
minimum required heap space has been approximated
in steps of 0.5GB and the lowest heap space for which
the reasoner classified SNOMED CT without crashing
has been noted. All stated runtimes are averaged over
10 runs.

Classification performance As Table 5 shows, all
tested reasoners succeeded in classifying SNOMED
CT. For all input ontologies, CB took the least time
to compute the subsumption hierarchy. FaCT++ and
TrOWL REL are the only reasoners that are faster on
NCI than on GO. FaCT++ needed longest to classify
GO, RacerPro to classify the NCI ontology and Her-
miT to classify SNOMED CT (nearly 2 hours). The
experiments measured only the classification time, and
no loading and / or preprocessing times.

TBox consistency checking performance CB has no
support for consistency checking. For reasoners that
implement OWL API reasoning interfaces, the time
that the call reasoner.isConsistent() took was

23http://research.ict.csiro.au/software/snorocket
24http://trowl.eu/

82 K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile

Table 5

Comparison of classification time in seconds

CB CEL FaCT++ HermiT Pellet RP SR TR

GO 0.34 3.19 20.75 6.48 3.41 10.67 1.54 2.43

NCI 0.65 7.52 11.10 11.75 14.84 52.87 4.31 1.83

S CT 28.08 1,112.23 700.87 6,793.76 1,345.65 3,652.03 101.16 344.93

measured, before and after classification. Table 6
shows the duration of consistency checking. All stated
times are before classification. After the first consis-
tency check and after the classification, it is already
known whether the ontology is consistent or not and
the second consistency check takes less than one sec-
ond for all tested reasoners. All input ontologies are
consistent and all reasoners returned this result before
and after classification.

The CEL manual states that an ontology must be
classified before it can be checked whether the TBox
is consistent. TrOWL REL also needs to classify first.
When checking for consistency before classification,
Snorocket outputs a warning that the ontology is not
classified. All reasoners check for consistency rather
fast. For tableau-based reasoners, this is probably due
to the fact that for consistency checking they construct
the model only once.

Concept satisfiability checking performance To de-
termine the performance of concept satisfiability check-
ing, we measure the time it takes each reasoner to
check the satisfiability of each concept in the ontol-
ogy, before and after classification. CB has no sup-
port for concept satisfiability checking. For reason-
ers that implement OWL API reasoner interfaces, we
checked for concept satisfiability with the method
reasoner.isSatisfiable (concept). RacerPro
does not really distinguish between TBox consistency
and satisfiability. It offers the function check-tbox-

coherence which returns a list of inconsistent / un-
satisfiable atomic concepts. If the top concept occurs
in this list, all concepts are unsatisfiable. It does not
compute the concept hierarchy, so that it is much faster
than to classify the TBox.

A more direct and comparable (with respect to
RacerPro) way to retrieve unsatisfiable concepts via

Table 6

Comparison of consistency checking time in seconds

CB CEL FaCT++ HermiT Pellet RP SR TR

GO − 2.17 0.36 0.00 0.27 − 0.00 0.00

NCI − 0.65 0.71 0.00 0.38 − 0.00 0.00

SNOMED CT − 0.88 15.3 0.00 16.78 − 0.00 0.00

the OWL API would have been to call reasoner.-
getInconsistentClasses() for OWL API version
2 or respectively reasoner.getUnsatisfiable-

Classes() for the OWL API version 3, but as we
wanted to measure the performance of concept satisfia-
bility checking, we preferred to check the satisfiability
of each single concept.

Table 7 shows that the reasoners vary significantly in
their runtimes. Some runtimes are so low that it can be
assumed that they do not support the method, but com-
pute satisfiability during classification and thus return
reliable results only after the ontology is classified. For
example, TrOWL REL checks after the classification
whether the concept is subsumed by owl:Nothing.

Subsumption query performance To test subsump-
tion query performance, we will query for all sub-
classes of the SNOMED CT concept “Fracture of
lower limb”, as presented in Fig. 2. We will test it
in two ways: by querying for direct subclasses of its
concept name SCT_46866001 and by querying for di-
rect subclasses of its anonymous class definition as
stated in Fig. 2. The employed method of the OWL
API is: reasoner.getSubClasses(), and the em-
ployed method of RacerPro (tbox-retrieve (?x)

(concept ?x has-child)).
When performing this experiment, we noticed a cor-

relation between the runtimes of the queries and the
number of returned subclasses. Thus, Table 8 shows
not only the runtimes but also the number of results.
The four settings are tested sequentially in one run. CB
does not support any subsumption querying. Snorocket
returns a NullPointerException when the method is

Table 7

Comparison of concept satisfiability checking time in seconds

CB CEL FaCT++ HermiT Pellet RP SR TR

GO BC − 5.28 0.63 6.23 2.12 5.58 0.01 0.23

GO AC − 2.08 0.07 0.06 0.12 0.00 0.01 0.03

NCI BC − 4.46 1.26 11.73 3.47 37.73 0.01 0.06

NCI AC − 3.19 0.14 0.09 0.18 0.00 0.01 0.04

S CT BC − 38.42 22.37 5,276.85 56.91 273.45 0.07 5.17

S CT AC − 34.59 1.76 1.36 6.07 0.00 0.06 0.46

BC stands for before classification and AC for after classification.

K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile 83

Table 8

Queries for subclasses of the SNOMED CT concept Fracture of
lower limb: Comparison of subsumption query performance in sec-
onds and number of results (i.e. returned subclasses)

CB CEL FaCT++ HermiT Pellet RP SR TR

NC BC

seconds − 0.96 701.79 6,649.85 2,793.31 3,380.67 NPE 0.17

results − 1 20 20 20 20 − 0

AC BC

seconds − 0.00 0.06 16.94 0.49 0.74 NPE 0.00

results − 1 1 20 20 20 − 0

NC AC

seconds − 0.00 0.00 0.00 0.00 0.70 0.00 0.28

results − 20 20 20 20 20 20 20

AC AC

seconds − 0.00 0.06 17.12 0.00 0.92 6.97 0.00

results − 1 1 20 20 20 20 0

NC stands for named concept and AC for anonymous concept. BC
stands for before classification and the second AC for after classifi-
cation. NPE stands for NullPointerException.

called before classification. FaCT++, HermiT, Pellet
and RacerPro classify the ontology when they receive
the first query. The number of returned subclasses
varies. HermiT, Pellet and RacerPro return all 20 sub-
classes in all settings. CEL returns the 20 subclasses
only after classification and when the concept name is
used. The other queries return owl:Nothing as the only
result. FaCT++ returns the 20 subclasses when being
queried for the concept name, while the query that con-
tains the anonymous class definition returns the name
of this concept.

Minimum heap space for Java reasoners Table 9
shows the minimum required amount of heap space
for Java reasoners with SNOMED CT as input on-
tology. Memory exhaustion is a known problem in
tableau-based reasoners when processing large ontolo-
gies, and our experiments confirm this. The minimum
heap space is just an indicator and might vary for other
systems. It needs to be pointed out that our experi-
ments have been performed on a Java HotSpot(TM)
64-Bit Server VM. It is known that the 64-bit mode
consumes around 30% more memory as the 32-bit
mode, and it makes sense to use the 64-bit mode
mostly if 4GB heap space is not sufficient in the 32-bit
mode. Running a 32-bit JVM is not supported on the
system we performed our tests on.

Soundness and completeness in practice In this para-
graph, the computed concept hierarchies of the reason-

Table 9

Minimum heap space for Java reasoners

CB CEL FaCT++ HermiT Pellet RP SR TR

n/a n/a n/a 4.5 10 n/a 2.5 4

ers are analyzed to test whether the theoretical correct-
ness of the tested reasoners can be confirmed in prac-
tice. For all included ontologies, we compared the out-
put of each reasoner to the outputs of all other reason-
ers, with the rationale that if completely different rea-
soners generate the same output, the output is probably
sound and complete. This does not exclude a scenario
in which all reasoners output the same unsound state-
ments and / or collectively do not produce inferences
that should be produced. If the outputs differ from each
other, we can infer that not all reasoners generate cor-
rect output. There is no standard specification on how
to output the computed concept hierarchy, and thus we
do not analyze the outputs line by line.

To summarize the insignificant differences that we
found: In comparison to other reasoners, CB outputs
less statements by omitting that top-level concepts are
SubClassOf owl:Thing. CEL outputs additionally that
every concept and every property is equivalent to itself.
Also RacerPro generates additional axioms by stating
for all leaf concepts (i.e. concepts that do not have
subclasses) that they are superclasses of owl:Nothing.
Apart from these differences and for SNOMED CT as
input ontology, we found substantial differences: Pel-
let generates 386 inferences less than the other rea-
soners and 546 inferences that no other reasoner gen-
erates, while Snorocket misses 86 inferences that oc-
cur in the other outputs and generates 34 triples that
no other reasoner generates. The missing and also the
additional statements of Pellet and Snorocket have an
empty intersection.

In the following, we will exploit the fact that
SNOMED CT is released both in stated and in inferred
form. The inferred form is the Relationships Table con-
tained in the official SNOMED CT distribution and
can be employed as gold standard to analyze computed
concept hierarchies. The Stated Relationships Table
differs from the Relationships Table in that it only con-
tains those relationships that are directly asserted by
authors or editors. When the generated OWL ontology
is classified with a reasoner, the output should corre-
spond to the Relationships Table.

As a first step, we successfully checked the accor-
dance of the Stated Relationships Table and the gen-
erated OWL file. Then, to analyze the accordance of
the computed concept hierarchies and the Relation-

84 K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile

Table 10

Missing / Additional inferred SubClassOf statements in regard to the
Relationships Table

CB CEL FaCT++ HermiT Pellet RP SR TR

Missing 0 0 0 0 386 0 86 0

Additional 0 0 0 0 546 0 34 0

Pellet:

Drug-induced immunodeficiency � Drug-related disorder (missing)
Biological substance poisoning � Drug-related disorder (additional)

Snorocket:

Amiloride + hydrochlorothiazide 2.5mg/25mg tablet �
Oral dosage form product (missing)

Betaxolol hydrochloride 20mg tablet �
Oral dosage form product (additional)

Fig. 3. Examples of missing and additional inferences with regard to
the SNOMED CT Relationships Table.

ships Table, we compared the computed concept hier-
archies to the Relationships Table, and the Relation-
ships Table to the computed concept hierarchies. First,
we compared all subclass rows from the Relationships
Table that only include active concepts to the outputs
of the tested reasoners. All outputs are missing 50 con-
cept model attribute statements, which is caused by
the way in which the OWL file is generated. All out-
puts except the one of CEL are missing 11 SubObject-
PropertyOf statements. However, those statements are
already present in the Stated Relationships Table and
thus not really inferences. Pellet did not infer 386 Sub-
ClassOf relationships present in the Relationships Ta-
ble and the Snorocket Protégé plugin did not infer 86
statements that are present in the Relationships Table.
Table 10 summarizes the results. Both concept model
attributes and SubObjectPropertyOf assertions are not
counted in the table.

Finally, we checked for every inferred SubClass-
Of axiom of each of the outputs whether it exists
in the Relationships Table to identify additional in-
ferred statements. Ignoring tautological axioms such
as the root node being SubClassOf owl:Thing and that
owl:Nothing is SubClassOf all the leaf nodes, Pel-
let outputs 546 additional statements and Snorocket
34. Examples of missing and additional inferences are
given in Fig. 3. With regard to the SNOMED CT Re-
lationships Table, the outputs of all other included rea-
soners neither missed inferences, nor did they contain
additional inferences.

As a result of this study we found that the Snorocket
Protégé plugin did give correct results when run with

Java 1.5 but produced some incorrect results when run
with Java 1.6. The root cause of this problem has been
fixed in the subsequent release (1.3.3). Furthermore, a
new version (0.4.1) of CEL was released, which does
not output the singletons for equivalent properties and
concepts. The fix of Pellet’s issue of missing and ad-
ditional inferences will be part of its next release (i.e.,
2.2.3). This shows that the analysis of computed con-
cept hierarchies is valuable both to developers and to
users of OWL reasoners. Another conclusion is that
for SNOMED CT as input ontology, the comparison of
the inferred concept hierarchies with each other deliv-
ered the same results as the comparison of the inferred
concept hierarchies with the Relationships Table.

5.4. Tradeoff between expressivity and classification
performance

Figure 4 shows the classification performance for
SNOMED CT, with the reasoners ordered by increas-
ing expressivity (as displayed on the x2-axis). Pellet
and TrOWL REL are in the EL section because both of
them support OWL 2 EL with implementations that are
based on [1]. Reasoners within the same expressivity
category are ordered alphabetically.

The time needed to classify SNOMED CT does not
steadily rise with increasing expressivity. The very ex-
pressive reasoner FaCT++ is faster than CEL and Pel-
let. CB is the fastest reasoner even though it supports
a more expressive language than OWL 2 EL.

6. Conclusion, discussion and future work

The main contribution of this paper is the definition
of characteristics that are relevant to evaluate OWL
reasoning engines in order to choose the most suitable
reasoner for a given application, and the characteriza-
tion of eight reasoning engines based on these proper-
ties. We showed that reasoners vary significantly with
regard to all included characteristics. Therefore, a crit-
ical assessment and evaluation of core requirements is
needed before selecting a reasoner for a real-life ap-
plication. For example, let us consider a scenario in
which a user chooses a reasoner for SNOMED CT.
A crucial consideration is whether reasoning services
such as incremental classification, rule support, jus-
tifications and ABox reasoning are required. Regard-
ing practical usability, it needs to be decided which in-
terfaces (OWL API, OWLlink, Jena) are needed, and
whether the source of the reasoner should be open and

K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile 85

Fig. 4. Classification performance vs. supported expressivity.

come with a corresponding license. Also the platform
on which the reasoner will run might influence the de-
cision. With respect to the reasoner’s performance, one
of the aspects is how long the user is willing to wait for
classification results, whether she wishes to query for
anonymous concepts and concept satisfiability before
classification.

Reasoning is an active field of research, and re-
cent developments show that not only (the underly-
ing methods of) established reasoners are being pushed
further, but also new reasoners enter the field. Thus,
this paper can only display a current snapshot of those
rapid developments. Only dedicated OWL 2 EL and
tableau-based reasoners have been taken into account
for this comparison. Datalog engines, rule engines or
reasoners that are based on theorem provers have not
been included. The scope of this study is limited to
ontologies in EL+. Performance results might be dif-
ferent for other ontologies, and when a reasoner is
needed for a more expressive language, OWL 2 EL
reasoners are not applicable. The selection of charac-
teristics is not complete. Support for non-standard on-
tology features, such as description graphs, has not
been included. Also, loading times or the different in-
put and output formats that the reasoners can parse
and write have not been evaluated. CB, for example,
relies on the OWL functional syntax, while reasoners
that integrate the OWL API are very flexible regard-

ing serialization formats. Missing usability character-
istics include support and documentation. Commercial
reasoners generally offer more support, including sup-
port contracts. Also the level of documentation varies
considerably for different reasoners. Regarding our ex-
periments, it would have been fairer to measure sub-
sumption checking performance for more than only
one concept, as different reasoners might be optimized
for different structures. Also, different reasoners are
optimized for different settings of retrievals of direct /
indirect subclasses / superclasses, so that all those sce-
narios should be included in a balanced comparison.
The time it takes to retrieve inconsistent / unsatisfiable
concepts would be another interesting experiment. Our
experiments heavily rely on the OWL API, which con-
tains functions that do not have a tightly specified func-
tionality, and this might be the source of some of the
variations of our obtained results. Furthermore, we did
not include the supported OWL API version in the di-
mension practical usability. Future work includes mea-
suring incremental reasoning performance, reasoning
with more expressive ontologies, such as GALEN, and
benchmarks that involve ABox reasoning as well as in-
consistent ontologies and unsatisfiable concepts.

A positive outcome is that all eight tested reason-
ers succeed in classifying the very large ontology
SNOMED CT. The advantage of this ontology is that
it is released both in stated and in inferred form, so that

86 K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile

the concept hierarchies computed by the reasoners can
not only be compared to each other but also to the in-
ferred form, which can be employed as a gold standard
to evaluate correctness. By comparing the outputs of
the reasoners with each other and with the SNOMED
CT Relationships Table, we found classification errors
for Pellet and Snorocket that will be / have been fixed.
Ongoing testing is necessary to evaluate the correct-
ness of reasoners in practice. Our described character-
istics can be applied to any reasoner and form a ba-
sis to evaluate reasoners not only on classification per-
formance, but also on other aspects which can be rel-
evant. We will present this study and future results on
http://reasonerben.ch.

Acknowledgements

We like to thank the developers of all reason-
ers, especially (in alphabetical order of the corre-
sponding reasoners) Yevgeny Kazakov, Julian Mendez
and Boontawee Suntisrivaraporn, Dmitry Tsarkov,
Boris Motik, Kendall Clark, Evren Sirin, Ralf Möller,
Michael Wessel and Kay Hidde, Michael Lawley and
Jeff Pan, for their active support, insights and interest-
ing discussions. We also like to thank the reviewers for
their constructive feedback.

References

[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope.
In Proc. of the Nineteenth International Joint Conference on
Artificial Intelligence, Oct. 2005.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope
Further. In Proc. of the OWLED 2008 DC Workshop on OWL:
Experiences and Directions, 2008.

[3] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is Tractable Rea-
soning in Extensions of the Description Logic EL Useful in
Practice? In Proc. of the Methods for Modalities Workshop,
2005.

[4] F. Baader, B. Ganter, B. Sertkaya, and U. Sattler. Completing
description logic knowledge bases using formal concept anal-
ysis. In IJCAI, pages 230–235, 2007.

[5] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL – A
Polynomial-time Reasoner for Life Science Ontologies. In
Proc. of the 3rd International Joint Conference on Automated
Reasoning, volume 4130, pages 287–291. Springer, 2006.

[6] F. Baader, C. Lutz, and A.-Y. Turhan. Small is Again Beautiful
in Description Logics. KI – Künstliche Intelligenz, 24(1):25–
33, Feb. 2010.

[7] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F.
Patel-Schneider, editors. The Description Logic Handbook.
Cambridge University Press, 2nd edition, 2007.

[8] S. Bail, B. Parsia, and U. Sattler. JustBench: A Framework for
OWL Benchmarking. The Semantic Web – ISWC 2010, 2010.

[9] J. Bock, P. Haase, Q. Ji, and R. Volz. Benchmarking OWL rea-
soners. In ARea2008 – Workshop on Advancing Reasoning on
the Web: Scalability and Commonsense, 2008.

[10] S. Brandt. Polynomial Time Reasoning in a Description Logic
with Existential Restrictions, GCI Axioms, and-What Else? In
ECAI, volume 16, pages 298–302, 2004.

[11] J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A
Generic Architecture for Storing and Querying RDF and RDF
Schema. The Semantic Web – ISWC 2002, volume 2342, pages
54–68, 2002.

[12] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne,
and K. Wilkinson. Jena: Implementing the Semantic Web Rec-
ommendations, 2004.

[13] R. Cornet and N. de Keizer. Forty years of SNOMED: A liter-
ature review. BMC medical informatics and decision making,
2008.

[14] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning
in Description Logics. Principles of Knowledge Representa-
tion, pages 191–236, 1996.

[15] T. Gardiner, D. Tsarkov, and I. Horrocks. Framework for an
automated comparison of description logic reasoners. In The
Semantic Web – ISWC 2006, volume 4273, pages 654–667.
Springer, 2006.

[16] B. Grau, I. Horrocks, and Y. Kazakov. Modular Reuse of On-
tologies: Theory and Practice. Journal of Artificial Intelligence,
31:273–318, 2008.

[17] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL
Knowledge Base Systems. Web Semantics: Science, Services
and Agents on the World Wide Web, 3(2–3):158–182, 2005.

[18] V. Haarslev, R. Möller, and S. Wandelt. The revival of struc-
tural subsumption in tableau-based description logic reasoners.
In Proc. of the 2008 International Workshop on Description
Logics, 2008.

[19] V. Haarslev and R. Müller. RACER System Description. Auto-
mated Reasoning, 2083:701–705, 2001.

[20] M. Horridge and S. Bechhofer. The OWL API: A Java API
for Working with OWL 2 Ontologies. In 6th OWL Experienced
and Directions Workshop, 2009.

[21] M. Horridge, B. Parsia, and U. Sattler. Justification Oriented
Proofs in OWL. In The Semantic Web – ISWC 2010, volume
6496, pages 354–369. Springer, 2010.

[22] I. Horrocks. Optimising tableaux decision procedures for de-
scription logics. PhD thesis, University of Manchester, 1997.

[23] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning
for Very Expressive Description Logics. Logic Journal of the
IGPL, 8(3):239–264, 2000.

[24] Y. Kazakov. SRIQ and SROIQ are Harder than SHOIQ. In
Proc. of the 21st International Workshop on Description Log-
ics, 2008.

[25] Y. Kazakov. Consequence-Driven Reasoning for Horn SHIQ
Ontologies. In Proc. of the 21st International Conference on
Artificial Intelligence, pages 2040–2045, 2009.

[26] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM – A Prag-
matic Semantic Repository for OWL. In Web Information Sys-
tems Engineering Workshops, pages 182–192. Springer, 2005.

[27] B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal Properties
of Modularisation. Modular Ontologies, 5445:25–66, 2009.

K. Dentler et al. / Comparison of reasoners for large ontologies in the OWL 2 EL profile 87

[28] M. Krötzsch, S. Rudolph, and P. Hitzler. Description Logic
Rules. In Proc. of the 18th European Conference on Artificial
Intelligenc, pages 80–84. IOS Press, 2008.

[29] M. Krötzsch, S. Rudolph, and P. Hitzler. ELP: Tractable Rules
for OWL 2. In The Semantic Web – ISWC 2008, pages 649–
664. Springer, 2008.

[30] M. Lawley and C. Bousquet. Fast Classification in Protege:
Snorocket as an OWL2 EL Reasoner. In Australasian Ontology
Workshop, 2010.

[31] T. Liebig. Reasoning with OWL – System Support and In-
sights, 2006.

[32] T. Liebig, M. Luther, O. Noppens, M. Rodriguez, D. Cal-
vanese, M. Wessel, R. Möller, M. Horridge, S. Bechhofer,
D. Tsarkov et al. OWLlink: DIG for OWL 2. In 5th OWL Ex-
perienced and Directions Workshop, 2008.

[33] M. Luther, T. Liebig, S. Böhm, and O. Noppens. Who the Heck
Is the Father of Bob? In 6th European Semantic Web Confer-
ence, pages 66–80, 2009.

[34] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards
a Complete OWL Ontology Benchmark. The Semantic Web:
Research and Applications, 4011:125–139, 2006.

[35] J. Mendez and B. Suntisrivaraporn. Reintroducing CEL as an
OWL 2 EL Reasoner. In Proc. of the 2009 International Work-
shop on Description Logics, volume 477, 2009.

[36] R. Mishra and S. Kumar. Semantic web reasoners and lan-
guages. Artificial Intelligence Review, 35:339–368, 2010.

[37] B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning
in Description Logics using Hypertableaux. In Proc. of the
21st International Conference on Automated Deduction, vol-
ume 4603, pages 67–83. Springer, 2007.

[38] B. Motik and R. Studer. KAON2 – A Scalable Reasoning Tool
for the Semantic Web. In Proc. of the 2nd European Semantic
Web Conference, 2005.

[39] B. Parsia, C. Halaschek-Wiener, and E. Sirin. Towards Incre-
mental Reasoning Through Updates in OWL-DL. In Reason-
ing on the Web, 2006.

[40] Y. Ren, J. Pan, and Y. Zhao. Soundness Preserving Approxi-
mation for TBox Reasoning. In Proc. of the 25th AAAI Confer-
ence, 2010.

[41] A. Riazanov and A. Voronkov. Vampire 1.1. Automated Rea-
soning, 2001.

[42] S. Rudolph, T. Tserendorj, and P. Hitzler. What Is Approximate
Reasoning? Web Reasoning and Rule Systems, 5341:150–164,
2008.

[43] R. Shearer, B. Motik, and I. Horrocks. HermiT: A Highly-
Efficient OWL Reasoner. In 5th OWL Experienced and Direc-
tions Workshop, 2008.

[44] E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for
OWL-DL. In 3rd OWL Experiences and Directions Workshop,
volume 4, 2007.

[45] E. Sirin, B. Parsia, B. Grau, a. Kalyanpur, and Y. Katz. Pellet: A
practical OWL-DL reasoner. Web Semantics: Science, Services
and Agents on the World Wide Web, 5(2):51–53, June 2007.

[46] H. Stuckenschmidt, C. Parent and S. Spaccapietra. Modular
Ontologies: Concepts, Theories and Techniques for Knowledge
Modularization. Springer, 2009.

[47] B. Suntisrivaraporn. Empirical evaluation of reasoning in
lightweight DLs on life science ontologies. In Proc. of the 2nd
Mahasarakham International Workshop on AI, 2008.

[48] B. Suntisrivaraporn. Module Extraction and Incremental Clas-
sification: a Pragmatic Approach for EL+ Ontologies. In Proc.
of the 5th European Semantic Web Conference, pages 230–244.
Springer, 2008.

[49] B. Suntisrivaraporn. Polynomial-Time Reasoning Support for
Design and Maintenance of Large-Scale Biomedical Ontolo-
gies. PhD thesis, TU Dresden, 2009.

[50] E. Thomas, J. Pan, and Y. Ren. TrOWL: Tractable OWL 2 Rea-
soning Infrastructure. In Proc. of the Extended Semantic Web
Conference. Springer, 2010.

[51] S. Tobies. Complexity Results and Practical Algorithms for
Logics in Knowledge Representation. PhD thesis, RWTH
Aachen, 2001.

[52] D. Tsarkov and I. Horrocks. FaCT++ Description Logic Rea-
soner: System Description. In Third International Joint Con-
ference on Automated Reasoning, pages 292–297. Springer,
2006.

[53] A. Turhan, S. Bechhofer, A. Kaplunova, T. Liebig, M. Luther,
R. Möller, O. Noppens, P. Patel-Schneider, B. Suntisrivara-
porn, and T. Weithöner. DIG 2.0 – Towards a Flexible Interface
for Description Logic Reasoners. In Proc. of the OWL Experi-
ences and Directions Workshop at the ISWC, volume 6. Cite-
seer, 2006.

[54] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. Von Henke,
and O. Noppens. Real-World Reasoning with OWL. The
Semantic Web: Research and Applications, 4519:296–310,
2007.

