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270 H. Houba et al.

1 Introduction

During the last decade, the lowest-unique bid auction appeared on several radio and
TV shows and on the internet. In such auctions, the winning bid is the lowest bid
among the unique bids made, being those bids that are made only once. The items
auctioned are typically fancy mass-produced consumer electronics, cars, or monetary
prizes. Bids are typically made by sending a costly SMS-call with the bid expressed
in cents. Most of the time, the winning bid pays almost nothing. In these auctions,
potential bidders face strategic uncertainty about how many other bidders actually
submit bids and the spread of bids submitted by others. Other important issues are the
profitability of submitting a bid, the actual decision which bid to submit and to taken
into account the option of non-participating.

Lowest-unique-bid auctions are a new auction format with discrete bids that is not
captured by mainstream auction theory, as e.g., surveyed in Krishna (2002). Thus far,
the sealed-bid version of this auction format is only studied in Östling et al. (2007),
Rapoport et al. (2007) and Eichberger and Vinogradov (2008). The first two references
study a single costless bid per bidder, whereas the last reference allows bidders to sub-
mit multiple costly bids. The issue of endogenous entry is recognized in Eichberger
and Vinogradov (2008), while Rapoport et al. (2007) consider implementing costly
entry as being too complicated in laboratory experiments. Östling et al. (2007) model
the strategic uncertainty about entry as a large Poisson game, as proposed in Myerson
(1998, 2000). This approach, however, considers entry as a black box and the primitive
of the Poisson process is not related to strategic deliberations by potential bidders that
depend upon the entry cost and the value of the item.

Despite the simplicity of the auction format, all references recognize that the low-
est-unique sealed-bid auction is hard to analyze. In these references, the emphasis is
to test data from either laboratory or field experiments, and the theory is developed
up to the point where numerical computations can be performed, which is needed
for the statistical tests. Östling et al. (2007) do provide a characterization result for
this auction format, but only under unrealistic additional assumptions for the spe-
cial case of large Poisson games, such as costless bids and the winner does not have
to pay his winning bid. Then, uniqueness of a symmetric Nash equilibrium (NE) is
obtained with a full support over feasible bids, bidding probabilities that decrease
as bids become larger, and convergence to the uniform distribution over bids as the
number of bidders goes to infinity. Our article is theoretically motivated to better
understand this auction format under realistic assumptions regarding costly entry and
the winner pays his winning bid. And, as we will show, realistic assumptions imply
different results.

In this article, we study lowest-unique sealed-bid auctions in which bidders sub-
mit a single costly bid, being a discrete number, and the cost of this bid is confected
when submitting it. Endogenous entry is modeled by allowing the costless bid “do
not participate”. All bidders have a common value for the auctioned item, which is
similar as in the references mentioned. This simple model offers a natural framework
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Endogenous entry in lowest-unique sealed-bid auctions 271

to simultaneously analyze strategic uncertainty about costly entry and bid behavior.
As in the references, we only study symmetric NEs.1

Any symmetric NE in our model is in mixed strategies, but not with a full support
on the set of numerical bids as in Östling et al. (2007). Instead, the support contains
a consecutive subset of numerical bids that includes the lowest bid. Moreover, higher
bids within the support are played with a lower probability, but higher bids do have
a larger probability of winning.2 This reflects the intuition that one should try to bid
low, but if everyone would do so, it is better to avoid the overcrowded lower bids and
consider somewhat higher bids. If the expected NE gains are positive, then all bidders
participate for sure. A positive probability of non-participating, however, implies that
these expected gains are zero.

Although both the simple two-bidder case and the lowest-bid auction allow for a
straightforward characterization, we show that the characterization of the symmet-
ric NE involves solving equations, in which polynomials of large order need to be
solved and that such characterization cannot be achieved for arbitrary large number
of bidders. Under positive expected NE gains and a technical condition, however, we
characterize the symmetric NE with the lowest expected NE gains as the minimum
of a mathematical program. The interpretation of this symmetric NE is that it is the
maximin value within the class of symmetric strategies. Therefore, a bidder’s bidding
strategy also minimizes what this bidder “gives away” in expected NE gains to the
other bidders. Positive expected NE gains include the case of zero bidding cost, making
the unmodeled entry in Östling et al. (2007) and Rapoport et al. (2007) trivial.

We also perform comparative statics and find sufficient conditions stating that if
either the number of bidders or the cost of making a bid becomes too large, then
the probability of non-participating becomes positive and the expected gains in any
symmetric NE are zero. And, as the number of bidders goes to infinity, we have con-
vergence to a limit distribution that is uniform over numerical bids, albeit a trivial sort
of uniform distribution with limit probabilities on numerical bids equal to zero and the
individual probability of non-participating equal to one, which is the opposite of the
convergence result in Östling et al. (2007) mentioned above. For a sufficiently large
value of the item or low enough bidding cost, there is always a positive expected gain
and, hence, full participation. This implies that a bidding cost of zero is a special case
and not the general one. If the value would go to infinity, the support of numerical
bids becomes unbounded. We also derive a partial invariance of symmetric NE bidding
strategies with respect to bidding cost: If, for bidding cost equal to 0, a bidding strategy
is a NE strategy with positive expected gains of say 11.3, then this NE strategy remains

1 Lowest-unique sealed-bid auctions admit a staggering amount of asymmetric NEs. Even for a fixed num-
ber of bidders, the number of NEs rapidly grows under an increasing value of the auctioned item. Houba
et al. (2008) report the following for three bidders and unit cost: Twenty-one asymmetric NEs and one
symmetric NE when the value of the item is 5. For a value of 15, there are 42 asymmetric NEs and one
symmetric. This suggests that the prospects for a full characterization of NEs are too slim to embark on
such a project.
2 Similar results are derived in Raviv and Virag (2008) for a related auction format, in which bids are
restricted to be below 5 or 10% of the value of the item and the highest-unique sealed bid wins. Also,
Eichberger and Vinogradov (2008) report that bidders randomize over consecutive sets of numerical bids
that include the lowest bid.
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272 H. Houba et al.

a NE strategy under all bidding costs 1 up to 11. For larger bidding costs, there exists
a NE with expected gains equal to zero. Some implications for experimental studies
are discussed in the concluding remarks.

We also observe that the two bidders’ auction is equivalent to the Hawk–Dove game
and, hence, the symmetric NE is unique and evolutionary stable. Such stability reflects
that learning how to play best responses in this auction format leads to the symmet-
ric NE. Such dynamics certainly will play a role in reality, where these auctions are
held repeatedly. For that reason, we also numerically investigate asymptotic stable
equilibria of the replicator dynamics as a proxy for evolutionary stable strategies, see
Bukowski and Miekisz (2004).3 For the parameter values run, we observe conver-
gence to the symmetric NE with the lowest expected gains. Simulation of replicator
dynamics is slow and in the case of positive expected gains running the mathematical
program is faster in obtaining numerical solutions. For that reason, we regard both
types of numerical analyses as complementary methods in computing the symmetric
NE with lowest expected gains.

This article is organized as follows. We first introduce our model in Sect. 2.
In Sect. 3, we discuss motivating examples that identify the main issues of concern.
All theoretical results are derived in Sects. 4, 5, and 6, where Sect. 5 is devoted to the
mathematical program. A numerical analysis of the replicator dynamics and the math-
ematical program are reported in Sect. 7. This article concludes with some remarks.

2 The lowest-unique sealed-bid auction

In a lowest-unique sealed-bid auction with endogenous entry, each bidder (b =
1, 2, . . . , n + 1, n + 1 ≥ 3) either stays out (makes the non-participating bid βb = N )
or enters by submitting a costly integer bid (βb ∈ N0 ≡ {0} ∪ N) for an item. All bid-
ders value the item as M ∈ N and submitting an integer bid costs c ∈ N, where c < M
is the non-trivial case. Cost c of submitting a bid are forfeited immediately. Consider
the (possibly empty) set of all bids that are unique among the submitted bids, then the
winning bid is the lowest bid in this set. The winner of the auction receives the item
and also pays his own bid. Note that the existence of a winning bid is not guaranteed,
as for example, n + 1 identical bids demonstrate. In the absence of a winner, the item
remains with the auctioneer.

An outcome of the auction is denoted (βb, β−b) ∈ Bn+1 ≡ ∏n+1
i=1 B, where β−b ∈∏n

i=1 B is a vector that consists of bidder b’s opponents bids. Every outcome spec-
ifies a possibly empty set of unique bids and, if non-empty, the winner is the bidder
who has the lowest (unique) bid in this set. Given (βb, β−b) ∈ Bn+1, I (βb, β−b) ∈
{{1}, . . . , {n + 1}} ∪ ∅ denotes the identity of the winner, where I (βb, β−b) = ∅
indicates in the absence of a winner. Under complete information, the payoff to bidder
b is given by

3 Our attempts to characterize a unique evolutionary stable equilibrium failed, but as a side result did yield
the mathematical program mentioned above. Therefore, we resort to a numerical analysis.
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ub(β
b, β−b) =

⎧
⎨

⎩

0, if βb = N ,

M − c − βb, if I (βb, β−b) = b,

−c, otherwise.

Since the winner pays his submitted bid, bidding above M − c is dominated by
non-participating. Hence, it is without loss of generality to assume that B = {N } ∪
{0, 1, . . . , M − c} is the set of feasible bids. For the subset of integer bids, we write
B0 = B ∩ N0. A mixed strategy x = (xN , x0, x1, . . . , xM−c). The simplex of mixed
strategies on B is denoted as � = {x ∈ R

M−c+2+ | ∑i∈B xi = 1}. We write xb ∈ �

for bidder b’s mixed strategy and x−b ∈ ∏n
i=1 � as the mixed strategies of bidder b’s

opponents. In order to summarize, the lowest-unique sealed-bid auction is a symmetric
normal-form game with finite pure-strategy sets.

A preliminary result identifies the minimax value as the payoff from non-partici-
pating and establishes existence of symmetric NEs.

Proposition 1 Bidder b’s minimax value is 0 and all expected NE payoffs are non-
negative. There exists a symmetric mixed-strategy NE and all such NEs feature ran-
domization.

Proof Bid βb = N secures bidder b a payoff of 0. All other bidders can hold b down
to 0 by coordination on β−b such that a single bidder k �= b bids βk = 0 and all others
bid βl = N , l �= b, k. Hence, 0 is b’s minimax value (and these minimax strategies
are NE). For every NE, NE payoffs weakly dominate minimax payoffs, which are all
0. Next, the conditions of Theorem 1 in Becker and Damianov (2006) hold, which
proves the existence of a symmetric NE. Finally, any symmetric NE must involve
the randomization over at least two bids in B. Suppose not, then for some α ∈ B
the pure strategy profile (βb, β−b) = (α, . . . , α) forms a symmetric NE. In such NE
I (βb, β−b) = ∅ and b’s payoff is at most 0, if not negative. Ifα �= 0, thenβb = 0 is bid-
der b’s optimal deviation with I (0, β−b) = b for sure and ub(0, β−b) = M − c > 0.
Similar, for α = 0, βb = 1 is the optimal deviation I (1, β−b) = b for sure and
ub(1, β−b) = M − c − 1 > −c. Hence, there does not exist any pure symmetric
NE. 	


The model setup captures the reduced form of a two-stage game with unobservable
entry, in which potential bidders first decide whether to participate (P) and, if so,
decide their sealed bid. In this extensive form, b’s behavior strategy is either of the
form (P, βb), or (N , βb), βb ∈ N0. Since strategies (N , βb) and (N , β̃b) are payoff
equivalent, we may simply write (N , βb) as N and (P, βb) as βb. The model also
captures auctions that specify minimum bids βmin ∈ N, βmin < M , because such
auctions are strategically equivalent to auctions with M −βmin and integer bids in N0.
The common value M captures the fact that many real lowest-unique bid auctions have
some mass-produced consumer good as the auctioned item and such item is typically
on sale through (internet) shops, hence, available against a uniform market price.

Under symmetric mixed strategies x (which allows dropping superscript b), the
random number of participating bidders follows a Binomial distribution Bin (n + 1,

1−xN ), where xN is the probability of non-participating. Therefore, the expected num-
ber of bidders is (n + 1)(1 − xN ) with a standard deviation of

√
(n + 1)xN (1 − xN ).
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Obviously, if xN = 0, then all n + 1 bidders enter for sure. Similar, xN = 1 implies
no bidder enters for sure. These last properties are different when compared to the
large variance in large Poisson games, see Myerson (1998, 2000), where the variance
can only be close to zero if and only if the expected number of participants is close to
zero.4

3 Motivation

The motivation for our analysis is to better understand symmetric NEs in this type of
auction and how these resolve the strategic uncertainty. In this section, we argue that
the strategic uncertainty and also the equilibrium analysis, is much more complicated
than in other auction formats, such as the lowest-bid auction.

The case n +1 = 2 is trivial. In order to see this, n +1 imposes the bi-matrix game:

N 0 1 · · · M − c
N 0, 0 0, M − c 0, M − c − 1 · · · 0, 0
0 M − c, 0 −c,−c M − c,−c · · · M − c,−c
1 M − c − 1, 0 −c, M − c −c,−c · · · M − c − 1,−c
...

...
...

...
. . .

...

M − c 0, 0 −c, M − c −c, M − c − 1 · · · −c,−c

It admits an inefficient symmetric mixed-strategy NE in which bidder b = 1, 2
submits the lowest bid 0 with probability xb

0 = 1 − c
M and does not participate with

probability xb
N = c

M . In the symmetric NE, the probability that at least one bidder
participates is 1 − ( c

M )2. This implies that the expected number of bidders increases
in M and decreases in c. None of the bidders expects to make a positive payoff from
participating, because all bids in the support are payoff equivalent to the payoff of
non-participating. The probability that nobody wins the auction is ( c

M )2 + (1 − c
M )2.

In the case of costless bidding, βb = 0 and no winner for sure.
Several remarks are in place. First, consider the asymmetric modification in which

bidder 1 values the item as M + ε, for sufficiently small ε > 0. Then, x1
0 = c

M >
c

M+ε
= x2

0 implies that the Pareto inefficient allocation of the item to bidder 2 has
positive probability. Hence, lowest-unique sealed-bid auctions do not allocate items
efficiently, and we consider further investigation of (in)efficiency issues as uninterest-
ing. Second, from the perspective of the auctioneer, the bidding behavior in the asym-
metric NEs is identical to that of a bidding ring, which does not adequately describe
internet auctions where bidders are anonymous. We therefore disregard asymmetric
NEs and refer to Houba et al. (2008) for a discussion of this subject.

The two-bidder auction is similar in interpretation to the Hawk–Dove (HD) game,
where two animals contest a single prize under cost of fighting, see e.g., Weibull (1995),
for a survey of evolutionary game theory. Both games have a symmetric mixed NE.
Therefore, lowest-unique sealed-bid auctions can be seen as generalized HD games

4 If the number of players X is Poisson distributed with parameter N , then E(X) = V AR(X) = N .
Therefore, arbitrary E(X) and V AR(X) �= N cannot be studied in large Poisson games.
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Table 1 Symmetric NEs for several values of M , n + 1 = 3, and c = 1

M xN x0 x1 x2 x3 NE payoff Sum payoffs

3 0.5669 0.4227 0.0105 0.0000 0.0000

4 0.2887 0.5000 0.2113 0.0000 0.0000

5 0.5191 0.3407 0.1403 0.1565 0.4695

6 0.5093 0.3189 0.1717 0.4447 1.3341

10 0.4904 0.2902 0.2154 0.0040 1.5969 4.7907

15 0.4801 0.2769 0.1750 0.0680 3.0544 9.1632

25 0.4713 0.2659 0.1577 0.1051 5.9886 17.9668

with a single prize, multiple contesters and a richer strategy structure for each contester.
Finally, after restricting the auction’s strategy space to {N , 0}, both two-player models
can be reduced to the same generic form with negative diagonal elements. Hence,
the mixed NE is the unique evolutionary stable equilibrium (ESS) in the restricted
two-bidder auction.

Next, consider the lowest-unique sealed-bid auction with n + 1 = 3 and c = 1. For
several values of M , we numerically compute symmetric NEs by implementing the
auction in the software tool Gambit, see e.g., McKelvey et al. (2006). All numerical
computations yield a unique symmetric NE. It is in mixed strategies that are not fully
mixed over B. Comparative statics with respect to the value of M in Gambit, as reported
in Table 1, shows that M = 5 is the lowest M for which all bidders participate for sure
because the expected NE payoffs are positive. For smaller M , non-participating has
positive probability in the symmetric NE and the bidders’ expected NE payoffs are
zero. The support of monetary bids consists of decreasing probabilities on consecutive
numbers and its size increases in M . In Gambit, the symmetric NEs of Table 1 can also
be computed as the quantal response equilibrium, see McKelvey and Palfrey (1995).
Although this equilibrium concept suggests an evolutionary underpinning, examples
exist for which such equilibrium fails to be evolutionary stable. Therefore, evolution-
ary stability of either symmetric NEs or the unique quantal response equilibrium is an
open issue.

A somewhat different issue is which feature of the unique-lowest sealed-bid auc-
tion complicates the equilibrium analysis. Is this related to making the lowest or the
unique bid? To answer this question, we characterize the NEs of the lowest (sealed)-
bid auction with endogenous entry, where ties among multiple lowest bids are broken
randomly. In this auction, bidder b’s payoff is given by

ûb(β
b, β−b) =

⎧
⎨

⎩

0, if βb = N ,
M−βb

k − c, if βb ∈ min{βb, β−b} and k is number of lowest bids
−c, otherwise.

The following proposition characterizes the symmetric NE.

Proposition 2 For the lowest-bid auction, we have that:
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(1) If c < M
n+1 , then the unique NE is given by x0 = 1 and expected NE payoffs of

M
n+1 − c.

(2) If M
n+1 < c < M, then (i) the symmetric NE is given by the unique x0 ∈ (0, 1) :

1

n + 1
· 1

x0

(
1 − (1 − x0)

n+1
)

= c

M
, (1)

xN = 1 − x0 and expected NE payoffs of 0; (ii) other asymmetric NEs exist.

Proof (1) Consider mixed strategies x−b and integer bid βb = 0. Whatever reali-
zation β−b, 0 ≤ min{0, β−b} and b participates for sure in the lottery for the
item with positive expected payoff. In fact, βb = 0 is the unique best response
to any realization β−b independent of the probability distribution x−b imposes
over β−b.

(2) In any symmetric NE x , the support of x is {N , 0}, because from 1. it follows
that βb = 0 dominates β̃b ≥ 1. Given x0 ∈ (0, 1), the expected number of other
bidders who bid 0, denoted as k, follows the Binomial distribution Bin(n, x0).
Therefore, the expected gain of bidding βb = 0 against x−β is proportional to
the probability f (x0) of winning that is equal too

f (x0) =
n∑

k=0

(
n

k

)

xk
0 (1 − x0)

n−k · 1

k + 1

= 1

n + 1
· 1

x0

n∑

k=0

(
n + 1

k + 1

)

xk+1
0 (1 − x0)

n+1−(k+1)

= 1

n + 1
· 1

x0

(
1 − (1 − x0)

n+1
)

.

In any mixed NE, pure strategies in the support are payoff equivalent. Therefore,
βb = 0 is payoff equivalent to βb = N and, hence, M · f (x0) − c = 0, which
implies (1). Since f (x0) is monotonically decreasing, limx0→0 f (x0) = 1 and
f (1) = 1

n+1 , there exists a unique x0 such that f (x0) = c
M .

We provide an asymmetric NE in pure strategies: � ∈ N is the maximum number
such that M

�
> c. Then, 1 ≤ � ≤ n + 1 exists. Consider the pure strategies,

Bidder b = 1, . . . , � submits βb = 0 and bidder b = � + 1, . . . , n + 1 submits
βb = N . These asymmetric pure strategies form a NE. Also, any permutation of
bidders’ roles is also NE. 	


The proof of this proposition illustrates that the lowest-bid auction can be considered
as an exercise in game theory. In essence, the lowest-bid auction boils down to a lottery
with an endogenous winning probability. Condition (1) admits xb

0 = 2(1− c
M ) ∈ (0, 1)

for n +1 = 2 and, for larger n +1, it can be numerically solved by mathematical soft-
ware packages. The comparative statics in the case 2 are straightforward, x0 increases
in M and decreases in c and n +1. Furthermore, x0 is equal to 1 for large M ≥ c

2 . And,
x0 goes to 0 as c

M goes to 1. The cause of the multiplicity of NEs can be attributed to
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costly endogenous entry and its intuition is similar to the multiplicity of equilibria in
symmetric market entry models. As our analysis will make clear, symmetric NEs in the
lowest-unique sealed-bid auction are non-trivial, and it can be attributed to requiring
that the winning bid should be a unique bid. This fact is also illustrated by the NE
supports in Table 1 that consist of several numerical bids, and its length is increasing
in M .

In order to summarize, lowest-unique sealed-bid auctions probably admit a unique
symmetric NE with randomization over several numerical bids. The strategic uncer-
tainty is much more complex and non-trivial than in other auction formats, such as
the lowest-bid auction. The similarity with the HD game suggests that the symmetric
NE might also be an ESS in the general case. Our analysis, therefore, concentrates on
symmetric NEs and n + 1 ≥ 3.

4 Symmetric Nash equilibrium

In this section, we establish that several properties observed in Table 1 hold in general.
For notational convenience, we take the perspective of bidder 1 meaning x ∈ � is a
symmetric NE if and only if x1 = x is a best response against x−1 = (x, . . . , x). The
non-empty set of symmetric NE is denoted as �N E . The support of x is denoted as
S(x) ⊆ B and for its subset of monetary bids, we write S0(x) ⊆ B0.

Theorem 3 Let x ∈ �N E . Then, the numerical support S0(x) is a set of consecutive
numbers containing the lowest bid of 0. The probability xi is strictly monotone decreas-
ing in i ∈ S0(x) and bid i’s probability of winning is strictly monotone increasing in
i ∈ S0(x).

Before proceeding to the formal proof, we first discuss this result. A support of
consecutive numbers means that there are no gaps of bids that will never be chosen.
The rationale is that any bid in such gap would allow to undercut all realizations of
NE bids above the gap by having a unique bid for sure. And, if such bid would prevail
as the winning bid, the bid is also less expensive than any bid above the gap. Since
the probability that such undercutting bid is winning is positive, and has at least a
probability of winning equal to those of the higher NE bids it undercuts, it therefore
does strictly better than the NE bids above this gap. This argument also implies that the
lowest bid cannot be part of any gap and, therefore, must be included in the support.

Symmetric NEs underpin the complicated deliberations of bidding in the lowest-
unique sealed-bid auction. On the one hand, the rules imply that bidding the lowest bid
or close to it should be considered, because otherwise someone else might undercut.
On the other hand, if everybody bids very low, the lower bids become overcrowded and
it is better to contemplate a somewhat higher bid. Since such bids have more potential
lower bids that might be winning, these bids are less attractive and, therefore, such
bids are made with lower probabilities. Decreasing probabilities over bids, however,
also imply that lower bids have higher probabilities of being non-unique and, in any
symmetric NE, have lower probabilities of winning. Higher bids in the support have
higher probabilities of winning, since this is needed to offset the extra costs of higher
bids. Mixed symmetric NE strategies delicately trade off both effects. In order to sum-
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marize, mixed symmetric NEs predict that lower bids are more likely to be observed
and that higher bids win relatively more often compared to lower bids.

We now turn our attention to the proof of Theorem 3. From bidder 1’s perspective,
define Fi ⊆ Bn , i ∈ B0, as the set of partial outcomes β−1 = (β2, . . . , βn+1) such
that I (i, β−1) = 1, meaning i is a winning bid for bidder 1 given β−1. This implies
that, if k j (β

−1) is the number of bids equal to j ∈ B0 in β−1, then β−1 ∈ Fi if and
only if k j (β

−1) �= 1 for all j = 1, . . . , i − 1 and ki (β
−1) = 0.

Given the mixed strategy x ∈ �, let fi (x) be the probability that bidder 1 can win
by making the bid i ∈ B0 given that all other bidders use the mixed strategy x , i.e.,
x−1 = (x, . . . , x). Then, we have for every i ∈ B0 that

fi (x) =
∑

s∈Fi

Pr(β−1 = s) =
∑

s∈Fi

xs2 · · · xsn+1 ≡
∑

s∈Fi

Pr(s), (2)

where s = (s2, . . . , sn+1) ∈ Bn . Obviously, fi (x) is continuous in x . Bidder 1’s
expected utility of bid i ∈ B0 against x−1 is denoted as u(i, x) = (M − i) fi (x) − c.
The expected symmetric NE utility is denoted as u(x, x) = ∑

i∈S0(x) xi u(i, x) and
this function is continuous in both x1 = x and x−1 = (x, . . . , x).

The first lemma follows directly from the definition of the NE concept, all pure
strategies in the support of a mixed NE are optimal pure strategies and payoff equiv-
alent.

Lemma 4 Let x ∈ �N E . For all i ∈ S0(x) and j ∈ B0, (M−i) fi (x) ≥ (M− j) f j (x)

and equality holds if also j ∈ S0(x). Moreover, N ∈ S(x) implies u(x, x) = 0.

Lemma 4 implies the next result, which proves Theorem 3.

Lemma 5 If x ∈ �N E , then xi and fi (x) are strictly monotone decreasing, respec-
tively, increasing in i ∈ S0(x). The expected payoff u(i, x) is non-increasing in i ∈ B0,
i.e., u(i, x) ≥ u(i + 1, x) for i ∈ B0. Moreover, there exists a β̄ ∈ B0 such that
S0(x) = {0, . . . , β̄}.
Proof Suppose that for i, i + 1 ∈ S0(x), we would have xi+1 ≥ xi . Let β−1 ∈ Fi+1.
Then for j = 0, . . . , i , we have that k j (β

−1) �= 1 and ki+1(β
−1) = 0. From β1,

we construct bids β̂−1 = β̂−1(β−1) such that β̂−1 ∈ Fi by moving all bids βb = i ,
b = 2, . . . , n + 1, to β̂b = i + 1. Formally, let β̂−1 = β̂−1(β−1) = (β̂2, . . . , β̂n+1),
where for b = 1, . . . , n we take β̂b = i + 1 if βb = i and β̂ = βb otherwise. Then,
for β̂−1 we have that k j (β

−1) �= 1 for j = 0, 1, . . . , i − 1 and ki (β
−1) = 0. Hence,

β̂−1 ∈ Fi . Moreover, from xi+1 ≥ xi it follows that Pr(β̂−1(β−1)) ≥ Pr(β−1),
because all xsb = xi become xsb = xi+1 in (2). However, then we have

fi+1(x) =
∑

β−1∈Fi+1

Pr(β−1) ≤
∑

β̂−1(β−1);β−1∈Fi+1

Pr(β̂−1(β−1)) ≤
∑

s∈Fi

Pr(s) = fi (x)

and this implies (M − (i + 1)) fi+1(x) < (M − i) fi (x) with i, i + 1 ∈ S0(x). This
contradicts Lemma 4. Thus, if i, i + 1 ∈ S0 then xi+1 < xi . Then, by Lemma 4, for
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any i, i + 1 ∈ S0(x), we have that fi (x) = M−i−1
M−i fi+1(x) < fi+1(x). The expected

payoff u(i, x) ≥ u(i +1, x) for all i ∈ S0(x) by the definition of a NE. For i �∈ S0(x),
if i + 1 would be an unique-lowest bid, then so is i . Hence, fi (x) ≥ fi+1(x) and
u(i, x) > u(i+1, x). Finally, by Proposition 1, β̄ ∈ B0 exists. For i ≤ β̄ : xi > xβ̄ > 0

implies i ∈ S0(x). 	

At this point, it is worthwhile to address the complex nature of characterizing sym-

metric NE in the lowest-unique sealed-bid auction. In order to facilitate this discussion,
we first introduce formulas for the winning probability fi (x) of bid i ∈ B0 defined by
(2) and state some elementary properties needed below. For i ∈ B0, we can express
fi (x) as:

f0 (x) = (1 − x0)
n ,

f1 (x) = ∑n
k0 �=1

(
n

k0

)

xk0
0 (1 − x0 − x1)

n−k0 ,

fi (x) =
∑

k0+k1+...+ki−1+ki =n
k j �=1, j=0,1,...,i−1

(
n

k0, k1, . . . , ki−1, ki

)

· xk0
0 · xk1

1 · · · xki−1
i−1 · rki

i (x) ,

(3)

where ri (x) = 1 − x0 − · · · − xi is the complementary probability that an individual
bid does not belong to the set {0, 1, . . . , i} and the multinomial coefficient is defined
as

(
n

k0, k1, · · · , ki−1, ki

)

= n!
k0! · k1! · · · ki−1! · ki ! .

In a symmetric NE, all n+1 players have the same probability of winning with the low-
est-unique bid and, moreover, there is at most one winner. This implies the following
result.

Lemma 6 Let x ∈ �N E . Then, for all i ∈ B0 : fi (x) ≤ 1
n+1 .

From this lemma, f0(x) = (1 − x0)
n and u(x, x) = u(0, x) ≥ 0, we can derive

0 < 1 − (
1

n + 1
)1/n ≤ x0 = 1 −

(
c + u (x, x)

M

) 1
n ≤ 1 −

( c

M

) 1
n

< 1. (4)

The summation of large powers in the probabilities fi (x) for i ≥ 1 obstructs any
approach to obtain similar closed-form solutions for x1, x2, . . ., except for the qua-
dratic case n + 1 = 3 (which we omit). This shows that the lowest-unique sealed-bid
auction is fundamentally different than the lowest-bid auction in Proposition 2.

In principle, the unknown u(x, x) and the probabilities x ∈ �N E can be numeri-
cally computed by applying the bisection method to update u(x, x) ∈ [0, M

n+1 − c].
Rapoport et al. (2007) claim that this guarantees convergence to the true value of
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u(x, x) under c = 0, whereas Östling et al. (2007) claim numerical solving is explo-
sive in the number of bidders and is better avoided when n + 1 ≥ 9. In Sect. 5, we
develop an alternative approach, in which we identify a particular x ∈ �N E as the
solution of a mathematical program that also allows an economic interpretation.

We conclude this section by deriving several small results from (3) needed for later
purposes. The first result can be verified from (3) and is stated without a proof.

Lemma 7 For i ∈ B0, fi (x) is continuous on � and symmetric in the variables
x0, x1, . . . , xi−1.

The next result states some properties of the following modification of fi in which
the variable ri ∈ R+ replaces the function ri (x). We call this function the modified
function fi . These properties can also be verified from (3).

Lemma 8 The modified function fi (x) is non-decreasing in the variables x0, x1, . . . ,

xi−1, ri and, increasing if all x0, x1, . . . , xi−1, ri are positive.

5 A mathematical program for symmetric NEs

In the previous section, we have argued that the formulas for the winning probabil-
ities in (3) do not allow for a closed-form solution. Instead, we show that the most
competitive symmetric NE is the solution of a mathematical program that allows for
an economic interpretation. The mathematical program is given by

minz≥0;x≥0 z
s.t.
u(i, x) ≤ z, i ∈ B0,∑

i∈B0 xi ≤ 1.

(5)

Since all u(i, x) are independent of xN , we have implicitly defined this probability as
the slack in the last constraint.

The following results are rather straightforward. Let x ∈ �N E and z = u(x, x) ≥ 0,
then the standard properties of the NE concept imply that (z, x) is a feasible solution of
(5). This fact implies a non-empty set of feasible solutions and that the optimal z ≥ 0
is bounded from above by minx∈�N E u(x, x). Furthermore, the subset of x ≥ 0 such
that

∑
i∈B0 xi ≤ 1 is a non-empty, compact, convex set and, by (3), u(i, x), i ∈ B0, is

a continuous function in x . This suffices for program (5) to admit an optimal solution.
The main result states two conditions under which the optimal solution (z, x) of

(5) implies x ∈ �N E : the expected utility z in the optimal solution has to be positive
and a technical condition on the probabilities of winning. The technical condition is
associated with a particular redistribution of probability mass over two consecutive
bids ceteris paribus keeping all other probabilities fixed. Formally, for j ∈ B0, con-
sider the function f j (x) in case all x variables on which it depends are fixed, except
for xi and xi+1, where i + 1 ≤ j − 1. Note that by fixing all other variables, the sum
xi + xi+1 is also fixed. Let b = xi + xi+1 ∈ [0, 1] and define the one-dimensional
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function gi, j : [0, b] → [0, 1] as

gi, j (a) = f j
(
x0, . . . , xi−1, a, b − a, xi+2, . . . , x j−1, r j (x)

)
. (6)

The technical condition is as follows:

Assumption 9 For all j ∈ B0 and i + 2 ≤ j , gi, j (a) is strictly quasi-convex in
a ∈ [0, b].

We postpone discussing this assumption and first establish the main result of this
section.

Theorem 10 Let Assumption 9 hold and (z, x) is an optimal solution of (5) such that
z > 0. Then, x ∈ �N E and u(x, x) = z and

∑
i∈B0 xi = 1 in (5).

We prove this result in several lemmas. The first result relates any optimum of
program (5) to the property of the support derived in Lemma 5.

Lemma 11 Let (x, z) be an optimal solution of (5) such that z > 0. Then, there exists
a β̄ ≥ 0 such that S0(x) = {0, . . . , β̄}.
Proof Suppose not. Then, there exists an optimal solution (x, z) of (5) for which there
exists some i ∈ B0\{0} such that xi−1 = 0 and xi > 0. The proof consist of redistrib-
uting part of the variable xi over x0, . . . , xi−1 such that a new feasible solution (z′, y)

is constructed with u( j, y) < u( j, x) for all j ∈ B0 and 0 ≤ z′ < z.
First, choose ε0, ε1, . . . , εi > 0 such that

∑ j−1
m=0 εm ≤ ε j for all j ≤ i and εi < xi .

Define

y j =
⎧
⎨

⎩

x j + ε j , j ≤ i − 1,

x j − ε j , j = i,
x j , j ≥ i + 1,

and z′ = max {0, u(0, y), . . . , u(M − c, y)} .

Then, for all j ∈ B0, y j ≥ 0 (with strict inequality for all j ≤ i) and
∑M−c

i=0 yi =
∑M−c

i=0 xi + ∑i−1
j=0 ε j − εi ≤ 1. Thus, (y, z′) is a feasible solution of (5).

Next, we show that z′ < z. We partition all j ∈ B0 according to j ≥ i and j ≤ i −1.

1. j ≥ i : By xi−1 = 0, it follows for every j ≥ i that Fj ⊆ Fi−1 and, thus,
f j (x) ≤ fi−1(x). Moreover, from xi > 0 it follows that fi−1(x) ≥ xn

i > 0 and,
thus for all j ≥ i :

u( j, x) = (M − j) f j (x) − c ≤ (M − j) fi−1(x) − c

< (M − i + 1) fi−1(x) − c = u(i − 1, x).

Hence, z ≥ u(i − 1, x) > u( j, x) for j = i, i + 1, . . . , M − c and, in particular,
u(i, x) < z. Since the maximal component-wise difference between x and y is εi

it follows by continuity that u( j, y) < z for all j ≥ i if all ε0, · · · , εi are small
enough. To the precise specification of sufficiently small ε0, . . . , εi , we turn next
under 2.
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2. j ≤ i − 1 : By (3), we have that the modified function f j only depends on the

variables x0, . . . , x j−1, r j ≥ 0, where r j = 1 − ∑ j
m=0xm . Furthermore, xi > 0

implies
∑ j

m=0xm ≤ 1 − xi < 1 and, therefore, r j = r j (x) > 0. By Lemma 8,
the modified function f j (x) is continuous and non-decreasing in all j + 1 vari-

ables. Similar, y0, . . . , y j−1, r ′
j > 0 with r ′

j = 1 − ∑ j
m=0 ym and, by Lemma

8, modified function f j (y) is increasing in all these j + 1 variables. Note that
ym = xm + εm > xm for all m ≤ j − 1 implies r ′

j < r j . Therefore, we must
choose all ε0, . . . , εi such that for every j ≤ i − 1 the decrease from r j to r ′

j by
ε j dominates the combined increases from xm to ym by εm for all m ≤ j − 1.
Since modified f j (x) is continuous, symmetric in x0, . . . , x j−1 and non-decreas-
ing x0, . . . , x j−1, r j , there exist 0 < ε0 � . . . � εi−1 � εi < xi such that
f j (y) < f j (x) for all j ≤ i − 1, where we write a � b if 0 < a < b and a

b > 0
is arbitrarily small. Then, u( j, y) < u( j, x) for all j ∈ B0, including for those
under 1.

Hence, z′ = max j {0, u(1, y), . . . , u(M−c, y)} < z for all j ∈ B0 and this contradicts
that (x, z) is an optimal solution of (5). 	


Corollary 12 Let (x, z) be an optimal solution of (5) such that z > 0. Then, β̄ ≥ 1.

Proof Suppose not, meaning β̄ = 0. Then, z > 0 and β̄ = 0 imply x0 = 1, f0 (x) = 0
and fi (x) = 1 for all i ≥ 1 meaning u (0, x) = 0 and z = u (1, x) = M − c − 1.
By Proposition 1 and Lemma 5, the support on B0 of any x̂ ∈ �N E such that ẑ =
u

(
x̂, x̂

)
> 0 contains the subset {0, 1}. Furthermore, in any symmetric NE there is a

positive probability that no bidder wins the auction, i.e., fi
(
x̂
)

< 1 for all i ∈ S
(
x̂
)
.

Therefore, ẑ = u
(
1, x̂

)
< M − c − 1 = z, which violates that the optimal (z, x) is

such that z ∈ [
0, ẑ

]
. Clearly, a contradiction. 	


The previous result is independent of Assumption 9, but the following result also
needs this assumption.

Lemma 13 Let Assumption 9 hold and (z, x) is an optimal solution of (5) such that
z > 0. Then, i ∈ S(x) implies u(i, x) = z.

Proof Suppose not. Then, for the optimal solution (x, z) of (5) define i ∈ S0 (x) as
the largest i ≤ β̄ for which u (i, x) < z. Then, xi+1, . . . , xβ̄ > 0 (by Lemma 11),

u(i + 1, x) = · · · = u(β̄, x) = z and u(β̄ + 1, x) ≤ z. Also, u( j, x) < z for all
j ≥ β̄ + 2, because xβ̄+1 = . . . = x j−1 = 0 implies f j (x) = fβ̄+1 (x). The proof
consist of redistributing part of the probability xi over x0, . . . , xi−1 and xi+1 such
that a new feasible solution (z′, y) is constructed with u( j, y) < z for all j ∈ B0 and
0 ≤ z′ < z.

Without loss of generality, let i < M − c. Otherwise, (z′, y) as constructed in
the proof of Lemma 11 immediately applies in case i = M − c to improve upon
(z, x). Here, we need a different

(
z′, y

)
. Choose ε0, ε1, . . . , εi , εi+1 > 0 such that
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∑ j−1
m=0 εm ≤ ε j for all j ≤ i , εi < xi and εi+1 = εi − ∑i−1

j=0 ε j . Define y such that

y j =

⎧
⎪⎪⎨

⎪⎪⎩

x j + ε j , j ≤ i − 1,

x j − ε j , j = i,
x j + ε j , j = i + 1
x j , j ≥ i + 2,

and z′ = max {0, u(0, y), . . . , u(M − c, y)} .(7)

Then, for all j ∈ B0, y j ≥ 0 (with strict inequality for all j ∈ S0 (x) and, possibly,
also for j = β̄ + 1 in case i = β̄) and

∑M−c
i=0 yi = ∑M−c

i=0 xi ≤ 1. Note that y is
constructed such that r j (y) = r j (x) for all j ≥ i +1, which is exploited below. Thus,
(y, z′) is a feasible solution of (5). We consider two cases: j ≤ i + 1 and j ≥ i + 2.

1. j ≤ i + 1: Similar as in the proof of Lemma 11, 0 < ε0 � . . . � εi−1 �
εi � xi and continuity ensures f j (y) < f j (x) for all j = 0, . . . , i − 1 and, thus,
u( j, y) < u ( j, x) ≤ z. For j = i , f j (y) > f j (x), but for sufficiently small ε’s
we can ensure u (i, y) < z. Finally, for j = i + 1 we have ri+1(y) = ri+1(x)

and the effect in εi dominates fi+1 (y) through yi = xi − ε. Hence, by continuity,
fi+1 (y) < fi+1 (x) and, thus, u(i + 1, y) < u(i + 1, x) ≤ z.

2. j ≥ i + 2: For these j , the issue is that εi and εi+1 are of the same magnitude (in
contrast to εm � εi for all m ≤ i − 1) and yi = xi − εi and yi+1 = xi+1 + εi+1
have opposite effects on f j (y). We have to make sure that the decrease from xi to
yi dominates the increase from xi+1 to yi+1. We first establish the following claim.

Claim 1 xi+1 < xi .
The arguments in the proof of Lemma 5 apply: xi ≤ xi+1 �⇒ fi (x) ≥ fi+1(x).
This implies the contradiction u(i, x) > u(i + 1, x) = z. Hence, xi+1 < xi .
Next, we concentrate on εi and εi+1 that are of the same magnitude.

Claim 2 gi, j (xi − εi ) < f j (x) for all j ≥ i + 2.
Consider gi, j (a) and note that i ∈ S0 (x) implies that b = xi + xi+1 > 0. By
Lemma 7, gi, j (a) = gi, j (b − a) for every a ∈ [0, b]. By definition of strictly
quasi-convexity in the variable a, for every a ∈ (0, b

2 )

gi, j (
b
2 ) = gi, j (

1
2 a + 1

2 (b − a)) < max
{
gi, j (a), gi, j (b − a)

}

= gi, j (a) = gi, j (b − a).

Hence, gi, j is minimal in a = b
2 and, as a gets closer to b

2 , gi, j (a) strictly decreases.
Since xi+1 < xi , we have that xi > b

2 and, thus, gi, j (xi − εi ) < gi, j (xi ) = f j (x)

for xi − εi > b
2 .

Claim 3 f j (y) < f j (x).
Define y′ ∈ � by y′

i = xi − εi , y′
i+1 = xi+1 + εi and y′

l = xl if l �= i, i + 1. Then,
the length (norm) | y − y′ | is arbitrary small compared to | x − y |. Thus, by
continuity of the function f j , we have that f j (y′) = gi, j (xi − εi ) < f j (x) implies
that f j (y) < f j (x).
Claim 3 implies that u( j, y) < u( j, x) for j = i + 2, i + 3, . . . , M − c.
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Hence, u( j, y) < z for all j ∈ B0 and, thus, z′ < z which contradicts that (x, z)
is an optimal solution of (5 ). 	

The following lemma completes the proof of Theorem 10.

Lemma 14 Let Assumption 9 hold and (z, x) is an optimal solution of (5) such that
z > 0. Then, x ∈ � is a symmetric NE, u(x, x) = z and

∑
i∈B0 xi = 1 in (5).

Proof By Lemma 13, for every i ∈ S0(x) : u(i, x) = z. Hence, u(x, x) = z. Next,
for every j ∈ B0 : u( j, x) ≤ z and, thus, for every y ∈ � : u(y, x) ≤ z. Hence, x is a
symmetric NE such that u(x, x) = z. Finally, we show that xN = 0. Suppose not, then
(z, x) is such that xN = 1 − ∑

i∈B0 xi > 0. For 0 < ε < xN , define y ∈ � such that
yN = xN −ε, yβ̄ = xβ̄ +ε and yi = xi for all other i �= β̄. Then, for sufficiently small

ε, u(i, y) < z for all i ≥ β̄. Since also u (i, y) = u (i, x) = z for all i ≤ β̄−1, we have
that (z, y) is another optimal solution in (5). Since y fails the property of Lemma 13,
we arrived at a contradiction. Hence, xN = 0 implies

∑
i∈S0(x) xi = ∑

i∈B0 xi = 1
in (5). 	


Note that the proof of Theorem 10 consists of two crucial steps, Lemma 11 and
13. The proof of Lemma 11 is independent of Assumption 9 and only require z > 0,
because otherwise the arguments would fail. In order to see this, in the case there exists
an x ∈ �N E such that z = u(x, x) = 0, then (0, x) is an optimal solution. Unfortu-
nately, every y ∈ � such that (0, y) is feasible in (5) is also an optimal solution and,
therefore, not every such (0, y) corresponds to a NE. For example, for n + 1 = 3,
M = 4 and c = 1, we obtain from Table 1 that x ∈ �N E implies u(x, x) = 0.
Implementation of (5) in the optimization package GAMS5 yields the optimal solu-
tion (z, y) with z = 0 and y = (0.0000, 0.289, 0.500, 0.211, 0.000, 0.000), which
differs from the NE x . Moreover, u (1, y) = −0.244 < 0 implies that y fails the NE
conditions. This implies that z > 0 is necessary condition.

Lemma 13 also has an additional sufficient condition, i.e., Assumption 9. Under
this assumption, the redistribution of probabilities described by y in (7) improves
the objective function of the program (5). It is unclear whether Assumption 9 covers
the entire class of auctions considered in this paper. Verification whether gi, j (a) is
strictly quasi-convex for all i , j ≥ i + 2, all n + 1 ≥ 3 and all x ∈ � is a Herculean
task. Assumption 9 is less restrictive than assuming f j (x) is strictly (quasi-)convex
in all x0, . . . , x j−1. We report that strictly convex can be shown for n + 1 = 3, 4,
all a ∈ [0, 1] and all other xm ∈ R+, which follows directly from g′′

i, j (a) > 0.6

Therefore, Assumption 9 does specify a non-empty subclass of auctions. The lat-
ter approach, however, is too crude and breaks down for n + 1 ≥ 5, because then
odd powers of the third degree or higher with negative coefficients might appear in
g′′

i, j (a). Introducing the constraints a ≤ b = x0 + x1 and x ∈ � make verification
of the sign of g′′

i, j (a) unworkable for arbitrary parameter values, because the func-

tion gi, j (a) is highly nonlinear and the support can be any subset of S0 (x). For the
same reasons, application of the necessary and sufficient conditions for additively

5 For more information on GAMS, we refer to Brooke et al. (1998).
6 Upon request, a proof is available from the authors.
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decomposed quasi-convex function in Crouzeix and Lindberg (1986) to (6) is also
unworkable.

The optimal strategy of program (5) can also be interpreted as the maximin value
of a game where a single bidder faces a bidding ring formed by all other bidders
that are all restricted to follow the same bidding strategy. Then, the larger the sin-
gle bidder’s expected utility, the lower the ring’s expected utility is, which sug-
gests a competitive game. Therefore, by minimizing the single bidder’s expected
utility the ring gives away the least expected amount. By symmetry of all bid-
ders in the auction, the ring’s minimizing bidding strategy is also one of the sin-
gle bidder’s best responses to this minimizing bidding strategy. Therefore, if (z, x)

solves (5) such that z > 0, then (x, x) ∈ arg maxx ′∈� minx ′′∈� u(x ′, x ′′). By von
Neumann’s famous maximin equals minimax theorem, we also have that (x, x) ∈
arg minx ′′∈� maxx ′∈� u(x ′, x ′′).

The results obtained thus far have several implications (under Assumption 9):

1. If all symmetric NE have positive expected NE utilities, then (5) identifies the
symmetric NE with the lowest expected NE utilities and, consequently, z > 0.

2. If (z, x) is an optimal solution and z > 0, then this rules out any symmetric NE
with expected NE utilities equal to 0.

3. If (z, x) is an optimal solution and z = 0, then there exists a symmetric NE with
expected NE utilities of 0 (because the condition under point 1 cannot hold).

These implications make program (5) very interesting for numerical analyses, be-
cause this program can answer the question whether for certain parameter values the
expected NE utilities are positive or zero and, if positive, it yields a symmetric NE.

6 Comparative statics of symmetric NE

In this section, we perform comparative statics with respect to the key parameters such
as large numbers of bidders, large bidding cost and large values of the item. In order
to state this result, we define �N E (M, c, n + 1) as the set of symmetric NE for M , c
and n + 1.

Theorem 15 If the number of bidders is sufficiently large, such as n + 1 ≥ M
c , or the

cost of making a bid are sufficiently large, such as c ≥ maxx∈�N E (M,1,n+1) f0(x)M,
then in any symmetric NE non-participating has a positive probability and the expected
NE payoffs are zero. In particular, as the number of bidders goes to infinity, the prob-
ability of non-participating goes to one. For sufficiently large value of the item, all
bidders participate for sure and expect to make a positive gain. Moreover, as the value
goes to infinity, the highest bid in the support also goes to infinity.

The intuition behind Theorem 15 is quite intuitive, an increased probability of
participation deteriorates the probability of winning and, therefore, erodes the profit-
ability of entering. If too many bidders enter, then the entire expected surplus vanishes.
Indeed, when the number of potential bidders goes to infinity, the individual proba-
bility of participating becomes negligible and the remaining probabilities over bids
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all converge to zero. Similar, if the cost of bidding become too high, these costs can-
not be recovered by the expected gains of winning and bidders retreat by increasing
their probability of non-participating. Whenever, the probability of non-participating
is positive, the expected NE payoffs are zero. In that case, we arrive at a result similar
to the classic result known for markets with endogenous entry: under a fixed market
entrance fee, potential producers enter as long as there are expected net profits from
doing so are larger than the entrance fee. In the symmetric NE of the auction, costly
bidding erodes expected positive net gains until these expected gains are equal to the
payoff of non-participating. The value of the item has a different effect compared
to the previous two parameters: if the value becomes large enough, all bidders will
participate and expect to make a profit. Moreover, a higher value make higher bids
more attractive and, therefore, increases the support. In particular, if the value goes to
infinity, the support becomes unbounded.

We now turn our attention to the proof of Theorem 15. Theorem 15 is shown by
three major lemma’s, each involves one of the three key parameters, that also provide
some additional insights. First, we consider large numbers of bidders.

Lemma 16 Let x ∈ �N E (M, c, n + 1). For any n + 1 ≥ M
c , then xN > 0 and

u(x, x) = 0. If n + 1 goes to infinity, then xN goes to 1.

Proof For arbitrary n + 1 and x ∈ �N E (M, c, n + 1), define p(x; n + 1) ≤ 1
n+1

as the probability that bidder 1 wins the auction. Note that the positive probability
that nobody wins the auction, which is at least xn+1

0 > 0, yields p(x; n + 1) < 1
n+1 .

As n + 1 goes to ∞, this probability converges to 0. Suppose for all n + 1 that
xN (n + 1) = 0, x(n + 1) ∈ �N E (M, c, n + 1). Then, the expected NE payoff is at
most p (x; n + 1) M − c < 1

n+1 M − c. The upper bound converges to −c as n + 1
goes to ∞. Negative NE payoffs contradict Proposition 1. Therefore, for large enough
n + 1, xN > 0. Since p(x; n + 1) < 1

n+1 , bidder 1 would certainly make a loss if the

upper bound 1
n+1 M −c becomes non-positive, which yields the lower bound on n +1.

Finally, for all n+1 ≥ M
c , u(x, x) = 0 = M f0(x)−c implies that x0 = 1−( c

M )
1
n → 0

as n + 1 goes to ∞. By Lemma 5, x0 is the largest probability in S0(x) and, therefore,
all probabilities in S0(x) converge to 0. Hence, in the limit xN = 1. 	


The lower bound on the number of bidders is derived from the intuition that the
probability of winning the auction should yield a sufficiently large expected revenue
to cover the cost of making a bid. In case, all bidders enter the auction for sure, the
probability of winning would converge to 0 if the number of bidders would go to infin-
ity, which means that, in the case of too many bidders, non-participating becomes a
profitable deviation. Note that this intuition provides a sufficient condition for xN > 0,
i.e., however, not necessary because it is derived under overestimation of the true prob-
ability of winning by comparing it to a standard lottery. Note that the lower bound can
be rewritten as c ≥ M

n+1 , which is also the condition for zero expected NE utilities in
Proposition 2. Since the true probability of winning will be strictly smaller than in a
lottery and winning positive bids have to be paid, it is possible xN > 0 also holds for
some n + 1 just below M

c . This statement is illustrated by Table 4 of Sect. 7, where
all off diagonal elements have an expected NE utility of zero. Therefore, for given M
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and c, we may only expect symmetric NE with positive expected NE payoffs for suffi-
ciently small n+1 < M

c . As the number of bidders approaches infinity, the probability
that an individual bidder enters becomes negligible. The limit probability distribution
over the numerical bids has limit probabilities of zero. Under a large Poisson game
with bid cost of zero and the winner does not have to pay the winning bid, Östling
et al. (2007) also derive a uniform limit distribution over numerical bids in, but with
positive probabilities. This result is fundamentally different to our result where it is
non-participating that prevails in the limit when bidding cost are positive.

The second lemma puts an upper bound upon the cost for positive expected NE
payoffs.

Lemma 17 For any x (1) ∈ �N E (M, 1, n + 1) such that u (x (1) , x (1)) =
f0 (x (1)) M−1 ≥ 0 and all c ≤ f0 (x (1)) M it holds that x (1) ∈ �N E (M, c, n + 1).
Moreover, for c > 1, x (c) ∈ �N E (M, c, n + 1) such that u (x (c) , x (c)) =
f0 (x (c)) M − c > 0 implies that x (c) ∈ �N E (M, 1, n + 1).

Proof Consider x ∈ �N E (M, 1, n + 1). By Lemma 4, for all i ∈ S0(x) and j ∈ B0:

(M − i) fi (x) − 1 ≥ (M − j) f j (x) − 1 ⇔ (M − i) fi (x) − c ≥ (M − j) f j (x) − c,

and equality holds if also j ∈ S0(x). Therefore, different c do not affect these inequal-
ities. Then, x is also a NE for c provided that the expected utility under c, which is
f0(x)M −c, obeys the non-negativity implied by Proposition 1. Starting with arbitrary
c ≥ 1 yields the second statement, where the condition f0 (x (c)) M − c > 0 ensures

that S (x (c)) = S0 (x (c)) and x0
(
ĉ
)

< 1 −
(

ĉ
M

) 1
n

for all ĉ = 1, . . . , c by (4). 	


Lemma 17 is based upon the observation that the equilibrium conditions for numeric
bids in B0 are invariant with respect to the cost of making a bid. Therefore, as long
as the expected payoffs of participating for sure under x (1) ∈ �N E (M, 1, n + 1)

under different cost c outweigh the opportunity cost of non-participating, participa-
tion by playing x (1) remains a NE. This invariance cannot hold for any NE x (c) ∈
�N E (M, c, n + 1) with a positive probability of non-participating, i.e., xN (c) > 0,

because then u(x, x) = 0 implies that x0(c) = 1 − ( c
M )

1
n depends upon c. More-

over, the probability x0 (c) is decreasing in c. Therefore, x (c) ∈ �N E (M, c, n + 1)

such that xN (c) > 0 implies x (c) /∈ �N E
(
M, c′, n + 1

)
for c′ �= c. A similar

invariance also fails for M and M ′ �= M . Therefore, x ∈ �N E (M, c, n + 1) implies
x /∈ �N E

(
M ′, c, n + 1

)
.

The third lemma states that for large enough values M , all bidders participate for
sure and expect to make a profit.

Lemma 18 For c and n + 1 fixed, let {x(M)}∞M=1 be an infinite sequence of
x (M) ∈ �N E (M, c, n + 1). If lim supM→∞ xk(M) = 0 for some k ∈ N0, then
limM→∞ xi (M) = 0 for all i ∈ N0.

Proof For i ≥ k, we have by Lemma 5 that 0 ≤ xi (M) ≤ xk(M) for every M . Thus,
limM→∞ xi (M) = lim supM→∞ xk(M) = 0. For k = 0 the proof is finished and we
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therefore consider k ≥ 1. Then, it suffices to prove that

lim
M→∞ xk−1(M) = 0, (8)

because the lemma then follows by induction. Establishing (8), requires:

Claim 19 For any δ > 0, we have lim supM→∞ x M
k−1 ≤ δ.

By definition of lim supM→∞ xk(M) = 0, it follows that for every ε > 0 there exists
some N (ε) ∈ N such that xk(M) < ε for every M ≥ N (ε). Given δ > 0, we choose
ε = δn

n . Note that for every x(M) ∈ �N E (M, c, n + 1), bid k is a unique-lowest
bid if bid k − 1 is a lowest-unique bid and none of the other n bidders submit bid k.
Moreover, bid k would also be a lowest-unique bid if all other n players bid k − 1.
Combining this gives for all M ≥ N (ε) the inequality

fk(x(M)) ≥ fk−1(x(M)) − Pr( at least one other of n players bids k) + (xk−1(M))n

and, thus, for all M ≥ N (ε), we have

fk(x(M)) ≥ fk−1(x(M)) − nε + (xk−1(M))n . (9)

Combining (9) with Lemma 5 and Lemma 6 gives for every M ≥ N (ε) that

(M − k)
(

fk−1(x(M)) − nε + (xk−1(M))n) ≤ (M − k) fk(x(M))

= uk(x(M)) + c ≤ uk−1(x(M)) + c = (M − k + 1) fk−1(x(M)),

and, thus,

(M − k)((xk−1(M))n − nε) ≤ fk−1(x(M)) ≤ 1

n + 1
.

Hence,

(xk−1(M))n ≤ 1

(n + 1)(M − k)
+ nε,

and, thus,

xk−1(M) ≤
[

1

(n + 1)(M − k)
+ nε

]1/n

≤
[

1

(n + 1)(M − k)

]1/n

+ [nε]1/n

=
[

1

(n + 1)(M − k)

]1/n

+ δ.

From this, it follows that lim supM→∞ xk(M) ≤ δ for every δ > 0, which establishes
the claim. From the claim, it follows that for any δ > 0 :

0 ≤ lim inf
M→∞ xk−1(M) ≤ lim sup

M→∞
xk−1(M) ≤ δ,
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and, thus,

0 = lim inf
M→∞ xk−1(M) = lim sup

M→∞
xk−1(M) = lim

M→∞ xk−1(M).

This establishes (8) and completes the proof of the lemma. 	

These results imply the following:

Corollary 20 For c and n+1 fixed, let {x(M)}∞M=1 be an infinite sequence of x(M) ∈
�N E (M, c, n + 1). Then, for every bid i ∈ N0, we have that lim supM→∞ xi (M) > 0.

Proof For fixed n + 1, we have by (4) that lim supM→∞ x0(M) ≥ 1 − ( 1
n+1 )1/n > 0.

This implies the implication of Lemma 18 does not hold and, hence, the if cannot hold
either. Therefore, for every i ∈ N0: lim supM→∞ xi (M) > 0. 	

Corollary 21 For c and n + 1 fixed, there does not exist a finite integer β̄ ∈ N, such
that for all values M ∈ N, there exists an x(M) ∈ �N E (M, c, n + 1) for which it
holds that xi (M) = 0 for all bids i > β̄, i ∈ N.

Informally speaking, the last result states an impossibility result for bounded sup-
ports. In order to put it differently, the size of the support of symmetric NEs is
unbounded when the value M goes to infinity. In the case of a unique symmetric
NE for all M , the infinite sequence {x(M)}∞M=1 of NEs in Lemma 18 is uniquely
determined and limM→∞ xi (M) exists for every bid i ∈ N0. Then, Corollary 20 im-
plies that each limit is strictly positive, i.e., limM→∞ xi (M) > 0 for every i ∈ N0.
Since every player will submit a bid for sure when M is sufficiently large, expected NE
payoffs are positive and xN = 0. By Lemma 17, the NE strategies become invariant
with respect to cost c and this implies that limM→∞ xi (M) only depends on i ∈ N0
and the number of players n + 1.

A final remark concerns the case of costless bidding, i.e., c = 0, implemented in
laboratory experiments. Then, in any x ∈ �N E , we have u (0, x) = M f0 (x) > 0
and, hence, u(x, x) > 0 and xN = 0 (all bidders participate for sure). Since Lemma
17 also extends to this case, our invariance result implies that these equilibria also
remain NE under relatively low cost c < u(x(0), x(0)), c ∈ N. Hence, for appropriate
parameters n + 1 and M , there is theoretically no loss of generality by implementing
a lowest-unique sealed-bid auction with low bidding cost c in a laboratory experiment
as such auction with cost c = 0. In doing so, however, one foregoes the opportunity
to test the theoretical invariance result and whether observed entry is consistent with
theory. Also, implementing c = 0 in the laboratory foregoes testing situations with
non-trivial entry decisions, i.e., sufficiently large c such that xN > 0.

7 Numerical analysis of symmetric NEs

The previous sections establish that the functional form of the winning probabilities
in (3) obstructs a full characterization of symmetric NEs. In order to obtain additional
insights, we resort to three numerical methods. First, we further explore Gambit.
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Second, we implement the optimization program (5) in the numerical optimization
package GAMS. Third, simulation of the replicator dynamics in Maple7 to discuss the
announced topic of evolution stability of bidding behavior.

In Gambit, we computed all NE and implemented a sufficiently large subset of B.
This slowed down the computations considerably in computing NEs when n + 1 and
M increase. Since also the implementation in Gambit is time consuming, we restricted
the use of this package to n + 1 = 3 or 4 and parameter values M in the range of 3 to
25 and c = 1. Gambit always reported a single symmetric NE. A fast and efficient way
to compute the symmetric NE under Gambit is to compute the quantal response equi-
librium, see McKelvey and Palfrey (1995). They also show that the quantal response
equilibrium may fail to be evolutionary stable and, therefore, we cannot conclude
evolutionary stability from applying this equilibrium concept.

Program (5) is implemented in GAMS and, for all parameter values run, GAMS
reports normal completion. For n + 1 ≥ 8, our computer program becomes very
slow due to the need to compute a large amount of multinomial coefficients prior to
the numerical optimization. For that reason, we did not perform any computations in
GAMS for n + 1 ≥ 10.

Next, we briefly introduce the replicator dynamics. Bidders in the lowest-unique
sealed-bid auction come from a single population and any vector in � represents
the population fractions of bids in this population. Time t ∈ R+ is continuous and
x(t) ∈ � represents the population fractions at time t , where x(0) represents the initial
population fractions. We assume that the population size N � n +1 such that modifi-
cations due to finite populations can be neglected. The replicator dynamics are defined
as in Weibull (1995) and given by the following system of differential equations:

ẋb(t) = xb(t)[u(b, x(t)) − u(x(t), x(t))], b ∈ B. (10)

In Bukowski and Miekisz (2004), it is shown that the set of evolutionary stable strate-
gies (ESS) is a subset of the set of asymptotically stable equilibrium (ASE) strategies,
and that the latter is a subset of the set of NE. Formally, �E SS ⊆ �ASE ⊆ �N E .
Verification of the definition of ESS for the lowest-unique sealed-bid auction or of the
optimum of program (5) is too difficult given that we cannot fully characterize NEs
or this optimum. Recall that quantal response equilibrium may not be ESS. For that
reason, we resort to numerically solving for stationary distributions of (10). In the case
of convergence, numerical methods for simulating time paths of replicator dynamics
(10) yield ASE strategies, and this is as close as we (numerically) can get to ESS. All
numerical simulations were performed in the software package Maple by invoking the
fourth-order Runga–Kutta method with a step size of 0.01, see e.g., Betounes (2001).
The initial population fractions were chosen as the uniform distribution over a large
support of consecutive numbers containing 0. In all simulations, the initial support
S(x(0)) ⊃ S(x∗), where x∗ = limt→∞ x(t). The replicator dynamics converged in
all parameter values run, but convergence slows down considerably for n + 1 ≥ 8.

For n + 1 = 3 or 4, we first computed all NEs with Gambit for several parameter
values 3 ≤ M ≤ 25 and c = 1. Then, we ran the replicator dynamics and obtained

7 For more information on Maple, we refer to www.maplesoft.com.
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Table 2 Symmetric NEs for several values of M , n + 1, and c = 1

n + 1 M x0 x1 x2 x3 x4 x5 x6

3 50 0.464 0.258 0.148 0.091 0.040

100 0.460 0.253 0.142 0.083 0.057 0.005

200 0.458 0.251 0.139 0.079 0.047 0.026

400 0.457 0.250 0.137 0.076 0.044 0.028 0.007

4 50 0.452 0.428 0.119

100 0.450 0.427 0.122 0.000

200 0.449 0.426 0.124 0.001

400 0.448 0.425 0.125 0.001

5 50 0.364 0.320 0.193 0.095 0.028

100 0.361 0.318 0.192 0.096 0.033

200 0.359 0.316 0.192 0.095 0.034 0.003

400 0.359 0.316 0.191 0.095 0.035 0.004

6 50 0.331 0.301 0.234 0.118 0.016

100 0.329 0.299 0.233 0.120 0.019

200 0.328 0.298 0.232 0.122 0.020

400 0.327 0.298 0.232 0.122 0.021 0.000

7 50 0.299 0.274 0.228 0.140 0.054 0.005

100 0.297 0.272 0.226 0.140 0.056 0.008

200 0.296 0.271 0.226 0.141 0.057 0.010

400 0.295 0.271 0.225 0.141 0.058 0.010

8 50 0.275 0.255 0.220 0.157 0.078 0.014

100 0.273 0.253 0.219 0.157 0.080 0.017

200 0.272 0.252 0.218 0.157 0.081 0.019 0.000

400 0.272 0.252 0.218 0.157 0.082 0.019 0.001

9 50 0.256 0.238 0.211 0.165 0.098 0.031 0.000

100 0.254 0.237 0.210 0.165 0.099 0.034 0.003

200 0.253 0.236 0.209 0.164 0.100 0.035 0.004

400 0.252 0.235 0.209 0.164 0.100 0.036 0.004

convergence to the symmetric NE. In case x ∈ �N E such that u(x, x) > 0, we also
performed the numerical optimization algorithms in GAMS. This was done to check
the numerical accuracy of the limit solution of the replicator dynamics. Since GAMS
returned approximately (u(x∗, x∗), x∗), all limit solutions x∗ of the replicator dynam-
ics are very accurate and (u(x∗, x∗), x∗) is feasible in (5). In all these cases, all three
numerical methods provide consistent and reinforcing results.

Table 2 reports several numerical solutions obtained from both (5) and the replicator
dynamics (10), where 0.000 indicates a positive probability that is insignificant. Blank
spaces indicate a solution with at least 7 digits equal to 0 that, therefore, we presume
are zero.
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Table 3 Symmetric NEs for several values of M , n + 1, and c = 1

n + 1 M xN x0 x1 x2 x3 x4 x5 x6 x7

4 103 0.4480 0.4251 0.1253 0.0016

104 0.4478 0.4249 0.1256 0.0017

105 0.4477 0.4249 0.1257 0.0017

106 0.4477 0.4249 0.1257 0.0017

107 0.4477 0.4249 0.1257 0.0017

6 103 0.3268 0.2977 0.2315 0.1223 0.0214 0.0003

104 0.3266 0.2975 0.2314 0.1225 0.0216 0.0004

105 0.3266 0.2975 0.2314 0.1225 0.0216 0.0005

106 0.3266 0.2975 0.2314 0.1225 0.0216 0.0005

107 0.3266 0.2975 0.2314 0.1225 0.0216 0.0005

8 103 0.2712 0.2514 0.2178 0.1571 0.0821 0.0196 0.0008

104 0.2710 0.2512 0.2176 0.1571 0.0822 0.0199 0.0010

105 0.2712 0.2512 0.2176 0.1571 0.0822 0.0199 0.0010

106 0.2712 0.2512 0.2176 0.1571 0.0822 0.0199 0.0010 0.0000

107 0.2712 0.2512 0.2176 0.1571 0.0822 0.0199 0.0010 0.0000

The support of the symmetric NE grows if either M increases or the number of
bidders n +1 increases under fixed c and this is in accordance with Theorem 15. More
bidders increase the competition for the single item for sale and bidders spread out
their bids to seek profitable opportunities. However, for small numbers of bidders,
roughly the range n + 1 ≤ 6, Table 2 shows non-monotonic behavior with respect to
the size of the support. For n +1 = 3, this can be explained by the fact that the highest
bid wins if the other two bidders make the same (lower) bid. In the case of n + 1 = 4,
the highest bid can only win if the other three bidders all make the same bid, which is
less likely then two bidders making the same bid. Therefore, the higher bids are less
attractive and the support retracts. For n + 1 = 5, the probability of winning with the
highest bid is somewhat better again, because it also wins, e.g., if two opponents both
bid some lower bid and the other two opponents both bid some other lower bid. When
n + 1 increases further, these kind of odd/even considerations lose significance and,
then, the numerical examples suggest that the numerical support is non-decreasing in
n + 1.

Table 3 represents simulation results for increasingly large values of the item M for
n + 1 equal to 4, 6, and 8. The change in probabilities and the growth of the support
is very slow. For n + 1 = 4, this table might give the false impression that there is
convergence to a finite support, but according to Theorem 15, this is not the case.

Table 4 reports parameter values with zero and positive expected utilities. As n + 1
increases, the consecutive set of low values M for which the expected NE utilities
are 0 grows. If the sufficient condition n + 1 ≥ M

c in Theorem 15 for zero profits
would also be a necessary condition, then the entire lower triangular matrix would be
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Table 4 Parameter values for
which the expected NE utilities
are either positive (+) or zero (0)
under c = 1

M
c n + 1

3 4 5 6

3 0 0 0 0

4 0 0 0 0

5 + 0 0 0

6 + 0 0 0

7 + 0 0 0

8 + + + 0

9 + + + +

filled with +’s. Since it is not, the sufficient condition is only a rough indication for
the parameter values for which the expected NE utilities are zero.

In order to summarize, Gambit returns a single symmetric NE for n + 1 = 3 and 4.
Furthermore, the replicator dynamics always converge to a unique limit distribution
over B, i.e., a symmetric NE.8 Moreover, if the ASE has positive expected NE utilities,
then this limit solution is one-to-one related to the optimal solution of program (5).
This gives numerical evidence for the following conjecture.

Conjecture 22 The lowest-unique sealed-bid auction has a unique symmetric NE that
is also ASE. If x ∈ �N E and u(x, x) > 0, then (u(x, x), x) is an optimal solution of
(5).

One final remark is in place. The replicator dynamics always converges, in partic-
ular, if u(x, x) = 0. Under u(x, x) > 0, computing limit solutions in Maple takes
considerably more time than optimization in GAMS. Therefore, we regard simulating
(10) and program (5) as two complementary approaches in numerically computing
the symmetric NE.

8 Concluding remarks

The lowest-unique sealed-bid auction is a non-trivial auction to analyze, and it fails
a full characterization because the winning probabilities involves summing orders of
large degrees. In contrast, the lowest-bid auction has a simple solution, trivial compar-
ative statics, and allows straightforward numerical implementation. Despite the many
technical non-trivialities, we derive general properties of symmetric NEs, perform
comparative statics, and a mathematical program that provides a maximin interpreta-
tion to the (conjectured) unique symmetric NE.

The extension to multiple bids is analyzed in Eichberger and Vinogradov (2008).
Generally speaking, their main result states that, for some endogenous consecutive sets
of bids that contains the lowest bid, bidders randomize over all consecutive subsets
(of this endogenous set) that contain the lowest bid. In other words, single bids do
not arise endogenously from the multiple-bids model. This implies that the single bid
model requires an analysis on its own, as is done in this article.

8 Note that symmetric games might fail an ASE or admit multiple ASEs.
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In Östling et al. (2007) and Rapoport et al. (2007), laboratory experiments are
implemented by imposing zero bidding cost, which ensures trivial endogenous entry.
Other than its easy implementation, this assumption is not motivated, and has as a
serious drawback that it removes entry decisions from the experiment. Our invari-
ance result provides an underpinning for this simplifying assumption: if expected NE
payoffs are positive under zero bidding cost, then this NE also remains NE under
relatively low cost. Therefore, sufficiently small bidding cost would imply a strategi-
cally equivalent experiment and may therefore be neglected. Two remarks are in place.
First, by implementing both zero and small positive cost, our results provide an extra
test by testing for invariance across experiments. Second, implementing experiments
with relatively larger bidding cost allows for testing the more realistic endogenous
entry decision under zero expected equilibrium payoffs. For example, during 2005
and 2006 in The Netherlands ran, the nationwide TV show Shop4Nop (translated
“shop for free”) that auctioned items valued at most 1,000eand each bid by SMS
costs 70ecents. This auction has zero expected NE payoffs for sure if it attracts a
regular audience of n + 1 ≥ 1, 429, which is <0.01% of the population in The Neth-
erlands.
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