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In this paper the one-seller/two-buyer problem with buyer externalities is investigated
under the assumption that the two buyers have legal opportunities to cooperate. It
is shown that the Competitive equilibrium and the Core are robust with respect to
negligible externalities and that the range of market prices in the Core belongs to range of
Competitive equilibrium prices. However, these concepts yield no prediction for relatively
severe externalities. Therefore, in order to provide a prediction the Bargaining set and
the Multilateral Nash (MN) solution are also investigated. Surprisingly, in case of an
empty Core the Bargaining set predicts a unique tuple of payoffs which are independent
of the externalities and each pair of participants is equally likely. Markets with market
imperfections are captured by the MN solution concept. The MN solution yields the
paradox that the seller’s price can be higher under imperfect competition than under
perfect competition.
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1. Introduction

The simplest market situation one can think of is the situation in which one seller

of an indivisible object wants to sell this object to one of two potential buyers. This

problem is known as the one-seller/two-buyer problem and it has received much at-

tention in the literature [see e.g., Hildenbrand and Kirman (1988), Shubik (1982),

Osborne and Rubinstein (1991) for surveys]. Some of the well known standard

results are: There always exists a (possibly degenerated) range of Competitive equi-

librium prices such that demand is equal to supply; every Competitive equilibrium

is efficient; the Core is non-empty; the set of Competitive equilibrium allocations

coincides with the set of Core allocations; the lowest Competitive equilibrium price

can be supported as the equilibrium in an auction [McAfee and McMillan (1989)].
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Whether or not the two buyers have the legal opportunity to enforce cooperation

among them and agree not to buy the object from the seller does not matter

in the results mentioned. In this paper it is assumed that the potential buyers

can both commit not to buy the good and that they can agree on a monetary

transfer as some sort of compensation between them. An important and (as we

will see below) rather crucial assumption in this case for the above results in the

standard one-seller/two-buyer problem is that each potential buyer does not suffer

from external effects if the other buyer would buy and then “consume” the good.

However, in many cases this assumption does not hold. For example, the UEFA

(United European Football Association) holds the exclusive broadcasting rights of

all soccer matches in the Champions League and both the commercial and the public

broadcasting organizations would benefit from obtaining these rights but at the

same time each organization has to face a serious drop in their own advertisement

incomes when the other organization broadcasts Champions League matches after

obtaining the rights.

In this paper externalities are modelled similar as in Jéhiel and Moldovanu

(1995, 1996). Standard theory above suggests that modelling the market equilib-

rium mechanism as an auction would be a good start to investigate markets with

externalities [e.g., Jéhiel and Moldovanu (1996)]. However, as is shown below the

equilibrium of the auction is inefficient in case the magnitudes of the externalities

are large. Furthermore, with large externalities the benefits of and, hence, the in-

centives for cooperation between the two potential buyers increase as well. If the

market equilibrium mechanism is modeled as an auction, then it is a priori excluded

that the pair of potential buyers can form a coalition. In other words, some of the

strategic options available to the potential buyers are excluded. To come back to

our example, in the Netherlands the Dutch commercial and the public broadcasting

organizations have begun talks in order to form a coalition and avoid a harmful

and fierce price competition between them.

In this paper attention is restricted to small markets, i.e., markets with two

potential buyers. The motivation for this restriction is that it will be more difficult

to form a (sub)coalition of potential buyers the larger this coalition becomes. We

implicitly regard the effort costs of forming a coalition of potential buyers as a

rapidly increasing and strict convex function in the number of buyers involved in

such a coalition. To put it differently, we only expect coalitions between potential

buyers if their number is very small.

In this paper the one-seller/two-buyer problem with externalities is modelled

as a cooperative game known as a three-player/three-cake problem [e.g., Binmore

(1986), Houba and Bennett (1997) and Houba (1994)]. This class of problems is

the natural setting to study the economic market situation under consideration,

because in order to obtain the maximum attainable payoff in the market it suffices

to form a two-player coalition and, therefore, the economic problem can be regarded

as a typical “odd man out” situation. A solution of this problem specifies which

of the three two-player coalitions forms, who the excluded player is and what the

payoff to each of the players is.
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The main purpose of this paper is twofold. First the Competitive equilibrium

concept and the Core concept will be applied to the one-seller/two-buyer problem

with buyer externalities and both sets of solutions are fully characterized. It will

be shown that these sets of outcomes converge to the standard results in absence

of buyer externalities if we let the externalities vanish. So, the standard results

are robust with respect to small values of the externalities. Moreover, the set of

prices for which the object is sold corresponding to each Core allocation is always

contained in the set of Competitive equilibrium prices. However, for rather high

values of the externalities we find that the Competitive equilibrium as well as the

Core can be equal to the empty set or that the Competitive equilibrium may exist

while the Core may not exist. As in the standard case, both concepts yield an

efficient allocation in case solutions to these concepts exist.

The non-existence of either of these two concepts imposes a serious problem,

because for rather high values of the externalities these two theories fail to provide

a satisfying answer with respect to the selection of reasonable outcomes. Clearly,

this calls for some other solution concept that does not have this drawback. The

second aim of this paper is to investigate whether other “classical” game theoretic

solution concepts, such as the Bargaining set and the (von Neumann–Morgenstern)

Stable set, can provide us with a better understanding of the economic problem.

Furthermore, the relatively recent concept of the Multilateral Nash solution [e.g.,

Bennett (1997)] is analyzed.

It is shown that most of the classical cooperative solution concepts considered

yield similar sets of solutions and, therefore, we regard the Bargaining set as the

representative of these various concepts. If the Core is not empty, then the Bargain-

ing set coincides with the Core. Otherwise, the Bargaining set admits three possible

outcomes associated with the von Neumann–Morgenstern tuple. This uniquely de-

termined tuple specifies a feasible and efficient partition of each pair’s surplus with

the property that for every pair each individual’s payoff, if included in the pair that

actually forms, is equal to this individual’s foregone payoff in his alternative pair,

provided that pair would have formed instead.

The Bargaining set can be regarded as a theory in which the competition among

the players is perfect. However, not every market has perfect competition and it

is also worthwhile to study solutions for markets with imperfect competition. At

this point the concept of Multilateral Nash (MN) solution, which extends two-

player axiomatic bargaining theory, becomes interesting. The MN solution is able to

capture market imperfections, such as for instance lock-in effects. This is first shown

in Houba and Bennett (1997) where for any three-player/three-cake problem each of

the two endpoints of the (possibly degenerated) range of MN solutions corresponds

to the subgame perfect equilibrium outcome of a particular non-cooperative bar-

gaining model. These two strategic models are the market demand model [e.g.,

Binmore (1986) and Osborne and Rubinstein (1991), Sec. 9.3] and the proposal-

making model [e.g., Binmore (1986), Chatterjee et al. (1993), Moldovanu (1992),

Selten (1981) and Osborne and Rubinstein (1991), Sec. 9.4]. In the market demand

model competition is perfect and the unique subgame perfect equilibrium outcome
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coincides with an MN solution and this MN solution also belongs to an outcome in

the Bargaining set. In the proposal-making model competition is imperfect because

the individual who is in the position to make a proposal suffers from a lock-in effect

after having made his proposal. The corresponding MN solution does not lie in the

Bargaining set and this particular MN solution corresponds to the situation with

market imperfections. Thus, a non-cooperative underpinning of this interpretation

can be given.

The remaining of the paper is as follows. In Sec. 2 we introduce the one-

seller/two-buyer problem with buyer externalities and we fully characterize the set

of Competitive equilibria. We also derive the necessary and sufficient condition for

(non)emptiness. The standard auction is discussed and rejected as a appropriate

model, because it excludes cooperation between the buyers. This section is con-

cluded with the formulation of the economic problem as a three-player/three-cake

problem. In Sec. 3 we discuss the game-theoretic solution concepts used in this pa-

per. In Sec. 4 we translate the results of Sec. 3 into outcomes of these concepts for

the one-seller/two-buyer externality game and provide the interpretation of these

results. In Sec. 5 some concluding remarks are made.

2. The Economic Problem

In this section we first introduce the one-seller/two-buyers problem under buyers’

externalities [e.g., Jéhiel and Moldovanu (1995, 1996)]. With buyers’ externalities

we mean that a buyer experiences a (negative) externality from the other buyer if

the latter buyer is in possession of the object. For instance, in case of two firms

competing for the ownership of some exclusive technology offered for sale by the

seller, firm i, i = 1, 2, can make a profit wi if he buys the technology, but makes

a loss αi ≥ 0 if his competitor j 6= i buys the technology. In the remaining of the

paper, let player 3 be the seller and the players 1 and 2 the two potential buyers.

Moreover, let wi be the valuation of player i, i = 1, 2, 3, for the item and let αi ≥ 0

be the loss of buyer i, i = 1, 2, if buyer j 6= i buys the commodity. Without loss

of generality we assume that w1 > w2 > w3 = 0, because the results for the non-

generic cases w1 = w2 and w2 = w3 = 0 can easily be derived from Fig. 1 and

Table 1.

As a benchmark we first consider the Competitive equilibrium outcome for var-

ious sets of the values of wi and αi, i = 1, 2. Recall that w1 > w2 > 0. Now, let

p ≥ 0 be the price for which the commodity is offered for sale. As long as p < w2,

both players want to buy the item and hence p is not an equilibrium price. So, any

equilibrium price p must be at least equal to w2. Now we have the following three

cases:

I : w1 ≥ w2 + α2 ,

II : w1 + α1 ≥ w2 + α2 > w1 ,

III : w2 + α2 ≥ w1 + α1 ≥ w1 .
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In the first case buyer 2 is willing to buy the item as long as p < w2 + α2, because

also buyer 1 is willing to pay this price. Hence, buying the item yields a payoff of

w2 − p, which is at least equal to −α2, being the payoff if buyer 1 owns the item.

For p = w2 + α2 buyer 2 becomes indifferent and, hence, any price p satisfying

w2 +α2 ≤ p ≤ w1 is a Competitive equilibrium price. In such an equilibrium buyer

1 buys the item. The resulting payoffs, denoted by ui, i = 1, 2, 3, are u1 = w1 − p,
u2 = −α2 and u3 = p. Observe that the total payoff equals w1 − α2. Since w1 ≥
w2 + α2 we have that w1 − α2 ≥ w2 ≥ max{0, w2 − α1} and, hence, the total

payoff is maximized. Thus, under Case I the trade resulting from competition is

efficient.

In the two other cases there does not exist a Competitive equilibrium price.

Consider Case II and first suppose p > w2 +α2. Then buyer 2 does not want to buy

the item and, hence, buyer 1 wants to pay at most w1. Second, suppose that p < w1.

Then buyer 2 wants to buy because buyer 1 is willing to pay this price. So, both

buyers want to buy and so p < w1 cannot be an equilibrium price. Finally, consider

w1 ≤ p ≤ w2 + α2. In this case a buyer i, i = 1, 2, only wants to buy the good in

order to prevent the other buyer from buying. So, i wants to buy at p if and only

if j 6= i wants to buy. As soon as i leaves the market also his competitor j leaves

the market. Therefore, the demand is either 0 or 2 and so an equilibrium does not

exist. The same reasoning holds in Case III.

Observe that in Case II it is optimal to allocate the item to player 1 if w1−α2 > 0

and to player 3 otherwise. Analogously in Case III it is optimal to allocate the item

to player 2 if w2 − α1 > 0 and to player 3 otherwise. Reversely this implies that

there does not exist an equilibrium price if max[w1 − α2, w2 − α1] ≤ 0, i.e., if not

selling the item yields an efficient allocation. Hence the main results of the above

analysis are as follows:

Theorem 2.1 (Competitive Equilibrium).

(E1) A Competitive equilibrium price exists if and only if α2 ≤ w1 − w2. In this

case the interval of Competitive equilibrium prices is [w2 + α2, w1] and the

good is sold to player 1. The equilibrium allocation is efficient ;

(E2) if it is efficient not to sell the item, then there does not exist a Competitive

equilibrium price.

One standard result for the one-seller/two-buyer problem without externalities

is that the lowest Competitive equilibrium price (and outcome) corresponds to the

unique Nash equilibrium outcome of both the first-price and second-price sealed-

bid auction. The unique Nash equilibrium price of this auction in case of buyer

externalities is equal to min{w1 + α1, w2 + α2} and the buyer with valuation equal

to max{w1 +α1, w2 +α2} obtains the good [e.g., Jéhiel and Moldovanu (1996)]. As

long as α2 ≤ w1 − w2, i.e., a Competitive equilibrium exists, the Nash equilibrium

of the auction corresponds to the lowest Competitive equilibrium price, a result

similar to the standard case without externalities. Also in case α2 > w1 − w2 the
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Nash equilibrium of the auction still exists. However, in this case the outcome of

the auction is not longer efficient. So, the efficiency of the outcome of the auction

for the case without externalities only extends to the case with externalities for

small externalities (implying robustness of the standard results). In case α1 > w2

and α2 > w1 the Nash equilibrium yields an inefficient allocation implying the

standard efficiency result for auctions does not hold in general if the players have

externalities.

In case that the magnitudes of both externalities are large it is clear that the two

potential buyers could gain from forming a two-player coalition in order to prevent

that one of them buys the good. Of course, this means that it must be possible

for both buyers to commit themselves to not buying and that transfers between

the buyers are not excluded. They can certainly commit if they have the legal

opportunity to write a binding agreement or contract in which both agree not to

buy the object as well as include some monetary transfer. It is clear that modelling

the market as an auction excludes a priori the formation of the two-buyer coalition.

In order to obtain insights into market situations in which buyers can credibly form

a coalition we will model the market as a cooperative game with transferable utility.

We proceed by defining the one-seller/two-buyer problem as a transferable

utility game (N , v̂), where N = {1, 2, 3} is the set of players and v̂: 2N → R the

characteristic function defining for any subset S ofN the payoff of the coalition S of

players. Under the assumption that the payoff of a single player i equals the payoff

this player can guarantee himself in the worse case with respect to the behaviour

of the other players, the characteristic function is given by

v̂(1) = −α1, v̂(2) = −α2, v̂(3) = 0, v̂(1, 2) = 0 ,

v̂(1, 3) = w1, v̂(2, 3) = w2, and v̂(1, 2, 3) = max{0, w1 − α2, w2 − α1} .

Observe that for i = 1, 2, the item is sold to player i if the two-player coalition

{i, 3} forms, whereas the item is not sold if the two-player coalition {1, 2} forms. In

the latter case the two buyers agree to stay out of the market. Clearly, this option

maximizes the total payoff in case both α1 > w2 and α2 > w1, i.e., in case the

profit which can be realized by one of the buyers is less than the externality of

the other buyer and hence the industry is hurt by adapting the new technology.

Normalizing the payoffs of the one-player coalitions equal to zero, we get the game

(N , v) defined by the characteristic function v: 2N → R given by

v(1) = v(2) = v(3) = 0 ,

v(1, 2) = α1 + α2, v(1, 3) = α1 + w1, v(2, 3) = α2 + w2 ,

and

v(1, 2, 3) = α1 + α2 + max{0, w1 − α2, w2 − α1} .
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As noticed in Houba (1994) this bargaining problem under externalities is equivalent

to a three-player/three-cake problem.a This can be easily seen as follows. Rewriting

the last equation as v(1, 2, 3) = max{α1 + α2, α1 + w1, α2 + w2}, we get that

v(1, 2, 3) = max{v(1, 2), v(1, 3), v(2, 3)}. Therefore there always exists at least one

two-player coalition {i, j}, which can divide the total payoff v(1, 2, 3) by cooperating

and excluding the third player. Hence, the grand coalition will never form and only

the payoffs of the two-player coalitions matter. Therefore the game is equivalent to

a three-player/three-cake problem, i.e., a game in which only pairs of players have

the possibility of forming a coalition and dividing the associated cake (payoff). In

fact, in a three-player/three-cake game a coalition structure {[i, j], [k]} will form

where [i, j] denotes the coalition {i, j} which forms and [k] denotes the third player

excluded from the coalition.

This section is concluded with the definition of the von Neumann–Morgenstern

vector and tuple.b For a given pair [i, j], let zij = (zi, zj) be a feasible and efficient

payoff vector, i.e., a pair of non-negative real numbers such that zi + zj = v(i, j).

That means the vector zij induces the feasible payoff vector x = (x1, x2, x3)> ∈ R3

defined by xi = zi, xj = zj and xk = 0 for k 6= i, j with coalition structure

{[i, j], [k]}. We now have the following definition.

Definition 2.1 (Von Neumann Morgenstern (VNM) vector). Let z =

(z1, z2, z3)> ∈ R3
+ be such that for any pair [i, j], zij = (zi, zj) is feasible and effi-

cient. Then the vector z is the Von Neumann–Morgenstern vector with the triple

of payoff vectors {z12, z13, z23} as the corresponding Von Neumann–Morgenstern

tuple.

By definition the VNM vector z = (z1, z2, z3)> is a solution of the system of

equations

z1 + z2 = v(1, 2) , z1 + z3 = v(1, 3) , z2 + z3 = v(2, 3) . (1)

Although this system has a unique solution, this solution only forms a VNM vector

if all of its components are non-negative. Otherwise, the VNM vector does not exist.

In case zi > 0 for all i ∈ N at a VNM vector z, we have that z1 + z2 + z3 >

max{v(1, 2), v(1, 3), v(2, 3)} = v(1, 2, 3). So, except for the boundary case that

zi = 0 for at least one i, the players cannot realize simultaneously the payoffs

of the VNM vector. So, in general the VNM vector yields a non-feasible outcome.

Nevertheless, the VNM vector has a nice interpretation. At such a vector any player

is indifferent in choosing one of the other two players in forming a pair to divide

the associated cake. Recall that at most one pair can be formed. So, player i gets

aThis is no longer true in the more general case that any of the three players (buyers and seller)
may experience externalities form the other two players [e.g., Cornet and van der Laan (1995) for
a thorough discussion].
bBy naming this vector and corresponding tuple after von Neumann and Morgenstern we follow
the terminology in Binmore (1986). Below it will be shown that this tuple characterizes the Stable
set in case the Core is empty.
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his VNM payoff zi if he forms a pair with either player j or k and his partner in

this pair gets zj respectively zk. The player not in the pair that forms gets his

(normalized) payoff equal to zero.

Observe that any of the three pairs may form. So, any element zij of the VNM

tuple corresponds with a payoff vector x as defined above and with a coalition

structure {[i, j], [k]}. Although any pair may form, the probabilities with which the

pairs are formed need not to be equal. So, let pij be the probability that the pair [i, j]

forms. Then the expected payoff Ei of player i equals Ei = (pij + pik)zi, i = 1, 2, 3.

Hence E1 + E2 + E3 = pijv(ij) + pikv(ik) + pjkv(jk) ≤ max{v(ij), v(ik), v(jk)}.
Because also inefficient pairs (i.e., pairs not realizing the maximum payoff) may

have a positive probability to form, the expected payoff is not an efficient outcome.

The realized outcome is only efficient if an efficient pair forms.

3. Game Theoretic Solutions

Several game theoretic solutions for the three-player/three-cake problem have been

analyzed in Houba and Bennett (1997) and more extensively in Houba (1994). In

this section some of these concepts are introduced and a brief derivation of the

relevant results is given. The first solution concept we want to consider is the Core

in payoff configurations [e.g., Aumann and Drèze (1974), Binmore (1986) and Houba

(1994)].

As is well-known, the Core is the set of all undominated payoff vectors, i.e., the

set of all vectors x ∈ R3 satisfying
∑
i∈S xi ≥ v(S) S ⊆ N . Observe that for each

element x = (x1, x2, x3)> in the Core we have that xk = 0 for at least one k. To show

this, let [i, j] be a pair such that v(i, j) = max{v(1, 2), v(1, 3), v(2, 3)} = v(1, 2, 3).

Now, if for k 6= i, j, xk > 0, then xi+xj < v(i, j) and, hence, x is dominated through

the coalition {i, j}. So, for each element x in the Core we have implicitly a coalition

structure {[i, j], [k]} with coalition [i, j] the pair which divides its associated cake

v(i, j) and excludes player k from cooperation [e.g., Aumann and Drèze (1974)].

The following theorem has been proven in Binmore (1986) and Houba (1994)

and shows the relationship between the Core and the VNM vector of a three-

player/three-cake game.

Theorem 3.1 (Existence of Core and VNM vector). Let (z1, z2, z3)> be the

unique solution of (1). Then

(a) the Core consists of multiple elements if and only if zi < 0 for at least one

i ∈ N ;

(b) the VNM vector (z1, z2, z3)> specifies the players’ payoffs corresponding to the

unique element of the Core if and only if zi ≥ 0 for all i ∈ N and zi = 0 for at

least one i ∈ N ;

(c) the Core is empty if and only if zi > 0 for all i ∈ N .

Theorem 3.1 states that the Core contains multiple elements if and only if the

VNM vector does not exist, i.e., if the system of equations (1) does not have a
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non-negative vector. Reversely, the VNM vector exists and is strictly positive if

and only if the Core is empty. If the system (1) has a non-negative solution with

at least one of the components equal to zero, then the VNM vector is the unique

element of the Core. It is important to observe the difference in the interpretation

of the unique Core element and the VNM tuple. Therefore, suppose that zk = 0.

Then the unique Core solution says that the pair [i, j], i 6= k and j 6= k, is the only

pair that forms and partitions its cake v(i, j) according to zij = (zi, zj). According

to the VNM tuple any pair [h, k] may form with the element zhk of the VNM

tuple as the partition of its cake v(h, k). Observe that only if the pair [i, j] forms

the payoffs obtained from the VNM vector are equal to the payoffs obtained from

the Core solution.

In Houba (1994) it is also shown that both the Bargaining set and the Stable

set are also fully characterized by Theorem 3.1. These results are summarized in

the next theorem. Therefore, let (z1, z2, z3)> be again the solution of (1) and let k

be the index such that zk = minj zj. Observe that if zk < 0, then zi > 0, zj > 0

and v(i, j) = max{v(1, 2), v(1, 3), v(2, 3)} for i, j 6= k.

Theorem 3.2 (Characterization of Bargaining set and Stable set). Let

(z1, z2, z3)> be the solution of (1) and let k be the index such that zk = minj zj .

Then we have the following cases:

(a) zk < 0: then the Bargaining set is equal to the Core and the Stable set is given

by the set

{x ∈ R3
+|xi + xj = v(i, j), i, j 6= k , and xk = 0} .

At any outcome of this set the pair [i, j], i, j 6= k, forms a coalition and divides

its associated cake;

(b) zk ≥ 0: then both the Bargaining set and the Stable set are given by the collection

of the three vectors {(z1, z2, 0)>, (z1, 0, z3)>, (0, z2, z3)>}, Any pair may form.

Player i gets payoff zi if he is in the pair that forms. Otherwise the player gets

a payoff equal to 0.

Combining Theorems 3.1 and 3.2 we see that the Bargaining set coincides with

the Core if the VNM vector does not exist (Case (a) of Theorem 3.1). In this case

the Stable set is given by the set of payoff vectors satisfying that the two players

which can realize the highest payoff divide this payoff among themselves. In case

the VNM vector exists (Cases (b) and (c) of Theorem 3.1) the Bargaining set is

equal to the Stable set and consists of the three payoff vectors induced by the VNM

tuple. So, the Bargaining set and the Stable set immediately follow from the Core

and the VNM vector. Therefore we do not further discuss the Bargaining set and

Stable set in the remaining of the paper.

We now want to consider the concept of the Multilateral Nash solution. Suppose

that for every pair [i, j] all three players in N conjecture that xij ∈ R2
+ represents

the partition of the cake v(i, j) for this pair, with the convention that the pair [i, j]
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will not form if xij is not feasible. Then the tuple x = {x12, x13, x23} represents

the conjectured partitions for every cake. Given these conjectured partitions x each

member of the pair [i, j] has a conjectured outside option, namely abandon the pair

[i, j] and go to the third player and form a coalition with this player. It is assumed

that all three players in N conjecture that the value of player i’s outside option

oiji (x) = max{0, v(i, k) − xikk }, where xikk denotes player k’s conjectured payoff in

xik. The reason for this is that if xik is not feasible, then player i can only execute

his outside option if he gives in player k’s demand xikk in order to form the pair

[i, k]. This gives us a tuple o(x) = {o12(x), o13(x), o23(x)} of conjectured outside

options for each pair. Now, in case of an infeasible pair of outside options oij(x)

it is assumed that the members of the pair [i, j] agree not to form this pair and

to execute their outside options oij(x). In case of a feasible pair of outside options

oij(x) the members of the pair [i, j] have the possibility to form a coalition and to

negotiate about the division of the cake. It is assumed that the resulting agreement

of these negotiations is the constrained Nash bargaining solution arg max(xi,xj) xixj ,

s.t. (xi, xj) ≥ oij(x) [e.g., Sutton (1986)]. In other words, it is assumed that the

negotiated agreement N ij(o(x)) within the pair [i, j] is given by

N ij(o(x)) =


arg max

(xi,xj)≥oij(x)

xixj , if oij(x) is feasible,

oij(x) otherwise.

Finally, consistency requirements impose the condition that for each pair [i, j] the

conjectured agreement xij is equal to N ij(o(x)), i.e., a fixed point argument. All

these considerations lead to the following definition.

Definition 3.1 (Multilateral Nash (MN) solution). A tuple x = {x12, x13,

x23} is a multilateral Nash solution if

xij = N ij(o(x)) , for all [i, j] ∈ {[1, 2], [1, 3], [2, 3]} .

For every MN solution x = {x12, x13, x23} it holds that there exists a vector

y = (y1, y2, y3) ∈ R3
+ such that xiji = xiki = yi, for all i, j, k ∈ N and i 6= j,

i 6= k [e.g., Bennett (1997)]. Analogously to the VNM vector we summarize an MN

solution x = {x12, x13, x23} by its associated vector of demands y = (y1, y2, y3). The

i-th component can be thought of as an endogenous reservation value for player i

and player i does not participate in any pair if he does not get at least a payoff of

yi. For details we refer to Bennett (1997) or Houba and Bennett (1997).

In the remaining of the paper, let the three players i, j, k be ordered such that

v(i, j) ≥ v(i, k) ≥ v(j, k) .

The following definitions will prove to be useful in characterizing the set of MN

solutions.
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Definition 3.2. If v(i, j) ≥ v(i, k) ≥ v(j, k), then we say that

(a) Player i is the dominant player, player k is the dominated player and player j

is the modal player.

(b) If v(i, j) > 2v(i, k), then players i and j are the Nash-dominant pair.

We now consider the two cases, either the pair [i, j] is Nash-dominant, or

not. In the first case the pair [i, j] is called the Nash dominant pair, because

the standard Nash bargaining solution with disagreement point (0, 0) of this

pair’s cake gives 1
2v(i, j) > v(i, k) = max{v(i, k), v(j, k)} to each player in this

pair and, hence, none of these two players can improve by leaving the pair

[i, j] and form a pair with the third player k. Note that for any tuple x it

holds that oiki (x) ≤ v(i, k) and ojkj (x) ≤ v(j, k). So, for any tuple x it im-

mediately follows from the definitions of N ij(o(x)) and the Nash-dominant pair

that yi = yj = 1
2v(i, j). Then yk = 0 follows also. Thus, if [1, 2] is the Nash-

dominant pair, then the vector y = (1
2v(1, 2), 1

2v(1, 2), 0)> is the unique MN vector

of demands. The Nash-dominant pair [i, j] is the only pair that can form, be-

cause xik and xjk are not feasible for the pairs [i, k] respectively [j, k]. In this

case for each of these players the payoff is at least equal to the maximum pay-

off they can obtain if forming a pair with the third player. Therefore, forming

a pair with the third player k is not a relevant outside option for the players

in the Nash-dominant pair. Observe that this unique MN solution lies in the

Core.

If the pair [i, j] is not Nash-dominant, then the MN solution implies that the

dominant player is always in the pair that forms. The reasoning behind this is that

the dominant player i has always the possibility to offer the modal player j a payoff

of at least v(j, k), which is the maximum payoff that player j can obtain in forming

a pair with the dominated player k. So, player i has the possibility to object against

the pair [j, k]. In characterizing the set of MN solutions for this case it is convenient

to write down the following system of (in)equalities:

yi + yj = v(i, j) , (2)

yi + yk = v(i, k) , (3)

yi ≥ v(i, j)/2 , (4)

yj + yk ≥ v(j, k) , (5)

yk ≥ 0 , (6)

The next lemma follows immediately.

Lemma 3.1.

(a) The system of (in)equalities (2)–(6) has a (possibly degenerated) line piece of

non-negative solutions y ∈ R3
+ if and only if the pair [i, j] is not Nash-dominant.
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(b) If the VNM vector does not exists, then the system of (in)equalities (2)–(6) has

the non-empty set of solutions

Y =

{
y ∈ R3

+|yj = v(i, j)− yi , yk = v(i, k)− yi ,

yi ∈
[

1

2
v(i, j), v(i, j)− v(j, k)

]}
,

which reduces to the unique point y = (1
2v(1, 2), 1

2v(1, 2), 0)> when v(i, k) =
1
2v(i, j).

If the VNM vector z exists, then the system of (in)equalities (2)–(6) has the

non-empty set of solutions

Y =

{
y ∈ R3

+|yj = v(i, j)− yi , yk = v(i, k)− yi , yi ∈
[

1

2
v(i, j), zi

]}
,

which includes the VNM vector z. When v(i, j) = v(i, k) = v(j, k), then

Y = {z}.

If the pair [i, j] is not Nash-dominant, then the dominant player i will form a

pair with either the modal player j or the dominated player k. So, the solution

must satisfy Eqs. (2) and (3). As in the VNM vector, he is indifferent between

these two alternatives. Moreover, player i can always claim at least an amount of

at least 1
2v(i, j), being the payoff obtained from the Nash solution when he forms a

pair with the modal player j. This is reflected by inequality (4). The upper bound

of the payoff of the dominant player i follows from the condition that zj + zk
must be at least equal to v(j, k) (inequality (5)), preventing that the modal and the

dominated player can improve from forming a pair together, and from the condition

that all payoffs must be non-negative, which is guaranteed by zk ≥ 0 (inequality

(6)). Finally, observe that only the pairs [i, j] and [i, k] can form. So, player i can

play off both j and k, because i can realize zi in either [i, j] or [i, k], whereas the

players j and k can only form a pair with i. However, this is only reasonable for

any MN solution with zj + zk > v(j, k). At the MN solution z of the system (2)–(6)

satisfying zj + zk = v(j, k) we have that z also solves the system (1) determining

the VNM vector. According to this latter solution all pairs may form. For values of

zi above the VNM value it becomes beneficial for the other players to form the pair

[j, k]. This threat puts the VNM outcome as an upper bound on how far player i

can go in playing off the players j and k. So, player i reaches its maximum payoff

at the VNM vector. Moreover, as this solution the threat of the other players to

form a pair becomes credible.

We summarize the above results for the MN solutions by stating the following

theorem, which also follows directly by applying the results in Houba and Bennett

(1997).
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Theorem 3.3 (Multilateral Nash solution).

(a) If the pair [i, j] is Nash-dominant, then the MN solution is unique and charac-

terized by the unique demand vector y = (y1, y2, y3)> given by yi = yj = 1
2v(i, j)

and yk = 0. The resulting coalition structure is given by {[i, j], [k]}.
(b) If no pair is Nash dominant, then the MN solution is (generic) non-unique, the

set of associated demand vectors is equal to the set Y and either {[i, j], [k]} or

{[i, k], [j]} results as a coalition structure. If the VNM vector z exists, then for

y = z (and only if y = z) the coalition structure {[j, k], [i]} can also results.

In Houba and Bennett (1997) it is shown that the endpoints of the curve of

MN solutions correspond to two non-cooperative bargaining models, namely the

market demand model and the proposal-making model. The first one describes a

negotiation situation in which competition among the three players is perfect. The

outcome of this bargaining model corresponds with either a Core solution or the

VNM vector. In the second model competition among the three players is imperfect

because each player faces a lock-in effect. If the pair [i, j] is Nash dominant, then this

lock-in effect plays no role for the players i and j, which is reflected in the fact that

the same outcome results as in the market bargaining model. However, otherwise

the dominant player i suffers from the lock-in effect, (because his payoff is less than

in the market bargaining model) and receives a payoff of at least 1
2v(i, j) as if he

is in a two-player negotiation situation together with player j bargaining over the

cake v(i, j) while player k is not present at all. As is argued in Houba and Bennett

(1997) the intermediate MN solutions can also be regarded to reflect imperfect

competition among the three players. This interpretation is nicely illustrated by

the unique equilibrium in the wage bargaining model in Shaked and Sutton (1984),

because this equilibrium corresponds also to a MN solution and the equilibrium

changes due to the lock-in effect.

4. Solutions to The Market Situation

In this section we translate the game theoretic solutions of the previous section into

the original market problem. First, the VNM vector z that solves the system (1) as

a function of the values wi and αi, i = 1, 2, is given by

z =

(
α1 +

w1 − w2

2
, α2 +

w2 − w1

2
,
w1 + w2

2

)>
.

Since by assumption w1 > w2 > 0 and αi ≤ 0, i = 1, 2 these values are non-negative

and hence the VNM vector exists if α2 ≥ w1−w2

2 , i.e., if the externality of buyer 2 is

large enough. Observe that both the VNM vector and the Competitive equilibrium

exist if w1−w2

2 ≤ α2 ≤ w1 −w2. In the remaining of the paper we only consider the

payoffs of the underlying one-seller/two-buyers problem and we denote these payoffs

by u = (u1, u2, u3). Recall that any solution z = (z1, z2, z3) of the normalized game
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yields payoffs ui = zi − αi, i = 1, 2 and u3 = z3 to the two buyers and the seller.

So, the payoffs at the VNM vector become

u =

(
w1 − w2

2
,
w2 − w1

2
,
w1 + w2

2

)>
,

which are independent of the externalities. So, at the VNM vector player 1 gets

a payoff u1 = w1−w2

2 if he forms a pair with either player 2 or player 3. In the

first case the two buyers agree not to buy and buyer 2 pays a compensation w1−w2

2

to buyer 1. The seller stays outside the coalition and realizes a payoff of zero. In

the second case buyer 1 buys the item against price w1+w2

2 . Now, buyer 2 stays

outside the coalition and gets a payoff of −α2. If the pair [2, 3] forms then buyer 2

buys the item against price w1+w2

2 and gets buyer 1 a payoff of −α1. So, if a player

is in the pair that forms, his payoff is not only independent of the externalities,

but also of his partner. However, only the two players in the coalition realize their

VNM payoffs. The player outside the coalition can not realize his VNM payoff. If

α2 = w1−w2

2 then the VNM payoff of player 2 is u2 = w2−w1

2 = −α2 and does

not depend on being in or out the pair. In this case z2 = 0 and hence it follows

from Theorem 3.1, case (b) that the VNM vector is equal to the unique element of

the Core. However, the Core payoffs are only realized if the pair [1, 3] forms. The

resulting outcome is not efficient and also not in the Core if according to the VNM

vector one of the other pairs forms. According to Theorem 3.1, case (c) we have

that the Core is empty if the VNM vector is strictly positive, i.e., if α2 >
w1−w2

2 .

In this case an efficient outcome is only achieved if the (efficient) pair [i, j] forms.

For α2 ≤ w1−w2 (Case I of the Competitive solution) this is the pair [1, 3]. On the

other hand it follows from the cases (a) and (b) that the Core exists if system (1)

does not have a strictly positive solution, i.e., if α2 ≤ w1−w2

2 . So, if the Core is not

empty, there exists a competitive price. It follows from straightforward calculations

that the set of Core outcomes is given by C = {u ∈ R3|u1 = w1 − u3, u2 =

−α2, w2 + α2 ≤ u3 ≤ w1 − α2}. Summarizing these results we have the following

theorem.

Theorem 4.1 (Core solution and VNM vector).

(C1) The Core is given C = {u ∈ R3|u1 = w1 − u3, u2 = −α2, w2 + α2 ≤ u3 ≤
w1 − α2} and hence is non-empty if and only if α2 ≤ w1−w2

2 ;

(C2) if the Core is not empty, then there exists a Competitive equilibrium price and

the interval [w2 + α2, w1 − α2] of prices corresponding to the Core belongs to

the interval [w2 + α2, w1] of Competitive equilibrium prices;

(C3) the VNM vector exists if and only if α2 ≥ w1−w2

2 and the corresponding payoff

vector is given by u = (w1−w2

2 , w2−w1

2 , w1+w2

2 )>.

Comparing the Theorems 2.1 and 4.1 it follows immediately from the properties

E1, C1 and C2 that the Core does not coincide with the set of Competitive equilibria

if the externalities are strictly positive. In particular we have that the Core is empty

and the set of Competitive equilibria is not empty if w1−w2

2 < α2 ≤ w1 − w2.
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Observe that the set of Core prices is a subset of the set of Competitive equilibrium

outcomes, namely the outcomes corresponding to the Competitive prices w2 +α2 ≤
p ≤ w1 − α2. For prices w1 − α2 < p ≤ w1, the Competitive equilibrium outcome

is outside the Core, because in this case the two buyers can do better by agreeing

not to buy. Moreover we see that the Core shrinks if α2 increases and reduces to

just one point for the earlier found value α2 = w1−w2

2 . In this case the unique

Core point coincides with the VNM vector and the outcome corresponds to the

minimum value w2 + α2 of the Competitive equilibrium price. Furthermore, an

increase in the value of externality of buyer 2 increases the minimum Core payoff of

buyer 1 and decreases the maximum Core payoff of buyer 1 with the same amount.

With respect to the Core outcomes the externality of buyer 2 effects the outcomes

of buyer 1 and the seller equally. Finally, observe that the Core outcomes do not

depend on the externality of buyer 1. Obviously, this is because at any Core solution

the pair [1, 3] forms.

We now consider the set of MN solutions. First of all, it follows from straightfor-

ward calculations that only the pair [1, 3] can be a Nash-dominant pair. To be so,

we must have that w1+α1

2 > max{w2+α2, α1+α2}, which implies that α2 <
w1−w2

2 .

Hence, if [1, 3] is indeed a Nash-dominant pair, then the corresponding unique MN

solution lies in the Core and hence the Core is not empty. The only other case that

there exists a unique MN solution is when w1 + α1 = w2 + α2 = α1 + α2. Then

this unique solution is equal to the VNM vector. In all other cases there exists a set

of MN solutions, depending on the values of the parameters. According to the six

permutations (i, j, k) over the set of players, there are six different regimes. Recall

that i is the dominant player, j is the modal player and k is the dominated player.

For given values of w1 and w2 these six regimes can be drawn in the (α1, α2) space

and are determined by the three equations v(1, 2) = v(1, 3), v(1, 2) = v(2, 3) and

v(1, 3) = v(2, 3). The first equation gives the line

α2 = w1 − w2 + α1 ,

the second equation the line α1 = w2 and the last equation the line α2 = w1. These

lines are drawn heavily in Fig. 1 for given values w1 and w2 such that 1
2w1 > w2.

Moreover in this figure the equation

v(1, 3) = 2 ·max{v(1, 2), v(2, 3)}

is represented by the curve DNE. The region “NASH” below this curve is the region

of values for which the pair [1, 3] is Nash-dominant.

Below the horizontal lines α2 = w1−w2

2 and α2 = w1−w2 the Core is not empty,

respectively there exists a Competitive equilibrium. Figure 1 does not change much

if w2 > w1/2. In this case the point D moves to the horizontal α1-axes, implying

that then the origin does not belong the NASH-dominant region. We will explain

the dashed lines in the figure later.

We now consider the six different regions. In region A1 we have that i = 3,

j = 1 and k = 2. According to the existence of the Core and/or the Competitive
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Fig. 1. The partition of the (α1, α2) space into regions of dominance.

equilibrium, the regions A1 and B1 (in which i = 1, j = 3 and k = 2) are partitioned

up into three subregions a, b and c. For each (sub)region all the data are given in

Table 1. This table characterizes each region by the ordering (i, j, k) of the players

with respect to domination, respectively the Nash dominant pair, and gives the

payoff vectors of the set of the MN solutions, and, if exist, the VNM vector, the set

of Core solutions and the set of Competitive outcomes. Outside the Nash region

the set of MN solutions follows from solving the system (2)–(6). The upper bound

of the payoff ui of the dominant player i follows from (6) in A1a and B1a, and from

(5) in all other regions. The lower bound follows from (4). Recall that in case of the

VNM vector and the MN-solutions a player only realizes the reported payoff if he

is in the pair that forms. If not, he stays at his initial value. Moreover, with respect

the MN solutions outside the NASH region only the pairs (i, j) and (i, k) can form.

Finally observe that at the point V in Fig. 1 we have that α1 = w2 and α2 = w1.

So, at this point all two-player coalition have the same value in the normalized
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Table 1. The Competitive equilibria and game theoretic solutions for various values of the externalities. The payoff u3 is equal
to the price the seller would get if he is included in the pair that forms.

Region and The players’ payoffs

ordering u1 u2 u3

NASH MN w1 − u3 −α2
1

2
(w1 + α1)

pair [1, 3] Core w1 − u3 −α2 [w2 + α2, w1 − α2],

is dominant Comp w1 − u3 −α2 [w2 + α2, w1],

A1a MN w1 − u3 w2 − u3

[
1

2
(w1 + α1), w2 + α2

]
,

(3, 1, 2) Core w1 − u3 −α2 [w2 + α2, w1 − α2]

Comp w1 − u3 −α2 [w2 + α2, w1]

A1b MN w1 − u3 w2 − u3

[
1

2
(w1 + α1),

1

2
(w1 + w2)

]
,

(3, 1, 2) VNM
1

2
(w1 − w2)

1

2
(w2 − w1)

1

2
(w1 +w2)

Comp w1 − u3 −α2 [w2 + α2, w1]

A1c MN w1 − u3 w2 − u3

[
w1 + α1

2
,
w1 +w2

2

]
,

(3, 1, 2) VNM
1

2
(w1 − w2)

1

2
(w2 − w1)

1

2
(w1 +w2)

A2 MN w1 − u3 w2 − u3

[
w2 + α2

2
,
w1 +w2

2

]
,

(3, 2, 1) VNM
1

2
(w1 − w2)

1

2
(w2 − w1)

1

2
(w1 +w2)

B1a MN

[
1

2
(w1 − α1), α2

]
−u1 w1 − u1

(1, 3, 2) Core [α2, w1 − w2 − α2] −α2 w1 − u1

Comp [0, w1 −w2 − α2] −α2 w1 − u1
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Table 1. (Continued).

Region and The players’ payoffs

ordering u1 u2 u3

B1b MN

[
1

2
(w1 − α1),

1

2
(w1 − w2)

]
−u1 w1 − u1

(1, 3, 2) VNM
1

2
(w1 −w2)

1

2
(w2 − w1)

1

2
(w1 +w2)

Comp [0, w1 −w2 − α2] −α2 w1 − u1

B1c MN

[
1

2
(w1 − α1),

1

2
(w1 − w2)

]
−u1 w1 − u1

(1, 3, 2) VNM
1

2
(w1 −w2)

1

2
(w2 − w1)

1

2
(w1 +w2)

B2 MN

[
1

2
(α2 − α1),

1

2
(w1 −w2)

]
−u1 w1 − u1

(1, 2, 3) VNM
1

2
(w1 −w2)

1

2
(w2 − w1)

1

2
(w1 +w2)

C1 MN −u2

[
1

2
(w2 − α2),

1

2
(w2 −w1)

]
w2 − u2

(2, 3, 1) VNM
1

2
(w1 −w2)

1

2
(w2 − w1)

1

2
(w1 +w2)

C2 MN −u2

[
1

2
(α1 − α2),

1

2
(w2 − w1)

]
w2 − u2

(2, 1, 3) VNM
1

2
(w1 −w2)

1

2
(w2 − w1)

1

2
(w1 +w2)
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game and therefore the MN solution is unique and equal to the VNM vector. At

the point N we have that the VNM vector is equal to both the unique MN solution

and the unique Core outcome.

Inspection of Table 1 leads to the following observations. First of all, depending

on the values of the externalities, any dominance ordering of the players can occur.

Obviously, in the one-seller/two-buyers game without externalities either the pair

[1, 3] is Nash-dominant (if w1

2 ≥ w2) or the seller is the dominant player. In case

of externalities this is only true for low values of the externalities. High values

give the buyers an incentive to stick together and to agree not to buy. So, the

occurrence of externalities has two opposite effects on the position of the seller. If

he is in the pair that forms, he obtains a higher price. On the other hand, if he is

not in the pair, then he is left with a payoff of zero. Observe that the value of u3

equals the price against the item is sold in case the seller is in the pair that forms.

So, Table 1 also provides the price of the item. Observation of the table therefore

immediately shows that the price induced by the VNM vector equals the maximum

of the set of prices induced by the set of MN solutions if the seller is the dominant

player (case A). In case one of the buyers is the dominant player (Cases B and C)

we have that the price induced by the VNM vector equals the minimum of the set

of prices induced by the set of MN solutions. We now consider the different regions

in more detail.

In region A1a (the dominant seller forms a pair with either the modal buyer

1 or the dominated buyer 2) the maximum payoff of the seller on the set of MN

solutions is equal to the minimum payoff of the seller on the set of Core solutions

and on the set of Competitive outcomes. So, in this region we have that at any MN

solution the dominant seller sells the item at a price which is at most equal to the

price at any Core (Competitive) outcome. This is because the MN solution allows

that the (inefficient) pair [2, 3] forms and player 2 is not willing to pay a price above

w2 + α2.

In region A1b the payoff of the seller on the set of MN solutions is at most equal

to his payoff in the VNM vector, i.e., at any MN solution the item is sold against a

price at most equal to the price at the VNM tuple. However, remember that at any

MN solution the seller is sure to be in the pair that forms, whereas at the VNM

vector also the pair of buyers can form. Moreover, since α2 >
w1−w2

2 we have that

the minimal Competitive price w2 + α2 is higher than the maximal price w1+w2

2

on the set of MN solutions. So, again we observe that the dominant player suffers

from the lock-in effect. Once a pair is formed with one of the buyers, the two buyers

can not be played off against each other any longer.

In the region A1c the value of the externality of player 2 becomes so large that

competition does not lead to a solution. Now, the only possibility for the seller to

sell the item is to start negotiations with one of the two buyers. As soon as he has

formed a pair with one of these buyers, he suffers again from the lock-in effect.

Finally, observe that in the region A1 the minimum payoff of the seller on

the set of MN solutions increases in the value of α1. In fact, an increase of α1
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brings the seller in a better position. An increase in α2 has a positive effect on

the Competitive price, but also makes it more attractive for the buyers to avoid

competitive behavior. For α2 high enough the seller can not take advantage any

longer from the competition between the buyers.

In the region A2 buyer 2 becomes the modal player and buyer 1 the dominated

player. Now the minimum payoff of the seller on the set of MN solutions increases

in α2 instead of α1.

In region B buyer 1 is the dominant player. In region B1 (the seller is the modal

player) the minimum payoff of buyer 1 on the set of MN solutions is equal to
w1−α1

2 . So, at the right side of the (dashed) line α1 = w1 there are solutions in

which player 1 is willing to pay a price above w1 if he forms a pair with the seller

or to pay a compensation if he forms a pair with buyer 2. So, in this case we have

the striking result that there are solutions in which the dominated buyer 2 gets a

positive and the dominant player is willing to accept a loss.

In region B1a the maximum payoff of buyer 1 on the set of MN solutions is

equal to u1 = α2. This is equal to the minimum payoff of buyer 1 on the set

of Core solutions. So, in this region we have again that at any MN solution the

payoff of the dominant player is at most equal to his payoff at any Core solution.

Observe that this payoff is increasing in α2 and hence the corresponding payoff

of the seller is decreasing in α2. So, the maximum price according to the Core

solution and the minimum price according to the MN solution are decreasing in

the externality of buyer 2. An increase in the externality of this buyer puts his

competitor in a better bargaining position with respect to the seller. This is because

the willingness of buyer 2 to pay a compensation for an agreement not to buy

becomes larger. Since α2 ≤ w1−w2

2 we also have that for any MN solution there is a

Competitive outcome which gives the dominant buyer 1 a higher payoff. Moreover,

the Competitive outcomes guarantees buyer 1 a payoff of at least zero.

In region B1b the Core is empty. Analogous to region A, in this case we have

again that the payoff of the dominant player on the set of MN solutions is at most

equal to his payoff in the VNM vector. However, remember again that at any MN

solution buyer 1 is sure to be in the pair that forms, whereas at the VNM vector also

the pair [2, 3] can form. The minimum payoff of the dominant player on the set of

MN solutions is equal to w1−α1

2 . Above the dashed line α2 = w1+α1

2 −w2 this payoff

is higher than the maximum payoff on the Competitive outcome. Below the dashed

line the minimum payoff of buyer 1 on the set of MN solutions is below his maximum

payoff of the Competitive outcomes and for high values of α1 there even exist MN

solutions with a negative payoff for buyer 1, whereas all Competitive outcomes

yield a non-negative payoff. So, for high values of α1 buyer 1 prefers competition,

for values of α1 above the dashed line buyer 1 prefers an MN solution. The reverse

is true for the seller, provided that he is in the pair that forms. The dominated

buyer 2 never prefers competition, because he always looses the competition and

gets a payoff of −α2. Any MN solution gives buyer 2 at least the same payoff and

a higher payoff if he is in the pair that forms.
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In region B1c the maximum payoff of the dominant player 1 on the set of MN

solutions is equal to the VNM payoff, whereas his minimum payoff decreases in α1.

In region B2 buyer 2 becomes the modal player. In this case the minimum payoff

of the dominant player equals α2−α1

2 and hence is negative below the dashed line

α2 = α1 in Fig. 1. Below this line the dominant buyer is willing to pay a price

above his reservation value w1 or to compensate buyer 2 for an agreement not to

buy. We also see that the minimum payoff of buyer 1 increases in α2. So, when

forming a pair with the seller this means that the maximum price decreases in α2

and hence an increase in the externality of the modal buyer 2 weakens the position

of the dominated seller in bargaining with buyer 1. This is because an increase

in the externality of buyer 2 makes him willing to increase his compensation to

player 1 for getting an agreement not to buy.

Region C2 is analogous to region B2 with a change of roles between the two

buyers. Now buyer 2 is the dominant buyer. His minimum payoff on the set of

MN solutions is α1−α2

2 and hence is increasing in α1, So, the maximum price is

decreasing in α1. Above the dashed line α2 = α1 + 2(w1 − w2) we have that the

minimum payoff of buyer 2 is less than w2 − w1, i.e., buyer 2 is willing to pay

more than the reservation value w1 of buyer 1. In region C1 the maximum payoff of

the dominant buyer 2 is equal to his payoff at the VNM vector, while his minimum

payoff is decreasing in α2. So, in this case the price does not depend on α1 and is

increasing in α2. Above the dashed line α2 = 2w1 − w2 buyer 2 is willing to pay a

price above w1.

One final remark is in place. As mentioned before the MN solution captures

the situation of imperfect competition among the three participants and in case no

pair is Nash-dominant it is the dominant player who suffers from this imperfect

competition. In region A, which includes the standard case without externalities,

the seller is the dominant player. Hence, imperfect competition implies that the

seller receives a price that is either the price corresponding to the VNM vector or

at most the lowest price corresponding to the Core. Note that the seller, as the

dominant player, is always included in the pair that forms (except if the MN vector

equals the VNM vector). In regions B and C the seller is not the dominant player

and one of the buyers suffers from imperfect competition. This is reflected in the

fact that every MN price is at least the price corresponding to the VNM vector. This

leads to the paradox that negative buyer externalities and imperfect competition

raises the price paid for the good. This “higher” price is however not without costs

for the seller, because the seller is not automatically included in the pair that forms.

So, the seller only benefits from imperfect competition if he is included in the pair

that forms.

5. Concluding Remarks

In this paper we have analyzed the one-seller/two-buyer problem of bargaining in

case of externalities between the buyers and the presence of legal opportunities for
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cooperation between the two buyers, i.e., they can commit not buying the object

and paying a monetary transfer among them. If the externalities are large compared

to valuations and if buyers can cooperate, then one should expect that coalitions

between buyers form in small markets. In the existing literature [e.g., Jéhiel and

Moldovanu (1995, 1996)] cooperation between the two buyers is not taken into ac-

count. For the standard market problem without externalities there is no difference

in results between the two cases, but our analysis shows that it does matter in the

presence of buyer externalities.

In order to study these markets the problem is modeled as a three-player/three-

cake problem and the cooperative solution concepts of the Core, the Bargaining set,

the Stable set and the Multilateral Nash solution are applied and their outcomes

are compared with the Competitive outcome, as far as the latter exists. We have

shown that the Competitive outcome exists as long as the sum of the externality

value α2 and the reservation value w2 of the weakest buyer is smaller than the

reservation value w1 of the strongest buyer. Moreover, the set of Core outcomes is a

strict subset of the set of Competitive outcomes, which is quite different result than

for the standard case with zero externalities. Finally, all standard results known for

the one-seller/two buyer problem without externalities can be obtained as the limit

result by letting the externalities vanish and, hence, the standard results are robust

with respect to small externalities.

The non-existence of the Competitive equilibrium as well as the Core is a serious

drawback of these concepts, because this implies that these concepts fail to provide a

satisfying answer to the economic problem. The Bargaining set is able to produce an

answer for the whole class of one-seller/two-buyer problems with buyer externalities.

A remarkable result is that, if the Core is empty, all three pairs may form and that

the payoffs of the participants in each pair do not depend on the externalities but

only on the buyer valuations w1 and w2 of the buyers. If the seller is included in

the pair that forms and, thus, the object is sold, then the seller obtains the average

of the buyer valuations w1 and w2. This price is always included in the set of

Core prices, provided the Core is not empty. If instead the pair of the two buyers

forms and, thus, the good is not sold, then it is always the buyer with the lowest

valuation who makes a monetary transfer equal to half of (the absolute value of

the) difference between the buyers’ valuations to the other buyer. This transfer is

equal to the foregone consumer surplus of the buyer with the highest valuation

that would have been obtained if this buyer buys the object. Thus, similar as in

the standard case without externalities the asymmetry between the two buyers is

based upon the asymmetry in valuations w1 and w2.

Finally, the Bargaining set represents a solution for markets with perfect com-

petition. Markets with imperfect competition, such as lock-in effects for one of

the participants, exists as well. We have implicitly investigated markets with

imperfect competition by looking at the MN solution. We defined the notion of

a dominant player and saw that this player is always included in the pair that

forms (neglecting the MN solution that coincides with the VNM vector). Imperfect
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competition is bad for the dominant player, because this player is not able to fully

play off the other two players as would have been the case with perfect competition.

For small buyer externalities the seller is the dominant player (just as in the case

without externalities) and, hence, the seller is always included in the pair that forms

and the seller suffers from the imperfect competition because the resulting price is

lower than the price that would have been obtained under perfect competition.

However, for larger buyer externalities the seller is no longer the dominant player.

Since one of the buyers is the dominant player this buyer will suffer from imperfect

competition and, hence, this yields the paradox that the price of the object is higher

under imperfect competition than under perfect competition. Since the seller is not

automatically included in the pair that forms it is clear that the seller only benefits

from imperfect competition if he is included in the pair that forms.
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