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Abstract: The exchange-correlation energy in Kohn-Sham density functional theory can be
expressed exactly in terms of the change in the expectation of the electron-electron repulsion
operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real
parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process,
usually called adiabatic connection, the one-electron density is kept fixed by a suitable local
one-body potential. The strong-interaction limit of density functional theory, defined as the limit
λf∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λf0) mathematically
simpler than the physical (λ ) 1) case and can be used to build an approximate interpolation
formula between λf0 and λf∞ for the exchange-correlation energy. Here we extend the
systematic treatment of the λf∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term,
describing zero-point oscillations of strictly correlated electrons, with numerical examples for
small spherical atoms. We also propose an improved approximate functional for the zero-point
term and a revised interpolation formula for the exchange-correlation energy satisfying more
exact constraints.

1. Introduction

Kohn-Sham (KS) density functional theory (DFT)1-3 is a
very successful method for electronic structure calculations
thanks to its unique combination of low computational cost
and remarkable accuracy. In the Kohn-Sham formalism, the
ground-state energy of a many-electron system in a given
external potential V̂ext ) ∑i)1

N Vext(ri) is rewritten as a
functional of the one-electron density F(r)

where

with the operators (in Hartree atomic units e ) m ) p ) a0

) 1 used throughout)

In eq (2) the minimum search is carried over all antisym-
metric wave functions yielding a given density F.4 The
universal functional F[F] of eq (2) is further divided into

where the noninteracting kinetic energy functional Ts[F] is
obtained by replacing V̂ee with zero in eq (2)
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E[F] ) F[F] + ∫ d3rF(r)Vext(r) (1)

F[F] ) min
ΨfF

〈Ψ|T̂ + V̂ee|Ψ〉 (2)

T̂ ) - 1
2∑i)1

N

∇i
2 (3)

V̂ee )
1
2 ∑i,j)1

N 1 - δij

|ri - rj|
(4)

F[F] ) Ts[F] + U[F] + Exc[F] (5)
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and the Hartree functional U[F] is the classical electrostatic
repulsion energy

The only quantity that needs to be approximated is the
functional for the exchange-correlation energy, Exc[F], de-
fined as the quantity needed to make eq (5) exact. The great
success of KS DFT in solid state physics stems from the
fact that even the simplest approximation for Exc[F], the local-
density approximation (LDA), already gives remarkable
results for basic properties of simple solids. A fundamental
step forward to improve the solid-state physics results, and
to spread the use of KS DFT into the quantum chemistry
world, has been the advent of generalized gradient ap-
proximations (GGA), which are, to a large amount, due to
the work of John P. Perdew and his co-workers.5-7

Despite its success in scientific areas now ranging from
material science to biology, KS-DFT is far from being
perfect, and a huge effort is put forth nowadays in trying to
improve the approximations for Exc[F] (for recent reviews
see, e.g., refs 8 and 9). The focus of a large part of the
scientific community working in this area has shifted from
seeking explicit functionals of the density (like the GGAs)
to implicit density functionals that construct the exchange-
correlation energy from the KS orbitals. For example,
predicted atomization energies of molecules have been
improved by meta-GGAs (MGGA)10,11 which make use of
the orbital kinetic energy density, by hybrid functionals (see,
e.g., refs 12 and 13) which mix a fraction of exact exchange
with GGA exchange and correlation, and by range-separated
hybrids, in which only long- or short-range exact exchange
is used (see, e.g., refs 14-18).

The next step19 toward higher accuracy could be fully
nonlocal functionals, which use 100% of exact exchange (for
a recent review, see ref 20). Despite several attempts and
the increasing understanding of the crucial problems,21 the
construction of a fully nonlocal correlation energy functional
compatible with exact exchange is still an issue. A possible
way to address this problem is to use the information
contained in the strong-interaction limit of DFT.22 To explain
this strategy, we have first to recall an exact formula23-25

for Exc[F]

The integrand Wλ[F] is given by

where Ψλ[F], for a given value of λg 0, is the wave function
that minimizes 〈Ψ|T̂ + λV̂ee|Ψ〉 and yields the density F. If
F is V-representable for all λ g 0, Ψλ[F] is the ground-state
of a fictitious N-electron system with the Hamiltonian

where the λ-dependent external potential

ensures that Ĥλ[F] have the same given (λ ) 1) ground-
state density F(r) for all λ. When λ ) 0, the Hamiltonian of
eq (10) becomes the KS Hamiltonian, and Vext

λ)0([F];r) )
VKS(r), the familiar KS potential, while for λ ) 1 we recover
the Hamiltonian of the physical system.

We can use perturbation theory to obtain an expansion of
Wλ[F] in powers of λ starting from λ ) 0

where Ex[F] is the exchange energy, and Ec
GL2[F] is the

second-order correlation energy in Görling-Levy26 perturba-
tion theory. However, like in the Møller-Plesset case,27 this
perturbation series expansion seems to have a finite radius
of convergence which for many atoms and molecules is less
than 1.22 Moreover, evaluating terms of ever higher order
becomes impracticably expensive. Nevertheless, the exact
lowest-order terms Ex[F] and Ec

GL2[F] can be used for an
alternative approach,22 called interaction-strength interpola-
tion (ISI), to approximate the integrand in eq (8). The basic
idea of ISI is to combine the λf0 limit of eq (12) with the
information from the opposite strong-interaction limit, λf∞,
to construct an interpolation formula for Wλ[F]. This way,
the information on the physical system at λ ) 1 is extracted
from an interpolation between λf0 and λf∞. ISI is based
on previous ideas and attempts to construct approximate
formulas for Wλ[F] when 0 e λ e 1.12,13,28,29 Its novelty is
the introduction of the strong-interaction limit, thus extending
the construction of Wλ[F] to the whole domain λ ∈ [0,∞].

In the strong-interaction limit, λf∞, we will show in the
next sections that Wλ[F] has the asymptotic expansion

where p g 5/4. The expansion (13) was justified from
physical arguments in refs 30 and 31, and a simple
approximation for the two functionals W∞[F] and W∞

′ [F], the
point-charge plus continuum (PC) model,32 has been used
for the ISI, yielding atomization energies with errors within
4.3 kcal/mol.22 In a recent paper,33 the functional W∞[F] of
eq (13) has been constructed exactly. The main object of
the present work is the extension of the systematic treatment
of ref 33 to the next term, W∞′ [F].

The paper is organized as follows. In the next section 2,
we briefly review the results of ref 33, recalling that the
strong-interaction limit of DFT reduces to a 3N-dimension
classical equilibrium problem whose minimum is degenerate
over a three-dimensional subspace. In sections 3 and 4 we
define local curvilinear coordinates based on the local normal
modes around the degenerate minimum. These local curvi-
linear coordinates will be used, in section 5, to expand the
Hamiltonian of eq (10) for λf∞, up to the order λ1/4. The
corresponding expansion of Ψλ[F] is carried out in section
6, and the exact expression for W∞′ [F] is obtained in section

Ts[F] ) min
ψfF

〈ψ|T̂|ψ〉 (6)

U[F] ) 1
2 ∫ d3r∫ d3r′F(r)F(r′)

|r - r′|
(7)

Exc[F] ) ∫0

1
dλWλ[F] (8)

Wλ[F] ) 〈Ψλ[F]|V̂ee|Ψλ[F]〉 - U[F] (9)

Ĥλ[F] ) T̂ + λV̂ee + V̂ ext
λ [F] (10)

V̂ext
λ [F] ) ∑

i)1

N

Vext
λ ([F];ri) (11)

Wλ[F] ) Ex[F] + 2λEc
GL2[F] + O(λ2) (12)

Wλ[F] ) W∞[F] +
W∞′ [F]

√λ
+ O(λ-p) (13)
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7, where we also report numerical results for small spherical
atoms, and we propose an improved PC functional for
W ∞′ [F]. In section 8 we revise the interpolation formula for
the ISI functional in order to satisfy the exact expansion of
eq (13) up to O(λ-1). The last section 9 is devoted to
conclusions and perspectives. More details of the derivation
of our expansion are given in Appendix A, and a fully
analytic example is reported in Appendix B.

2. Strictly Correlated Electrons (SCE)

In the λf∞ limit it has been shown30,33 that, in order to
keep the N electrons in the given density F, the external
potential in eq (10) must compensate the infinitely strong
interelectronic repulsion, thus becoming proportional to λ

with a smooth finite function VSCE([F], r). (For brevity, the
argument [F] will be often dropped in the following).

The leading term in eq (10) when λf∞ is then a purely
multiplicative potential-energy operator

The square |Ψλf∞[F]|2 of the corresponding wave function
is a distribution that is zero everywhere except for electronic
configurations for which V̂ee + V̂SCE has its global minimum.
In order to guarantee a given smooth density F(r) in such a
“classical” state, this global minimum must be degenerate
over a three-dimensional subspace of R3N33 (otherwise, the
density would be a sum of delta peaks centered in the
equilibrium positions of the N electrons). We call this
classical state with a smooth density “strictly correlated
electrons” (SCE). The square of the SCE wave function
|ΨSCE[F]|2 ) |limλf∞Ψλ[F]|2 reads

where f1,.., fN are “comotion functions”, with f1(r) ) r, and
P denotes a permutation of {1,... N}. This means that the N
points r1,..., rN in 3D space found upon simultaneous
measurement of the N electronic positions in the SCE state
always obey the N - 1 relations

If the N - 1 comotion functions fi(s) satisfy the differential
equation

together with special transformation properties33 (see also
ref 34), the SCE wave function of eq (16) yields the given
density F(r). One has then to find the initial conditions for
the integration of eq (18) that minimize the expectation of
V̂ee. The leading coefficient W∞[F] in eq (13) has a simple

analytic expression in terms of the fi(s) [see eq (80)] and
has been evaluated for spherical atoms with up to N ) 10
electrons.33

In order to treat the next leading term, W ∞′ [F] of eq (13),
we have to consider the next terms in the λf∞ expansion
of the Hamiltonian of eq (10), i.e., the kinetic energy T̂ and
the next orders of V̂ext

λ . Physically, we expect that W ∞′ [F] is
determined by zero-point oscillations around the degenerate
SCE minimum. In the following, we give a formal justifica-
tion to this physical argument.

3. The SCE Potential-Energy Minimum

Writing r ≡ (r1,..., rN) ∈ R3N ≡ Ω, we consider the
asymptotic potential-energy function (ΩfR)

As said, the SCE external potential VSCE(r) has the very
special property that the function Epot(r) has a degenerate
minimum ESCE on the 3D subset

where f(s) ) (s, f2(s),..., fN(s)), with the R3fR3 comotion
functions fi(s). In other words, for all r ∈ Ω0, the function
Epot(r) assumes the same constant value

which, in particular, is its global minimum within Ω. For
illustration, see the analytical example of eq (108) in
Appendix B.

In the very limit λf∞, when Ĥλ[F]fλEpot(r) + O($λ),
the square of the wave function |Ψλ[F]|2 becomes the
distribution |ΨSCE[F]|2 of eq (16), which is strictly zero
everywhere in Ω except for the 3D subset Ω0 where Epot(r)
is minimum33

For large, but finite λ . 1, the electrons are expected to
perform small zero-point oscillations about the SCE con-
figurations r ∈ Ω0, within a narrow 3N-D “envelope” Ωε

(with a small width ε > 0) of the 3D subset Ω0 ⊂ Ω

Here, for a given r ∈ Ω, the quantity

is the minimum 3N-D distance between r and any f(s) ∈
Ω0. Notice that Ω0 ⊂ Ωε ⊂ Ω and Ω0 ) limεf0Ωε.

For r ∈ Ωε, Epot(r) may be expanded about f(s) ∈ Ω0

lim
λf∞

Vext
λ ([F], r)

λ ) VSCE([F], r) (14)

Ĥλf∞[F] ) λ(V̂ee + V̂SCE) + O(√λ) (15)

|ΨSCE(r1, ..., rN)|2 ) 1
N!∑P ∫ ds

F(s)
N

δ(r1 - fP(1)(s))δ(r2 -

fP(2)(s))...δ(rN - fP(N)(s)) (16)

ri ) fi(r1) (i ) 2, ..., N) (17)

F(fi(r))d3fi(r) ) F(r)d3r (18)

Epot(r_) :) lim
λf∞

Ĥλ[F]

λ

) 1
2 ∑i,j)1

N 1 - δij

|ri - rj|
+ ∑

i)1

N

VSCE(ri)

) V̂ee + V̂SCE (19)

Ω0 ) {f_(s)|s ∈ R3} ⊂ Ω (20)

ESCE ) W∞[F] + U[F] + ∑
i)1

N

VSCE(fi(s)) (21)

ΨSCE([F], r_) ≡ 0 ∀r_ ∈ Ω\Ω0 (22)

Ωε ) {r_ ∈ Ω|d(r_, Ω0) < ε} (23)

d(r_, Ω0) :) min
s∈R3

|r_ - f_(s)| (24)
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Since Epot(r) is minimum at r ) f(s), there are no first-order
terms. [The dots represent the terms of third and higher
orders.] For any given s ∈ R3, the Hessian matrix Mµν(s) in
the second-order term has 3N non-negative eigenvalues
ωµ(s)2 which can be labeled such that

The corresponding 3N-D normalized eigenvectors eµ(s), with
components eσ

µ(s) (σ ) 1,..., 3N), are pairwise orthogonal

The first three eigenvectors, with zero eigenvalues, lie in the
space “tangential” to Ω0, and the remaining 3N - 3
eigenvectors are “orthogonal” to Ω0

where R ) 1, 2, 3 denotes the three Cartesian components
(x, y, z) of s.

4. Local Normal Modes

For sufficiently small ε > 0, we use these eigenvectors to
introduce a set of 3N curvilinear coordinates in Ωε. A given
point r ) (r11, r12, r13,..., rN1, rN2, rN3) ∈ Ωε is written in
terms of these local curvilinear coordinates as follows. The
first three curvilinear coordinates are the Cartesian coordi-
nates s1, s2, s3 of the minimizing vector s in eq (24), fixed
by the condition that the 3N-D vector r - f(s) in Ω is
orthogonal to Ω0 in the point f(s)

The remaining 3N - 3 coordinates are the projections q4,...,
q3N of r - f(s) onto the local eigenvectors e4(s),..., e3N(s)

The first three eigenvectors e1,2,3(s) are not needed, since they
are tangential to Ω0 at the point f(s) and therefore orthogonal
to r - f(s). Inverting eq (30) yields

For these new curvilinear coordinates, we also write

Notice that r has 3N components, while q has only 3N - 3
ones. In this notation, eq (30) reads

This is the transformation formula between the Cartesian
coordinates r and the “local normal modes” (s, q) in the 3N-D
configuration space Ω.

In terms of the qµ, the second-order contribution in the
Taylor expansion (25) becomes diagonal

Here, the third-order term is derived from the corresponding
term in eq (25) (in the present notation)

Using here eq (33) for rν - fν(s), we find

Substituting eq (33) for r in the wave function Ψλ(r) that
represents the state Ψλ[F] yields the transformed wave
function Ψ̃λ(s, q). While the original wave function obeys

the transformed one is normalized according to

where J(s, q) is the Jacobian associated with the coordinate
transformation (33), see eq (101) in Appendix A.

For sufficiently large λ . 1, the wave function Ψλ(s, q)
strongly suppresses all configurations r ∈ Ω except for the
ones inside the narrow envelope Ωε of the 3D subset Ω0.
This means that Ψ̃λ(s, q) is essentially different from zero
only for (q4

2 +... + q3N
2 )1/2 < ε, where ε decreases with

growing λ . 1 and goes to zero in the limit λf∞.
More precisely, since the quadratic term in eq (34) is

multiplied by λ in the Hamiltonian (10), the scale of the
quantum fluctuation is ε ∼ λ-1/4 ≡ R for λf∞. Therefore, it
will be useful to switch for a given value of λ . 1 from the
present curvilinear coordinates (s, q) to scaled coordinates
(s, u) where

This second transformation yields the wave function

According to eq (38), we now have

Epot(r_) ) ESCE + 1
2 ∑µ,ν)1

3N

Mµν(s)(rµ - fµ(s))(rν - fν(s)) + ...

(25)

ωµ(s)2 ) 0 (µ ) 1, 2, 3)

ωµ(s)2 > 0 (µ ) 4, ..., 3N) (26)

e_µ(s) · e_ν(s) ≡ ∑
σ)1

3N

eσ
µ(s)eσ

ν(s) ) δµν (27)

e_µ(s) ·
∂f_ (s)
∂sR

) 0 (µ ) 4, ..., 3N, R ) 1, 2, 3) (28)

(r_ - f_(s)) ·
∂f_ (s)
∂sR

) 0 (R ) 1, 2, 3) (29)

r_ - f_(s) ) ∑
µ)4

3N

qµe_µ(s) (30)

qµ ) e_µ · (r_ - f_(s)) (µ ) 4, ..., 3N) (31)

(s1, s2, s3, q4, ..., q3N) ) (s, q_) (32)

rν ) fν(s) + ∑
µ)4

3N

eν
µ(s)qµ (ν ) 1, ..., 3N) (33)

Ẽpot(s, q_) ) ESCE + 1
2∑µ)4

3N

ωµ(s)2qµ
2 +

1
3! ∑µ,ν,σ)4

3N

Eµνσ
(3) (s)qµqνqσ + ... (34)

1
3! ∑(,η,*)1

3N ∂3Epot(r_)

∂r(∂rη∂r*
|
r_)f_(s)

(r( - f((s))(rη - fη(s))(r* - f*(s))

(35)

Eµνσ
(3) (s) ) ∑

(,η,*)1

3N ∂3Epot(r_)

∂r(∂rη∂r*
|
r_)f_(s)

e(
µ(s)eη

ν(s)e*
σ(s) (36)

∫ d3r1...∫ d3rN|Ψλ(r_)|2≡∫ dr_|Ψλ(r_)|2 ) 1 (37)

∫ d3s∫ dq_J(s, q_)|Ψ̃λ(s, q_)|2 ) 1 (38)

u_ ) λ1/4q_ S q_ ) Ru_ (R ) λ-1/4) (39)

Ψ̄R(s, u_) ) Ψ̃λ(s,Ru_) (40)

∫ d3s∫ du_KR(s, u_)|Ψ̄R(s, u_)|2 ) 1 (41)
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with the scaled Jacobian

Later on, we shall make use of the expansion

whose derivation is reported in Appendix A.

5. Expansion of the Hamiltonian

To obtain an expansion for large λ . 1 (or, equivalently,
for small R ≡ λ-1/4 , 1), we must express the Hamiltonian
Ĥλ[F] of eq (10) in terms of the scaled coordinates (s, u). To
this end, we split Ĥλ[F] into three pieces

and treat these separately now.
5.1. Kinetic Energy (First Term). For the kinetic-energy

operator T̂, the 3N-D Laplacian is obtained in Appendix A
in terms of the curvilinear coordinates qµ from the general
transformation rule

(To simplify the notation, we write sµ ≡ qµ for µ ) 1, 2, 3
in this subsection.) Here, the matrix Gµν is the inverse of
the metric tensor Gµν, defined by

and G is its determinant, G ) det(Gµν). Switching in a second
step from the qµ to the scaled coordinates uµ yields the
expansion (see Appendix A)

The operators T̂(n) are independent of λ (or R ≡ λ-1/4)

where Xµ(s) is reported in Appendix A. Notice that the R2

term is constant, since R2$λ ) 1.
5.2. SCE Potential Energy (Second Term). For the

second term in eq (44), we use the Taylor expansion (34),
with qµ ) Ruµ, to find

5.3. The Remaining External Potential (Third
Term). For the last term in eq (44), we make an ansatz that
will later on turn out to be consistent

Using eq (30) for r and qµ ) Ruµ, we may expand

V(n)(r_) ≡ V(n)(f_(s) + R∑
µ)4

3N

e_µ(s)uµ)

) V(n)(f_(s)) + R∑
σ)1

3N

Vσ
(n)(f_(s))∑

µ)4

3N

eσ
µ(s)uµ +

+ R2

2 ∑σ,τ)1

3N

Vστ
(n)(f_(s)) ∑

µ,ν)4

3N

eσ
µ(s)eτ

ν(s)uµuν +

+ O(R3) (52)

Here, the coefficients Vσ
(n), Vστ

(n), etc. denote the partial
derivatives of V(n)(r) at r ) f(s)

Now, eq (51) yields the expansion

with R-independent (multiplicative) operators

5.4. Full Hamiltonian. Eventually, combining eqs (47),
(50), and (54), we obtain the expansion (recall that R ) λ-1/4)

with R-independent operators Ĥ(n). The first two terms read

KR(s, u_) ) R3N-3J(s,Ru_) (42)

J(s, q_) ) J(s, 0_) + ∑
µ)4

3N

Jµ
(1)(s)qµ + O(qν

2) (43)

Ĥλ[F] ) T̂ + λEpot(r_) + (V̂ ext
λ - λV̂SCE) (44)

∑
i)1

3

∇i
2 ≡ ∑

µ)1

3N
∂2

∂rµ
2
) ∑

µ,ν)1

3N
1
√G

∂

∂qµ
(√GGµν ∂

∂qν
) (45)

Gµν ) ∑
()1

3N ∂r(

∂qµ

∂r(

∂qν
≡

∂r_
∂qµ

· ∂r_
∂qν

(46)

T̂ ) √λ[T̂(0) + RT̂(1) + R2T̂(2) + O(R3)] (47)

T̂(0) ) -1
2 ∑µ)4

3N
∂2

∂uµ
2

(48)

T̂(1) ) -1
2 ∑µ)4

3N

Xµ(s) ∂

∂uµ
(49)

λEpot(r_) ) λ[ESCE + R2

2 ∑µ)4

3N

ωµ(s)2uµ
2 +

R3

3! ∑µ,ν,σ)4

3N

Eµνσ
(3) (s)uµuνuσ +

R4

4! ∑
µ,ν,σ,τ)4

3N

Eµνστ
(4) (s)uµuνuσuτ + O(R5)] (50)

V̂ext
λ - λV̂SCE ) √λ∑

n)0

∞

RnV(n)(r_) (51)

Vστ
(n)(f_(s)) ) ∂2V(n)(r_)

∂rσ∂rτ
|
r_)f_(s)

etc. (53)

V̂ext
λ - λV̂SCE ) √λ[V̂(0) + RV̂(1) + R2V̂(2) + O(R3)]

(54)

V̂(0) ) V(0)(f_(s)) (55)

V̂(1) ) V(1)(f_(s)) + ∑
σ)1

3N

Vσ
(0)(f_(s))∑

µ)4

3N

eσ
µ(s)uµ (56)

V(2) ) V(2)(f_(s)) + ∑
σ)1

3N

Vσ
(1)(f_(s))∑

µ)4

3N

eσ
µ(s)uµ +

+ 1
2 ∑σ,τ)1

3N

Vστ
(0)(f_(s)) ∑

µ,ν)4

3N

eσ
µ(s)eτ

ν(s)uµuν (57)

Ĥλ[F] ) λESCE + √λ[Ĥ(0) + RĤ(1) + R2Ĥ(2) + O(R3)]
(58)
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6. Expansion of the Ground State

Due to eq (58), the lowest eigenvalue Eλ[F] of Ĥλ[F] (i. e.,
its ground-state energy) has the expansion

We define ER′ [F] ) E(0) + RE(1) + R2E(2) + O(R3) as the
lowest eigenvalue of the operator

Since ESCE is a constant, Ĥλ[F] and ĤR′ [F], with R ) λ-1/4,
have the same ground state

For the R-dependent normalization constant

we obtain

when Ψ(0) is normalized according to

Collecting terms of equal orders O(Rn) in the eigenvalue
equation ĤR′[F]ΨR ) ER′[F]ΨR yields a hierarchy of equations.
The leading one is Ĥ(0)Ψ(0) ) E(0)Ψ(0), where Ĥ(0) is given
by eq (59). For a given fixed s ∈ R3, the Hamiltonian Ĥ(0)

describes an uncoupled set of 3N - 3 harmonic oscillators
in 1D. To be more precise, these oscillators are coupled via
the dynamical variable s, but the dynamics of s is much
slower, only appearing at orders O(λ0). Consequently, the
leading term in the wave function factorizes into a product
of Gaussians Φω(u) ) (ω/π)1/4e-ωu2/2, with
∫-∞
∞ du|Φω(u)|2 ) 1

Since V(0)(f(s)) is a pure multiplicative operator, the resulting
eigenvalue of Ĥ(0) is, for a given s

Due to eq (61), this expression cannot depend on the variable
s, implying a condition on the n ) 0 coefficient V(0)(r) in
our ansatz (51)

The role of the external potential at the order $λ in eq (10)
is thus to keep the degeneracy of the SCE minimum (found
at the order λ) through the order $λ. This is necessary in
order to keep the given smooth density F(r): if one of the
SCE configurations (i.e., a given particular s0) had a lower
energy than the others, the SCE wave function would
collapse in that particular s0, and the density would become
a sum of delta peaks centered in fi(s0) (with i ) 1,..., N).

The degeneracy with respect to s allows us to weight each
configuration with the density F(s) and to write

This expression for E(0) is consistent with the wave function
of eq (67), as we we will now discuss. In order to determine
the prefactor C(0)(s) of the wave function we observe that in
the wave function Ψ̃λ(s, q), the coordinate s ∈ R3 has the
probability distribution

where R ) λ-1/4. Using eqs (63) and (65), we find

In the limit λf∞ when Fλ(s) must become rigorously
proportional to the electron density F(s)

the terms O(R) in eq (72) can be dropped and eq (67) yields

Since Φω(u) is a normalized Gaussian, the µ-th factor of the
product in eq (74) approaches the δ-function δ(qµ) as λf∞.
Therefore, the right-hand side of eq (74) equals |C(0)(s)|2J(s,
0), implying the result

Ĥ(0) ) -1
2∑µ)4

3N
∂2

∂uµ
2
+ V(0)(f_(s)) + 1

2∑µ)4

3N

ωµ(s)2uµ
2 (59)

Ĥ(1) ) -1
2∑µ)4

3N

Xµ(s) ∂

∂uµ
+ V(1)(f_(s)) +

+ ∑
σ)1

3N

Vσ
(0)(f_(s))∑

µ)4

3N

eσ
µ(s)uµ +

+ 1
3! ∑µ,ν,σ)4

3N

Eµνσ
(3) (s)uµuνuσ (60)

Eλ[F] ) λESCE + √λ[E(0) + RE(1) + R2E(2) + O(R3)]
(61)

ĤR
′ [F] ) Ĥ(0) + RĤ(1) + R2Ĥ(2) + O(R3) (62)

Ψ̄R(s, u_) ) Ψ(0) + RΨ(1) + R2Ψ(2) + O(R3)

√NR

(63)

NR ) ∫ d3s∫ du_KR(s, u_)|Ψ(0)(s, u_) + O(R)|2 (64)

NR ) R3N-3[1 + O(R)] (65)

∫ d3s∫ du_J(s, 0_)|Ψ(0)(s, u_)|2 ) 1 (66)

Ψ(0)(s, u_) ) C(0)(s)∏
µ)4

3N

Φωµ(s)(uµ) (67)

E(0)(s) ) V(0)(f_(s)) + ∑
µ)4

3N ωµ(s)

2
(68)

V(0)(f_(s)) ) -∑
µ)4

3N ωµ(s)

2
+ const ∀s ∈ R3 (69)

E(0) ) ∫ d3s
F(s)
N [V(0)(f_(s)) + ∑

µ)4

3N ωµ(s)

2 ] (70)

Fλ(s) ) ∫ dq_J(s, q_)|Ψ̃λ(s, q_)|2

) ∫ dq_J(s, q_)|Ψ̄R(s, λ1/4q_)|2 (71)

Fλ(s) ) ∫ dq_J(s, q_)
|Ψ(0)(s, λ1/4q_)|2

R3N-3
[1 + O(R)] (72)

lim
λf∞

Fλ(s) ) F(s)
N

(73)

F(s)
N

) lim
λf∞

|C(0)(s)|2 ∫ dq_J(s, q) ×

∏
µ)4

3N

λ1/4|Φ"µ(s)(λ
1/4qµ)|2 (74)

|C (0)(s)|2 ) 1
N

F(s)
J(s, 0_)

(75)
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Notice that the uncoupled oscillator wave function of eq (67)
has the correct density to the order λ-1/2 targeted here.
Corrections to the density (and the coupling between the
oscillators) enter Wλ[F] at higher orders.

The next order in the perturbative treatment of the ground-
state energy of eq (62) leads to

The same argument used for eq (69) yields

independent of s. The important point here is that the terms
coming from T̂ and V̂ee in the Hamiltonian Ĥ(1) of eq (60)
have zero expectation on the ground-state of the harmonic
oscillator, so that there is no contribution to this order to the
large-λ expansion of Wλ[F]. As we shall see in the next
section 7, the order √λR ) λ1/4 in Eλ[F] of eq (61)
corresponds to the order λ-3/4 in the large-λ expansion of
Wλ[F].

Notice that, in our treatment of the strong-interaction limit
of DFT, we did not consider the effect on the energy of the
spin state or, more generally, of the statistics. This is because
the electrons are always localized in different regions of space
well separated from each other. The effect on the energy of
the spin state or of statistics in the λf∞ limit can be
estimated as being of the order O(e-λ1/4

), which is the order
of magnitude of the overlap between two different gaussians
of eq (67).

7. The Functional W∞′ [G]

From the expansion of Eλ[F] of the previous section 6, we
can easily compute Wλ[F] using the Hellmann-Feynmann
theorem

From section 6, we obtain, in the λf∞ limit

By differentiating both sides with respect to λ, from eq (78)
we obtain the expansion for Wλ[F] of eq (13) with

in agreement with the results of ref 33, and the exact
expression for the next leading term

This result generalizes (and proves) eq (35) of ref 30 for
spherical two-electron densities. As shown by eq (76), there
is no λ-3/4 term in Wλf∞[F]. There is also no term ∝ λ-1,

which would imply a term ∝ log(λ) in Eλ[F] and thus in the
kinetic energy 〈Ψλ|T̂|Ψλ〉. Such a term would violate the
known high-density scaling of 〈Ψλ|T̂|Ψλ〉

35 (see also the
erratum).36

As an example of application, we have computed W∞′ [F]
for the same set of spherical (or sphericalized) atomic
densities used in ref 33 to evaluate W∞[F]. For each point
(f1(s),..., fN(s)) on the degenerate SCE minimum constructed
in ref 33, we have evaluated the Hessian matrix, the
corresponding eigenvalues ωµ

2(s), and thus W∞′ [F] of eq (81).
In Table 1 we compare our results with the approximate PC
functional32

where C ) 1.535 and D ) -0.02558.
As explained in ref 33, the SCE minimum for spherical

densities is constructed from a set of radial comotion
functions and the angular minimization is done numerically.
When one of the electrons is close to the nucleus, the
numerical minimization displays instabilities in the smallest
(but nonzero) eigenvalues of the Hessian. However, as shown
by eq 81, such configurations are weighted by the density
(in the spherically symmetric case by 4πs2F(s)) so that the
error they introduce is relatively small. This error, however,
increases with the number of electrons. The number of digits
in our results of Table 1 is determined by this numerical
error. Notice, however, that Table 1 shows that the discrep-
ancy of the PC model with respect to our results is much
larger than our estimated numerical errors on the SCE values.

While the PC model for the coefficient W∞[F] makes errors
of the order of 60 mH,33 we see from Table 1 that the
functional W∞

′ [F] is much more seriously overestimated. We
can reduce these errors by recalling that in the PC model
for W∞

′ [F] the coefficient D of eq (82) was fixed by the
condition that the PC value for the He atom be equal to the
one obtained from the MGGA functional of ref 10. Now
that we have exact values, it seems natural to change D in
order to make the PC model equal to the SCE result for the
He atom. This gives D ) -0.028957. The values for the
other atoms obtained with the revised PC model are reported
in Table 2: we see that the error is now substantially reduced.

8. Revised ISI

In refs 22 and 32 an expression for Wλ[F] that interpolates
between the two limits of eqs (12) and (13) has been

E(1) ) 〈Ψ(0)|Ĥ(1)|Ψ(0)〉 ) V(1)(f_(s)) (76)

V(1)(f_(s)) ) const. (77)

Wλ[F] + U[F] )
∂Eλ[F]

∂λ - ∫ F(r)
∂Vext

λ (r)

∂λ d3r (78)

Eλ[F] - ∫ F(r)Vext
λ (r)d3r ) λ〈ΨSCE|V̂ee|ΨSCE〉 +

+ √λ∫ d3s
F(s)
N ∑

µ)4

3N ωµ(s)

2
+ O(λ0) (79)

W∞[F] ) ∫ d3s
F(s)
N ∑

i)1

N

∑
j>i

N
1

|fi(s) - fj(s)|
- U[F] (80)

W ∞
′ [F] ) 1

2 ∫ d3s
F(s)
N ∑

µ)4

3N ωµ(s)

2
(81)

Table 1. Comparison of the Values W ∞
′ [F] in Hartree

Atomic Units Obtained with the SCE Construction and with
the PC Model32a

SCE (H) PC (H) error (mH)

He 0.62084 0.729 108
Li 1.38 1.622 240
Be 2.59 2.928 334
B 4.2 4.702 502
C 6.3 7.089 840
Ne 22 24.423 2423

a The absolute errors of the PC model are also reported.

W∞
′PC[F] ) ∫ d3r[CF(r)3/2 + D

|∇F(r)|2

F(r)7/6 ] (82)
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proposed and tested using the PC approximation for the
functionals W ∞[F] and W∞

′ [F]. The interaction-strength
interpolation (ISI) formula for Wλ[F] of refs 22 and 32,
however, contains a spurious term ∝ λ-1 in its λf∞
expansion,32 which, as explained after eq (81), has the wrong
scaling behavior in the high-density limit. Here we propose
a revised ISI functional which does not have this problem.

Instead of modeling Wλ[F], we use the same ISI interpola-
tion formula of ref 22 directly for the integral Exc

λ [F]

satisfying the exact λf0 and λf∞ asymptotic behaviors

The four functionals a[F], b[F], c[F], and d[F] are determined
by imposing the λf0 expansion of eq (12) and the λf∞
expansion of eq (13), and they are thus determined by the
two weak-interaction limit functionals Ex[F] and Ec

GL2[F] and
the two strong-interaction limit functionals W∞[F] and W∞

′ [F]

The final formula for the revised ISI functional is obtained
by putting λ ) 1 in eq (84)

For the correlation energy of the neutral atoms considered
here, this revised ISI gives essentially the same results of
the original ISI of ref 22. This is probably due to the fact
that neutral atoms are much more similar to the λ ) 0 wave
function than to the infinitely strongly interacting system (for
an illustration from the pair-density point of view, see ref
37). We can expect to observe more sensitivity on how the
λf∞ limit is treated when studying more correlated systems,

like stretched bonds or low-density quantum dots. Such
studies will be the object of future work.

9. Conclusions and Perspectives

We have presented a systematic treatment of the strong-
interaction limit of density functional theory up to the second
leading term, describing zero-point oscillations of strictly
correlated electrons. We have evaluated numerically this
zero-point contribution for small atoms, and we have used
our results to improve a previous approximate functional for
this term. A new interpolation formula for the exchange-
correlation energy, satisfying more exact constraints, has been
proposed, and will be tested elsewhere.

Besides the possibility of constructing an interpolation
formula for Exc[F], the two functionals W∞[F] of ref 33 and
W∞

′ [F] evaluated in this work, are of valuable interest for
the development of Kohn-Sham DFT. They are an example
of exact implicit density functionals for systems in which
the electron-electron repulsion largely dominates over the
kinetic energy. They can be used to test properties of the
exact exchange-correlation functional like the Lieb-Oxford
bound38,39 and to test how approximate functionals perform
in this limit.40,41

Several issues still need to be addressed and will be the
object of future work. The main problem of the ISI functional
is the lack of size consistency. A possible remedy is to
perform the interpolation of eq (84) locally, using energy
densities all defined in the same gauge (this is, at least, the
standard way in which approximate DFT addresses size
consistency, even if it is not always a solution in the presence
of degeneracy).42,43 A first step in our future work, thus,
will be the analysis of exact energy densities for the
functionals W∞[F] and W∞′[F] (see also ref 37) and the
construction of corresponding approximations. Another
important problem is the development of a reliable algorithm
to solve the SCE problem for a given nonspherical density.
Other promising research lines are the study of the next
leading term, which is of purely kinetic origin, and the
construction of approximations to describe the effect of the
spin state on the energy.
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A. Transformation of the Laplacian

In order to write down the components of the metric tensor
Gik of our local curvilinear coordinate transformation, we
define the indices as follows: R, -, γ,.. denote the Cartesian
components 1, 2, 3 ≡ x, y, z of s, the indices µ, ν, σ, τ,...
denote the normal-mode components qµ, and the Latin indices
i, k,... denote general components, either R,.. or µ,.... We
then have to distinguish three blocks in the metric tensor
Gik: R-, µν, and Rµ

Table 2. Comparison of the Values W ∞
′ [F] in Hartree

Atomic Units Obtained with the SCE Construction and with
the Revised PC Model of Section 7a

SCE (H) revPC (H) error (mH)

Li 1.38 1.4066 26
Be 2.59 2.579 11
B 4.2 4.207 7
C 6.3 6.43 130
Ne 22 22.96 960

a The absolute errors of the revised PC model are also
reported.

Exc
λ [F] ) ∫0

λ
dλ′Wλ′[F] (83)

Exc
λ,revISI[F] ) a[F]λ + b[F]λ

√1 + c[F]λ + d[F]
(84)

a[F] ) W∞[F] (85)

b[F] ) -
8Ec

GL2[F]W∞
′ [F]2

(Ex[F] - W∞[F])2
(86)

c[F] )
16Ec

GL2[F]2W∞
′ [F]2

(Ex[F] - W∞[F])4
(87)

d[F] ) -1 -
8Ec

GL2[F]W∞
′ [F]2

(Ex[F] - W∞[F])3
(88)

Exc
revISI[F] ) a[F] + b[F]

√1 + c[F] + d[F]
(89)
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where in eq (90) we have defined the 3 × 3 metric tensor
gR-(s) which only concerns the coordinates s1, s2, and s3

When λf∞, our wave function is zero everywhere except
very close to Ω0, i.e., for very small qµ ∝ λ-1/4. Introducing
the scaled coordinates uµ ) λ1/4qµ, we see that the metric
tensor Gik has the λ-dependence

where ∆µ and Z µν are tensors of elements

and

and Gik
(0) has elements GR-

(0) ) gR- and Gµν
(0) ) δµν and all the

off-diagonal components equal to zero. In order to compute
the large-λ expansion of eq (45), we have to expand the

determinant G, and the components Gik of the inverse metric
tensor. Using standard formulas, we obtain

where g is the determinant of gR-, and gR- are the components
of its inverse. The tensor G-1 of components Gik has the
large-λ expansion, up to orders λ-1/2

Inserting these expansions into eq (45) we obtain eqs (48)
and (49) with

Finally, the Jacobian of our change of coordinates is simply
equal to $G of eq (101).

B. Analytic Example
As an illustration, we consider a system of two electrons

in 1D space (i.e., on the x-axis) with a given ground-state
density F(x)

In this case, eq (17) reads x2 ) f2(x1), with the single
comotion function f2(s) ≡ f(s) which, according to ref 33,
obeys the differential equation F(f(s))f ′(s) ) F(s). For the
Lorentzian density, f(s) is found analytically

In this case, the SCE external potential, fixed by the
conditions (d/dx)VSCE(x) ) sgn(x)|x - f(x)|-2 and VSCE(x)f0
for xf (∞, is given by

In terms of f(s) ≡ (s, f(s)), eq 20 now yields a 1D subset of
Ω ) R2

In the example (105), Ω0 is given by the two branches of
the hyperbola x2 ) f(x1) ≡ -1/x1 in the x1x2-plane Ω. In the
following, we focus on the branch Ω0

+ with x1 > 0 and x2 <
0, Ω0

+ ) {f(s)|s ∈ R+}.
The asymptotic potential-energy function, cf. eq (19)

assumes its highly degenerate minimum for all x ∈ Ω0.
Consequently, the first partial derivatives

G-γ ) g-γ(s) - 2∑
µ)4

3N

qµ

∂2f_ (s)

∂sγ∂s-
· e_µ(s) +

∑
µ,ν)4

3N ∂e_µ(s)

∂s-
·
∂e_ν(s)

∂sγ
qµqν (90)

G-ν ) ∑
µ)4

3N

qµ
∂e_µ(s)
∂s-

· e_ν(s) (91)

Gµν ) δµν (92)

gR-(s) )
∂f_(s)

∂sR
·
∂f_(s)

∂s-
(93)

Gik ) Gik
(0) + 1

λ1/4 ∑
µ)4

3N

uµ∆ik
µ + 1

λ1/2 ∑
µ,ν)4

3N

uµuν Z ik
µν (94)

∆γ-
µ ) -2

∂2f_ (s)

∂sγ∂s-
· e_µ(s) (95)

∆-ν
µ ) ∂e_µ(s)

∂s-
· e_ν(s) (96)

∆ντ
µ ) 0 (97)

Z -γ
µν ) ∂e_µ(s)

∂s-
· ∂e_ν(s)

∂sγ
(98)

Z -τ
µν ) 0 (99)

Z τσ
µν ) 0 (100)

√G ) √g(1 + 1
2λ1/4 ∑

µ)4

3N

uµ∑
R-

gR-∆R-
µ ) + O(λ-1/2)

(101)

G-1 ) G(0)-1
- 1

λ1/4 ∑
µ)4

3N

uµG(0)-1∆µG(0)-1
(102)

Xµ(s) ) 1
2∑R-

gR-(s)∆R-
µ (s) (103)

∫-∞

∞
dxF(x) ) 2 (104)

F(x) ) 2
π

1
1 + x2

⇒ f(s) ) -1
s

(105)

VSCE(x) ) |arctan(x) - x

1 + x2 | - π
2

(106)

Ω0 ) {f_(s)|s ∈ R} ⊂ Ω (107)

Epot(x_) ) 1
x1 - x2

+ VSCE(x1) + VSCE(x2) (108)
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are vanishing for x ) f(s) when the Hessian matrix of Epot(x)
becomes

It has the two eigenvalues

The corresponding normalized eigenvectors are

While e1(s) is tangential, e2(s) is orthogonal to Ω0
+ at f(s) ∈

Ω0
+ and generally given by

For a point x ) (x1, x2) ∈ Ωε, close to Ω0
+, the curvilinear

coordinates (s, q) are defined by eq (30)

where s is fixed by the condition that the vector e(s) in the
x1x2-plane is orthogonal to Ω0

+ at f(s) ∈ Ω0
+.

In terms of the partial derivatives of eq (114), the metric
tensor is given by the (2 × 2)-matrix

Using eqs (113) and (114), we obtain

and thus

where g(s, q) ) J(s, q)2, with the Jacobian

In the particular case of the density (105), we have

and the coefficients of eq (13) are given by
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(20) Kümmel, S.; Kronik, L. ReV. Mod. Phys. 2008, 80, 3.

(21) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.;
Scuseria, G. E.; Staroverov, V. N.; Tao, J. Phys. ReV. A 2007,
76, 040501.

∂Epot(x_)

∂x1
) - 1

(x1 - x2)
2
+

x1
2

(1 + x1
2)2

∂Epot(x_)

∂x2
) + 1

(x1 - x2)
2
-

x2
2

(1 + x2
2)2

(109)

M(s) ) 2s

(1 + s2)3( 1 -s2

-s2 s4 ) (110)

ω1(s)2 ) 0, ω2(s)2 ) 2s

(1 + s2)3
(1 + s4) > 0 (111)

e_1(s) ) 1

√1 + s4(s
2

1 ), e_2(s) ) 1

√1 + s4( 1

-s2 ) (112)

e_2(s) ) 1

√1 + f ′(s)
2(f

′(s)
-1 ) ≡ e_(s) (113)

x_ ) f_(s) + e_(s)q (114)

(Gµν) ) (∂x_
∂s

· ∂x_
∂s

∂x_
∂s

· ∂x_
∂q

∂x_
∂q

· ∂x_
∂s

∂x_
∂q

· ∂x_
∂q
) (115)

∂x_
∂s

) f ′_ (s) + qe′_(s)

) ( 1
f′(s) )[1 + q
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