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Abstract:

In population-based studies, heart failure with normal left ventricular (LV) ejection fraction (HFNEF) is now increasingly recog-

nized and referred to as diastolic heart failure. However, the pathogenic mechanisms underlying HFNEF are incompletely under-

stood, mainly because of limited availability of human myocardial biopsy material. Nevertheless, recent studies have examined in

vivo hemodynamics, in vitro cardiomyocyte function, myofilamentary protein composition, collagen content and deposition of ad-

vanced glycation end products from LV endomyocardial biopsies. These measures were compared between HFNEF patients, sub-

jects without symptoms of heart failure (controls), patients with heart failure and reduced ejection function (HFREF), and patients

with HFNEF and HFREF with diabetes mellitus. This article summarizes the various findings of these studies and focuses on the

possible correlations among altered LV myocardial structure, cardiomyocyte function, myofilamentary proteins, and extracellular

matrices. These findings revealed novel mechanisms responsible for diastolic LV dysfunction, and they have important therapeutic

implications, particularly HFNEF, for which a specific heart failure treatment strategy is largely lacking.
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Abbreviations: AGEs – advanced glycation end products,

CVF – collagen volume fraction, ECM – extracellular matrix,

HFNEF – heart failure with normal ejection fraction, HFREF –

heart failure with reduced ejection fraction, LVEF – left ven-

tricular ejection fraction, PKA – protein kinase A

Introduction

Heart failure with normal ejection fraction (HFNEF)

is currently diagnosed in approximately half of heart

failure patients [11]. The majority of HFNEF patients

are elderly women with a history of systolic hyperten-

sion, many with left ventricular (LV) hypertrophy,

obesity, and diabetes [10, 23, 30, 33]. Despite the in-

creased recognition of LV diastolic dysfunction and

HFNEF, the pathophysiology of this disease remains

controversial. Furthermore, evidence-based guidelines

for management of HFNEF are largely lacking [21].

Many basic questions remain unanswered on the me-

chanisms underlying LV diastolic dysfunction. Im-

paired LV relaxation [22], decreased LV distensibility,

increased LV end-diastolic stiffness [3, 45, 46], and

pericardial and right ventricular constraint [32, 34]

have all been implicated as contributing factors to LV
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diastolic dysfunction. However, the most probable

scenario is that diastolic dysfunction integrates abnor-

malities of the extracellular matrix (ECM), cardio-

myocytes and their myofilamentary proteins [20]

(Fig. 1B–D). Nevertheless, the relative contribution of

these factors to diastolic indices of LV function in

vivo (Fig. 1A) is obscure. Failure to resolve these con-

troversies mainly arises from the difficulties in ob-

taining human biopsy and/or necropsy materials [20,

37], which would allow clinical and hemodynamic

features to be correlated with cellular and molecular

myocardial properties. The relative involvement of

the aforementioned elements was recently examined

in in vitro studies using LV endomyocardial biopsies

of HFNEF patients. This review summarizes the dif-

ferences in LV myocardial structure and function and

recapitulates the suggested novel mechanisms respon-

sible for the abnormal diastolic LV function.

Clinical characteristics and in vivo

hemodynamics

As proposed in the consensus statement by the Heart

Failure and Echocardiography Associations of the

European Society of Cardiology, the diagnosis of

HFNEF requires the following conditions to be satis-

fied: 1) signs or symptoms of heart failure; 2) normal

or mildly abnormal systolic LV function; 3) evidence

of diastolic LV dysfunction [35]. Normal or mildly

abnormal systolic LV function implies both a left ven-

tricular ejection fraction (LVEF) of greater than 50%

and an LV end-diastolic volume index (LVEDVI) of

less than 97 mL/m2. Diagnostic evidence of diastolic

LV dysfunction can be obtained invasively (LV end-

diastolic pressure (LVEDP) > 16 mmHg or mean pul-

monary capillary wedge pressure > 12 mmHg) or
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Fig. 1. Determinants of HFNEF. (A) LV diastolic pressure-volume relation in HFNEF is shifted upward when measured in vivo, indicating an in-
crease in LVEDP. (B) The altered diastolic properties are coupled with changes in the ECM that surrounds each myocyte. Collagen can also be
post-translationally cross-linked and alter properties of the ECM by protein-glucose interaction (generation of AGEs). (C) At the level of the car-
diomyocyte, calcium handling and signaling proteins are particularly important. Changes in the expression of the Na+/Ca2+ exchanger (NCX),
Ca2+ uptake proteins (PLB, SERCA), sarcoplasmic reticular Ca2+ channel (RyR) and ion pumps (e.g., Na+/K+ ATPase, NKATP) and their post-
translation modifications by several protein kinases (PKA, PKC, PKG) can alter their activity. (D) At the level of the myofilaments, alterations in
proteins within the thick and thin filaments, myosin-binding protein C (MyBPC), and the giant cytoskeletal protein titin can lead to abnormal car-
diomyocyte stiffness and relaxation



non-invasively by tissue Doppler (TD) (E/E’ > 15).

The transvascular catheter technique used in our re-

cent studies [6, 39, 40] allowed us to assess hemody-

namic characteristics in each individual patient at the

time of cardiac catheterization and biopsy sample re-

trieval. Invasive measurements combined with echo-

cardiography revealed a significantly higher LV peak

systolic pressure (LVPSP), LVEDP, circumferential

LV end-diastolic wall stress (�) and radial myocardial

stiffness modulus (SM) in the HFNEF patient group

compared to similar measures in the control group

[6]. The increased LVEDP and � with comparable

LVEDVI indicated a reduced LV diastolic distensibil-

ity, and the increased SM suggested increased myo-

cardial stiffness in the HFNEF patient group. By com-

paring clinical characteristics of HFNEF patients with

HFREF patients, we found that more HFNEF patients

had a history of arterial hypertension and were obese

[39]. LVPSP, LVEF, cardiac index, deceleration time

and SM were all higher in HFNEF patients. In addi-

tion, we found that diabetic HFNEF and HFREF pa-

tients had reduced LV diastolic distensibility and

a higher SM compared to non-diabetic patients [40].

Moreover, LVMI was higher in HFREF and HFNEF

patients compared to the control population. The ele-

vated LVMI in HFREF patients was believed to be

a compensatory mechanism to preserve LV wall thick-

ness with the larger LVEDVI. However, in HFNEF

patients, the elevated LVMI resulted in significant in-

creases in LV wall thickness and LVMI/LVEDVI ra-

tio. These findings indicated that eccentric LV hyper-

trophy occurs in HFREF, while HFNEF could be

characterized by concentric LV hypertrophy.

Level of ECM: fibrosis and advanced

glycation end (AGE) product deposition

Diastolic properties are frequently linked to character-

istics of the ECM that surrounds each myocyte and

forms bundles among muscle fibers. Connective tis-

sue consists of perimysial fibers enveloping groups of

myocytes, smaller endomysial fibers supporting and

connecting individual cells, and endomysial weaves

enveloping individual myocytes [20]. Many studies

have suggested the importance of myocardial fibrosis

in diastolic dysfunction [25, 27]. Moreover, recent

studies have begun to target signaling factors for fi-

brosis [13, 24, 31] and correlate changes in colla-

gen/fibrosis with chamber stiffening. A direct link be-

tween fibrosis and stiffness may seem to be well es-

tablished, yet controversy exists. Not all quantitative

assessments of fibrosis in larger animal models of heart

failure and in humans have identified correlations be-

tween stiffness and collagen content. In our recent

studies, histological analysis of human endomyocar-

dial biopsies revealed higher collagen volume frac-

tions (CVF) in HFNEF patients than in controls [6].

HFNEF patients were equally distributed over low, in-

termediate and high CVF classes. In low and interme-

diate CVF classes, the elevated indices of diastolic

function (LVEDP, � and SM), despite low levels of

interstitial fibrosis, indicated that CVF is not the sole

contributor to diastolic LV dysfunction.

Increased diastolic LV stiffness is recognized as the

earliest manifestation of LV dysfunction induced by

diabetes mellitus, and it frequently becomes the main

functional deficit of the diabetic heart [12, 15, 19].

However, as shown in our comparative histological

study, the mechanisms underlying the increased dia-

stolic LV stiffness differ between HFREF and HFNEF

patients. Deposition of AGEs and collagen were

found to be important determinants of the increased

LV stiffness in diabetic patients with HFREF, whereas

high cardiomyocyte resting tension (Fpassive) was

likely responsible for the increased LV stiffness in

diabetic patients with HFNEF [40]. Deposition of

AGEs with concomitant protein/glucose interaction

results from long-standing hyperglycemia and affects

diastolic LV stiffness through direct and indirect

mechanisms [1, 20, 36]. AGE cross-linking of colla-

gen increases its tensile strength, and this altered bio-

physical property of collagen increases diastolic LV

stiffness. In addition, AGE deposition can indirectly

augment diastolic LV stiffness through enhanced col-

lagen formation and reduced nitric oxide bioavailabil-

ity. Indeed, enhanced collagen formation in the pres-

ence of AGEs was confirmed in our recent study [40],

and low myocardial nitric oxide bioavailability was

previously demonstrated in HFREF patients [4, 5].

Postmyocarditis patients with HFREF frequently

show signs of persistent myocardial microvascular in-

flammation [38]. This inflammation may facilitate

AGE deposition [4] and may explain the preferential

AGE deposition in small intramyocardial vessels of

diabetic patients with HFREF. The clinical impor-

tance of endothelial AGE deposition was recently

confirmed in hypertensive patients who showed im-
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proved endothelial function with a cross-link breaker

[43]. We observed higher CVF values in diabetic than

in non-diabetic HFREF patients [40]. Activation of fi-

broblasts in diabetic HFREF patients may also result

from the aforementioned AGE deposition, protein ki-

nase C activation, cyclooxygenase-2 up-regulation, or

high intracellular glucose concentrations [1, 3, 8].

Cardiomyocyte level: structural and

functional alterations

Increased cardiomyocyte diameter and Z-line

thickness in HFNEF

Basic studies have provided histological evidence of

cardiomyocyte hypertrophy in HFNEF [39, 40]. The

increased myocyte diameter (MyD) in HFNEF and

the marginally increased MyD in HFREF resemble

the previously reported cardiomyocyte remodeling in

concentric and eccentric LV hypertrophy [16]. In con-

centric LV hypertrophy, cardiomyocytes grow in a trans-

verse direction while maintaining a constant cell

length, whereas in eccentric hypertrophy, cardiomyo-

cytes grow proportionally in longitudinal and trans-

verse directions. This difference in cardiomyocyte re-

modeling correlates with distinct patterns of peptide

growth factor induction in both conditions [9]. As

shown in our studies, different correlation exists be-

tween cardiomyocyte hypertrophy and fibrosis in

HFREF and HFREF patients [39]. The increased

MyD in HFREF was accompanied by collagen depo-

sition. In HFNEF, collagen deposition was associated

with a similar further increase in MyD. For each level

of CVF, MyD in HFNEF patients exceeded MyD in

HFREF patients. This excess cardiomyocyte hyper-

trophy in HFNEF was likely related to a history of ar-

terial hypertension, which was present in 73% of the

HFNEF patients and only 13% of the HFREF pa-

tients.

Cardiac hypertrophy has also been reported in ex-

perimental models of diabetes mellitus and insulin re-

sistance [18]. However, we previously noted Z-line

widening in humans as well as an associated elevation

in Fpassive [40]. Therefore, we suggested that Z-line

widening is associated with alterations in the elastic

properties of cytoskeletal proteins, which pull at and

open up adjacent Z lines.

Increased cardiomyocyte stiffness in HFNEF

The relative importance of Fpassive for LV myocardial

stiffness was also determined [6, 39]. LV endomyo-

cardial catheter biopsies (5 mg wet weight) procured

from control subjects and patients with HFNEF were

used for isolation of single cardiomyocytes. The rest-

ing tension (Fpassive – tension determined in Ca2+-free

solution) of the cardiomyocytes was measured to de-

tect diastolic dysfunction at the level of cardiomyo-

cytes. When cardiomyocytes derived from HFNEF

patients were stretched to a sarcomere length of

2.2 �m, Fpassive was found to be twice as high as that

of control cardiomyocytes [6] (Fig. 2). Treatment with

protein kinase A (PKA) induced a significant drop in
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Fig. 2. Cardiomyocyte stiffening in HFNEF.
(A) Representative force recording during
contraction-relaxation cycle obtained in a
single cardiomyocyte during maximal ac-
tivation (pCa 4.5). (B) Fpassive determined
in Ca2+-free solution (pCa 9) was signifi-
cantly higher in HFNEF than in control car-
diomyocytes. In vitro administration of
PKA (dotted line) reduced the elevated
Fpassive of HFNEF cardiomyocytes to the
level observed in the control group (the
difference between Ftotal and Fpassive is the
Ca2+-activated force, see text and ref. 6
for more details)



Fpassive in cardiomyocytes from HFNEF patients,

whereas Fpassive in control cardiomyocytes was unal-

tered [6]. In a follow-up study, Fpassive of HFREF car-

diomyocytes was found to be significantly lower than

that of HFNEF cardiomyocytes; however, PKA had

a similar effect on Fpassive of HFREF cardiomyocytes

[39].

Changes in the myofilamentary protein compo-

sition and phosphorylation

During isolation of cardiomyocytes, endomysial col-

lagen structures are removed; therefore, a high Fpassive

in cardiomyocytes of HFNEF patients can only result

from increased stiffness of the cardiomyocytes them-

selves. Because cardiomyocytes were also incubated

in solution supplemented with Triton X-100, the in-

tegrity of sarcolemmal and sarcoplasmic membranes

was disrupted. Under these conditions, disturbed cal-

cium handling (because of modified expression and/or

phosphorylation of sarcoplasmic reticular Ca2+-ATP-

ase [44], phospholamban [17, 28], sarcoplasmic cal-

cium release channels [29] and sodium/calcium ex-

changers [41]) was also ruled out as a possible cause

of the observed elevation in Fpassive. Therefore, the in-

creased cardiomyocyte stiffness must be attributed to

alterations of myofilament or cytoskeletal proteins.

However, no differences were found between the

HFNEF and control groups in the expression of car-

diac sarcomeric proteins, such as myosin heavy chain,

actin, TnT, TnI, desmin and tropomyosin [6]. More-

over, degradation of several contractile proteins, in-

cluding TnI, was ruled out in both the control and

HFNEF groups by western immunoblot analysis.

Therefore, it was unlikely that a change in isoform

composition or protein degradation accounted for the

high Fpassive of cardiomyocytes observed in the

HFNEF group. However, the high Fpassive could result

from hypophosphorylation of the sarcomeric target

proteins of PKA, which include TnI, myosin binding

protein-C, and/or titin. Consistent with this proposal,

PKA-mediated phosphorylation of the elastic N2B

spring element of titin was shown to reduce diastolic

stiffness in isolated rat cardiomyocytes [42]. How-

ever, the ratio of dephosphorylated to total TnI did not

differ between the cardiac tissues of patients from

the control and the HFNEF groups [6], so the fall in

Fpassive induced by in vitro PKA exposure likely re-

sulted from the correction of a phosphorylation deficit

of myosin binding protein-C or titin.

Future studies are clearly required to identify the

hypophosphorylated myofilamentary protein(s) re-

sponsible for the high cardiomyocyte Fpassive in

HFNEF. These hypophosphorylated sarcomeric pro-

teins, together with ECM modifications, could then be

considered myocardial targets for drug therapy of

HFNEF. Whether other protein kinases (PKC, PKD or

PKG) are also able to reduce cardiomyocyte Fpassive in

HFNEF cardiomyocytes or not also remains to be de-

termined.

Correlations between in vivo and in vitro

data

The transvascular catheter techniques have allowed

for assessment of in vivo hemodynamic characteris-

tics and for correlation with functional parameters

measured in vitro [6]. When Fpassive values of control

and HFNEF cardiomyocytes were pooled, significant

correlations were found between Fpassive and indices

of diastolic LV dysfunction, such as LVEDP, SM and

�. The relations between Fpassive and indices of dia-

stolic LV function all leveled off at higher values of

LVEDP, �, and E. This could result from diuretic ther-

apy to compensate patients before catheterization or

from more intense interstitial fibrosis at severe dia-

stolic LV dysfunction. Endomyocardial biopsy sam-

ples from patients with HFNEF had higher CVF than

did controls, and in a bivariate linear regression

analysis, both Fpassive and CVF were significantly cor-

related with LVEDP and �. A predominant effect of

interstitial fibrosis upstream of diastolic LV dysfunc-

tion is consistent with previous experimental studies,

which showed diastolic muscle stiffness to originate

from structures within the sarcomere for sarcomere

lengths up to 2.2 �m [26] and from perimysial fibers

once filling pressures exceeded 30 mmHg [14].

Conclusions

Because HFNEF patients can have subtle abnormali-

ties of systolic LV function and HFREF patients can

have diastolic LV dysfunction, the clinical classifica-

tion of heart failure patients into HFNEF and HFREF
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phenotypes is challenging. Recent basic studies com-

pared human LV myocardium of HFNEF and HFREF

patients and revealed significant differences at the

structural and functional levels. Moreover, in the ab-

sence of coronary artery disease, the mechanisms re-

sponsible for the elevated diastolic LV stiffness also

differed between diabetic HFREF and HFNEF pa-

tients. The distinct structural and functional abnor-

malities support HFNEF and HFREF as separate heart

failure phenotypes. These mechanistic basic studies

suggest that the reduction of high cardiomyocyte rest-

ing tension could serve as a potential therapeutic tar-

get for HFNEF patients.
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