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Abstract. We define two transformations from term rewriting systems (TRSs) to context-
sensitive TRSs in such a way that termination of the target system implies outermost
termination of the original system. In the transformation based on ‘context extension’,
each outermost rewrite step is modeled by exactly one step in the transformed system.
This transformation turns out to be complete for the class of left-linear TRSs. The second
transformation is called ‘dynamic labeling’ and results in smaller sized context-sensitive
TRSs. Here each modeled step is adjoined with a small number of auxiliary steps.

As a result state-of-the-art termination methods for context-sensitive rewriting become
available for proving termination of outermost rewriting. Both transformations have been
implemented in Jambox, making it the most successful tool in the category of outermost
rewriting of the annual termination competition of 2008.

1. Introduction

Termination is a key aspect of program correctness, and therefore a widely studied
subject in term rewriting and program verification. While termination is undecidable in
general, various automated techniques have been developed for proving termination. One
of the most powerful techniques is the method of dependency pairs [AG00]. In [AGL06]
dependency pairs for context-sensitive rewriting have been introduced, and in [AEF+08] the
dependency pair framework [GTSK04, Thi07, GL10] has been extended to context-sensitive
rewriting, thereby extending the class of context-sensitive TRSs for which termination can
be shown automatically. Context-sensitive rewriting [Luc98] is a restriction on term rewrit-
ing where rewriting in some fixed arguments of function symbols is disallowed. It offers a
flexible paradigm to analyze properties of rewrite strategies, in particular of (lazy) evalua-
tion strategies employed by functional programming languages.

In this paper context-sensitive rewriting is the target formalism for a transformational
approach to the problem of outermost termination, that is, termination with respect to
outermost rewriting. Outermost rewriting is a rewriting strategy where a redex may be
contracted as long as it is not a proper subterm of another redex occurrence. The main
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reason for studying outermost termination is its practical relevance: lazy functional pro-
gramming languages like Miranda [Tur86], Haskell [PJ03] or Clean [PvE01], are based on
outermost rewriting as an evaluation strategy, and in implementations of rewrite logic such
as Maude [CELM96] and CafeOBJ [FN97], outermost rewriting is an optional strategy.

To illustrate outermost rewriting, and the transformations we propose, we consider the
term rewriting system R0 consisting of the following rules:

a → f(a) f(f(x)) → b (R0)

Clearly, this system is not terminating, as witnessed by the infinite rewrite sequence:

a → f(a) → f(f(a)) → f(f(f(a))) → . . .

However, R0 is outermost terminating. Indeed, the third step in the rewrite sequence above
is not an outermost step, since the contraction takes place inside another redex. The only
(maximal) outermost rewrite sequence the term a admits is:

a
out→ f(a) out→ f(f(a)) out→ b (1.1)

The contribution of the present paper consists of two transformations of arbitrary TRSs
into context-sensitive TRSs (henceforth also called ‘µTRSs’) in such a way that rewriting
in the µTRS corresponds to outermost rewriting in the original TRS. As a result, advanced
termination techniques for µTRSs become available for proving outermost termination.
Automated termination provers for µTRSs can directly (without modification, only prepro-
cessing) be used for proving outermost termination. One of the transformations turns out
to be complete for the class of quasi-left-linear TRSs, a generalized form of left-linear TRSs,
see [RZ09]. In other words, termination of the resulting µTRS is equivalent to outermost
termination of the original system.

The transformations are comprised of a variant of semantic labeling [Zan95]. In se-
mantic labeling the function symbols in a term are labeled by the interpretation of their
arguments (or a label depending on these values) according to some given semantics. We
employ semantic labeling to mark symbols at redex positions, and then obtain a µTRS by
defining a replacement map that disallows rewriting inside arguments of marked symbols.

We illustrate our use of semantic labeling by means of the TRS R0 given above. We
choose an algebra with values 0 and 1, indicating the presence of the symbol f:

A0 = 〈{0, 1}, J·K〉 JaK = JbK = 0 JfK(x) = 1 for x ∈ {0, 1} (A0)

We write f⋆, and say that ‘f is marked’, if the value of its argument is 1, and just f if the
value is 0. The symbol a is a redex, and hence it is always marked, while b never is. If
f is marked it corresponds to a redex position with respect to the rule f(f(x)) → b. For
example the term f(f(f(a))) is labeled as f⋆(f⋆(f(a⋆))). We obtain a µTRS by forbidding
rewriting inside the argument of the symbol f⋆. Since a⋆ is a constant, there is nothing
to be forbidden. Hence for correctly labeled terms, rewriting inside redex occurrences is
disallowed, and this corresponds to the strategy of outermost rewriting.

In order to rewrite labeled terms we have to label the rules of a TRS. Simply labeling
both sides of a rule does not always work. For example, when we label the rules of R0 using
the algebra A0, we obtain the following µTRS:

a⋆ → f(a⋆) f⋆(f(x)) → b f⋆(f⋆(x)) → b (R0)

This system has two instances of the second rule, one for each possible value assigned to
the variable x. Now, despite of the fact that the original TRS is outermost terminating,
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the labeled system R0 still admits an infinite rewrite sequence:

a⋆ →µ f(a⋆) →µ f(f(a⋆)) →µ f(f(f(a⋆))) →µ . . . (1.2)

The reason is that the term f(f(a⋆)) is not correctly labeled, as its root symbol f should have
been marked. In [Zan95] this problem is avoided by allowing labeling only with models.
Roughly speaking, an algebra is a model for a TRS R if left and right-hand sides of all
rewrite rules of R have equal interpretations. However, this requirement is too strict for
the purpose of marking redexes, because contraction of a redex at a position p may create
a redex above p in the term tree, as exemplified by (1.2). In fact, for R0 there exists no
model which is able to distinguish between redex and non-redex positions. Let us explain.
The rewrite step f(a) → f(f(a)) creates a redex at the top. The term f(a) is not a redex, and
therefore its root symbol f should not be marked. On the other hand f(f(a)) is a redex and
so the outermost f has to be marked. The change of the labeling of a context (here f(2))
implies that the interpretation of its arguments a and f(a) cannot be the same. Therefore
we cannot require the rule a → f(a) to preserve the interpretation.

To that end, we generalize this notion of model and relax the condition JℓK = JrK to:

∃n. JC[ℓ]K = JC[r]K for all contexts C of depth ≥ n (1.3)

Thus rules are allowed to change the interpretation as long as the effect is limited to contexts
of a bounded depth. We call this depth the C-depth of ℓ → r and denote it by δA(ℓ → r).
As it turns out, algebras satisfying this weaker requirement (1.3), are strong enough to
recognize redex positions. Such algebras we will call C-models.

The algebra A0 given above is a C-model for the TRS R0. As opposed to models, for
C-models it is no longer sufficient to simply label the rules. This is demonstrated by the
rewrite sequence (1.2) in the µTRS R0: an application of the rule a⋆ → f(a⋆) in the term
f(a⋆) creates the incorrectly labeled term f(f(a⋆)).

Therefore, in order to preserve correct labeling, labels in the context of the original
rewrite step sometimes have to be updated. We present two solutions to this problem: the
transformation of context extension and the transformation of dynamic labeling.

In the transformation based on context extension [EH09], worked out in Section 5, the
update of semantic labels is established by prefixing appropriate contexts to both sides of a
rewrite rule. The depth of these contexts is bounded by the C-depth of the rule. Thus, the
update of the labels is coded within the context, and no additional rewrite steps are needed.
As a result of that, every outermost rewrite step in the original system is modeled by exactly
one rewrite step in the transformed µTRS. A disadvantage of the transformation, however,
is that the resulting µTRS can have a large number of rules arising from the prepending of
contexts in combination with semantic labeling.

An alternative solution (and new with respect to [EH09]) is dynamic labeling, described
in Section 6: instead of extending rules with contexts we now use rewriting to propagate
the changed information upward in the term tree. With respect to context extension, this
approach results in a smaller number of rules of the transformed system. On the other hand,
the property of the context extension of a one–to–one correspondence of the rewrite steps,
is now weakened to a one–to–m correspondence where m ≤ 1 + δA(ℓ → r). This means
that an outermost rewrite step is modeled by one step in the transformed system plus a
number of auxiliary steps necessary for updating the labels, and this number is bounded by
the C-depth of the corresponding rule. In most practical cases this value is typically small
(≤ 2). This is shown in Section 10 where we evaluate the implemented transformations.
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We illustrate the two transformations by means of our running example, the TRS R0

together with the algebra A0 which forms a C-model for R0. The algorithm based on
context extension transforms R0 into the following µTRS △πR0, which truthfully simulates
outermost rewriting in R0:

f(a⋆) → f⋆(f(a⋆)) top(f⋆(f(x))) → top(b)

top(a⋆) → top(f(a⋆)) top(f⋆(f⋆(x))) → top(b)
(△πR0)

The rule f(a⋆) → f⋆(f(a⋆)) is obtained from prepending the context f(2) to a → f(a). This
enables correct updating of the labeling of the context during rewriting. Because we still
have to allow rewrite steps a → f(a) of the original TRS at the top of a term, we extend
the signature with a unary function symbol top which represents the top of a term. Thus
when prepending contexts we include top(2), giving rise to the rule top(a⋆) → top(f(a⋆)).
The necessity of the symbol top becomes apparent especially when we consider the rule
f(f(x)) → b. Here prepending the context f(2) is not even an option since f(f(f(x))) → f(b)
is not an outermost rewrite step; this rule can only be applied at the top of a term. Hence
we get the two rules displayed on the right, one for each possible interpretation of the
variable x.

The second algorithm we define, that of dynamic labeling, transforms R0 (using A0)
into the following µTRS , which we denote by ↑πR0 :

a⋆ → relabel0,1(f(a⋆)) f(relabel0,1(x)) → f⋆(x)

f⋆(f(x)) → relabel1,0(b) top(relabel0,1(x)) → top(x) (↑πR0)

f⋆(f⋆(x)) → relabel1,0(b) top(relabel1,0(x)) → top(x)

where rewriting beneath the redex symbol f⋆ and the symbols relabel0,1 and relabel1,0 is
disallowed. Displayed on the left, we recognize the original rules. Since left and right-
hand side of the original rule a → f(a) have distinct interpretations (0 and 1), in ↑πR0 the
right-hand side is prefixed with the symbol relabel0,1. By application of the relabeling rules
(displayed on the right), this symbol moves upward to take care of the update of labels
in the context of the original rule application. Likewise, the rule f(f(x)) → b (of which
there are two versions in ↑πR0, one for each value x can be assigned to) means a change of
interpretation, and relabeling the context is necessary. In this example, each original step is
accompanied by exactly one relabel step. The relabel symbols dissolve after one such step.
The only (maximal) rewrite sequence from the term top(a⋆) in ↑πR0 is:

top(a⋆) →µ top(relabel0,1(f(a⋆))) →µ top(f(a⋆)) →µ top(f(relabel0,1(f(a⋆))))

→µ top(f⋆(f(a⋆))) →µ top(relabel1,0(b)) →µ top(b)

Notice the correspondence with the outermost rewrite sequence (1.1).
Clearly, semantic labeling increases the number of rules and the number of symbols

of a TRS. This results in a larger search space for finding termination proofs, and hence
may lead to exhaustion of time or memory resources. On the other hand, one can say that
semantic labeling does not complicate termination proofs, in the sense that proofs for the
unlabeled system carry over to the labeled one: whenever R′ is a labeling of a TRS R and
A = 〈A, J·K,≻,⊒〉 is a monotone Σ-algebra [EWZ08] which proves termination of R, then
the extension of J·K to the labeled signature Σ′ by defining JfλK = JfK for every f ∈ Σ and
label λ, yields a monotone Σ′-algebra witnessing termination of R′. Apart from this, the
labeled systems often allow for simpler proofs, because the enriched signature provides for
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more freedom in the choice of interpretations, see [Zan95]. As the transformations presented
here are based on a variant of semantic labeling, they inherit these properties from semantic
labeling.

The two transformations have been implemented by the first author in the termina-
tion prover Jambox [End09]. Notwithstanding the increased number of rules by semantic
labeling and context extension, Jambox performs efficiently on the set of examples from the
Termination Problem Database (TPDB [Ter08]), and was best in proving termination in
the category of outermost rewriting of the termination competition of 2008 [Ter08], see
Section 10.

Related work. The first tool for proving outermost termination was Cariboo [FGK02,
GK09]. Cariboo is a stand-alone tool, and its method is based on induction.

For the idea of a transformational approach to outermost termination in order to make
use of the power of termination provers we were inspired by [RZ09], which in turn is based on
ideas in [GM04]. In [RZ09] the signature is enriched with unary symbols top, up, and down

and the TRS is extended with ‘anti-matching’ rules such that down(t) is a redex if and only if
t is not a redex with respect to the original TRS. The idea is that the symbol down is moved
down in the term tree as long as no redex is encountered. Once a redex is encountered,
a rewrite step is performed, and the symbol down is replaced by up, which then moves
upwards again to the top of the term, marked by top. This transformation is implemented
in the tool TrafO [RZ09], participant in the termination competion of 2008 [Ter08].

Based on a similarly elegant idea, Thiemann [Thi09] defines a complete transformation
from outermost to innermost rewriting, which is implemented in AProVE. For traversal to the
redex positions, rules of the form down(isRedex(f(. . .))) → f(. . . , down(isRedex(. . .)), . . .) are
used. In order to simulate outermost rewriting and to prevent from moving inside redexes,
rules isRedex(ℓ) → up(r) are added for every rule ℓ → r of the original TRS. Then, by the
innermost rewriting strategy, the latter rules have priority over the traversal rules, whenever
an original redex is encountered.

The simplicity of both approaches is attractive, but the yo-yoing effect in the resulting
TRSs makes that the original outermost rewrite steps are ‘hidden’ among a vast amount
of auxiliary steps. This increases derivational complexity, and makes it hard for automated
termination provers to find proofs for the transformed systems.

The present paper is a modified and extended version of [EH09]. In particular, we
introduce a novel approach for proving outermost termination: dynamic labeling (Section 6).
We stress that the number of extra relabeling steps introduced in the dynamic labeling of
a system is typically small and bounded by the C-depth of the applied rewrite rule.

2. Preliminaries

For a general introduction to term rewriting and to context-sensitive rewriting, we refer
to [Ter03] and [Luc98], respectively. Here we repeat some of the main definitions, for the
sake of completeness, and to fix notations.

A signature Σ is a non-empty set of symbols each having a fixed arity, given by a
mapping ♯ : Σ → N. We write ♯f for the arity of f ∈ Σ, and we define Σn = {f ∈ Σ | ♯f = n}.
Given Σ and a set X of variables, the set T (Σ,X ) of terms over Σ is the smallest set
satisfying: X ⊆ T (Σ,X ), and f(t1, . . . , tn) ∈ T (Σ,X ) if f ∈ Σ of arity n and ti ∈ T (Σ,X )



6 J. ENDRULLIS AND D. HENDRIKS

for all 1 ≤ i ≤ n. We use x, y, z, . . . to range over variables, and write Var(t) for the set of
variables occurring in a term t.

The set of positions Pos(t) ⊆ N∗ of a term t ∈ T (Σ,X ) is defined as follows: Pos(x) =
{ǫ} for variables x ∈ X and Pos(f(t1, . . . , tn)) = {ǫ} ∪ {ip | 1 ≤ i ≤ n, p ∈ Pos(ti)} for
symbols f ∈ Σn. We write root (t) to denote the root symbol (or variable) of t, and t|p for
the subterm of t rooted at position p. Then root (t|p) is the symbol at position p in t.

A substitution σ is a map σ : X → T (Σ,X ) from variables to terms. For terms
t ∈ T (Σ,X ) and substitutions σ, tσ is inductively defined by xσ = σ(x) for x ∈ X , and
f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for f ∈ Σn, and t1, . . . , tn ∈ T (Σ,X ).

Let 2 be a fresh symbol, i.e., 2 6∈ Σ ∪ X . A context C is a term from T (Σ,X ∪ {2})
containing precisely one occurrence of 2. By C[s] we denote the term Cσ where σ(2) = s

and σ(x) = x for all x ∈ X . We use C(Σ,X ) to denote the set of contexts over Σ and X .
We write Var(C) with C ∈ C(Σ,X ) to denote the set of variables of C excluding 2. The
depth of a context C is defined as the length |p| of the position p at which 2 resides, that
is, the position p such that root (C|p) = 2.

A term rewriting system (TRS) over Σ is a finite set of pairs 〈ℓ, r〉 ∈ T (Σ,X )×T (Σ,X ),
called rewrite rules and written as ℓ → r, for which the left-hand side ℓ is not a variable
(ℓ 6∈ X ) and all variables in the right-hand side r occur in ℓ: Var(r) ⊆ Var(ℓ). For a TRS R

we define →R, the rewrite relation induced by R as follows: For terms s, t ∈ T (Σ,X ) we
write s →R t, or just s → t if R is clear from the context, if there exists a rule ℓ → r ∈ R, a
substitution σ and a context C ∈ C(Σ,X ) such that s = C[ℓσ] and t = C[rσ]; we sometimes
write s →R,p r to explicitly indicate the rewrite position p, i.e., when root(C|p) = 2. A
term of the form ℓσ, for some rule ℓ → r ∈ R, and a substitution σ, is called a redex.

For terms s and t, we say that s outermost rewrites to t at a position p ∈ Pos(s),
denoted by s

out→R,p t, if s →R,p t and for all positions p′ strictly above p (i.e., p′ a proper
prefix of p) we have that s|p′ is not a redex with respect to R.

A binary relation ≻ ⊆ A×A over a set A is called well-founded if no infinite decreasing
sequence a1 ≻ a2 ≻ a3 ≻ . . . exists. A TRS R is called terminating or strongly normalizing,
denoted by SN(R), if →R is well-founded.

A mapping µ : Σ → 2N is called a replacement map (for Σ) if for all symbols f ∈ Σ
we have µ(f) ⊆ {1, . . . , ♯f}. When we define a replacement map µ, the case for constants
a ∈ Σ is left implicit, as we always have µ(a) = ∅. A context-sensitive term rewriting
system (µTRS) is a pair 〈R,µ〉 consisting of a TRS R and a replacement map µ. The
set of µ-replacing positions Posµ(t) of a term t ∈ T (Σ,X ) is defined by Posµ(x) = {ǫ}
for x ∈ X and Posµ(f(t1, . . . , tn)) = {ǫ} ∪ {ip | i ∈ µ(f), p ∈ Posµ(ti)} for f ∈ Σn and
t1, . . . , tn ∈ T (Σ,X ).

In context-sensitive term rewriting only redexes at µ-replacing positions are contracted:
we say s µ-rewrites to t, and denote it by s →R,µ t whenever s →R,p t with p ∈ Posµ(s).
For instance, consider the system R consisting of the single rule:

a → cons(b, a)

and let µ be given by µ(cons) = {1}. Then, obviously R is non-terminating. On the other
hand, the context-sensitive TRS 〈R,µ〉 is terminating, because the replacement map of the
symbol cons allows rewriting only in its first argument.

We conclude this section by defining some non-standard notions.

Definition 2.1. A thin context is a context that has at every depth at most one symbol
from Σ ∪ {2}; all other symbols are variables.
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Example 2.2. f(f(x, g(2)), y) is a thin context, whereas f(g(2), h(x)) is not, since g and h

are at the same depth.

Definition 2.3 ([SM08]). A flat context is a context C ∈ C(Σ,X ) of the form:

C = f(x1, . . . , xj−1,2, xj+1, . . . , xn)

where f ∈ Σn with n > 0 and x1, x2, . . . ∈ X are pairwise distinct variables. For a term
t ∈ T (Σ,X ) we say that C is fresh for t if Var (C) ∩ Var(t) = ∅. We denote the set of flat

contexts fresh for t by C♭
t (Σ,X ).

Definition 2.4 ([RZ09]). A TRS R is called quasi-left-linear if every non-linear left-hand
side of a rule in R is an instance of a linear left-hand side from R.

Example 2.5. The following TRS is quasi-left-linear (and outermost terminating):

g(f(x), x) → g(g(x, x), x) g(x, y) → y

3. Generalizing Models to C-models

In outermost rewriting the only redexes which are allowed to be rewritten are those
which are not nested within any other redex occurrence. We model this strategy by context-
sensitive rewriting with the use of semantic labeling: we mark the symbols which are the
root of a redex in order to disallow rewriting within that redex. We first recall the definition
of semantic labeling and of models from [Zan95], and then generalize these to fit our purpose.

Definition 3.1. A Σ-algebra A = 〈A, J·K〉 consists of a non-empty set A, called the domain
of A, and for each n-ary symbol f ∈ Σ a function JfK : An → A, called the interpretation
of f. Given an assignment α : X → A of the variables to A, the interpretation of a term
t ∈ T (Σ,X ) with respect to α is denoted by Jt, αK and inductively defined by:

Jx, αK = α(x) Jf(t1, . . . , tn), αK = JfK(Jt1, αK, . . . , Jtn, αK)

where x ∈ X , f ∈ Σn, and ti ∈ T (Σ,X ) for 1 ≤ i ≤ n. For substitutions σ : X → T (Σ,X ),
we write Jσ, αK for the function λx.Jσ(x), αK. For ground terms t ∈ T (Σ,∅) and ground
substitutions σ : X → T (Σ,∅) we write JtK and JσK for short. We usually write A for both
the algebra and its domain, and we use J·K to denote the interpretation function of A.

Lemma 3.2. Let A be a Σ-algebra, α : X → A an assignment, and σ : X → T (Σ,X ) a
substitution. Then, for all terms t ∈ T (Σ,X ): Jtσ, αK = Jt, Jσ, αKK .

For completeness of the transformation of context extension (Theorem 5.13), it is im-
portant that there exist no ‘junk’ elements in the Σ-algebra, that is, elements a for which
there are no ground terms t such that JtK = a. See Example 5.14. For that reason we
restrict Σ-algebras to ‘core’ Σ-algebras whose domain equals the set of all interpretations
of ground terms over Σ.

Definition 3.3. The core of a Σ-algebra A is the Σ-algebra Ac = 〈Ac, J·Kc〉 where Ac is the
least set such that JfK(a1, . . . , an) ∈ Ac whenever f ∈ Σn and a1, . . . , an ∈ Ac, and where
J·Kc is the restriction of J·K to Ac. We say that A is core whenever A = Ac.

By construction of the core of a Σ-algebra we then obtain:

Lemma 3.4. For every element a ∈ Ac of the core of a Σ-algebra A there exists a ground
term t ∈ T (Σ,∅) with JtK = a.
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Definition 3.5 ([Zan95]). A semantic labeling 〈A, π〉 consists of a Σ-algebra A and a family
π = {πf}f∈Σ of labeling functions πf : A

♯f → Λf where Λf is a finite and non-empty set of
labels for each symbol f ∈ Σ. For a term t ∈ T (Σ,X ) and an assignment α : X → A, we
define lab(t, α), the labeling of t with respect to α, inductively as follows:

lab(x, α) = x

lab(f(t1, . . . , tn), α) = fλ(lab(t1, α), . . . , lab(tn, α))

where x ∈ X , f ∈ Σn, t1, . . . , tn ∈ T (Σ,X ) and λ = πf(Jt1, αK, . . . , Jtn, αK).
Let R be a TRS over Σ. The semantic labeling of R is the TRS lab(R) over the labeled

signature lab(Σ) = {fλ | f ∈ Σ, λ ∈ Λf}, defined by:

lab(R) = {lab(ℓ, α) → lab(r, α) | ℓ → r ∈ R , α : Var(ℓ) → A}

For a substitution σ : X → T (Σ,X ), and an assignment α : X → A, we write lab(σ, α)
for the function λx.lab(σ(x), α). For ground terms t ∈ T (Σ,∅) and ground substitutions
σ : X → T (Σ,∅) we write lab(t) and lab(σ) for short.

Term labeling satisfies the following useful property:

Lemma 3.6 ([Zan95]). Let A be a Σ-algebra, let α : X → A be an assignment, and let
σ : X → T (Σ,X ) be a substitution. Then, for all terms t ∈ T (Σ,X ) it holds that:

lab(tσ, α) = lab(t, Jσ, αK) lab(σ, α)

Proof. Direct by induction on the term structure, and Lemma 3.2.

The Σ-algebra of a semantic labeling has to satisfy certain constraints in order to obtain
that a TRS is terminating if and only if its labeled version is. In [Zan95] the algebra has to
be a ‘model’:

Definition 3.7. A Σ-algebra A is called a model for a TRS R if for all rules ℓ → r ∈ R and
assignments of variables in the left-hand side α : Var(ℓ) → A we have that Jℓ, αK = Jr, αK.

In the introduction we argued why this notion of model is too restrictive for the purpose
at hand. In order to be able to distinguish between redex and non-redex positions we
introduce C-models, a generalization of models.

Definition 3.8. A C-model for a TRS R over Σ is a Σ-algebra A where for each rule
ℓ → r ∈ R there exists an n ∈ N such that for each context C of depth n and assignment
α : X → A we have JC[ℓ], αK = JC[r], αK. When n ∈ N is minimal for a rule ℓ → r with
respect to this property, we call n the C-depth for ℓ → r, and denote it by δA(ℓ → r). The
C-depth for R with respect to A, denoted by δA(R), is defined as the maximal C-depth of
the rules of R: δA(R) = max {δA(ℓ → r) | ℓ → r ∈ R}.

Example 3.9. Let R1 be the following TRS over Σ = {c, f, g} (where c is a constant):

f(g(x)) → f(f(g(x))) f(f(f(x))) → x (R1)

The algebra A1 = {⊥, f,ff , g} with the interpretation function defined, for all x ∈ A1, by:

JcK = ⊥ JfK(⊥) = JfK(g) = f JfK(f) = JfK(ff ) = ff JgK(x) = g (A1)

forms a C-model for R1. The C-depth of the rule f(g(x)) → f(f(g(x))) is 1; both contexts
f(2) and g(2) make that left and right-hand side of the rule have equal interpretations,
respectively ff and g, regardless of the value we assign to the variable x. For the other rule
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the C-depth is 2: If the interpretation of x is ⊥ or g then f(2) is not yet enough to interpret
both sides by the same element of the algebra; an additional context f(2) or g(2) has to
be wrapped around. Thus the C-depth of the TRS is δA1

(R1) = 2.

We now define semantic labelings based on C-models, to which we refer as ‘C-labelings’.
We define a C-labeling over an extended signature Σtop = Σ ∪ {top}. The symbol top
represents the top of a term, and we assume top to be fresh for Σ, i.e., top 6∈ Σ. Moreover, a
C-labeling includes a set Σred ⊆ lab(Σ) of ‘redex symbols’, the set of symbols below which
rewriting should be forbidden. For example, for a sound transformation from outermost to
context-sensitive rewriting it has to be guaranteed that in a well-labeled term the symbols
from Σred occur at redex positions only.

Definition 3.10. Let R be a TRS over Σ. A C-labeling for R is a tuple 〈A, π,Σred 〉 where
A is a C-model for R, 〈A, π〉 is a semantic labeling over the signature Σtop = Σ ∪ {top},

and Σred ⊆ lab(Σ) is a subset of the labeled signature. We fix the interpretation JtopK of
top to be an arbitrary constant function λx.a for some a ∈ A.

A C-labeling 〈A, π,Σred 〉 for R is called:

(i) sound if root (lab(t)) ∈ Σred implies that t is a redex with respect to R, for all ground
terms t ∈ T (Σ,∅);

(ii) complete if root(lab(t)) ∈ Σred whenever t is a redex with respect to R, for all ground
terms t ∈ T (Σ,∅);

(iii) maximal if πf(a1, . . . , an) = 〈a1, . . . , an〉, for all symbols f ∈ Σn and all values
a1, . . . , an ∈ A ;

(iv) core if the Σ-algebra A is core.

Remark 3.11. From Definition 3.10 it follows that a C-labeling 〈A, π,Σred 〉 for R is:

− sound if and only if root (lab(t)|p) ∈ Σred implies that t|p is a redex with respect to R,
for all ground terms t ∈ T (Σ,∅) and all positions p ∈ Pos(t), and

− complete if and only if root (lab(t)|p) ∈ Σred whenever t|p is a redex with respect to R,
for all ground terms t ∈ T (Σ,∅) and all positions p ∈ Pos(t).

Example 3.12. We continue with Example 3.9 where we defined a C-model A1 for the
TRS R1. We let 〈A1, π〉 be the semantic labeling where π labels each symbol with the
interpretation of its arguments. The set of redex symbols is defined by Σred = {fg, fff }.
These symbols correspond to redex positions with respect to the first and the second rule
of R1. Then 〈A1, π,Σ

red 〉 forms a sound, complete, maximal, core C-labeling for R1.

We explain why we fix the interpretation JtopK to be a constant function. First note
that if JtopK is a constant function, then the extension of the signature with top does not
interfere with the property of A being a C-model for R. Second, the transformation given in
Section 5 extends the rules with contexts until the interpretations of the left and right-hand
side are equal. If JtopK is constant, then the extension halts at the symbol top, that is, no
further contexts are prefixed to top. This corresponds to the intuition of top representing
the top of the term. Moreover, it is not important which constant function λx.a we choose
for JtopK: as no symbols will be prefixed to top, no symbol will be labeled with its value.

Remark 3.13. The transformations defined in Sections 5 and 6 are sound whenever we use
a sound C-labeling. This means that termination of the target system implies outermost
termination of the original system. On the other hand, using a complete C-labeling does
not guarantee completeness of either transformations. More precisely, using a complete
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C-labeling does not imply that the transformed system is terminating whenever the origi-
nal system is outermost terminating. A complete C-labeling guarantees that in a correctly
labeled term all redex positions are marked, so that only outermost steps are possible. But,
for the transformation to be complete we need two more properties. First, rewriting needs
to preserve correct labeling of terms. Secondly, for the labeled system, global termination
of all terms (including the not correctly labeled ones) should be equivalent with local termi-
nation [EdVW09] of the well-labeled terms. This point is of practical importance because
the state of the art of automated analysis for global termination is far more advanced than
for local termination. Both properties do in general not hold for complete C-labelings.

Remark 3.14. Maximal C-labelings can be defined in a more general fashion by requiring

πf(~a ) 6= πf(~b ) for all f ∈ Σn and all ~a , ~b ∈ An with ~a 6= ~b . The important point is that the
value of all arguments can be inferred from the label. For the sake of a simple presentation
we stick to the definition where labels are tuples of argument values.

4. Static Context Extension

In this section we describe a naive approach for semantic labeling with C-models. This
serves both as an introduction and as a motivation for the transformations that we present
in Sections 5 and 6. Input for these transformations is a TRS together with a C-model for
this TRS. In Sections 7–9 we explain how C-models are constructed.

As can be inferred from Definition 3.8, it is possible to transform a TRSR by prepending
contexts to its rules in such a way that its C-model A becomes a model for the transformed
system R̃, and then apply the usual semantic labeling to R̃. We call this transformation
‘static context extension’, as opposed to the transformation of ‘dynamic context extension’
presented in the next section. In the dynamic version, contexts are prepended only when
needed and dependent on the values assigned to the variables in the rules.

Since every context is an instance of a thin context (Definition 2.1) with the same depth,
rules are prefixed by thin contexts, in both versions of context extension.

Definition 4.1. Let R be a TRS and 〈A, π,Σred 〉 a C-labeling for R. The static context
extension of R with respect to 〈A, π,Σred 〉, is the µTRS 〈△S πR,µ〉 where △S πR is the TRS
resulting from the steps listed below and where the replacement map µ is defined by µ(f) = ∅

if f ∈ Σred , and µ(f) = {1, . . . , ♯f} otherwise, for all f ∈ lab(Σtop).

(i) Replace each rule ℓ → r with C-depth n by the set of rules:
(a) C[ℓ] → C[r] for each thin context C of depth n, and
(b) top(C[ℓ]) → top(C[r]) for each thin context C of depth < n.

We let R̃ denote the union of these sets.
(ii) Apply semantic labeling to R̃ using the C-labeling 〈A, π〉. We obtain lab(R̃).

(iii) Remove from lab(R̃) all labeled rules that contain a redex symbol from Σred in the
prepended context. The TRS thus obtained is denoted by △S πR.

Note that the rules from item i(b) of Definition 4.1 model the application of an original
rule at a depth smaller than its C-depth, that is, ‘near’ the top of the term. The created
rules are hence wrapped into top(2).

Example 4.2. We illustrate the transformation by static context extension on the TRS R1:

f(g(x)) → f(f(g(x))) f(f(f(x))) → x (R1)
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together with the C-model A1 = {⊥, f,ff , g} introduced in Example 3.9 and the C-labeling
〈A1, π,Σ

red 〉 defined in Example 3.12.

The first step of the transformation yields R̃1 which consists of the following 10 rules:

C[f(g(x))] → C[f(f(g(x)))] D[f(f(f(x)))] → D[x] (R̃1)

where C ∈ {top(2), f(2), g(2)}, and D ∈ {top(2), top(f(2)), top(g(2)), f(f(2)), f(g(2)),
g(f(2)), g(g(2))}. Note that the algebra A1 extended with the symbol top and interpre-

tation JtopK(x) = ⊥ for all x ∈ A1, is a model for the TRS R̃1 (in fact, any value for the
interpretation of top will do).

The second step is to label the TRS R̃1. This yields lab(R̃1) consisting of 4 ·(3+7) = 40
rules, four instances for each of the ten rules, one for each value that can be assigned to x.

The final step is to remove from lab(R̃1) each rule which contains a redex symbol

within the context that was prepended in the construction of R̃1. Such a rule would enable
a rewrite step which is not outermost. Of the 40 rules of above, 12 have to be thrown out.
This concerns the labelings of the second rule of R1 where f(f(2)), top(f(2)) or g(f(2)) has
been prepended. They contain the redex symbol fff in the prepended context. For instance,
if we prepend the thin context f(f(2)) to the rewrite rule f(g(x)) → f(f(g(x))) and then

perform semantic labeling, we obtain the following rule in lab(R̃1):

fff (ff (fg(g⊥(x)))) → fff (fff (ff (fg(g⊥(x))))) (4.1)

This rule (with the redex symbol fff in the prepended context) has to be discarded as it
would admit the following infinite rewrite sequence, altough R1 is outermost terminating:

topf (fg (g⊥(c))) →µ topff (ff (fg(g⊥(c)))) →µ topff (fff (ff (fg(g⊥(c)))))

(4.1)
→µ topff (fff (fff (ff (fg(g⊥(c)))))) →µ topf (fg(g⊥(c))) →µ . . .

We note in advance that the dynamic context extension △πR1 of R1, worked out in
Example 5.1, consists of 19 rewrite rules, whereas the static version △S πR1 above consists of
28 rules.

In general, the presence of a redex symbol may depend on the interpretation of the
variables. This is better demonstrated by the following example.

Example 4.3. Consider the TRS over the signature {c, f, g} (with c a constant):

g(f(g(x))) → f(g(g(f(x)))) f(x) → x (R2)

We use the C-model A2 = {⊥, g, fg} with the interpretation of the symbols defined by:

JcK = ⊥ JgK(x) = g JfK(g) = fg JfK(⊥) = JfK(fg) = ⊥ (A2)

for all x ∈ A2. Again we use maximal labeling so that the symbols gfg , f⊥, fg and ffg

correspond to redex positions. The C-depth of the rule f(x) → x is 2 and its static context
extension contains the rule g(g(f(x))) → g(g(x)). From this we obtain three labeled rules:

gg(g⊥(f⊥(x))) → gg(g⊥(x)) for α(x) = ⊥

gg(gfg (fg(x))) → gg(gg(x)) for α(x) = g

gg(g⊥(ffg(x))) → gg(gfg(x)) for α(x) = fg

The second rule should not be allowed, as it would enable a rewrite step that is not outer-
most. This is witnessed by the symbol gfg in the prepended context.
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5. Dynamic Context Extension

We present an approach for semantic labeling with C-models, called ‘dynamic context
extension’,1 where we stepwise extend rules by contexts, only when needed and dependent on
the variable interpretation used for the semantic labeling. For different interpretations of the
variables usually different context depths are necessary for achieving equal interpretations
of left and right-hand side. In each extension step we check whether a candidate symbol
is a redex symbol, and, if it is, this symbol is excluded from prepending. Here, by a redex
symbol we mean a labeled symbol which indicates the presence of a redex in the original
system. Dynamic context extension is more efficient in the sense that both the number and
the size of the rules of the resulting µTRS are smaller than in the static version defined in
the previous version.

The transformation starts with constructing pairs 〈ℓ → r, α〉 of rules and variable
assignments. Then these rules are extended with flat contexts until the interpretations of left
and right-hand side are equal. Finally, each obtained rule is labeled using the corresponding
interpretation. More precisely, we implement this process as follows.

We iteratively construct sets P0, P1, . . ., until Pi+1 = Pi for some i. The initial set P0

consists of pairs 〈ℓ → r, α〉 for each rule ℓ → r, and each interpretation α : Var(ℓ) → A
of the variables. Then, in each step, Pi+1 is obtained from Pi by replacing every pair
〈ℓ → r, α〉 of Pi for which the interpretation of the left-hand side differs from the right-hand
side (Jℓ, αK 6= Jr, αK), by the pairs 〈C[ℓ] → C[r], α′〉 for every flat context C (Definition 2.3)
and every extension α′ : Var(C[ℓ]) → A of α, such that the root of the labeled, extended
left-hand side lab(C[ℓ], α′) is not a redex symbol. Among the flat contexts to be prepended
we include top(2) to cater for the case that the rule is applied at the top of the term.

Example 5.1. We reconsider from Examples 3.9 and 3.12 the term rewriting system R1:

f(g(x)) → f(f(g(x))) f(f(f(x))) → x (R1)

together with the C-labeling 〈A1, π,Σ
red 〉, where A1 = {⊥, f,ff , g}, π labels symbols with

their arguments and Σred = {fg, fff }. The initial set P0 of pairs 〈rule, assignment〉 is:

P0 =
{

〈f(g(x)) → f(f(g(x))), λx.a〉 , 〈f(f(f(x))) → x, λx.a〉 | a ∈ A1

}

The only element 〈ℓ → r, α〉 of P0 such that Jℓ, αK = Jr, αK is 〈f(f(f(x))) → x, λx.ff 〉. For
this pair no context needs to be prepended. The other pairs have to be replaced by their
context extensions and thus P1 consists of the following (4 · 3 + 1 + 3 · 2 = 19) pairs:

〈C[f(g(x))] → C[f(f(g(x)))], λx.a〉 for all a ∈ A1, C ∈ {top(2), f(2), g(2)}

〈f(f(f(x))) → x, λx.ff 〉

〈C[f(f(f(x)))] → C[x], λx.a〉 for all a 6= ff , C ∈ {top(2), g(2)}

In the last line the context f(2) is excluded, because the labeled left-hand side of the rule
would contain the redex symbol fff within the prepended context, and thus the step would
not be outermost. Because of the outermost strategy, the original rule is only applicable in
a context C[g(2)] (where C does not contain any redexes) or at the top of a term. Now
for all rules in P1 the left and right-hand side have equal interpretations, and hence the
iterative construction is finished.

1In [EH09] we used the term ‘dynamic labeling’ for what we here call ‘dynamic context extension’. The
term ‘dynamic labeling’ is now reserved for the transformation that we define in Section 6.
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Secondly, the obtained set P1 is labeled using the family π of labeling functions. The
desired context-sensitive TRS △πR1 then consists of the rules lab(ℓ, α) → lab(r, α) for
every 〈ℓ → r, α〉 ∈ P1, with the replacement map µ defined by µ(h) = ∅ if h ∈ {fg, fff }, and
µ(h) = {1, . . . , ♯h} otherwise, for all h ∈ lab(Σ). Thus the dynamic context extension of R1

consists of 19 rules. Recall from Example 4.2 that the static context extension of R1 had
28 rules.

We now formalize this transformation.

Definition 5.2. Let R be a TRS over Σ, and 〈A, π,Σred 〉 a C-labeling for R. We define
P π(R) as the least fixed point of the following construction of sets P0, P1, . . . , that is,
P π(R) = Pi as soon as Pi+1 = Pi for some i. The initial set P0 is defined by:

P0 =
{

〈ℓ → r, α〉 | ℓ → r ∈ R, α : Var(ℓ) → A
}

and for i = 0, 1, . . . the set Pi+1 is obtained from Pi by replacing every pair 〈ℓ → r, α〉 such
that Jℓ, αK 6= Jr, αK, or r ∈ X , by all pairs in △(ℓ → r, α) where we define:

△(ℓ → r, α) =
{

〈C[ℓ] → C[r], α+ β〉
∣

∣ C ∈ C♭
ℓ(Σtop,X ), β : Var (C) → A,

root (lab(C[ℓ], α+ β)) 6∈ Σred
}

Here, for partial functions f and g with disjoint domains, we write f + g for the function
defined by (f + g)(x) = f(x) if x ∈ dom(f), and (f + g)(x) = g(x) if x ∈ dom(g).

The construction of P π(R) is guaranteed to terminate because of the assumption that
A is a C-model for R.

Definition 5.3 (Dynamic context extension). Let R be a TRS over Σ, and 〈A, π,Σred 〉 a
C-labeling for R. The dynamic context extension of R with respect to 〈A, π,Σred 〉 is the
µTRS 〈△πR, µ〉 consisting of:

△πR =
{

lab(ℓ, α) → lab(r, α) | 〈ℓ → r, α〉 ∈ P π(R)
}

and the replacement map µ, defined by µ(f) = ∅ if f ∈ Σred , and µ(f) = {1, . . . , ♯f}
otherwise, for all f ∈ lab(Σtop). Whenever the set Σred , which determines the replacement
map, is clear from the context, we write △πR as a shorthand for 〈△πR,µ〉.

Remark 5.4. In the transformation given in Definition 5.3 collapsing rules are always
prepended by at least one flat context. Consequently, 〈△πR, µ〉 contains no collapsing
rules. This is used in the proof of Theorem 5.13 in order to apply Theorem 5.12. Without
this elimination of collapsing rules, the transformation is still sound (Theorem 5.8). Note
that in the TRS R1 worked out before, we did not eliminate the collapsing rule.

Let us work out another example.

Example 5.5. We consider problem zantema08/dupl_rhs.trs from the TPDB [Ter08]:

f(h(x), c) → f(i(x), s(x)) i(x) → h(x)

f(i(x), y) → x h(x) → f(h(x), c)
(R3)

We denote this TRS by R3, and take the algebra A3 = 〈{⊥, c, h, i}, J·K〉 with J·K defined by:

JcK = c JhK(x) = h JiK(x) = i JfK(x, y) = JsK(x) = ⊥

for all x, y ∈ A3. Furthermore, we employ minimal labeling; only the function symbols that
are at the root of a redex occurrence are marked. Thus the symbols h, i are always marked:
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πh(x) = πi(x) = ⋆. We let πf(i, x) = πf(h, c) = ⋆, and leave f unmarked otherwise. Also,
the symbols s and c are never marked.

The dynamic context extension △πR3 is then formed by the rules:

f⋆(h⋆(x), c) → f⋆(i⋆(x), s(x)) s(i⋆(x)) → s(h⋆(x))

f(y, i⋆(x)) → f(y, h⋆(x))

s(f⋆(i⋆(x), y)) → s(x) top(i⋆(x)) → top(h⋆(x))

f(z, f⋆(i⋆(x), y)) → f(z, x) (△πR3)

f(z, f⋆(i⋆(x), y)) → f⋆(z, x) s(h⋆(x)) → s(f⋆(h⋆(x), c))

f(f⋆(i⋆(x), y), z) → f(x, z) f(y, h⋆(x)) → f(y, f⋆(h⋆(x), c))

f(f⋆(i⋆(x), y), z) → f⋆(x, z) f(h⋆(x), y) → f(f⋆(h⋆(x), c), y)

top(f⋆(i⋆(x), y)) → top(x) top(h⋆(x)) → top(f⋆(h⋆(x), c))

We now work towards the first main theorem, stating that outermost ground termina-
tion of R is implied by termination of the transformed system △πR.

Lemma 5.6. Let R be a TRS over Σ, and let 〈A, π,Σred 〉 be a sound C-labeling for R.
Moreover, let s, t ∈ T (Σ,∅) be ground terms and p ∈ Pos(s) such that s out→R,p t. Then for

all proper prefixes q of 1p we have root (lab(top(s))|q) 6∈ Σred .

Proof. For q = ǫ this follows from topλ 6∈ Σred for any label λ. Otherwise we have that
root (lab(top(s))|q) = root(lab(s)|q′) with q′ a proper prefix of p, and if root(lab(s)|q′) ∈ Σred ,
then, by definition of sound C-labeling, s contains a redex at position q′, quod non.

The following lemma states that any outermost ground rewrite step in R can be trans-
formed into a rewrite step in △πR.

Lemma 5.7. Let R be a TRS over Σ, and let 〈A, π,Σred 〉 be a sound C-labeling for R. Let
s, t ∈ T (Σ,∅) be ground terms such that s out→R t. Then:

lab(top(s)) →△πR,µ lab(top(t))

Proof. Assume s
out→R,p t for some position p ∈ Pos(s). Then there exists a rule ℓ → r ∈ R,

a context C with root (C|p) = 2 and a ground substitution σ such that s = C[ℓσ] and t =
C[rσ]. We consider the construction of the dynamic context extension from Definition 5.3,
and prove by induction that for all i = 0, 1, . . . there exists a context Ci which is a prefix
of top(C), a ground substitution σi, and terms ℓi, ri such that top(s) = Ci[ℓiσi], top(t) =
Ci[riσi] and 〈ℓi → ri, JσiK〉 ∈ Pi. For the base case we have 〈ℓ0 → r0, Jσ0K〉 ∈ P0 with ℓ0 = ℓ,
r0 = r, σ0 = σ, and C0 = top(C). For the induction step we assume the existence of Ci, σi,
and 〈ℓi → ri, JσiK〉 ∈ Pi with the above properties. If Jℓi, JσiKK = Jri, JσiKK and ri 6∈ X then
by definition 〈ℓi → ri, JσiK〉 ∈ Pi+1, and so we are done. For the remaining cases Jℓi, JσiKK 6=
Jri, JσiKK and ri ∈ X , we first show that Ci 6= 2. If Jℓi, JσiKK 6= Jri, JσiKK and Ci = 2,
then ℓiσi = top(s) and riσi = top(t), and hence root (ℓi) = root (ri) = top, contradicting
Jℓi, JσiKK 6= Jri, JσiKK (recall that the interpretation of top is constant). Furthermore, we
have ri ∈ X only if i = 0, and then Ci = top(C) 6= 2. Thus we have Ci = D[D′σ′] for some

context D, flat context D′ ∈ C♭
ℓi

and substitution σ′. We choose Ci+1 = D, ℓi+1 = D′[ℓi],

ri+1 = D′[ri], and σi+1 = σi+σ′. It remains to be shown that 〈ℓi+1 → ri+1, Jσi+1K〉 ∈ Pi+1.
For this it suffices to prove that root (lab(ℓi+1, Jσi+1K)) 6∈ Σred . We have Ci+1[ℓi+1σi+1] =
top(s). Let q be the position such that root(Ci+1|q) = 2. Then, by Lemma 3.6 we obtain
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root (lab(ℓi+1, Jσi+1K)) = root (lab(ℓi+1σi+1)) = root (top(lab(s))|q). Note that q is a proper

prefix of 1p. By Lemma 5.6 we have root (lab(top(s))|q) 6∈ Σred .
Let i be such that Pi+1 = Pi. By the result above we have 〈ℓi → ri, JσiK〉 ∈ P

with JℓiσiK = JriσiK, and lab(ℓi, JσiK) → lab(ri, JσiK) ∈ △πR by definition. Let τ and
υ be defined by τ(2) = ℓiσi, υ(2) = riσi, and τ(x) = υ(x) = x for x ∈ X . Then
we have that lab(Ci, JτK) = lab(Ci, JυK) since JτK = JυK. Let E = lab(Ci, JτK). We get
lab(top(s)) = lab(Ci[ℓiσi]) = lab(Ciτ) = Elab(τ) = E[lab(ℓiσi)] = E[lab(ℓi, JσiK)lab(σi)]
and lab(top(t)) = . . . = E[lab(ri, JσiK)lab(σi)], by Lemma 3.6. By Lemma 5.6 all symbols
above position 1p in the term lab(top(s)) are not in Σred and hence we have a µ-rewrite
step: lab(top(s)) →△πR,µ lab(top(t)).

Theorem 5.8. Let R be a TRS over Σ, and 〈A, π,Σred 〉 a sound C-labeling for R. Then
R is outermost ground terminating if △πR is terminating.

Proof. Assume that R admits an infinite outermost rewrite sequence:

t1
out→R t2

out→R t3
out→R . . .

Then from Lemma 5.7 it follows that △πR admits an infinite rewrite sequence:

lab(top(t1)) →△πR,µ lab(top(t2)) →△πR,µ lab(top(t3)) →△πR,µ . . .

The following three examples illustrate why our method is sound, but not complete
when applied to non-left-linear (and non-quasi-left-linear) TRSs. The first example can be
handled by our approach employing the C-labeling constructed in Section 9. The second
example fails using the C-labeling from Section 9, but can successfully be treated using
a manually constructed C-labeling. For the third example, we show that there exists no
C-labeling that can be employed for proving outermost ground termination; this example
is out of reach for the approach proposed in this paper.

Example 5.9. We consider the non-left-linear TRS R4 with three rules:

g(x, x) → f(f(x, x), x) f(x, x) → g(x, x) f(x, y) → y (R4)

over the signature Σ = {f, g, a} where a is a constant (necessary for the existence of ground
terms). We choose the algebra A4 = {⊥} with JaK = ⊥, JfK(⊥,⊥) = ⊥, and JgK(⊥,⊥) = ⊥.
We label the symbols with the interpretations of their arguments, and define Σred = {f⊥,⊥}.

Note that Σred does not contain g⊥,⊥. The reason is that using a finite algebra we can
(in general) not recognize redex positions with respect to non-left-linear rules. By excluding
g⊥,⊥ from Σred we allow rewriting below g even when g is the root of a redex. This is sound
for proving outermost termination as it does not restrict the possible rewrite steps, but
allows only additional steps. The symbol f⊥,⊥ is part of Σred ; due to the rule f(x, y) → y

each occurrence of f is a redex position.
The dynamic labeling △πR4 is then formed by:

g⊥,⊥(x, x) → f⊥,⊥(f⊥,⊥(x, x), x)

f⊥,⊥(x, x) → g⊥,⊥(x, x) (△πR4)

f⊥,⊥(x, y) → y

where µ(f⊥,⊥) = ∅ and µ(g⊥,⊥) = {1, 2}. This system is terminating which can be seen as
follows. After an application of the first rule:

C[g⊥,⊥(t, t)] →△πR4, µ C[f⊥,⊥(f⊥,⊥(t, t), t)]
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the replacement map µ prevents us from reducing the inner f⊥,⊥. Moreover, the second
rule cannot be applied to the outer f⊥,⊥ since the left and the right subterm are not equal.
Thus the only rule applicable to the displayed subterm is f⊥,⊥(x, y) → y which reduces the
size of the term, and we can conclude termination by induction.

Hence we conclude outermost ground termination of R4 by Theorem 5.8. Actually the
same C-labeling allows also to infer outermost termination, see Lemma 5.15 (we simply add
a fresh constant 0 and a unary symbol s with interpretations J0K = ⊥ and JsK(⊥) = ⊥).

Example 5.10. We consider the non-left-linear TRS R5 over the signature Σ5 = {g, a, b}:

a → g(a, a) g(x, x) → b (R5)

This TRS is outermost terminating. However, there exists no C-labeling that recognizes
redex positions with respect to the non-left-linear rule g(x, x) → b. A finite algebra cannot
be used to check whether two arbitrary subterms t1 and t2 of g(t1, t2) are equal. Thus
it appears that, in order to have a sound transformation, we cannot include any symbol
gλ in the set Σred of redex symbols. But then rewriting below g is allowed, and the rule
a → g(a, a) would lead to non-termination of the dynamic labeling △πR5.

Nonetheless, in this particular example, the problem can be solved. If some element e
of the algebra is the interpretation of precisely one ground term t, then, of course, Jt1K =
Jt2K = e implies that t1 = t2. Let us take the algebra A5 = {⊥, a} with JaK = a, JbK = ⊥,
and JgK(x, y) = ⊥ for all x, y ∈ A5. We use maximal labeling and define Σred = {ga,a}.
That is, we mark redex positions g(t, t) only for the special case t = a. This C-labeling is
sound since only redex positions are marked, but it is not complete; not all redex positions
are marked. Nevertheless, this labeling can be used to prove outermost ground termination
of R5. The dynamic labeling △πR5 of R5 consists of:

ga,⊥(a, x) → g⊥,⊥(ga,a(a, a), x) ga,a(x, x) → b

g⊥,a(x, a) → g⊥,⊥(x, ga,a(a, a)) g⊥,⊥(x, x) → b (△πR5)

topa(a) → top⊥(ga,a(a, a))

The employed C-labeling is not complete, and so the µTRS △πR5 admits rewrite sequences
(starting from correctly labeled terms) that do not correspond to outermost rewriting, e.g:

top⊥(g⊥,⊥(ga,a(a, a), ga,a(a, a))) →△πR5,µ top⊥(g⊥,⊥(b, ga,a(a, a)))

→△πR5,µ top⊥(g⊥,⊥(b, b))

→△πR5,µ top⊥(b)

Despite of this, the µTRS can be shown to be terminating, and since the C-labeling was
sound, we conclude outermost ground termination of R5 by Theorem 5.8.

Example 5.11. In Examples 5.9 and 5.10 we have seen how our method can be applied to
prove outermost termination of non-quasi-left-linear TRSs. We now consider an example
which shows that not every non-left-linear TRS can be handled by our method:

f(x) → g(f(x), f(x)) g(x, x) → b (R6)

This TRS is outermost terminating. Now the trick used in Example 5.10 does not work.
In order to construct a terminating µTRS △πR6 we need to forbid rewriting in all terms of
the form g(f(t), f(t)). This is impossible using a finite algebra.
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We need the following adaptation of [Ohl02, Proposition 5.5.24] for µTRSs; the proof
proceeds along the same lines.

Theorem 5.12. Let 〈R,µ〉 be a terminating many-sorted µTRS. If the µTRS obtained from
〈R,µ〉 by dropping sorts admits an infinite rewrite sequence, then 〈R,µ〉 is collapsing and
duplicating.

While for soundness of the transformation (Theorem 5.8) a sound labeling suffices, for
a complete transformation we need the C-labeling to be complete, maximal and core:

Theorem 5.13. Let R be a TRS over Σ, and 〈A, π,Σred 〉 a complete, maximal, and core
C-labeling for R. Then △πR is terminating if R is outermost ground terminating.

Proof. Assume that △πR is not terminating. We turn △πR into a sorted TRS. The sorts
are chosen from the set A∪ {top}. Since the C-labeling is maximal, for each n-ary symbol
fλ ∈ lab(Σtop) we have λ = 〈a1, . . . , an〉. We let fλ have input sort λ and output sort

JfK(a1, . . . , an). The only exception is the output sort of the symbols topλ which we fix to
be the sort top. Then by Theorem 5.12 together with non-collapsingness of △πR yields the
existence of a well-sorted infinite rewrite sequence τ in △πR. Since the C-labeling is core,
by Lemma 3.4 there exists a ground term for every sort in A. Thus by applying a ground
substitution to τ we obtain a well-sorted infinite ground term rewrite sequence τ ′.

Well-sortedness implies correct labeling: for each well-sorted term t ∈ T (lab(Σtop),∅)

there exists a term t′ ∈ T (Σtop,∅) such that t = lab(t′). Moreover, a symbol topλ can only
occur at the top of a term. Without loss of generality we assume that every term in τ ′

has topλ (for some λ ∈ A) as root (as rewriting below topλ is allowed and context-sensitive
rewriting is closed under µ-replacing contexts). Hence it suffices to show that for all terms
s, t ∈ T (Σ,∅) with lab(top(s)) →△πR,µ lab(top(t)) we have s

out→R t. By construction, each
rule in △πR is the result of prepending contexts to, and labeling of, a rule in R. Let
ρ : s →R t be the step corresponding to lab(top(s)) →△πR,µ lab(top(t)). We show that ρ

is an outermost step. Assume there would be a redex u above the rewrite position. Then
by completeness of the C-labeling we get root(lab(u)) ∈ Σred . But then this symbol must
be in lab(top(s)), either above the applied rule from △πR or within the prepended context.
Both cases yield a contradiction: the former since µ(root (lab(u))) = ∅ would prohibit the
µ-step, and the latter because we do not prepend symbols from Σred .

Let us consider the three conditions of Theorem 5.13 on C-labelings: complete, maximal
and core. To see that completeness and maximality are necessary, we refer to Examples 5.11,
and 9.4, respectively. The following example shows the need to restrict to core algebras:

Example 5.14. Let R7 be the following term rewriting system:

f(x) → g(x, f(x)) g(a, x) → a g(f(x), y) → a g(g(x, y), z) → a (R7)

This TRS is outermost ground terminating: First note that without the first rule R7 is
terminating. So consider a rewrite step f(t) → g(t, f(t)) for t ∈ T ({f, g, a},∅). Then one of
the three g-rules matches g(t, f(t)) and blocks all inner rules by the outermost strategy.

We take the C-model A7 = {0, 1} with JaK = JfK(x) = JgK(x, y) = 0, for all x, y ∈ A7.
We let π be the maximal labeling and define Σred = {f0, g0,0}. Then the dynamic context
extension △πR7 contains, amongst others, the following two rules:

f0(x) → g0,0(x, f0(x)) f1(x) → g1,0(x, f1(x))
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where µ(g0,0) = ∅ and µ(g1,0) = {1, 2}. Consequently, the second rule is not terminating,
although the original TRS is outermost ground terminating. The C-labeling 〈A7, π,Σ

red 〉
is complete for R and maximal, but not core. Note that there exists no ground term which
has the interpretation 1, and hence the label 1 should never occur.

Theorems 5.8 and 5.13 are about outermost ground termination. This is not a severe
restriction, as by adding a fresh constant 0 and a fresh unary symbol s outermost ground
termination implies (and for quasi-left-linear TRSs coincides with) outermost termination:

Lemma 5.15. A TRS R over Σ is outermost terminating if R over Σ∪{s, 0} is outermost
ground terminating. If R is also quasi-left-linear, the converse direction holds as well.

Proof. Let X be countably infinite, and φ : X → N a bijection. We define a substitution σ

by σ(x) = sφ(x)(0). Then, we have sσ
out→ tσ whenever s out→ t with s, t ∈ T (Σ,X ), since the

symbols s and 0 do not occur in any pattern of a rule, and for all p, q ∈ Pos(s) we have
s|p = s|q ⇔ sσ|p = sσ|q. This concludes the proof of the first part of the theorem.

For the converse direction, let R be a quasi-left-linear TRS such that R over Σ ∪ {s, 0}
is not outermost ground terminating. Let t ∈ T (Σ∪{s, 0},∅) be a ground term of minimal
size admitting an infinite rewrite sequence t = t1

out→ t2
out→ t3

out→ . . .. By minimality, infinitely
many of these steps must be in the prefix of t not containing s and 0. Let t′ ∈ T (Σ,X )
be obtained from t by replacing all subterms with root symbol s or 0 in t by a (arbitrary,
but fixed) variable x. Then t′ admits an infinite outermost rewrite sequence as well. Note
that by replacing the subterms no redex in the {s, 0}-free prefix of t is destroyed since the
symbols s and 0 do not occur any rule pattern. Fresh redexes with respect to non-left-linear
rules may be created (but not with respect to left-linear rules). By quasi-left-linearity, at
each position where a redex is created, there is also redex with respect to a left-linear rule.
Hence, no additional redexes get blocked by outermost strategy.

The following example shows that extending the signature with a single fresh constant 0
only is not enough for the implication: R over the extended signature is outermost ground
terminating ⇒ R is outermost terminating.

Example 5.16. Consider the following term rewriting system R:

f(x, y) → a(f(x, y)) a(f(b, x)) → b a(f(x, b)) → b

a(f(x, x)) → b a(f(a(x), y)) → b a(f(x, a(y))) → b

a(f(f(x, y), z)) → b a(f(x, f(y, z))) → b

Because of the first rule R is not outermost terminating:

f(x, y) out→ a(f(x, y)) out→ a(a(f(x, y))) out→ . . .

but the TRS over the extended signature Σ′ = {a, f, b, 0} is outermost ground terminating:
Consider a step f(s, t) → a(f(s, t)) with s, t ∈ T (Σ′,∅). If s 6= 0 one of the rules in the
second column applies, and if t 6= 0 then one of the rules in the third column is applicable.
However if s = t = 0 then the rule a(f(x, x)) → b matches.

Note that for the second part of Lemma 5.15 we require quasi-left-linearity. This
requirement was erroneously missing from [EH09], but is necessary as the following example
illustrates.
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Example 5.17. We consider the following term rewriting system R:

f(x, y, y) → a(f(x, x, y)) a(f(x, a(y), a(z))) → ⊥

b → a(b) a(f(x, b, b)) → ⊥

a(b) → ⊥ a(f(x, f(y1, y2, y3), f(z1, z2, z3))) → ⊥

a(f(x, x, x)) → ⊥ a(f(x,⊥,⊥)) → ⊥

and explain why this system is outermost terminating. Without the rule f(x, y, y) →
a(f(x, x, y)) outermost termination of R is obvious; Hence, in an infinite rewrite sequence
this rule must be applied infinitely often. Let us consider a rewrite step C[f(t, u, u)] out→
C[a(f(t, t, u))]. If t ∈ X , then u = t since no non-variable term rewrites to a variable;
then a(f(x, x, x)) → ⊥ is applicable and has priority (by outermost strategy) over all inner
rewrite steps (and we terminate). If t 6∈ X , then the second argument u and third argument
t in a(f(t, t, u)) have to rewrite to a common non-variable reduct (in order to make the
first rule applicable again). However, as soon as the common reduct is reached, one of the
rules displayed on the right would be applicable and have priority by outermost rewriting
strategy.

Nevertheless, R over the signature Σ ∪ {s, 0} is not outermost ground terminating:

a(f(s(b), s(a(b)), s(a(b)))) out→ a(a(f(s(b), s(b), s(a(b)))))
out→ a(a(f(s(b), s(a(b)), s(a(b)))))
out→ . . .

6. Dynamic Labeling

This paper is about employing context-sensitive rewriting to model outermost rewriting.
We do so by marking redexes, and forbid rewriting below them. As we have seen, contracting
a redex may create another redex higher up in the term tree. Hence it may be necessary
to update some labels during a rewrite step. In Section 5 we defined a transformation
where this updating was accounted for by extending rules with contexts. Here we give an
alternative transformation from TRSs to context-sensitive TRSs. We call this tranformation
‘dynamic labeling’. Instead of extending rules with contexts, we now employ rewriting to
propagate the changed information upward in the term tree, and set the labels in the
surrounding context right, step by step. Again the C-depth (Definition 3.8) serves as a
bound: here on the number of successive ancestor nodes that have to be relabeled. Each
original rewrite step will give rise to a corresponding step and a bounded number (≤ the
C-depth) of auxiliary steps in the transformed system. Thus, although the derivational
complexity (the length of rewrite sequences) is changed, this is only by a constant factor.
We prove that dynamic labeling is sound for arbitrary TRSs. Moreover, for left-linear
TRSs, the method is complete in a weakened sense, see Theorem 6.12. In Section 10, we
compare the performance of this method to the one of dynamic context extension described
in Section 5.

We begin with an analysis for evaluating which value changes can occur by rewriting
and need to be propagated upward. As we will see, this restricts the number of auxiliary
‘relabel symbols’, and, in particular, the number of ‘relabeling rules’.
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Definition 6.1. Let R be a TRS over Σ, and let 〈A, π,Σred 〉 be a C-labeling for R. For
i = 0, 1, 2, . . . , we define the set Li ⊆ A×A inductively by:

L0 = { 〈Jl, αK, Jr, αK〉 | ℓ → r ∈ R,α : Var(ℓ) → A, Jl, αK 6= Jr, αK }

Li+1 = Li ∪ { 〈JfK(~a , b, ~c ), JfK(~a , b′, ~c )〉 | f ∈ Σ, ~a · b · ~c ∈ A♯f , 〈b, b′〉 ∈ Li,

fπf(~a ,b,~c ) ∈ lab(Σtop) \ Σ
red }

Then we define the set Lπ(R) of value-change pairs by:

Lπ(R) = Li \ {〈a, a〉}a∈A

with i the least number such that Li+1 = Li.

The ‘dynamic labeling’ ↑πR of a TRS R is partitioned into two sets of rules. The
first set is denoted by ↑π1R and consists of a semantic labeling of the original rules, where,

additionally, a right-hand side is prefixed by a symbol relabela,a
′

whenever application of
the rule causes a change of interpretation from a to a′. The second set, ↑π2R, is a set of rules

for relabeling the context of the rule application. A symbol relabela,a
′

, with 〈a, a′〉 ∈ Lπ(R),
indicates that the value of its subterm has changed from a to a′, and the rules in ↑π2R take
care of propagating this change of value upward in the term.

Definition 6.2 (Dynamic labeling). Let R be a TRS over Σ, and let 〈A, π,Σred 〉 be a

C-labeling for R. The TRS ↑πR over the signature lab(Σtop)∪{relabela,a
′

| 〈a, a′〉 ∈ Lπ(R)}
is defined by ↑πR = ↑π1R ∪ ↑π2R. Here the set ↑π1R of labeled rules contains, for each rule
ℓ → r ∈ R and assignment α : Var(ℓ) → A, one of the rules:

lab(ℓ, α) →

{

lab(r, α) if Jℓ, αK = Jr, αK

relabelJℓ,αK,Jr,αK(lab(r, α)) otherwise

Secondly, the set ↑π2R of relabeling rules contains, for each n-ary f ∈ Σ, 〈b, b′〉 ∈ Lπ(R), and
〈~a , b, ~c 〉 ∈ An such that fλ ∈ lab(Σtop) \ Σ

red with λ = πf(~a , b, ~c ), one of the rules:

fλ(~x , relabelb,b
′

(y), ~z ) →

{

fλ
′
(~x , y, ~z ) if d = d′

relabeld,d
′

(fλ
′
(~x , y, ~z )) otherwise

where λ′ = πf(~a , b
′, ~c ), d = JfK(~a , b, ~c ), d′ = JfK(~a , b′, ~c ), |~x | = |~a |, and |~z | = |~c |.

The dynamic labeling of R (with respect to the C-labeling 〈A, π,Σred 〉) is the context-

sensitive TRS 〈↑πR,µ〉, where the replacement map µ is defined by µ(relabela,a
′

) = ∅ for all
〈a, a′〉 ∈ Lπ(R), µ(f) = ∅ if f ∈ Σred , and µ(f) = {1, . . . , ♯f} otherwise, for all f ∈ lab(Σtop).

Whenever Σred is clear from the context, we leave µ implicit, and overload the notation ↑πR
to denote 〈↑πR,µ〉.

Example 6.3. We revisit the TRS R1 from Example 3.9 for which we worked out the static
and dynamic context extensions in Examples 4.2 and 5.1. We repeat its definition and the
C-labeling from Example 3.12: R1 is the TRS over Σ = {a, f, g} consisting of the rules:

f(g(x)) → f(f(g(x))) f(f(f(x))) → x (R1)

A C-model for R1 is formed by the Σ-algebra A1 = {⊥, f,ff , g} with interpretation:

JcK = ⊥ JfK(⊥) = JfK(g) = f JfK(f) = JfK(ff ) = ff JgK(x) = g (A1)

for all x ∈ A1. Furthermore, 〈A1, π〉 denotes the maximal labeling for R1, and Σred =
{fg, fff }. Then 〈A1, π,Σ

red 〉 forms a sound and complete C-labeling of R1. Also note that
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A1 forms a core algebra; for each value e ∈ A1 there is a ground term t such that JtK = e.
We first compute the set Lπ(R1) of value-change pairs. For the initial set L0, note that the
rule f(g(x)) → f(f(g(x))) changes the interpretation from f to ff , regardless of the value
assigned to x. The other rule creates three value-change pairs; one for each of the values
g,⊥, f assigned to x. If the interpretation of x is ff there is no change. Hence we get:

L0 = {〈f ,ff 〉, 〈ff ,⊥〉, 〈ff , f〉, 〈ff , g〉}

All symbols relabele,e
′

with 〈e, e′〉 ∈ L0 will disappear in one relabeling step, whence
Lπ(R1) = L0. The dynamic labeling of R1 then is ↑πR1 = ↑π1R1 ∪ ↑π2R1 where ↑π1R1

consists of the rules:

fg(ge(x)) → relabelf,ff (ff (fg(ge(x)))) for all e ∈ A1

fff (fff (fe
′

(x))) → relabele,e
′

(x) for all 〈e, e′〉 ∈ {〈ff ,⊥〉, 〈ff , f〉, 〈ff , g〉}

fff (fff (fff (x))) → x

and where ↑π2R1 is formed by:

ge(relabele,e
′

(x)) → ge
′

(x) for all 〈e, e′〉 ∈ Lπ(R1)

ff (relabelf,ff (x)) → fff (x)

In total the dynamic labeling of R1 has 13 rules. Had we not restricted the construction

of the set of the relabeling rules to the ‘reachable’ symbols relabele,e
′

(by the requirement
〈e, e′〉 ∈ Lπ(R1) in Definition 6.2), we would have come up with 18 instead of 5 relabeling
rules.

Example 6.4. We reconsider the term rewrite system R3 from Example 5.5:

f(h(x), c) → f(i(x), s(x)) i(x) → h(x)

f(i(x), y) → x h(x) → f(h(x), c)

and the algebra A3 = 〈{⊥, c, h, i}, J·K〉 with J·K defined, for all x, y ∈ A3, as follows:

JcK = c JhK(x) = h JiK(x) = i JfK(x, y) = JsK(x) = ⊥

Moreover, we employ minimal labeling again; see Example 5.5.
The set of change-value pairs is:

Lπ(R3) = {〈⊥, c〉, 〈⊥, h〉, 〈⊥, i〉, 〈i, h〉, 〈h,⊥〉}

The set ↑π1R3 of labeled rules is constructed thus:

f⋆(h⋆(x), c) → f⋆(i⋆(x), s(x))

f⋆(i⋆(x), y) → x

f⋆(i⋆(x), y) → relabele,e
′

(x) 〈e, e′〉 ∈ {〈⊥, c〉, 〈⊥, h〉, 〈⊥, i〉}

i⋆(x) → relabeli,h(h⋆(x))

h⋆(x) → relabelh,⊥(f⋆(h⋆(x), c))

There are four rules with left-hand side ℓ = f⋆(i⋆(x), y), one for each value assigned to x.
In case α(x) = ⊥ there is no change of interpretation, for we have that Jℓ, αK = ⊥ for all
α : {x, y} → A3 and so no relabel symbol is inserted. But if, for instance, Jσ(x)K = c for
some substitution σ, then some labels in the context C of a rewrite step C[ℓσ] → C[σ(x)]
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have to be updated, since the value of 2 has changed from ⊥ to c, whence the insertion of
relabel⊥,c to the right-hand side x.

The set ↑π2R3 of relabeling rules is formed by:

f(relabele,e
′

(x), y) → f(x, y) 〈e, e′〉 ∈ {〈⊥, c〉, 〈⊥, h〉, 〈h,⊥〉}

f(relabele,e
′

(x), y) → f⋆(x, y) 〈e, e′〉 ∈ {〈⊥, h〉, 〈⊥, i〉}

f(x, relabel⊥,c(y)) → f⋆(x, y)

f(x, relabel⊥,c(y)) → f(x, y) 〈e, e′〉 ∈ Lπ(R3)

s(relabele,e
′

(x)) → s(x) 〈e, e′〉 ∈ Lπ(R3)

top(relabele,e
′

(x)) → top(x) 〈e, e′〉 ∈ Lπ(R3)

Some remarks for clarification: First, note that all relabel symbols disappear upon one
relabeling step. Secondly, observe the overlap in, for example, the rules with left-hand side
f(relabel⊥,h(x), y). If the value assigned to y is c, then a redex is created; this is witnessed
by the marked symbol f⋆ on the right. For other values for y, this is not the case. Also
note that there is no rule for t = f(relabeli,h(x), y). This is because when the left argument
of f is interpreted as i, then t forms a redex, and so f should be marked. Definition 6.2
does not allow relabel symbols to commute with redex symbols. Intuitively, a relabel symbol
is a witness of a rewrite step which we do not want to occur inside other redexes, as we
want to model outermost terminination. However, more technically, sometimes illegal (i.e.,
non-outermost) relabel steps are allowed. This is illustrated in Example 6.11. The point is
that by preventing relabel symbols to commute with redex symbols, for local completeness
(Theorem 6.12) it is as if illegal steps never happened.

Remark 6.5. We elaborate on the role of the element a in relabela,a
′

. Whenever the
application of a rule C[ℓσ] → C[rσ] changes the interpretation, i.e., JℓσK 6= JrσK, then

a symbol relabelJℓσK,JrσK is inserted. A term of the form relabela,a
′

(t′) can be thought of
as a witness of a rewrite step t → t′ causing a change of interpretation from a = JtK to
a′ = Jt′K. This change of the value then needs to be propagated upward to update the labels

accordingly, using the relabeling rules from ↑π2R. At first sight, the value a in relabela,a
′

(t)
seems redundant for relabeling: why would we store the previous value? However, the label
a is important in order to restrict the number of applicable rules, and to have a bound on
the number of relabeling steps. To see this, consider the system R8 with single rewrite rule:

f(g(f(x))) → d (R8)

and the algebra A8 = {⊥, f, gf } with JfK(x) = f for all x ∈ A8, JgK(f ) = gf , JgK(x) = ⊥ for
all x 6= f , and JdK = ⊥. We employ minimal labeling, that is, only πf(gf ) = ⋆ , and all the
other symbols are unlabeled.

The dynamic labeling ↑πR8 gives rise to two labelings of the original rule:

f⋆(g(f(x))) → relabelf,⊥(d) (6.1)

f⋆(g(f⋆(x))) → relabelf,⊥(d) (6.2)

And, among the fourteen rules in ↑πR8 for updating labels, we find the following two:

g(relabelf,⊥(x)) → relabelgf ,⊥(g(x)) (6.3)

g(relabelgf ,⊥(x)) → g(x) (6.4)
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Now consider the term t = top(g(· · · (g(g(g(f⋆(g(f(d))))))))), and the rewrite sequence:

t →6.1,µ top(g(· · · (g(g(g(relabelf,⊥(d)))))))

→6.3,µ top(g(· · · (g(g(relabelgf ,⊥(g(d)))))))

→6.4,µ top(g(· · · (g(g(g(d))))))

After an application of (6.1), relabeling takes two steps, resulting in a correctly labeled
term.

In the alternative, let us say ‘forgetful’ version of dynamic labeling, where the ‘from’
value a in symbols relabela,b is omitted, the rules (6.1)–(6.4) look like this:

f⋆(g(f(x))) → relabel⊥(d) (6.1′)

f⋆(g(f⋆(x))) → relabel⊥(d) (6.2′)

g(relabel⊥(x)) → relabel⊥(g(x)) (6.3′)

g(relabel⊥(x)) → g(x) (6.4′)

Due to the overlap in rules (6.3′) and (6.4′), the resulting µTRS has a rewrite sequence

from t where the symbol relabel⊥ goes up all the way to the top:

t →6.1′,µ top(g(· · · (g(g(g(relabel⊥(d)))))))

→6.3′,µ top(g(· · · (g(g(relabel⊥(g(d)))))))

→6.3′,µ top(g(· · · (g(relabel⊥(g(g(d)))))))

→6.3′,µ . . .

From the following lemma it follows that every relabel symbol can be rewritten at most
δA(R) times (before it vanishes). By rewriting a ‘relabel symbol’ we refer to a notion of
residuals that extends the usual definition of orthogonal projection [Ter03] with a concept
suggested by the definition of ↑π2R : Whenever we have a rule of the form:

fλ(~x , relabela,a
′

(lab(t)), ~z ) → relabelb,b
′

(fλ
′

(~x , lab(t), ~z ))

then we call relabelb,b
′

in the right-hand side a residual of relabela,a
′

in the left-hand side.

Lemma 6.6. Let R be a TRS over Σ, and let 〈A, π,Σred 〉 be a C-labeling for R. We define
the relation ; ⊆ Lπ(R)× Lπ(R) by:

〈b, b′〉 ; 〈JfK(~a , b, ~c ), JfK(~a , b′, ~c )〉 for every f ∈ Σ, 〈b, b′〉 ∈ Lπ(R), ~a · b · ~c ∈ A♯f ,

fπf(~a ,b,~c ) ∈ lab(Σtop) \ Σ
red

Then ; is well-founded and every ; path has length ≤ δA(R).

Proof. By definition of value-change pairs we have that for every pair 〈b, b′〉 ∈ Lπ(R) there
exists a rule ℓ → r ∈ R and assignment α : Var(ℓ) → A such that 〈Jℓ, αK, Jr, αK〉 ;∗ 〈b, b′〉.

Assume, to arrive at a contradiction, there exists a sequence

〈Jℓ, αK, Jr, αK〉 = 〈b0, b
′
0〉 ; 〈b1, b

′
1〉 ; . . . ; 〈bm, b′m〉

with m > δA(R). For i = 0, 1, . . . ,m we construct thin contexts Di and assignments
αi : Var (Di) → A such that bi = JDi[ℓ], αiK and b′i = JDi[r], αiK. We begin with D0 = 2

and α0 = α. Then we have b0 = Jℓ, αK and b′0 = Jr, αK. For i = 1, . . . ,m there exist fi ∈ Σ,
and ~ai · bi−1 · ~ci ∈ A♯fi such that bi = JfiK( ~ai , bi−1, ~ci ) and b′i = JfiK( ~ai , b

′
i−1, ~ci ). We pick
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fresh variables ~xi and ~zi with | ~xi | = | ~ai | and |~zi | = |~ci |, and define Di = fi( ~xi ,Di−1, ~zi ),
and αi is αi−1 extended by mapping variables ~xi to the corresponding ~ai and ~zi to ~ci . It
follows that bi = JDi[ℓ], αiK and b′i = JDi[r], αiK. But then JD[ℓ], αK = bm 6= b′m = JD[r], αK
which contradicts that δA(ℓ → r) is the C-depth of ℓ → r.

Corollary 6.7. Every relabel symbol disappears at latest after having applied δA(R) many
relabeling rules (to this symbol).

Proof. For every rule in ↑π2R of the form:

fλ(~x , relabela,a
′

(lab(t)), ~z ) → relabelb,b
′

(fλ
′

(~x , lab(t), ~z ))

we have that 〈a, a′〉 ; 〈b, b′〉.

For the dynamic context extension, the ‘intended’ terms in T (lab(Σ),∅) are those terms
that can be obtained by correctly labeling terms in T (Σ,∅). For the purpose of adapting
this definition to dynamic labeling, we enrich the (unlabeled) signature Σ to Σ+:

Σ+ = Σ ∪ {relabela | 〈a, a′〉 ∈ Lπ(R)}

and extend the C-labeling to Σ+ by:

πrelabelb(b
′) = b′ JrelabelbK = b

for all b, b′ ∈ A such that 〈b, c〉 ∈ Lπ(R) for some c ∈ A. Then labeled symbols are identified

by (relabela)a
′
= relabela,a

′

.
We obtain the following lemma:

Lemma 6.8. Let R be a TRS over Σ, and let 〈A, π,Σred 〉 be a C-labeling for R. Whenever
we have a ground term s of the form:

s = lab(C[f(s1, . . . , relabel
a(t), . . . , sn)])

with 〈a, a′〉 ∈ Lπ(R), a′ = JtK, and where the displayed relabel symbol is at a µ-replacing
position, then one of the following steps applies:

s →↑π2R,µ lab(C[relabelb(f(s1, . . . , t, . . . , sn))]) (6.5)

s →↑π2R,µ lab(C[f(s1, . . . , t, . . . , sn)]) (6.6)

where b = Jf(s1, . . . ,2, . . . , sn),2 7→ aK.

Proof. Let b′ = Jf(s1, . . . , t, . . . , sn)K. Note that b′ = Jf(s1, . . . ,2, . . . , sn),2 7→ a′K. Then:

lab(f(s1, . . . , relabel
a(t), . . . , sn)) = fλ(lab(s1), . . . , relabel

a,a′(lab(t)), . . . , lab(sn))

lab(relabelb(f(s1, . . . , t, . . . , sn))) = relabelb,b
′

(fλ
′

(lab(s1), . . . , lab(t), . . . , lab(sn)))

where λ = πf(Js1K, . . . , a, . . . , JsnK) and λ′ = πf(Js1K, . . . , a
′, . . . , JsnK).

By Definition 6.2 the dynamic labeling ↑πR contains a rule of the form:

fλ(~x , relabela,a
′

(lab(t)), ~z ) → C[fλ
′

(~x , lab(t), ~z )]

with C = 2 or C = relabelb,b
′

(2). Consequently we have a step of the form:

lab(f(s1, . . . , relabel
a(t), . . . , sn)) →↑πR,µ lab(D[f(s1, . . . , t, . . . , sn)])

with D = 2 or D = relabelb(2).
Now the claim follows since s = lab(C,2 7→ b)[lab(f(s1, . . . , relabel

a(t), . . . , sn))].
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Lemma 6.9. Let R be a TRS over Σ, and let 〈A, π,Σred 〉 be a sound C-labeling for R. Let
s, t ∈ T (Σ,∅) be ground terms such that s out→R t. Then, for some m ≤ δA(R) :

lab(top(s)) →↑π1R,µ · →m
↑π2R,µ lab(top(t))

Proof. Assume s
out→R,p t for some position p ∈ Pos(s). Then there exists a rule ℓ → r ∈ R,

a context C with root (C|p) = 2 and a ground substitution σ : X → T (Σ,∅) such that

s = C[ℓσ] and t = C[rσ]. Let Ca = lab(top(C),2 7→ a) and σ = lab(σ), then by Lemma 3.6
we obtain:

lab(top(s)) = lab(top(C[ℓσ])) = CJℓσK[lab(ℓσ)] = CJℓσK[lab(ℓ, JσK)σ] (6.7)

and, likewise:

lab(top(t)) = CJrσK[lab(r, JσK)σ] (6.8)

By definition of dynamic labeling, one of the following rules is in ↑π1R:

lab(ℓ, JσK) → lab(r, JσK) if JℓσK = JrσK (6.9)

lab(ℓ, JσK) → relabelJℓσK,JrσK(lab(r, JσK)) if JℓσK 6= JrσK (6.10)

(Note that Jℓ, JσKK = JℓσK, and Jr, JσKK = JrσK by Lemma 3.2.)
In case JℓσK = JrσK, no relabeling is needed and we take m = 0:

lab(top(s))
(6.7)
= CJℓσK[lab(ℓ, JσK)σ]

(6.9)
→↑π1R,µ CJℓσK[lab(r, JσK)σ]

6.8
= lab(top(t))

If JℓσK 6= JrσK, we get:

lab(top(s))
(6.7)
= CJℓσK[lab(ℓ, JσK)σ]

(6.10)
→↑π1R,µ CJℓσK[relabel

JℓσK,JrσK(lab(r, JσK))σ] = lab(top(C[relabelJℓσK(rσ)]))

By Lemma 6.8 the relabel symbol can ‘walk’ upward until it disappears, and at the latest
it vanishes when it meets top. Hence we have:

lab(top(s)) →↑π1R,µ lab(top(C[relabelJℓσK(rσ)])) →m
↑π2R,µ lab(top(C[rσ]))

for some m ≤ δA(R) by Lemma 6.6.

Theorem 6.10. Let R be a TRS over Σ, and 〈A, π,Σred 〉 a sound C-labeling for R. Then
R is outermost ground terminating if ↑πR is terminating.

Proof. Assume that R admits an infinite outermost rewrite sequence of ground terms:

t1
out→R t2

out→R t3
out→R . . .

Then from Lemma 6.9 it follows that ↑πR admits an infinite rewrite sequence:

lab(top(t1)) →
+
↑πR,µ lab(top(t2)) →

+
↑πR,µ lab(top(t3)) →

+
↑πR,µ . . .

We note that Theorem 6.10 can be strengthened by weakening the termination of ↑πR
to local termination of ↑πR on the set of correctly labeled ground terms without relabel

symbols. Let us denote this set by lab(T (Σ,∅)):

lab(T (Σ,∅)) = {lab(t) | t ∈ T (Σ,∅)}

Theorem 6.12 below states that dynamic labeling is complete with respect to local
termination on lab(T (Σ,∅)). More precisely, outermost ground termination of R implies
termination of ↑πR on lab(T (Σ,∅)). The following example helps to understand the proof
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of that theorem; it illustrates that even when starting from terms in lab(T (Σ,∅)), not every
rewrite step in ↑πR corresponds to an outermost step in R.

Example 6.11. Let R consist of the following rules:

f(b, x) → a f(x, b) → a

f(b, b) → f(a, a) a → b

Moreover, let A = {⊥, b} with JaK = ⊥, JbK = b, and JfK(x, y) = ⊥ for all x, y ∈ A. Labeling
symbols with the value of their arguments, we obtain for ↑π1R:

fb,⊥(b, x) → a f⊥,b(x, b) → a

fb,b(b, x) → a fb,b(x, b) → a

fb,b(b, b) → f⊥,⊥(a, a) a → relabel⊥,b(b)

and for ↑π2R:

f⊥,⊥(relabel⊥,b(x), y) → fb,⊥(x, y) f⊥,⊥(x, relabel⊥,b(y)) → f⊥,b(x, y)

where Σred = {a, fb,⊥, f⊥,b, fb,b}. Then we obtain the following rewrite sequence in ↑πR:

lab(f(a, a)) = f⊥,⊥(a, a)

→↑π1R,µ f⊥,⊥(relabel⊥,b(b), a)

→↑π1R,µ f⊥,⊥(relabel⊥,b(b), relabel⊥,b(b))

→↑π2R,µ fb,⊥(b, relabel⊥,b(b))

The second step in this rewrite sequence does not correspond to an outermost step. Nev-
ertheless, Theorem 6.12 states that such ‘illegal’ steps do not harm completeness of the
transformation. The reason is that if the relabeling rules create a redex above some relabel

symbol, then this relabel symbol is prevented from further propagating its information up-
ward (until it becomes µ-replacing again). The crucial point is that above relabel symbols
the labels are unchanged, thus as if the step would not have taken place. Moreover, it is
essential that ↑πR prohibits relabel to propagate over symbols from Σred . For instance, in
the above example ↑πR does not contain a rule of the form:

fb,⊥(x, relabel⊥,b(y)) → fb,b(x, y) (6.11)

This rule would cause non-termination:

f⊥,⊥(a, a) →µ
2 f⊥,⊥(relabel⊥,b(b), relabel⊥,b(b))

→µ fb,⊥(b, relabel⊥,b(b))

(6.11)
→µ fb,b(b, b)

→µ f⊥,⊥(a, a)

Theorem 6.12. Let R be a left-linear TRS over Σ, and 〈A, π,Σred 〉 a complete, maximal,
and core C-labeling for R. Then ↑πR is terminating on the set of terms lab(T (Σ,∅)) if R
is outermost ground terminating.

Proof. Define T = lab(T (Σ,∅)), and →֒ = (→↑π1R,µ · →∗
↑π2R,µ)∩ (T ×T ). Note that the rela-

tion →֒ is restricted to terms which contain no relabel symbols. Hence always the maximal
number of relabeling rules is applied. It is clear that each →֒ rewrite step corresponds to
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an outermost rewrite step in the original TRS R. Therefore it suffices to show that any in-
finite rewrite sequence t = t0 →↑πR,µ t1 →↑πR,µ . . . gives rise to an infinite rewrite sequence
t = s0 →֒ s1 →֒ . . .. We prove the claim by a kind of standardization of reductions. We first
classify the rules from ↑πR:

lab(ℓ, α) → lab(r, α) (c1)

lab(ℓ, α) → relabelJℓ,αK,Jr,αK(lab(r, α)) (c2)

fπf(~a ,b,~c )(~x , relabelb,b
′

(y), ~z ) → fπf(~a ,b′,~c )(~x , y, ~z ) (c3)

fπf(~a ,b,~c )(~x , relabelb,b
′

(y), ~z ) → relabeld,d
′

(fπf(~a ,b
′,~c )(~x , y, ~z )) (c4)

For i = 0, 1, . . ., we analyse the steps ti →↑πR,µ ti+1 and construct s0 →֒ s1 →֒ . . . →֒ sj in
such a way that sj

¬µ−→∗
c2,c4 ti+1 where we use ¬µ−→c2,c4 to denote standard term rewriting

ignoring the replacement map µ, and using rules from (c2) and (c4) only. Observe that
then the maximal prefix Ci+1 of ti+1 not containing relabel symbols is also a prefix of sj
(since everything changed by (c2) and (c4) is ‘hidden’ inside a relabel symbol). We begin
with t = s0, and i = j = 0. For i = 0, 1, . . ., we consider the step τi : ti →↑πR,µ ti+1.

If τi is a step with respect to a rule from:

− (c2) or (c4), then we append τi to the rewrite sequence sj
¬µ−→∗

c2,c4 ti yielding sj
¬µ−→∗

c2,c4
ti+1. Note that this leaves the →֒-rewrite sequence s0 →֒∗ sj untouched.

− (c1), then the pattern of τi lies entirely in Ci which is also prefix of sj. Then we append τi
to s0 →֒∗ sj (using left-linearity of R) yielding s0 →֒∗ sj

τi→֒ sj+1. We have sj+1
¬µ−→∗

c2,c4
ti+1 by orthogonal projection of the steps sj

¬µ−→∗
c2,c4 ti over sj

τi→֒ sj+1 (all steps in

sj
¬µ−→∗

c2,c4 ti are below the prefix Ci).

− (c3), then a relabel symbol ‘disappears’. We can trace this symbol back to a sequence
of steps σi : sj

¬µ−→c2 · ¬µ−→+
c4 s′j, that is, it must have been created in sj by a (c2)

step, followed by a number of (c4) steps. We combine σi and τi to a →֒ step, yielding
s0 →֒∗ sj

σi · τi→֒ sj+1. Then sj+1
¬µ−→∗

c2,c4 ti+1 as the remaining steps from sj
¬µ−→∗

c2,c4 ti

are not harmed by the permutation (performing σi first).

It remains to be shown that the constructed sequence s0 →֒ s1 →֒ s2 →֒ . . . is infinite. This
follows from the fact that an infinite number of steps in t0 →↑πR,µ t1 →↑πR,µ . . . must be of
type (c1) or (c3). This is a direct consequence of the fact that →c2,c4 is terminating (with

every step the prefix in which rewriting is allowed gets smaller).

The following example demonstrates why the completeness result for dynamic labeling
(Theorem 6.12) is restricted to the set lab(T (Σ,∅)) of correctly labeled terms which do
not contain relabel symbols. The point is that, although the original TRS is outermost
terminating the transformed system may in general be non-terminating due to the existence
of ‘non-reachable’ terms.

Example 6.13. We consider the following term rewriting system R:

a → b f(b, y) → b f(c, y) → h(f(y, y))

h(f(x, b)) → b h(f(x, c)) → b

We explain why this TRS is outermost ground terminating. Without the rule ρ : f(c, y) →
h(f(y, y)), the system would even be terminating. Now note that the rule ρ can only be
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applied once to each occurrence of f(c,2) since h(f(t, t)) →∗ h(f(c, t′)) implies that t = c,
and then the rule h(f(x, c)) → b has priority by the strategy of outermost rewriting.

We define a maximal, complete, core C-labeling 〈A, π,Σred 〉 for R (isomorphic to the
result of the construction given in the next section) where the algebra A = {bc, fbc,⊥} with
the interpretation function defined by:

JfK(x, bc) = fbc JbK = JcK = bc

JfK(x, y) = ⊥ JaK = JhK(x) = ⊥

for all x, y ∈ A with y 6= bc, and with Σred = {a, fbc , hfbc}.
The dynamic labeling ↑πR of R with respect to this C-labeling then includes the rules:

a → relabel⊥,bc(b)

fbc,⊥(c, y) → h⊥(f⊥,⊥(y, y))

f⊥,⊥(relabel⊥,bc(x), y) → fbc,⊥(x, y)

Now the context-sensitive TRS ↑πR admits the following infinite rewrite sequence:

fbc,⊥(c, relabel⊥,bc(c)) →↑πR,µ h⊥(f⊥,⊥(relabel⊥,bc(c), relabel⊥,bc(c)))

→↑πR,µ h⊥(fbc,⊥(c, relabel⊥,bc(c)))

→↑πR,µ . . .

Observe that this anomaly is caused by the subterm relabel⊥,bc(c), which is not reachable
from any term in lab(T (Σ,∅)).

Remark 6.14. Theorem 6.12 states completeness of dynamic labeling with respect to local
termination on the set of terms lab(T (Σ,∅)). We briefly indicate how the theorem can be
generalized to termination on T (lab(Σ),∅) by altering the definition of ↑πR. Note that
lab(T (Σ,∅)) ( T (lab(Σ),∅). In particular, the set T (lab(Σ),∅) includes terms that are
not correctly labeled. The necessary modification of the definition of dynamic labeling
concerns the elimination of collapsing rules ℓ → x. This can be achieved by wrapping the
right-hand side into relabela,a(2) even when the interpretations of the left and right-hand
side are equal. Additionaly, we let the symbols relabela,a disappear after one relabeling
step. By an application of Theorem 5.12 it then follows that termination on lab(T (Σ,∅))
coincides with termination on T (lab(Σ),∅).

7. Constructing Suitable Algebras

We construct C-models which are able to recognize redex positions with respect to left-
linear rules. The construction of C-models is similar to the construction of a deterministic
tree automaton (DTA, [CDG+07]) for recognizing left-linear redexes [Com00]. A DTA is a
Σ-algebra 〈A, J·K〉 with a distinguished set AF ⊆ A of final states. A term t is accepted by
the automaton whenever JtK ∈ AF . A difference with the construction of a DTA is that for
the construction of a C-model we do not distinguish final and non-final states, but instead
have a family of functions isRedex f : A

♯f → Bool for indicating the presence of a redex.
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Definition 7.1 (Redex-algebra). A redex-algebra 〈A, isRedex 〉 consists of a Σ-algebra A
together with a family {isRedex f}f∈Σ of functions isRedex f : A

♯f → Bool . The language of
A is the set:

L(A) = {f(t1, . . . , tn) ∈ T (Σ,∅) | isRedex f(Jt1K, . . . , JtnK) = true}

Let R be a TRS. A redex-algebra A is called sound for R whenever t ∈ L(A) implies that t
is a redex, and A is called complete for R if for all redexes t ∈ T (Σ,∅) we have t ∈ L(A).

Intuitively, a redex-algebra needs to ‘remember’ only the subterms t1, . . . , tn and not
the term f(t1, . . . , tn) itself. To see this, consider the one-rule system:

f(g(x)) → a

A tree automaton which can recognize redex positions for this TRS needs at least three
states: one for indicating a redex f(g(. . .)), one for g(. . .), and one garbage state. For
redex-algebras two states suffice: one state for g(. . .) and one for garbage, and then we use
isRedex f(g(. . .)) = true and false , otherwise.

We now describe a syntactical construction of redex-algebras. The algebras we construct
are C-models: the C-depth of a rule ℓ → r is the maximal pattern depth of a left-hand
side (minus 1), since for recognizing the subterms of left-hand sides we may ‘forget’ all
information that lies below the patterns. We first define some auxiliary functions, introduced
with different notations in [KM91, HL91].

Definition 7.2. Let Σ be a signature and X a set of variables. We let ⊥ be a new symbol,
⊥ 6∈ Σ, and we define T⊥ = T (Σ ∪ {⊥},∅). The function cut : T (Σ,X ) → T⊥ is defined
such that cut(t) is the result of replacing all variables in a term t ∈ T (Σ,X ) by ⊥:

cut(x) = ⊥ cut(f(t1, . . . , tn)) = f(cut(t1), . . . , cut(tn))

We define the function match : T⊥ × T⊥ → Bool such that match(s, t) = true if s can be
obtained from t by replacing subterms of t by ⊥, and we let match(s, t) = false, otherwise.
Further, we let merge(s, t) be the ‘most general common instance’ of s and t, that is,
merge : T⊥ × T⊥ ⇀ T⊥ is the partial function defined by:

merge(⊥, t) = merge(t,⊥) = t

merge(f(s1, . . . , sn), f(t1, . . . , tn)) = f(merge(s1, t1), . . . ,merge(sn, tn))

Hence merge(s, t) is undefined whenever there exists a position p ∈ Pos(s) such that
root (s|p) ∈ Σ, root(t|p) ∈ Σ, and root (s|p) 6= root (t|p). For a term s ∈ T⊥ and a set
T ⊆ T⊥ we define the term shrink(s, T ) as the largest t ∈ T (with respect to the number of
symbols) such that match(t, s) = true. Note that shrink(s, T ) is well-defined whenever T

is closed under merge and ⊥ ∈ T : whenever two terms t1 6= t2 of equal size match s then
merge(t1, t2) is larger and matches s.

Definition 7.3 (Construction of redex-algebra). We define a mapping F which constructs
a redex-algebra for a given TRS R. Let F (R) = 〈A, isRedex 〉 where A is the smallest set
such that:

− ⊥ ∈ A ,
− t ∈ A for every proper subterm t of cut(ℓ) with ℓ a left-hand side of a rule in R ,
− merge(s, t) ∈ A whenever s, t ∈ A and merge(s, t) is defined.
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The interpretation function J·K of A, and the functions isRedex are defined by:

JfK(t1, . . . , tn) = shrink (f(t1, . . . , tn),A)

isRedex f(t1, . . . , tn) =

{

true if match(cut(ℓ), f(t1, . . . , tn)) = true for some ℓ → r ∈ R

false otherwise

for all function symbols f ∈ Σ with arity n, and terms t1, . . . , tn.
The core of the algebra F (R), which we denote by F (R)c, is called the full redex-algebra

for R. Furthermore, let S ⊆ R be the set consisting of all left-linear rules of R. Then F (S)c
is called the left-linear redex-algebra for R.

Of course, if R is a left-linear TRS, then a left-linear redex-algebra for R also is a full
redex-algebra for R. Moreover, if R is a quasi-left-linear TRS, then the minimized left-linear
and full redex-algebras for R are isomorphic. Minimization of redex-algebras is introduced
in the next section. We now consider two examples which illustrate that F (R)c indeed can
be a proper subalgebra of F (R).

Example 7.4. We consider the term rewriting system R which consists of the rules:

a(x) → f(a(x), x) f(x, a(y)) → b f(x, f(y, z)) → b f(x, b) → b

This TRS is outermost ground terminating, but it is not outermost terminating. We
construct the redex-algebra F (R) = 〈A, isRedex 〉 where A = {⊥, a(⊥), f(⊥,⊥), b} with
JaK(x) = a(⊥), JfK(x, y) = f(⊥,⊥) and JbK = b for all x, y ∈ A. But note that ⊥ is not part
of the core, and hence the left-linear (full) redex-algebra F (R)c contains only the elements
{a(⊥), f(⊥,⊥), b}.

Example 7.5. Consider the term rewriting system R consisting of the rules:

h(h(h(x))) → a h(h(a)) → h(h(h(h(a))))

The domain of the redex-algebra F (R) is {h(h(⊥)), h(⊥),⊥, h(a), a} with the interpretation
of the symbols defined by:

JaK = a JhK(a) = h(a) JhK(h(a)) = h(h(⊥)) JhK(h(h(⊥))) = h(h(⊥))

The values ⊥ and h(⊥) are not part of the core, and hence the domain of the left-linear (full)
redex-algebra F (R)c is {h(h(⊥)), h(a), a} with isRedex h(h(a)) = isRedex h(h(h(⊥))) = true,
and false otherwise.

The next example illustrates the use of the function merge in the construction of a
redex-algebra.

Example 7.6. We construct the left-linear (full) redex-algebra for the TRS:

f(x, y) → a(f(c(x), y)) a(f(c(c(x)), y)) → e

f(x, y) → b(f(x, c(y))) b(f(x, c(c(y)))) → e

The subterms of cut(ℓ) of linear left-hand sides ℓ are:

S = {⊥, f(c(c(⊥)),⊥), f(⊥, c(c(⊥))), c(c(⊥)), c(⊥)}
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and closure of S under merge yields the algebra A = S ∪ {f(c(c(⊥)), c(c(⊥)))} with the
interpretation function defined by:

JaK(x) = JbK(x) = JeK = ⊥ for all x ∈ A

JcK(c(⊥)) = c(c(⊥))

JcK(c(c(⊥))) = c(c(⊥))

JcK(x) = c(⊥) for all x 6∈ {c(⊥), c(c(⊥))}

JfK(c(c(⊥)), c(c(⊥))) = f(c(c(⊥)), c(c(⊥)))

JfK(c(c(⊥)), x) = f(c(c(⊥)),⊥) for all x 6= c(c(⊥))

JfK(x, c(c(⊥))) = f(⊥, c(c(⊥))) for all x 6= c(c(⊥))

JfK(x, y) = ⊥ otherwise

For the family of isRedex functions we obtain:

isRedex f(x, y) = true for all x, y ∈ A

isRedex a(f(c(c(⊥)),⊥)) = true

isRedex a(f(c(c(⊥)), c(c(⊥)))) = true

isRedex b(f(⊥, c(c(⊥)))) = true

isRedex b(f(c(c(⊥)), c(c(⊥)))) = true

and isRedex returns false in all remaining cases. Finally, note that the core of the con-
structed algebra is the algebra itself, i.e., F (R)c = F (R), because e ∈ Σ with JeK = ⊥.

The following theorem states that left-linear (full) redex-algebras recognize only redex
positions (at least all redex positions).

Theorem 7.7. Let R be a TRS over Σ. The following properties hold:

(i) The left-linear redex-algebra for R is sound.
(ii) The full redex-algebra for R is complete.
(iii) Let A be the left-linear redex-algebra for R. For all t ∈ T (Σ,∅) we have t ∈ L(A)

if and only if t is a redex with respect to a left-linear rule in R. Hence, if R is
quasi-left-linear, then the left-linear redex-algebra for R is sound and complete.

Proof. We prove (ii) and leave (i) and (iii) to the reader.
Let 〈A, isRedex 〉 = F (R)c with F the mapping defined in Definition 7.3. Let t ∈

T (Σ,∅) be a redex with respect to a rule ℓ → r ∈ R.
We show match(cut(ℓ|p), Jt|pK) = true for all positions p ∈ Pos(ℓ) \ {ǫ} by induction on

the structure of ℓ. If ℓ|p is a variable then cut(ℓ|p) = ⊥, and we have match(⊥, a) = true
for all a ∈ A. If ℓ|p = f(s1, . . . , sn), then t|p = f(t1, . . . , tn) and by induction hypothesis we
have match(cut(si), JtiK) = true. Hence match(cut(f(s1, . . . , sn)), f(Jt1K, . . . , JtnK)) = true
by definition of cut . Moreover, match(a, t) = true implies match(a, shrink (t,A)) = true
for all a ∈ A. By definition we have Jf(t1, . . . , tn)K = shrink (f(Jt1K, . . . , JtnK),A), and hence
match(cut(f(s1, . . . , sn)), Jf(t1, . . . , tn)K) = true.

Let t = g(u1, . . . , um) and ℓ = g(w1, . . . , wm). Then we know match(cut(wi), JuiK) =
true. Hence match(cut(ℓ), g(Ju1K, . . . , JumK)) = true and t ∈ L(A).
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8. Minimizing Algebras

In this section we are concerned with the minimization of redex-algebras. The algorithm
is similar to the minimization of deterministic tree automata, see [CDG+07]. For the set
of 291 TRSs of the outermost termination competition of 2008 [Ter08], the redex-algebras
constructed according to Definition 7.3 have an average size of 4.6 elements. After an
application of the minimization algorithm described here, the average size falls to 3.4, a
reduction of 27%. This reduction has a polynomial influence on the number of rules of the
transformed system.

Definition 8.1. Two core redex-algebras A1, A2 are called equivalent if L(A1) = L(A2).

Lemma 8.2. Let A1, A2 be equivalent, core redex-algebras. Then A1 is sound or complete
if and only if A2 has the respective property.

For a given core redex-algebra we now construct a minimal equivalent algebra. The
difference to the minimization of tree automata from [CDG+07] lies in the initial equiv-
alence E0. For tree automata this initial equivalence consists of two partitions, the final
and the non-final states. In our setting two states are initially equivalent if they cannot
be distinguished using the isRedex functions, that is, isRedex f(~x , a, ~y ) = isRedex f(~x , b, ~y )
for each symbol f ∈ Σ and each assignment of ~x and ~y . This can yield any number of
partitions between 1 and |A|.

Definition 8.3 (Minimization of redex-algebra). Let 〈A, isRedex 〉 be a core redex-algebra
over Σ. We define equivalence relations Ei for i ∈ N on the elements of A. Initially two
elements a, b ∈ A are equivalent, a E0 b, if:

isRedex f(~x , a, ~y ) = isRedex f(~x , b, ~y )

for all symbols f ∈ Σn, j ∈ {1, . . . , n}, ~x ∈ Aj−1, and ~y ∈ An−j. Then for i = 0, 1, . . . and
a, b ∈ A we define a Ei+1 b if a Ei b holds and:

JfK(~x , a, ~y ) Ei JfK(~x , b, ~y )

for all n-ary symbols f ∈ Σ, j ∈ {1, . . . , n}, ~x ∈ Aj−1, and ~y ∈ An−j. The process halts
when Ei+1 = Ei for some i ∈ N, and then we define E = Ei. Let [a] denote the equivalence
class of a ∈ A with respect to E. The minimized redex-algebra of A, denoted Amin , is
defined as Amin = 〈E, J·KE , isRedexE〉 where:

JfKE([a1], . . . , [an]) = [f(a1, . . . , an)]

isRedexE
f ([a1], . . . , [an]) = isRedex f(a1, . . . , an)

for each symbol f ∈ Σ with arity n.

Lemma 8.4. Let A be a core redex-algebra, then A is equivalent to Amin .

Example 8.5. We consider the TRS R consisting of the following three rules:

f(i(a)) → a f(j(a)) → a f(a) → a

The left-linear (full) redex-algebra for R is A = {a, i(a), j(a),⊥} with the interpretation
JaK = a, JiK(a) = i(a), JjK(a) = j(a), and the interpretation is ⊥ in all non-listed cases;
isRedex f(x) = true for all x 6= ⊥, and false, otherwise.

The minimization algorithm starts with E0 = {{a, i(a), j(a)}, {⊥}} as initial equiva-
lence, since ⊥ can be distinguished from the other elements (isRedex f(⊥) = false). The
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first iteration of the algorithm yields E1 = {{a}, {i(a), j(a)}, {⊥}} as JiK(a) = i(a) whereas
JiK(i(a)) = JiK(j(a)) = ⊥. The elements i(a) and j(a) are indistinguishable, and so in the
second iteration we obtain E2 = E1. Thus the elements i(a) and j(a) are identified and we
obtain an algebra that has one element less than the algebra we started with.

9. Constructing Minimal and Maximal C-labelings

In the previous sections we have constructed and minimized redex-algebras for recog-
nizing redex positions. For completing the transformation we still have to explain how to
construct C-labelings from the redex-algebras.

In minimal labeling symbols are marked with a ⋆ if they correspond to redex positions
and stay unlabeled otherwise. This labeling creates a small signature and thereby results
in a small number of rules of the transformed system.

Definition 9.1. Let R be a TRS over Σ, and A a redex-algebra. The minimal labeling with
respect to A is the C-labeling 〈A, π,Σred 〉 defined for each n-ary symbol f ∈ Σtop by:

πf(a1, . . . , an) =

{

⋆ if isRedex f(a1, . . . , an) = true

ǫ otherwise

The set of redex symbols is defined by Σred = {f⋆ | f ∈ Σ}.

Theorem 9.2. Let R be a TRS, and A a sound redex-algebra for R. The minimal labeling
with respect to A is a sound C-labeling for R.

Proof. Let t = f(t1, . . . , tn) ∈ T (Σ,∅) such that root (lab(t)) ∈ Σred . Then by definition of
minimal labeling we have isRedex f(Jt1K, . . . , JtnK) = true. Hence t ∈ L(A) and thus t is a
redex by definition of sound redex-algebra.

The construction and minimization of redex-algebras (Definitions 7.3 and 8.3) give rise
to sound minimal C-labelings (Theorem 7.7, Lemmas 8.4 and 8.2, and Theorem 9.2). In
combination with Theorems 5.8 and 6.10 this provides us with sound transformations for
proving outermost termination:

Corollary 9.3. Let R be a TRS, and let 〈A, π,Σred 〉 be the minimal labeling with respect
to the minimized left-linear redex-algebra for R. Then R is outermost ground terminating
whenever the dynamic context extension △πR or the dynamic labeling ↑πR is terminating.

Minimal labeling is sound and efficient, but it is not complete (not even for left-linear
TRSs where the left-linear redex-algebra is complete):

Example 9.4. Let R be the term rewriting system consisting of the rules:

inf(x) → cons(x, inf(s(x))) cons(s(x), y) → nil

Obviously, R is outermost terminating. The minimized left-linear redex-algebra for R is:

A = {s,⊥} JsK(x) = s JnilK = JinfK(x) = JconsK(x, y) = ⊥

for all x, y ∈ A. The C-depth of both rules (with respect to A) is 0. Using minimal
labeling we obtain πcons(s, x) = ⋆ and πinf(x) = ⋆ for all x ∈ A, and other symbols are left
unmarked (ǫ). Thus the set of redex symbols is Σred = {inf⋆, cons⋆}.
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The dynamic context extension △πR of R with respect to the C-labeling 〈A, π,Σred 〉
consists of the following rules, the first two of which arise from the inf-rule, with the values
⊥ and s assigned to x respectively:

inf⋆(x) → cons(x, inf⋆(s(x)))

inf⋆(x) → cons⋆(x, inf⋆(s(x)))

cons⋆(s(x), y) → nil

The replacement map is defined by µ(inf⋆) = µ(cons⋆) = ∅.
Now △πR admits an infinite derivation:

inf⋆(x) →△πR,µ cons(x, inf⋆(s(x))) →△πR,µ cons(x, cons(s(x), inf⋆(s(s(x))))) → . . .

The third term is labeled incorrectly, as the inner occurrence of cons should be marked.
The reason is that in the second step, instead of the first inf⋆-rule, the second should have
been applied; however, the left-hand side inf⋆(x) contains too little information to ‘decide’
what the labeling of the right-hand side should be.

This motivates the use of maximal labeling for which correct labeling is preserved under
rewriting. Function symbols are labeled with the interpretation of their arguments:

Definition 9.5. Let R be a TRS over Σ, and let A be a redex-algebra for R. The maximal
labeling with respect to A is the C-labeling 〈A, π,Σred 〉 defined for each n-ary f ∈ Σtop by:

πf(a1, . . . , an) = 〈a1, . . . , an〉

The set of redex symbols is defined by: Σred = {f〈a1,...,an〉 | isRedex f(a1, . . . , an) = true}.

Theorem 9.6. Let R be a TRS, and let A be a redex-algebra for R. The maximal labeling
with respect to A is a maximal C-labeling for R, and it is sound, complete, and core whenever
A has the respective property.

Proof. Maximality of the maximal labeling is immediate from the definition. Let A be a
complete redex-algebra. Let t = f(t1, . . . , tn) ∈ T (Σ,∅) be a redex. Then by definition of
complete redex-algebra isRedex f(Jt1K, . . . , JtnK) = true, and it follows that root (lab(t)) =

f〈Jt1K,...,JtnK〉 ∈ Σred . Hence the C-labeling is complete. Analogous to the proof of Theo-
rem 9.2, we obtain that maximal labeling is sound whenever the redex-algebra A is sound.
Note that the remaining claim concerning coreness is immediate by definition.

The construction and minimization of redex-algebras (Definitions 7.3 and 8.3) give
rise to sound and complete maximal C-labelings (Theorem 7.7, Lemmas 8.4 and 8.2, and
Theorem 9.6). In combination with Theorems 5.8, 5.13 and 6.10 this provides us with sound
transformations for proving outermost termination for arbitrary TRSs. For quasi-left-linear
TRSs dynamic context extension is both sound and complete.

Corollary 9.7. Let R be a TRS, and let 〈A, π,Σred 〉 be the maximal labeling for the min-
imized left-linear redex-algebra for R. Then R is outermost ground terminating whenever
the dynamic context extension △πR or the dynamic labeling ↑πR is terminating. Moreover,
if R is quasi-left-linear, then R is outermost ground terminating if and only if the dynamic
context extension △πR terminates.

As a consequence, the full redex-algebra for an arbitrary TRS can be used to disprove
outermost ground termination:
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Corollary 9.8. Let R be a TRS, and let 〈A, π,Σred 〉 be the maximal labeling for the min-
imized full redex-algebra for R. Then the dynamic context extension △πR is terminating
whenever R is outermost ground terminating.

Example 9.9. We revisit Example 9.4, but this time we give the dynamic context extension
with respect to maximal labeling:

inf⊥(x) → cons⊥,⊥(x,infs(s⊥(x))) infs(x) → conss,⊥(x,infs(ss(x)))

conss,⊥(s⊥(x), y) → nil conss,⊥(ss(x), y) → nil

conss,s(s⊥(x), y) → nil conss,s(ss(x), y) → nil

with µ(inf⊥) = µ(infs) = µ(conss,⊥) = µ(conss,s) = ∅. This context-sensitive TRS is
terminating as opposed to the one constructed in Example 9.4. To prove termination we
give a strictly decreasing polynomial interpretation over the natural numbers:

JnilK = 0 Jcons⊥,⊥K(x, y) = x+ y Jinf⊥K(x) = x+ 3 Js⊥K(x) = x

Jconss,⊥K(x, y) = 1 JinfsK(x) = 2 JssK(x) = x

10. Evaluation

With the implementation of the transformation by dynamic context extension, de-
scribed in Section 5, the termination prover Jambox [End09] gained first place in the cat-
egory of outermost rewriting of the termination competition of 2008 [Ter08], see Table 1.
With an average time of 4.1 seconds per termination proof, Jambox was also faster than the

score average time

Jambox [End09] 72 (93.5%) 4.1s

TrafO [RZ09] 46 (59.7%) 8.1s

AProVE [GSKT06] 27 (35.0%) 10.8s

Table 1: Results of proving outermost termination in the competition of 2008 [Ter08].

other participants, providing empirical evidence for the efficiency of the transformation of
dynamic context extension. Not listed in Table 1 is TTT2 [KSZM09], which did not prove
outermost termination, but performed best in disproving outermost termination.

The percentages listed in Table 1 are relative to the total number of term rewriting
systems which were proven to be outermost terminating by some participating tool. The
TPDB 2008 contained 291 TRSs in the category of outermost rewriting of which 77 were
proven outermost terminating, 161 not outermost terminating, and 53 remained unsolved
in the competition. We note that around 50 systems in the database are, strictly speaking,
not term rewriting systems, as they contain variables in the right-hand sides that do not
occur in the left-hand sides.

In the termination competition 2008, Jambox used exclusively the approach of dynamic
context extension (Section 5). If we additionally use dynamic labeling, as defined in Sec-
tion 6, the score of Jambox improves by 4, thus proving 76 systems to be outermost termi-
nating.
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The secret behind the efficiency of Jambox is threefold: First, we construct and minimize
the algebras employed for marking redex positions, see Sections 7 and 8. Secondly, we try
two labeling strategies: minimal and maximal, see Section 9. Minimal labeling is very
efficient and contributes to 75% of the success of Jambox. In order to have a complete
transformation we also employ maximal labeling. Thirdly, dynamic context extension is
the combination of labeling and context extension, where the prefixing of contexts to rules
depends on the interpretation of the variables. All these optimizations minimize the number
of rules and their size in the transformed systems, which is important to keep a manageable
search space.

minimum

lower quartile
median

upper quartile

maximum

Next, we compare the performance of dynamic context extension and dynamic labeling
(Section 6). Figure 1 shows the size of the transformed systems in relation to the size
of the input system, as measured on the TPDB [Ter08]. For each input size we display
the minimum, the lower quartile (25th percentile), the median, the upper quartile (75th
percentile), and the maximum size of the transformed systems. From Figure 1 it can be
inferred that for larger input systems the dynamic labeling usually is a factor 5 or 10 smaller
than the dynamic context extension. For systems with more than 10 rules there are only
a few examples available in the database, which explains why some of the quartiles fall
together.
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Figure 1: Size of the transformed systems (y-axis) in relation to the size of the input TRS
(x-axis) using dynamic context extension (left), and dynamic labeling (right),
both with maximal C-labelings.

Table 2 shows a comparison of our different methods (dynamic context extension and
dynamic labeling, combined with minimal or maximal labeling). Each row lists the total
score of one method with the number of systems it can solve that cannot be solved by the
method corresponding to the column. For example, the value 3 in Table 2 means that three
systems can be solved by dynamic maximal labeling, but not by dynamic context extension
in combination with maximal labeling. The table shows that dynamic context extension
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Method Total Score ¬△πR, max ¬↑πR, max ¬△πR, min ¬↑πR, min

△πR, max 71 0 5 16 25

↑πR, max 69 3 0 16 21

△πR, min 57 2 4 0 9

↑πR, min 50 4 2 2 0

Table 2: Comparison of the proposed methods on the TPDB 2008.

and dynamic labeling are roughly equal in strength, and that maximal labeling gives the
best results.

Table 3 illustrates that the C-depth of rules is typically small (employing left-linear
redex-algebras): it is 0 or 1 in 94.5% of the cases. Note that 54% of the rules have C-depth 0,
but this does not mean that the same percentage of the TRSs could be handled by a model
(Definition 3.7). Only 14% of the TRSs have C-depth 0.

C-depth 0 1 2 3 4 5 6 7 8 9 10

#rules 54% 40.5% 3.3% 1.3% 0.5% 0.2% 0% 0% 0% 0.1% 0%

Table 3: Ratio of rules having a certain C-depth in the TPDB 2008.

11. Discussion

For arbitrary TRSs the transformation based on dynamic context extension (including
the construction of C-labelings) is sound, and for quasi-left-linear TRSs it is sound and
complete. The sound redex-algebra we construct recognizes redexes with respect to left-
linear rules. As a consequence, in the µTRS △πR rewriting is forbidden only inside such
redex positions. This corresponds to a weakening of the outermost rewriting strategy:
contraction of a redex is disallowed only if it is contained within a redex with respect to
left-linear rule. Let us call this the ‘left-linear outermost’ rewriting strategy. Dynamic
context extension combined with maximal labeling is sound and complete for termination
with respect to this rewriting strategy for all TRSs.

In a similar way the transformation of [RZ09] can be generalized from quasi-left-linear
TRSs to arbitrary TRSs. For soundness the anti-matching rules do not need to exactly
match the non-redex terms, as long as at least all non-redex terms are matched. Then the
symbol down can be moved inside redexes with respect to rules which are not left-linear.
This enables only additional rewrite steps but does not harm soundness. More precisely,
using this generalization the transformation of [RZ09] becomes complete with respect to left-
linear outermost termination. Thereby the score of TrafO in the termination competition of
2008 [Ter08] could possibly have been improved by around 20%, resulting in a score of 57
instead of 47.

We have shown that the transformation of dynamic labeling is complete on the set of
correctly labeled terms lab(T (Σ,∅)) without the auxiliary relabel symbols (Theorem 6.12).
The non-completeness with respect to termination on all terms arises from ‘illegally placed’
relabel symbols in combination with duplicating rules, see Example 6.13. The duplicating
rules can multiply the illegal symbols and make them reusable over and over again. To
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prevent this, one can introduce an extra symbol block with µ(block) = ∅ for disallowing
relabel symbols beneath the rule application. For this purpose, we wrap each duplicated
variable in the right-hand side of a labeled rule into a context block(2), and we extend the
dynamic labeling with rules of the form block(f(x1, . . . , xn)) → f(block(x1), . . . , block(xn))
for each symbol f ∈ lab(Σn) (excluding relabel symbols!). Note that this implies that
block symbols disappear when meeting a constant. For instance, reconsider the TRS from
Example 6.13, which had among others the following rule in its dynamic labeling:

fbc,⊥(c, y) → h⊥(f⊥,⊥(y, y))

This rule would be modified to:

fbc,⊥(c, y) → h⊥(f⊥,⊥(block(y), block(y)))

In this way we ‘block’ each duplicated variable.
Another question is whether there are interesting labelings between minimal and max-

imal. In particular, are there more efficient complete labelings? Here efficiency is measured
in the size of the signature and the number of rules of the transformed system. In Ex-
ample 9.9 it would have been sufficient to label cons with the interpretation of the left
argument, saving two symbols and two rules of the transformed system.

References

[AEF+08] B. Alarcón, F. Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas, P. Schneider-Kamp, and
R. Thiemann. Improving Context-Sensitive Dependency Pairs. In Proc. Conf. on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR 2008), volume 5330 of LNCS, pages
636–651. Springer, 2008.

[AG00] T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency Pairs. Theoretical Com-
puter Science, 236:133–178, 2000.

[AGL06] B. Alarcón, R. Gutiérrez, and S. Lucas. Context-Sensitive Dependency Pairs. In Proc. Conf. on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2006), volume
4337 of LNCS, pages 297–308. Springer, 2006.
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