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With the use of an ultra-narrow-band extreme ultraviolet laser source, tunable near 94 nm, transition wave-
lengths are determined for lines connecting the 1s22s22p2 3P0,1,2 ground-term levels to the 1s22s2p3 3S1
excited level in neutral carbon at an absolute accuracy of 4310−8. With the determination of the zero-velocity
rest-frame wavelengths these lines can be included in an analysis of a possible temporal variation of the
fine-structure constanta from a comparison with quasar data. A value for the C12/C13 transition isotope shift
was also obtained yielding 0.5107s13d cm−1, in average over the three fine-structure lines. The latter measure-
ment will allow to study isotopic evolution in the universe and test models of nuclear processes in stars.
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Theories unifying gravity with other interactions suggest
a possibility of temporal and spatial variation of major con-
stants of physics. A review of these theories as well as mea-
surement results can be found inf1g. A very sensitive many-
multiplet sMM d method to search for the variation of the
fine-structure constanta=e2/4pe0"c by comparison of qua-
sar absorption spectra with laboratory spectra has been sug-
gested in Ref.f2g. Webbet al. f3–6g used the MM method
and found statistical evidence ofa variation, while other
groupsf7,8g have used the same methodf2g but found no
evidence ofa variation snote, however, that the authors of
Refs.f3–6g used data from the Keck telescope located in the
northern hemisphere while the authors of Refs.f7,8g used
data from the southern hemisphered.

The MM method requires first-principles atomic-structure
calculations of relativistic corrections to level energies,
which allows one to find a dependence of atomic transition
frequencies ona: v=v0+qx where x=a2/a0

2−1. Herev0
anda0 are the laboratory values, whilev anda refer to the
rest values of transition frequency and fine-structure constant
for an atom or ion in a remote cloud located at a distance up
to 12 billion light years from us. Coefficientsq are small in
light atomssanchor lines which are not sensitive to a varia-
tion of ad, large positivespositive shiftersd, or large negative
snegative shiftersd. To detect a variation ofa and control
systematic effectsswhich do not “know” about sign and
magnitude ofqd one should have representatives of all three
classessanchors, positive shifters, and negative shiftersd in
each absorption system. An example of an anchor line is SiII

152.671 nm, a positive shifter ZnII 206.614 nm, and a nega-
tive shifter CrII 206.224 nm. Theq value for the CI line at
94.5 nm has been calculated at 130s60d f9g and therewith
falls in the class of anchor lines.

Calculations ofq for many atoms and for a large number
of transitions have been performed in Refs.f9–11g. However,
only 23 transitions have been used up to nowsabout 6-9 lines
of each classd. There exists a much larger number of ob-
served spectral lines in absorption clouds. However, they
cannot be used because of the absence of accurate laboratory
measurementsf12g. An increase of the number of useful
lines is important since it allows to extend measurements of
a variation to new absorption clouds located in different po-
sitions in space-time, to significantly increase statistics, and
to provide efficient control of systematic errorssespecially
when a wide variety ofq values are covered in each absorp-
tion cloudd.

It is also important to measure the isotopic shifts in the
spectral lines. The isotopic abundance ratios in the distant
gas clouds may not match those on earth. If the isotopic
abundances are very different this may generate spectral line
shifts, which could mimic variations ofa. To estimate this
systematic effect one has to measure the istopic shifts.
Knowledge of isotopic shifts also allows to study another
important problem: isotopic evolution in the universe. This
provides a very sensitive test of models of nuclear processes
in starsssee, e.g., Refs.f6,10,13,14gd.

Here we report on a highly accurate measurement in neu-
tral atomic carbon of the transition wavelengths of all three
fine-structure components connecting the3P0,1,2 ground state
with the 3S1 level of the 2s2p3 configuration. For the mea-
surements, use is made of a laser-based narrow band and
tunable source of extreme ultravioletsXUV d radiation devel-
oped in the Amsterdam Laser Centref15g. The ground-state
fine-structure splittings for both12C and 13C are extremely
accurately known from far-infrared spectroscopyf16,17g,
such that measurement of all three components in fact pro-
duces redundant information, therewith providing a consis-
tency check on the wavelength calibrations.

The experimental setup of the laser-based XUV source, its
application to high-resolution atomic and molecular spectro-
scopic studies, and the frequency calibration techniques,
have been described in detail beforef15g. A collimated XUV
beam, generated via third-harmonic generation of the output
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of a Fourier-transform-limited and frequency doubled pulsed
laser system is crossed perpendicularly with a skimmed
atomic beam. A feature is the use of a pulsed nozzle beam
source, based on a Jordan Valve adapted with a pulsed dis-
charge section, similar to the design of van Beek and ter
Meulen f18g. Atomic carbon is produced in the beam by
pulsing and discharging a 1% C2H2/He mixture. The result-
ing beam is thereafter skimmed before entering the interac-
tion zone. Signal is recorded by inducing 1XUV+1UV
photoionization and subsequent detection of ions, where the
UV is obtained from the UV laser beam, at 3lXUV, that is
used for harmonic conversion.

In Fig. 1 an example of a recording of the3P0-
3S1 spectral

line is shown. The two upper spectra are recordings of in-
coming ions after a time-of-flight mass separation zone, with
two boxcar gates set to record masses 12 and 13. The13C
trace is hence obtained from the naturally abundant13C iso-
tope s1%d in the beam. The spectral peak occurring at the
12C resonance in the13C trace is an artefact, due to leaking
of part of the strong signal into the time window set for mass
13.

Spectral calibration of the wavelength is derived from the
simultaneously recorded transmission fringes from an ac-
tively stabilized etalonsfree spectral rangesFSRd 148.96
MHzd and a saturation spectrum of iodine. In the latter spec-
trum the “t”-hyperfine component, which is used for absolute

frequency calibration, is marked in the lower trace of Fig. 1.
Note that these spectra were recorded with the continuous-
wave output of a seed-laser running at 6lXUV f15g. The ref-
erence frequencies of theI2 lines were obtained from the
analysis by Knöckel and co-workers at an accuracy better
than 5 MHz for all “t” components in the entire visible and
near-infrared rangef19g. Analysis of the uncertainty budget
reveals that two systematic effects give decisive contribu-
tions to the error budget. The first is a possible Doppler shift
due to a nonperfect perpendicular alignment of the atomic
beam with respect to the laser beam. The shift is addressed
by measuring the CI lines from both C2H2/He and C2H2/Xe,
thereby changing the velocity of the beam by more than a
factor of 2 for the same angle. Analysis yields an upper limit
to a Doppler shift of 0.003 cm−1. A second major contribu-
tion to the uncertainty is the so-called frequency chirp in-
duced in the dye amplifiers; based on previous investigations
f15g we conservatively estimate this to produce an uncer-
tainty in the XUV frequency of smaller than 0.003 cm−1.
Combined with some smaller contributions to the uncertainty
sFSR etalon, accuracy ofI2-reference standard, statistical er-
rors from the fitting of line profilesd a total uncertainty of
0.006 cm−1 or 0.000 006 nm results. This corresponds to a
relative accuracy of 6310−8.

The widths of the observed lines are on average 1450
MHz, which is predominantly associated with natural life-
time broadening. Although the3S1 level is above the ioniza-
tion potential, selection rules forbid autoionization, at least
within LS coupling. Two studies have focused onab initio
calculations of the radiative decay yieldingA=6.13109 s−1

f20g and a significantly smaller value ofA=3.413109 s−1

f21g. If the XUV bandwidths<300 MHzd and some residual
Doppler broadening are subtracted from the observed width

FIG. 2. Level scheme of the 94.5-nm spectral line in neutral
carbon. The fine-structure splittings in the3P ground state are ac-
curately known from far-infrared studiesf16,17g. The numbers on
the left-hand side give energies of3P levels in cm−1. In 13C the3P2
and 3P1 levels are split twofold by theI =1/2 nuclear spin with
splittings 372.4 and 4.1 MHz, respectively. The electronically ex-
cited 3S1 level in 13C is also split by the hyperfine interaction for
which the value is unknown. For13C the spectral hyperfine compo-
nents are drawn, which are, however, unresolved in the present
work.

FIG. 1. Recording of the3P0-
3S1 spectral line of CI. sad 12C; sbd

13C; scd Etalon trace; sdd I2 saturation spectrum with the
“ t”-hyperfine component of theB-Xs18,0d Rs82d line marked with
s* d; this component has a frequency 17 633.2446 cm−1 in the visible
range. Transition frequencies are displayed along the upper axis
sXUV ranged and the lower axis svisible frequency before
conversiond.
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a natural line broadening of<1 GHz results, which would
be in accordance with the larger value from Ref.f20g.

For 13C the same linewidths are observed. In Fig. 2, a
level scheme for the13C isotope is displayed, including the
effect of hyperfine structure. Each fine-structure-resolved
spectral line consists of twos3P0d, threes3P2d, or four s3P1d
hyperfine components, but no evidence of additional broad-
ening or of significantly asymmetric line shapes is observed.
From this fact it is concluded that the hyperfine splitting in
the 3S1 upper level does not exceed 400 MHz. The hyperfine
structure is ignored in the frequency analysis, although for
13C the uncertainty is somewhat increased to account for
possible hyperfine effects.

In Table I the results on the wavelength calibrations for all
three fine-structure lines for both isotopes are listed. A com-
parison is made with the findings from classical spectroscopy
from Johanssonf22g. A systematic discrepancy is found with
the previous values being higher in wavelength by 0.0004
nm. In Ref.f22g no explicit uncertainty is specified, but we
assume that a deviation of four units in the last digit dis-
played is reasonable. In order to avoid confusion in the use
of the data we state explicitly that in our work, frequencies
were measured that were subsequently converted into
vacuumwavelengths.

All three spectral lines connect each of the three3P levels
to the single3S1 level, and hence the wavelength calibrations
provide redundant information on its level energy. Since
some contributions to the total error budget in determining
the level energy of the3S1 level are statistical, and even the
systematic effects may vary with wavelength, some addi-
tional averaging is appropriate. With the information from
the infrared studiesf16,17g the level energy for3S1 and its
uncertainty is 105 799.109s4d cm−1 for 12C. The values for
the separations between fine-structure levels, as given in Fig.
2, are the same for13C, when averaging over hyperfine levels

and within an uncertainty of 0.001 cm−1. The same proce-
dure leads to a level energy of 105 799.628s6d cm−1 for the
3S1 level in 13C. These level energies, obtained via averaging
over the three independent measurements, can be used to
recalculate the transition wavelengths. The results are listed
in the last column of Table I. This procedure yields an esti-
mation of transition wavelengths with a relative uncertainty
of 4310−8.

As for the isotope shifts continuous scans can be recorded
covering the span of both12C and13C components. For these
relative measurements the major systematic contributions to
the uncertainties cancel out, resulting in improved values for
the isotope shifts as displayed in Table II. Due to experimen-
tal constraints on the tunability of the laser system this pro-
cedure did not work well for the3P1-

3S1 line; hence its iso-
tope shift was derived from the excited-state level energies.
A statistical average over the three transition isotope shifts
then yields a value of 0.5107s13d cm−1 for the multiplet.Ab
initio calculations of isotope shifts have been performed in
the past for electronic transitions involving the3P ground
state of CI f23,24g, however not for the transition to the3S1
level.

In conclusion, transition wavelengths combining the three
levels of the 1s22s22p2 3P0,1,2 ground term to the 1s22s2p3

3S1 excited state have been determined with an accuracy of
4310−8. This accuracy can be considered exact in compari-
sons between laboratory data from the present epoch with
data obtained from quasars at high redshifts. The CI line at
94.5 nm is therewith a spectral line that may be included for
searches of temporal variation of the fine-structure constant.
We also measured the isotopic shift between12C and 13C
lines. Knowledge of this isotopic shift allows one to measure
the isotopic ratio12C/13C in distant clouds and perform an
important test of models of nuclear processes in stars
f13,14g.

The authors wish to thank E. Salumbides for his assis-
tance during the measurements. The Space Research Organi-
sation NetherlandssSRONd and the Netherlands Foundation
for Fundamental Research on MattersFOMd are gratefully
acknowledged for financial support.

TABLE I. Resulting wavelengthssin nmd for the 2s22p2

3P0,1,2-2s2p3 3S1 spectral lines in both12C and13C. A comparison
is made with the values from Johanssonf22g.

lmeasured Ref. f22g lanalyzed

12C
3P0-

3S1 94.518 751s6d 94.519 1 94.518 752s4d
3P1-

3S1 94.533 423s6d 94.533 8 94.533 421s4d
3P2-

3S1 94.557 551s6d 94.557 9 94.557 552s4d
13C
3P0-

3S1 94.518 293s8d 94.518 291s6d
3P1-

3S1 94.532 955s8d 94.532 959s6d
3P2-

3S1 94.557 093s8d 94.557 091s6d

TABLE II. Resulting12C–13C isotope shiftssISd on the 94.5-nm
C I transition.

Isotope shift
sMHzd

Isotope shift
scm−1d

3P0-
3S1 15 435s120d 0.514 4s40d

3P1-
3S1 15 480s210d 0.516 0s70d

3P2-
3S1 15 295s50d 0.509 8s16d
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