Primary Events in Photosynthetic Reaction Centers and Antennas:

A Femtosecond Visible – Pump – Mid-Infrared – Probe Study

Natalia Paulina Pawłowicz

The research presented in this thesis was financially supported by the Netherlands Organization for Scientific Research (NWO) via the Foundation for Earth and Life Sciences (ALW), by European Union grand MRTN-CT-2003-505069 Intro2, by Human Frontier Science Program grand RGP 38/2006 and by Biotechnology and Biological Sciences Research Council of the United Kingdom.

This thesis has been reviewed and approved by the following committee:

- Prof. Dr. Andrzej Dobek, Adam Mickiewicz Uniersity, Poznań, Poland
- Dr. Jacques Breton, CEA-Saclay, France
- Dr. Bruno Robert, CEA-Saclay, France
- Dr. Su Lin, Arizona State University, Tempe, USA
- Dr. Ivo H. M. van Stokkum, Vrije Universiteit Amsterdam, The Netherlands
- Dr. Michael R. Jones, University of Bristol, UK

ISBN 9789086593453

Photo: Natalia P. Pawłowicz 2006 Cover designed by Łukasz Stern Printed by: Wydawnictwo Gaudentinum, Poland

VRIJE UNIVERSITEIT

Primary Events in Photosynthetic Reaction Centers and Antennas: A Femtosecond Visible – Pump – Mid-Infrared – Probe Study

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L. M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Exacte Wetenschappen op dinsdag 8 september 2009 om 13.45 uur in de aula van de universiteit, De Boelelaan 1105

door

Natalia Paulina Pawłowicz

geboren te Poznań, Polen

promotor: prof.dr. R. van Grondelle copromotor: dr. M. R. Jones

To my daughter Karolina

Contents Abbreviations

CHAPTER 1 Introduction

CHAPTER 2

Charge separation and energy transfer in the Photosystem II core complex studied by femtosecond mid-infrared spectroscopy.

CHAPTER 3

Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-infrared spectroscopy.

CHAPTER 4

Identification of the first steps in charge separation in bacterial photosynthetic reaction centers of *Rhodobacter sphaeroides* by ultrafast mid-infrared spectroscopy. Electron transfer and protein dynamics.

CHAPTER 5

Electron transfer in the Reaction Center of the *Rb. sphaeroides* R-26 studied by transient absorption.

CHAPTER 6

An investigation of slow charge separation in a Tyrosine M210 to Tryptophan mutant of the *Rhodobacter sphaeroides* reaction center by femtosecond mid-infrared spectroscopy.

CHAPTER 7

Identification of the intermediate charge-separated state $P^+\beta_L^-$ in a Leucine M214 to Histidine mutant of the *Rhodobacter sphaeroides* reaction center using femtosecond midinfrared spectroscopy.

Summary	220
Samenvatting	223
Conclusions and outlooks	226
Acknowledgements	231

8 9

55

81

102

143

165

197

Abbreviations:

Abbrevia	
BChl	Bacteriochlorophyll
BPhe	Bacteriopheophytin
Chl	Chlorophyll
Pheo	Pheophytin
Car	carotenoid
fs	femtosecond
ps	picosecond
fwhm	full width at half maximum
RT	Room Temperature
EADS	Evolution Associated Difference Spectrum
SADS	Species Associated Difference Spectrum
OD	Optical Density
ESA	Excited State Absorption
CS	Charge Separation
QY	Quantum Yield
LH2	Light Harvesting complex 2 of photosynthetic purple bacteria
LHCII	Light Harvesting complex II of plants
Rb.	Rhodobacter
Rps.	Rhodopseudomonas
WT	Wild Type
RC	Reaction Center
PSII	Photosystem II
Cofactors in the bacterial reaction center	
Р	bacteriochlorophyll dimer present in the RC
B_{L}	monomeric bacteriochlorophyll present in the active branch
$\mathbf{B}_{\mathbf{M}}$	monomeric bacteriochlorophyll present in the inactive branch
H_L	bacteriopheophytin present in the active branch
H_M	bacteriopheophytin present in the inactive branch
Q _A	quinone present in the active branch
Q _B	quinone present in the inactive branch
Cofactors in the Photosystem II reaction center	
P_{D1}	Chlorophyll P680 in the active branch, secondary electron donor
P _{D2}	Chlorophyll P670 in the inactive branch
Chl_{D1}	Chlorophyll present in the active branch, primary electron donor
Chl_{D2}	Chlorophyll present in the inactive branch
Pheo _{D1}	Pheophytin present in the active branch, primary electron acceptor
Pheo _{D2}	Pheophytin present in the inactive branch
Chlz _{D1}	Accessory chlorophyll present in the active branch
Chlz _{D2}	Accessory chlorophyll present in the inactive branch
Q _A	Quinone present in the active branch
Q _B	Quinone present in the inactive branch