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Abstract. Many resource allocation issues, such as land use- or irrigation plan-
ning, require input from extensive spatial databases and involve complex decision-
making problems. Spatial decision support systems (SDSS) are designed to make
these issues more transparent and to support the design and evaluation of resource
allocation alternatives. Recent developments in this � eld focus on the design of
allocation plans that utilise mathematical optimisation techniques. These tech-
niques, often referred to as multi-criteria decision-making (MCDM) techniques,
run into numerical problems when faced with the high dimensionality encountered
in spatial applications. In this paper we demonstrate how simulated annealing, a
heuristic algorithm, can be used to solve high-dimensional non-linear optimisation
problems for multi-site land use allocation (MLUA) problems. The optimisation
model both minimises development costs and maximises spatial compactness of
the land use. Compactness is achieved by adding a non-linear neighbourhood
objective to the objective function. The method is successfully applied to a case
study in Galicia, Spain, using an SDSS for supporting the restoration of a former
mining area with new land use.

1. Introduction
The decision framework of a spatial decision support system (SDSS) is a stepwise

approach guiding the decision-maker through a decision-making process. An example
is the framework for analysis (FFA), which consists of � ve steps (� gure 1) (Findeisen
and Quade 1985, Twillert 2000). Steps 1 and 2 comprise the de� nition of the problem,
the (multiple-) objectives, evaluation criteria and constraints. Step 3 involves the
determination of ‘exogenous’ in� uences. Step 4 is the ‘computational step’, where
alternatives (‘possible solutions’) are designed and evaluated. Step 5 presents the
preferred alternative.
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J. C. J. H. Aerts and G. B. M. Heuvelink572

Figure 1. Structure of an SDSS for resource allocation with the framework for analysis (left)
and optimisation techniques (right ).

When the alternatives are de� ned beforehand, they are simply evaluated against
each other. An evaluation thus involves the comparison of a limited number of
alternatives, usually about three to � ve, and rarely more than ten. A well-known
evaluation technique that has been used to evaluate (spatial ) allocation alternatives
is multi criteria analysis (MCA) (Voogd 1983 1995). Examples, which apply MCA
in a geographical information system (GIS) environment are described by Carver
(1991), Eastman et al. (1993), Pereira and Duckstein (1993) and Herwijnen (1999).

One major drawback of MCA is that it does not allow the comparison of a large
number of alternatives. With only a few alternatives to be evaluated, it is almost
certain that the best alternative chosen from the set is in fact a sub-optimal solution.
This problem can be avoided by applying a design technique. Design techniques
generate an optimal solution from a much larger or possibly in� nite set of alternatives,
where the set of alternatives to choose from is implicitly de� ned through the con-
straints de� ned in step 2 of the decision framework. In other words, the optimal
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Using simulated annealing for resource allocation 573

solution is created or designed by the optimisation procedure itself. The optimal
solution must be cleverly obtained by employing sophisticated search algorithms.
Often, numerical optimisation techniques such as linear integer programming (LIP)

are used for this purpose, and these are assembled under the term multi-objective
mathematical programming (MMP) (Ridgley et al. 1995, Greenberg 2000). MCA
and MMP together are referred to as multi criteria decision-making (MCDM)
techniques (e.g. Zeleny 1973).

Some recent examples that use MMP in combination with GIS are presented by

Ridgley et al. (1995), Williams and Revelle (1996, 1998), Snyder and Revelle (1996),
Tkach and Simonovic (1997), Ridgley and Heil (1998), Cova (1999) and Cova and
Church (2000). The application of MMP techniques in a spatial context is far from
straightforward, though. One major diYculty is the large dimensionality of the

problems, which may involve solving a resource allocation model for an area measur-
ing more than 1000 by 1000 cells. Furthermore, some of the criteria involved

introduce non-linearities, in particular those that require the solution to be spatially
compact. For instance, in forestry research harvest schedules are to be optimised
while dealing with strict adjacency constraints (e.g. Jones et al. 1991, Lockwood and

Moore 1993, Murray and Church 1995). Although the power of LIP techniques is
steadily increasing (Church et al. 1996, Cova 1999), as yet the use of MMP techniques

for resource allocation problems is limited to areas with a much reduced spatial
resolution or restricted grid size (up to 25 by 25 cells).

The main objective of this paper is to investigate whether simulated annealing,
a heuristic algorithm that has successfully been applied to many other optimisation

problems, is an attractive alternative to the analytically-driven MMP techniques for
solving non-linear-high-dimensiona l resource allocation problems. We consider simu-
lated annealing to be successful when it (1) can handle a large grids (at least 250 by

250 grid cells) (2) can handle non-linearities such as the implementation of a spatial
compactness objective and (3) can be easily implemented in an SDSS.

2. Simulated annealing for resource allocation optimisation
2.1. Basic optimisation model

A combinatorial optimisation problem can be formulated as a minimisation or
a maximisation problem (there is no real diVerence) and is speci� ed by a set of

problem instances. A problem instance of a combinatorial optimisation problem is
de� ned as a pair (S, f ), where the solution space S denotes the set of all possible

solutions and f denotes the cost function. In the case of minimisation, the problem
is to � nd an optimal solution i

opt
× S, which satis� es:

f (i
opt

) < f (i ) for all i×S (1)

As an example, consider a rectangular area to be allocated with land use. First,

the area is divided to a grid with N rows and M columns. Let there be K diVerent
land use types, and let P

k
(k 5 1, .. ., K) be the pre-determined proportion of land that

must be allocated with land use k. We now introduce a binary variable x
ijk

which
equals 1 when land use k is assigned to cell (i, j) and equals 0 otherwise. Furthermore,
development costs (C

ijk
) are involved with each land use type k in cell (i, j). These

costs vary with location because they may depend on speci� c physical attributes of
the area, such as soil type, elevation and slope.
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J. C. J. H. Aerts and G. B. M. Heuvelink574

The goal is to minimise development costs, while satisfying the constraint of
pre-set percentages of land use types. Accordingly, the problem may be written
as follows:

Minimise

�
K

k=1

�
N

i=1

�
M

j=1

C
ijk

x
ijk

(2)

Subject to

�
K

k=1
x

ijk
5 1

Y i 5 1, K, N, j 5 1, K, M x
ijk

× {0, 1} (3)

�
N

i=1
�
M

j=1
x

ijk
5 N.M.P

k
Y k 5 1,K,K (4)

Equation (3 ) speci� es that one and only one land use must be assigned to each
cell. Equation (4) guarantees that the required percentage of land use is attained for
each land use type. Because decision variable x

ijk
must be either 0 or 1, the model

is de� ned as an integer programme (IP).

2.2. Principles of simulated annealing
Before we apply simulated annealing (SA) to the basic optimisation model, we

� rst brie� y explain the principles behind the technique.
Kirkpatrick et al. (1983) introduced the concept of annealing in combinatorial

optimisation. This concept is based on a strong analogy between combinatorial
optimisation and the physical process of crystallisation. This process has inspired
Metropolis et al. (1953) to propose a numerical optimisation procedure known as
the Metropolis algorithm, which works as follows. Starting from an initial situation
with ‘energy level’ f (0) , a small perturbation in the state of the system is brought
about. This brings the system into a new state with energy level f (1) . If f (1) is
smaller than f (0) , then the state change is accepted. If f (1) is greater than f (0),
then the change is accepted with a certain probability. A movement to a state with
a higher energy level is sometimes allowed to be able to escape from local minima.
The probability of acceptance is given by the Metropolis criterion (Aarts and Korst
1989, Rogowski and Engman 1996):

P (accept change) 5 expA f (0)Õ f (1)

s0
B (5)

where s0 is a control or freezing parameter. Next, the freezing parameter is slightly
decreased and a new perturbation is made. The energy levels are again compared
and it is decided whether the state change is accepted. This iterative procedure is
repeated until a maximum number of iterations is reached or until change occurrences
have become very rare.

The analogy with spatial optimisation assumes that physical states are replaced
by solutions and energy levels by costs. Although it cannot be proven that simulated
annealing guarantees an optimal solution, practice has shown that a suYciently slow
decrease of the freezing parameter yields in almost all cases the optimal solution
(Lockwood and Moore 1993, Sundermann 1995).
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Using simulated annealing for resource allocation 575

Figure 2. Flow diagram of the simulated annealing algorithm.

Figure 2 presents a � ow diagram of the simulated annealing algorithm. A crucial
element of the procedure is the gradual decrease of the freezing parameter s

i
(Laarhoven 1987). Usually, this is done using a constant multiplication factor:

s
i+1

5 r ´s
i

(6)

where 0<r<1. This eVectively means that jumping to higher energy (read: costs)
becomes less and less likely towards the end of the iteration procedure (Levine 1999).
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J. C. J. H. Aerts and G. B. M. Heuvelink576

The decrease of the freezing parameter using equation (6), is conducted only once
every L iterations.

The ‘cooling schedule’ refers to the choice of the three parameters of the SA
algorithm. These are the iteration length per temperature stage L , the initial value
of the freezing parameter s0 and the decrease factor r. As a rule of thumb, so should
be chosen so that initially about 80 % of the changes that increase the cost function
are accepted (Laarhoven 1987). The correct parameter value can be obtained by
running the algorithm shortly for a � xed s0 , calculating the corresponding acceptance
rate, and adjusting s0 until an acceptance rate of about 80 % positive changes is
achieved. Typical values for the decrease factor r are between 0.80 and 0.98
(Laarhoven 1987), although it is diYcult to make generally valid statements. The
total number of iterations L per temperature stage is chosen by keeping the temper-
ature constant until the cost function has reached a constant value, or until it is
oscillating around this constant value (Sundermann 1995).

Examples of studies that use SA for spatial optimisation can be found in the area
of image enhancement (Sundermann 1995), in ecological research (Church et al.
1996) and in forestry research (Lockwood and Moore 1993, Boston and Bettinger
1998). SA has also been used to optimise spatial sampling (Van Groenigen and Stein
1998) and for generating realizations of random � elds (Goovaerts 1997).

2.3. Application of simulated annealing to the basic optimisation model
We now use SA to solve the basic optimisation model. Consider three land use

types lu1, lu2 and lu3 (K 5 3) and divide the area to a 10 Ö 10 grid (N 5 M 5 10 ). The
required spatial coverage of the three land use types is taken as 57 % for lu1, 29 %
for lu2 and 14 % for lu3 (P1 5 0.57, P2 5 0.29 and P3 5 0.14). We also use � ctitious
development costs. These are given in � gure 3.

The initial situation is a random distribution of the three land use types over the
area, though satisfying the required percentage coverage per land use type. The
associated development cost is denoted by f (0) . Following the � ow diagram of
� gure 2, we now swap the land use of two randomly chosen cells. This yields a new
situation, with new development costs f (1). Whether the change from state 0 to

Figure 3. Map of development costs per land use type.
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Using simulated annealing for resource allocation 577

state 1 is accepted, depends on the diVerence in costs f (1)– f (0). Once this is decided
the swapping procedure is repeated, and it is decided whether the change is accepted.
Next, a new swap is generated, and so on. Whenever the costs f (i 1 1) are smaller
than the costs f (i), the cell change is accepted. When f (i 1 1) greater than f (i),
costs are accepted with a certain probability following the Metropolis criterion
expressed in Equation 5. This is achieved by comparing the value of the Metropolis
criterion with a random number drawn from a uniform [0, 1] distribution (� gure 2).

The starting values for the parameters s0 , r and L are given in table 1. Four
diVerent combinations are considered.

2.4. Results for the basic model
Figure 4 shows the cost function f against the total number of iterations m.L .

The diVerent runs A, B, C and D are the results of runs with the four diVerent
parameter sets given in table 1. Run A represents the start situation. For run B, the
decrease factor r was much smaller than for run A. This obviously speeded up the
search process. However, it should be noted that this increased the risk of ending
up in a local minimum. Apparently, this did not occur here because runs A and B
yield the same � nal costs. Run C shows the result of applying a relatively slow
cooling schedule with L 5 10 000. Although not displayed in � gure 4, it achieves the
same optimal result as runs A and B, but then only after 170 000 iterations. Graph

Table 1. Parameter setting used for the basic model.

C0 r L

Run A 12 438 0.8 1000
Run B 12 438 0.2 10 000
Run C 12 438 0.8 10 000
Run D 12 438 0.2 1000

Figure 4. Total costs against number of iterations using simulated annealing for a 10 Ö 10
grid.
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J. C. J. H. Aerts and G. B. M. Heuvelink578

D shows a run with an extremely small decrease factor r 5 0.2. Again, the same
optimum is found as for the parameter settings used in A, B and C. It is remarkable
that with such an extreme fast cooling schedule the same optimum is obtained.
Perhaps this may be explained by the straightforward optimisation criterion used
here yielding a fairly smooth cost surface.

Figure 5 shows diVerent stages in the iteration process using parameter set A
(table 1). The map at the far left shows the initial—random—situation. The map to
the far right shows the � nal situation, achieved after a total of 23.1000 5 23 000
iterations. At this stage, the objective function could no longer be improved and the
iteration was terminated. The other three cases B, C and D yield a similar � nal land
use allocation pattern. Although there are small diVerences between them, the associ-
ated costs are the same. Apparently, in this case there is no unique optimum solution
and all four solutions are considered equally optimal.

2.5. Adding spatial compactness criteria to the basic model
In the previous section development costs was the only objective to be minimised.

In practice, however, there will be additional spatial-pattern objectives that should
be included in the optimisation procedure. For instance, a land resource allocation
plan that creates noisy, patchy spatial elements is not attractive . Instead, large and
compact areas of the same land use are preferred. In other words, we need to extend
the cost function with a term that encourages compactness of land use. This may be
achieved by rewarding cases where neighbouring cells have equal land use. Consider
cell (i, j ) with land use x

ijk
, with the following neighbour aggregate variable:

b
ijk

5 x
i Õ 1jk

1 x
i+1jk

1 x
ijÕ 1k

1 x
ij+1k

k 5 1, .. ., K, i 5 1, . . ., N, j 5 1, . . ., M (7)

Thus b
ijk

is the number of cells neighbouring cell (i, j ) that have land use k.
Here we have used a neighbourhood of four cells (top, down, left, right), but

alternatively a larger neighbourhood may be de� ned. Note also that equation (7)
must be modi� ed for cells at the boundary of the area. The easiest way to do this is
by assuming that:

x
ijk

5 0 Y k 5 1, . . ., K, i × {0, N 1 1}, j × {0, M1 1} (8)

Figure 5. DiVerent stages in the optimisation process. Far left: initial situation with a random
assignment of land use; left: after 5 iteration stages; right: after 10 iteration stages; far
right: � nal situation after 23 iteration stages. Land use lu1 (57 %) is presented in light
grey, lu2 (29 %) in dark grey and lu3 (14 %) in black.
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Using simulated annealing for resource allocation 579

If we de� ne the objective function as:

�
K

k=1

�
N

i=1

�
M

j=1

Õ b
ijk

x
ijk

(9)

then minimisation of equation (9) yields solutions that are spatially compact. Note
that equation (9) is non-linear because the coeYcients b

ijk
depend on x

ijk
through

equation (7). The non-linearity of the objective function implies that analytical
solutions to the optimisation problem are diYcult to obtain.

The overall cost function of the basic model now contains two terms: development
costs as in equation (2), and compactness costs as de� ned in equation (9). In order
to allow for a preference for either of these two objectives, a weighting factor b is
introduced. The objective function becomes:

Minimise:

�
K

k=1

�
n

i=1

�
m

j=1

c
ijk

x
ijk

Õ b �
K

k=1

�
n

i=1

�
m

j=1

b
ijk

x
ijk

(10)

Subject to equations (3, 4 and 7).
Minimisation of equation (10) is achieved using the SA procedure described

before. This is done for various values of b, so as to compare how incorporating
compactness criteria aVects the optimal solution. Using the same initial state and
parameter settings as given in table 1 under A, four diVerent values for b were
evaluated (b 5 1, b 5 3, b 5 5 and b 5 10 ). All four cases reach the optimum in about
the same number of iterations (about 28 000). This is not surprising given that the
same parameter settings were used.

Figure 6 depicts the optimal solutions for the four values of b. The smallest b
value obviously yields a solution that most resembles the optimal solution obtained
with only development costs involved (� gure 6, far right ). As b increases and com-
pactness becomes more important, the optimal solution becomes more compact and
thus allocates land use where development costs are relatively high but where the
compactness objective is better met. The largest value of b yields an almost completely
rectangular-shaped pattern.

3. Case study: restoration of an open mining area
Consider the open cast lignite mine of As Pontes in Galicia, in the North Western

part of Spain covering a total area of about 25 km2 (� gure 7). The lignite is used to
generate electricity in a power plant, which is situated just outside the mining area.
The mining area can be divided into two main areas. The exploitation area, which
consists of two pits of about 200–250 m deep, and the dump area where the waste

Figure 6. Final results of the optimisation using diVerent values for b. Far left: b 5 1; left:
b 5 3; right: b 5 5; far right: b 5 10.
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J. C. J. H. Aerts and G. B. M. Heuvelink580

Figure 7. Location of Galicia in North West Spain (upper left). The aerial photograph shows
the dump-site with a relatively white re� ection caused by the bare soil.

material is stored. Basically, all waste material (50 % of the total extracted material )
is stored in the dump area (Aerts 1999). Within � ve years, the mine will be closed
after which the area has to be restored as much as possible to the original state.

3.1. Development and use of an SDSS for restoration of the As Pontes mining area
Within the EU funded project ‘Asterismos’ (Aerts 1999) , an SDSS using the frame-

work for analysis (FFA) was developed for supporting the evaluation and generation
of possible restoration plans. Workshops were organised in which mining experts and
other stakeholders from the neighbouring municipality participated . These workshops
provided the information for Steps 1 to 3 of the FFA, which included all parameter
values, boundary conditions and objective functions as required by the optimisation
model. Within Step 4 (‘computational step’) and Step 5 (‘presentation ’), possible restora-
tion plans are generated . For this, the study area has been divided into a grid of 300
by 300 cells of 25 m Ö 25 m. The simulated annealing model, which � ts into Step 4, was
developed separately from the other Steps, using a combination of Delphi (Borland
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Using simulated annealing for resource allocation 581

2001 ) and ESRI/Mapobjects (ESRI 2001 ) software to import, manipulate and visualize
the input data and to present the generated optimal land use map.

Recently enforced European legislation states that mining companies are obliged to
produce a restoration plan for any mining area, and do so while the mine is still in
operation. The main requirement for such a plan is that the land uses that were lost
because of the mining exploitation will be restored as close as possible to the pre-mining
situation. This means that if 1000 hectares of pine forest are cleared for mining activities,
then 1000 hectares of pine forest have to be restored after the activities have been
stopped. There are no rules as to where within the area these 1000 hectares of pine
forest need to be re-allocated, and neither are there legal requirements that � rm that all
land uses have to be re-established in exactly the same sizes. This leaves room for
designing the restoration plan such that the legal requirements are met at lowest
restoration costs. Thus, the main problem that came out of Step 1 of the FFA is to
design an optimal restoration plan that complies with European legislation.

Within Step 2, we narrowed the main problem down by considering the objectives,
evaluation criteria and constraints that pertain to the As Pontes case. First, it was
observed that due to the considerable lowering of the elevation in the mining pit,
this part of the area would automatically transform into a lake through groundwater
� ow. It was clear to all parties involved that the costs associated with preventing
this from happening would be far too high. Therefore, the restoration plan focuses
only on the dumpsite. The mining experts expressed that the main interest for the
mining company was simply to restore the area at the lowest costs, whilst satisfying

the legislative requirements. Other parties involved in the workshops claimed that
an important additional objective should be to create closed patches of land use, as
large closed areas of forest and water represent a higher natural value than frag-
mented areas and because less fragmented areas have an increased potential for
recreational activities. It was also stated that the restoration works could be carried
out more economically with less fragmented areas of the same land use, although
the expected reduction of costs were not quanti� ed and thus were not included in
the optimisation model.

The main constraints refer to the required division of land use types: the restored
land use has to be of a similar type and size as in the pre-mining situation. Knowing
the potential land use types for restoration (forest, shrub and water), constraints
were set for the required surface cover of these potential land use types.
Approximately 60 %, 22 % and 18 % of the area was originally covered by forest,

shrub and water, respectively. The percentages were derived from classi� ed Landsat
TM images that were acquired before mining exploitation in 1984.

Deriving constraints in Step 2 also entails the de� nition of development costs
(C). Although development costs encompasses a broad range of activities, we estim-

ated an average cost per land use type k that primarily depends on the physical
attributes ‘elevation’ and ‘slope’ (Aerts 1999). Another simpli� cation was to ignore
the spatial requirement for creating wildlife corridors. This requirement would involve
an adjustment within the compactness objective. Both elevation and slope were
derived from remote sensing data using SPOT stereo pairs at a resolution of

25 m Ö 25 m (� gure 8). The cost function is (in $ per m2 ):

C
k
5 a

k
Ö elevation 1 b

k
Ö slope (11)

where elevation is in meters and slope in degrees. The values of the parameters a
k

and b
k
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Figure 8. Digital elevation model (DEM) (top) and slope map (down) of the As Pontes mining
area. The data has been derived from SPOT stereo pairs at a resolution of 25 m Ö 25 m.
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depend on the land use type k, where a
k

varies between 1 and 1.5 and b
k

has been assigned
to values between 1.5 and 3.0. The allocation of water only depends on elevation.

The last decision to be made within Step 2 of the FFA is to assign weights to the
objective functions. A choice was made to initially weigh the compactness with b 5 3
(see §2), using parameter setting A (table 1). From here, b has been varied in an iterative
fashion to examine its in� uence on the compactness of the land use. Using diVerent
values for the weight b and visual inspection of the corresponding solution. A value
b 5 3 appeared to be an attractive compromise between ‘costs’ and ‘compactness ’.

There were no external in� uences of importance to the restoration problem.
Therefore, Step 3 of the FFA was skipped.

3.2. Case study results
Figure 9 shows the initial situation at the beginning of the optimisation run and

the � nal optimised allocation plan for the dumpsite. The optimised plan shows clearly
that water is allocated towards the mining pit, where the elevation of the landscape
drops. The � gure shows furthermore separate spots of water, which indicate lower
elevation ‘pockets’ within the dump area. This does not necessarily mean that these
areas are indeed the most suitable areas for creating small wetlands, because the
circumstances for creating wetlands depend largely on the available water within the
neighbouring catchment. Additional catchment analysis is required to really determine
whether these spots have a potential for being developed into a wetland area.

Figure 10 shows the development of the cost function. The graph shows a logarith-
mic decrease in costs, which indicates a slow cooling process. When comparing the
graphs of � gures 10 and 4, it appears, not surprisingly, that the total number of
iterations is much larger for the large area of 300 Ö 300 cells. The optimised budget
lies around $45 Ö 106 , which is a reasonable estimate when compared to the � gures
of the mining company. They estimated an average of $490 per cell of 25 m2 , which
amounts to a total of $44.1 Ö 106 .

The cost functions have been formulated such that cost for planting forest on
steeper slopes is higher compared to the development of shrubs on similar steep
slopes. Restoration experience in the area reveals that shrubs show an autonomous
growth in the area and only need some maintenance once in three years, whereas
maintenance and fertiliser cost for growing forest on steeper slopes is relatively
expensive. Accordingly, forest tends to be allocated on the � atter slopes.

4. Discussion and conclusions
The main goal of this paper was to investigate whether simulated annealing

(SA), is an attractive alternative for designing resource allocation alternatives. This
has been evaluated on the basis of three main criteria: (1) capacity for handling
large spatial datasets, (2) handling of non-linear functions, particularly the spatial
compactness objective, and (3) implementation of SA within an SDSS.

The case study for allocating new land use in a former mining area showed
clearly that SA is capable of solving large combinatorial optimisation problems,
involving large amounts of spatial data. The problem was to restore the area with
three land use types according to a � xed division over the area. We successfully
solved the problem using SA on a grid of 300 cells Ö 300 cells.

The second research criterion was whether SA is suitable for optimising a—non-
linear—spatial compactness objective. Sundermann (1995) indicates that it is possible
to include ‘a factor’ in the cost function to derive uniform clusters of land use, but
did not indicate how. We included a neighbour function in the objection of the SA
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Figure 9. The dump site (black line) and the mining pit (white line). The picture depicts the
initial random situation (top) and the optimised allocation plan (down) using three
land use types within an area of 300 Ö 300 cells.

algorithm. The neighbour function is based on the principle that when a neighbour
cell is allocated with land use of equal type, a ‘cost bonus’ is subtracted from the
total development costs.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
r
i
j
e
 
U
n
i
v
e
r
s
i
t
e
i
t
,
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
0
:
4
6
 
2
7
 
M
a
y
 
2
0
1
1



Using simulated annealing for resource allocation 585

Figure 10. Costs in $ against number of iterations for the As Pontes case study.

The best restoration plan is the one that satis� es both objectives (minimise costs
and maximise compactness) . The preference of the decision-maker for either two of
the objectives is expressed through a weighting factor b. For the mining example,
we recommend the model variant with a b value of 3. This model produced a result
with low development costs as well as closed patches of allocated land use. The
optimal pattern resembled a known-optimal-pattern of land use—unlike other model
variants, which produced land use patches with an ‘un-natural ’ rectangular shape.
However, implementing a variant with a diVerent b value remains a question of
decision-making preferences, and is thus subject to debate.

Although not explicitly worked out in this paper, the SA methods proved to be
suitable for integration within an SDSS. We demonstrated this by using an SDSS
developed for a mining company. The SDSS has been used to derive the input data
(objectives, criteria and constraints) , necessary to feed the SA based optimisation
model. In this way it has been demonstrated that SA � ts into the computational
Step 4 of the SDSS, as models in this step are required to use the information from
the previous SDSS steps. The SA software was developed as a ‘loose coupling’
approach but can be easily incorporated into the SDSS software, which is similarly
developed with Delphi. Furthermore, the SA software is easy to handle by non-
experts, as it only needs to be activated by an optimisation button and a slide bar
for expressing the user’s preference for the compactness level of the land use.

When comparing the SA application on an area with diVerent grid sizes (10 Ö 10,
50 Ö 50, 250 Ö 250 and 300 Ö 300) it turned out that the optimisation time increases
rapidly with the grid size. Although smaller grids are solved within seconds, larger
maps were only optimised after a few hours on an average PC. The latter obviously
decreases the practical use of SA within an SDSS using larger grids. However,
hardware development is promising, such that the application for larger grids in an
SDSS is only a matter of time. For now, grids up to 50 Ö 50 can be easily implemented
in comparable SDSSs.

The complexity of higher-level-decision-making , as often found in resource alloca-
tion problems, is largely due to the diVerent objectives of the stakeholders involved.
Furthermore, complexity is often increased by the large amount of data, the
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uncertainty of the data, the complexity of models and the non-technical expertise of
decision-makers. Therefore, an SDSS for these problems should be simple and
transparent to be useful. We therefore simpli� ed the case study at some points trying
to demonstrate the use of optimisation techniques. It must however be clear that,
although the optimisation results yield a good indication for restoring a mining area,
a � nal realistic plan requires more detailed modelling. SA as presented in this paper,
should therefore be regarded as a fast and simple technique useful in an early stage
of the decision-making process.

There is a growing need for straightforward SDSSs to support decision-makers
in solving resource allocation problems. In order to maintain the transparency of an
SDSS, robust and simple techniques as simulated annealing are promising and may
be well integrated in an SDSS. We therefore suggest that this approach is suitable
for implementation within the computational step of an SDSS. It may furthermore
be concluded that SA can be used to generate resource allocation alternatives and
is capable for including spatial preferences.
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