
A SENSITIVITY ANALYSIS OF TIMING AND COSTS OF
GREENHOUSE GAS EMISSION REDUCTIONS

REYER GERLAGH 1 and BOB VAN DER ZWAAN 2, 3

1IVM, Vrije University Amsterdam, The Netherlands
E-mail: reyer.gerlagh@ivm.vu.nl

2ECN, Energy research Centre of the Netherlands
E-mail: vanderzwaan@ecn.nl

3BCSIA, John F. Kennedy School of Government, Harvard University, U.S.A.

Abstract. This paper analyses the optimal timing and macro-economic costs of carbon emis-
sion reductions that mitigate the global average atmospheric temperature increase. We use a
macro-economic model in which there are two competing energy sources, fossil-fuelled and non-
fossil-fuelled. Technological change is represented endogenously through learning curves, and niche
markets exist implying positive demand for the relatively expensive non-fossil-fuelled energy source.
Under these conditions, with a temperature increase constraint of 2 ◦C, early abatement is found
to be optimal, and, compared to the results of many existing top-down models, the costs of this
strategy prove to be low. We perform an extensive sensitivity analysis of our results regarding the
uncertainties that dominate various economic and technological modeling parameters. Uncertainties
in the learning rate and the elasticity of substitution between the two different energy sources most
significantly affect the robustness of our findings.

1. Introduction

Both an enhanced development of energy saving technologies and a shift towards
non-greenhouse-gas-emitting energy sources are seen as major elements of poli-
cies aiming at a stabilization of atmospheric carbon-dioxide concentrations. Until
recently, however, most integrated assessment models (IAMs) of global warming,
developed to study climate change policies, focused on the energy saving option
as the main route to reach emission reductions. Well-known examples of these are
CETA, DICE, MERGE, RICE and FUND (Peck and Teisberg, 1992; Nordhaus,
1994; Manne et al., 1995; Nordhaus and Zhang, 1996; Tol, 1999). Though some of
these models include non-carbon energy sources, carbon-free energy deployment
is considered a too expensive option for emission reductions by most of them. They
sometimes regard non-carbon energy as an (expensive) option to be used only when
more conventional (e.g., fossil) sources are no longer cheaply available, or, at other
instances, as a ‘backstop’ alternative, which some authors – like Nordhaus – define
as a technology that can supply energy at constant marginal costs (that are typically
higher than current energy costs) regardless of energy demand.
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Meanwhile, energy system engineering studies have come to the conclusion
that significant learning effects may exist for renewable energy sources, offering
potential prospects for their future competitive use. Along similar lines of thought,
Chakravorty et al. (1997) portray an optimistic future of rapidly decreasing costs
for renewable energy sources, and subsequently a massive transition of the global
energy system towards these resources during the 21st century. Notably, Chakra-
vorty et al. (1997) argue that such a transition can occur autonomously, so that the
problem of the enhanced greenhouse effect could be resolved without the need for
explicit climate change policies.

Most of the energy system studies, however, are less optimistic regarding the
(autonomous) rate of adjustment towards renewable energy sources. They empha-
size the need for up-front investments that allow bringing down future energy
production costs through learning-by-doing. Anderson and Bird (1992) made an
early numerical analysis investigating the relation between short-term investments
and the decrease of long-term production costs for renewable energy sources.
Messner (1995) incorporated learning-by-doing in a cost-minimization model of
energy production, and analyzed its effect on the optimal timing of new energy in-
vestments. Grübler and Messner (1998) extended this modeling exercise by adding
a climate change module to their previous calculations and analyzing the timing
of carbon emission abatement. They found that the inclusion of learning-by-doing
implies, in terms of optimality, (somewhat) more emission reductions in the near
term.

Most of the literature above is specifically oriented towards an analysis of emis-
sion reductions and energy production costs, but it connects to a more general
analysis on economic growth. In this wider perspective of economic growth, there
is a long history in analyses of learning effects, technological development, inno-
vation and diffusion. Wright (1936) introduced the concept of learning-by-doing in
his seminal paper on the airplane industry. Arrow (1961) interpreted the experience
effect as an overall productivity growth in the economy-wide context.

Today, an abundant literature exists on endogenous growth, presenting a large
variety of models that include productivity gains or technological changes as
endogenous processes within the economy. These models, however, typically de-
scribe technological changes and spill-over effects on an economy-wide level,
abstracting from the increasing-returns-to-scale that appear when (clusters of) tech-
nologies develop. The increasing returns within technology clusters are essential
for understanding energy technology dynamics, and comprehending them is espe-
cially fundamental when it comes to making scenarios for possible carbon-dioxide
emission paths. For example, we can think of fossil-fuel technologies as a cluster
with many internal spill-over effects, and renewables as another cluster having
its own internal spill-over effects. In such a setting of increasing returns, it may
be optimal to specialize in one of the technology clusters, which then becomes
dominant, while the other technology cluster vanishes or will play only a minor
role. A key question is how the selection of a certain cluster of technologies is
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essentially resolved. There are two views. On one side is the belief that patterns of
specialization are generated by historical accident; the economy subsequently gets
locked in through cumulative learning. On the other side is the view that the key
determinant for choices of equilibrium is expectations; in other words, a decisive
element exists of self-fulfilling prophecies (Krugman, 1991).

The proponents of evolutionary economics generally adhere to the first view.
They see the technology allocation mechanism as a stochastic process that has no
unique convergence point. Thereby, allocation paths exhibit path-dependency (see,
for example, Dosi et al., 1994). Exponents of this view are in particular Arthur et
al. (1987), Dosi (1982), and Nelson (1995), who stress that technological regimes
and technological lock-ins exist, and that the past strongly determines the future,
especially in cases concerning technological development.

In mainstream economics, with its emphasis on individuals with rational be-
havior who possess certain levels of foresight, many proponents can be found of
the second view, that is, economists who believe in self-fulfilling prophecies. A
well-known example is Krugman (1991), who states that it is the task of policy
makers to create convergent expectations around investments in technologies that
are preferable from an aggregate point of view. Chen and Shimomura (1998) de-
scribe a model in which only self-fulfilling expectations matter in selecting a given
technology set. Recently, Kremer and Marcom (2000) also suggest that government
should follow a policy that selects a socially preferable equilibrium out of a set of
multiple perfect foresight equilibria.

Yet, present energy supply is specialized in fossil-fuel energy sources, and the
choice for renewable energy sources as the basis of our energy system will require
a costly transition. Nonetheless, for the long run, to at least a certain level, such a
transition seems inevitable, given our understanding that there are only two main
options to reduce carbon-dioxide emissions. These two are energy savings, on the
one hand, and a transition to the use of non-carbon energy, on the other hand.
Energy savings are essential for reaching emission reduction targets, especially
in the short term, but since energy is essential for economic production (Berry
et al., 1978), it needs to be complemented by a (long-term) transition in the en-
ergy production system. In fact, since the emission intensity of energy production
will finally have to drop to near zero (Wigley et al., 1996), the energy system
transformation option seems fundamental.

Making a significant transition to new energy technologies may take a long
time. The timing of emission reductions is the first major topic of this paper. After
a technology becomes competitive, it enters the market through diffusion. This
requires the development of new vintages of products in which that technology is
used. Diffusion often requires a time scale several times the lifetime of such prod-
ucts (Knapp, 1999). This does not imply, however, that emission reductions have
to wait. Since it requires time to build up the capacity for renewable energy supply,
one has to start investing in renewable energy sources sooner rather than later.
That is, for a deep cut in long-term emissions, we also need significantly lower
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emissions (than today) in the short term. Our previous study of this subject matter
(van der Zwaan et al., 2002; Gerlagh and van der Zwaan, 2003) indicated that our
results contrast with the typical findings of many analysts (e.g., those of Wigley et
al., 1996), who suggest that a delay of emission abatement is more efficient than
immediate stringent measures, also under a tight temperature increase constraint of
2 ◦C.

The second topic of this paper concerns the costs involved in the transforma-
tion of the energy production system. As mentioned above, non-carbon-emitting
energy sources are seen as an expensive emission reduction mechanism, since
their present production costs exceed the production costs for standard fossil-fuel
technologies by often a factor of two to three, or in some cases even by an order of
magnitude (see, e.g., IEA/OECD, 2000). Implicit in calculations that use the fact
that renewable energy production costs exceed those of conventional fossil energy
resources is usually the assumption that various energy technologies are perfect
substitutes. However, different energy technologies have different characteristics,
and are thus generally no perfect substitutes. The variety that exists between en-
ergy technologies also explains the presence of niche markets for specific energy
technologies at specific locations and at specific points in time. Thanks to these
niche markets, photo-voltaic electricity is profitably produced in remote areas with
no grid connection at prices above the usual grid electricity price. Decreasing costs
of photo-voltaic electricity will probably increase its global market share. On an
aggregate level, we could capture this process by using a smooth demand function
representing that the quantity demanded is increasing when energy prices decrease
as a result of decreasing production costs. In terms of technological development,
this represents an increasing market for maturing technologies. Meanwhile, pro-
duction costs further decrease through learning as the production level increases.
In theory, the feed-back relation between production costs and demand opens the
possibility of a self-enforcing transition towards the non-carbon-emitting technol-
ogy. Overall, there may finally even be no costs involved in such an autonomous
transition. Whether stringent greenhouse gas emission reductions are possible at
no costs is a question that in the end can only be sensibly resolved by observing
how practice unfolds. The answer will depend on the speed of learning for non-
carbon-emitting energy sources, as well as on how their market share evolves as a
function of market prices (that are closely related to production costs).1

To address both the timing and costs of carbon emission reductions, we use an
integrated assessment model that was specially developed to study policy questions
related to global warming and technological change. The model, DEMETER,2 is
a relatively simple general equilibrium model incorporating a rudimentary climate
change simulation. It does not display the technological detail of many energy
systems-engineering models. Not considering it necessary to describe again the
model in full detail (see Gerlagh et al. (2000), for an extensive description), we
nevertheless highlight four of its main elements. First, it includes two compet-
ing energy technologies, one of which has zero net CO2 emissions. This allows
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emission reductions to be achievable through a transition towards a carbon-free
technology, as an alternative to the substitution of energy by capital and labor (the
energy savings option). Second, it distinguishes old from new capital, in such a way
that substitution possibilities between production factors only apply to new capital
stocks. This so-called ‘vintage’ approach allows for using different substitution
elasticities for the short and long term, and can, in particular, describe a slow
diffusion process. Third, it includes learning-by-doing through the use of learning
curves. In this way, a transition towards alternative technologies leads to lower
energy production costs for these alternative technologies, and thereby enhances
their opportunities and accelerates the transition process. This part of the model is
inspired by the MESSAGE optimization model as used by Messner (1995). Fourth,
it includes niche markets, in which new technologies can spread relatively easily
– even though production costs are high – before these technologies become fully
mature.

The DEMETER model has been used in a few papers already, for the analysis of
a number of different subject matters (see Gerlagh et al., 2000; van der Zwaan et al.,
2002; Gerlagh and van der Zwaan, 2003). Whereas in none of these papers a sen-
sitivity analysis was of prime interest, robustness aspects were addressed to some
extent in each of them. Specific consideration received the sensitivity of abatement
timing as depending on the inclusion or not of learning-by-doing in van der Zwaan
et al. (2002). The sensitivity of emission reduction levels and carbon taxes vis-à-
vis the presence of niche markets was assessed in Gerlagh et al. (2000), and the
robustness of our findings on welfare and Gross World Product under stringent
emission reductions was investigated in Gerlagh and van der Zwaan (2003). In this
paper, we analyze and describe the timing and costs of a stringent climate change
policy, when constraining the global average temperature increase to 2 ◦C above
the ‘pre-industrial level’. In contrast to our previous work, we now particularly,
and in full extent, focus on the sensitivity of our results regarding changes in the
most relevant central model parameters. Thereby, we follow the suggestions by
Harrison et al. (1993) and Abler et al. (1999), who argue that applied general equi-
librium analyses should routinely be subjected to systematic sensitivity analysis, in
order to capture the intrinsic uncertainties involved in the calibration of models. In
many ways, our global warming robustness analysis is comparable to the natural
scientific approach towards sensitivity analyses as employed by Hasselmann et al.
(1997) in their climate change study with a simplified structural integrated assess-
ment model (SIAM). Whereas Hasselmann et al. (1997) use their model to study
the sensitivity of computed optimal emission paths, with respect to various critical
input assumptions, we use our model (DEMETER) to investigate the sensitivity of
carbon emission reduction timing and costs, regarding these assumptions.

This paper is organized in the following way. Section 2 concisely describes
the DEMETER model as designed for the analysis of greenhouse gas policies
on a world economy level. Section 3 describes the calibration of this model, and
discusses its various central input parameters, as well as the range of the values
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used for them as found in the literature. Section 4 specifies two scenarios, one
benchmark or ‘business as usual’ scenario, and a scenario that aims at a ceiling on
the global atmospheric temperature increase of 2 ◦C. For both scenarios, emission,
energy consumption, and cost paths are simulated for different choices of the main
parameters used. These are compared with the paths found for the central parameter
values. Section 5 summarizes our findings and concludes.

2. Model Description

The DEMETER model is an optimal-growth model of the world economy. It is de-
signed to maximize the discounted value of utility obtained from the consumption
of the consumer good Ct ,

max
∞∑
t=1

(1 + ρ)−tPopt ln(Ct/Popt ), (1)

where ρ denotes the pure time preference rate, and Popt denotes the size of
the world population at time t . Welfare is maximized subject to a number of
economic, technological and climatic constraints. The model describes three pro-
duction sectors, one for the consumer good, and two for energy production. The
two energy sectors use different technologies: the first ‘old’ technology uses fossil-
fuels, while the second ‘new’ technology uses backstop energy sources such as
photo-voltaic systems with assumed zero carbon-dioxide emissions. Sectors are
denoted by superscripts, j = C,F,N respectively (for the Consumer good, the
Fossil-fuel based energy source, and the Non-fossil-fuel based energy source).
The production of the consumer good is denoted by Y C

t , and the production of
final commercial energy (services) by the two different energy technologies by Y F

t

and Y N
t , respectively (the latter two are sometimes shortly referred to by Ft and

Nt , merely for notational convenience). DEMETER uses a vintage approach to
describe production processes. Distinguishing various vintages has the advantage
that one can differentiate between the short-term and the long-term elasticity of
substitution between various inputs. In each period, a new vintage is installed, and
the variables representing the most recent vintage are denoted by tildes (∼). By
definition, the new vintage of capital is equal to the investments of one period
before, K̃

j
t = I

j

t−1.
The production of the consumer good is described by a nested CES-function.

Capital, labor, and energy from the two different sources are used as production
factors:

Ỹ C
t = ((A1

t K̃
α
t L̃

(1−α)
t )(γ−1)/γ + (A2

t (Ñ
(σ−1)/σ
t +

+ F̃
(σ−1)/σ
t )σ/(σ−1))(γ−1)/γ )γ /(γ−1),

(2)

where A1
t and A2

t are coefficients representing an exogenous path of technological
growth. The capital/labor composite has a fixed value share α for capital. The
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elasticity of substitution between the two energy sources, F and N , is denoted
by σ . The CES aggregation of F and N marks an important extension of the model
compared to existing models. It describes a strictly positive demand for the new
technology N , even if the price of the new technology exceeds the price of the old
technology F by an order of magnitude. The CES aggregation effectively describes
the phenomenon of niche markets, in which a specific technology possesses a
comparative advantage. Consider the following example. Photo-voltaic energy is
used in remote areas where the cost of an electricity grid exceeds the costs of the
photo-voltaic energy source. We can also think of an example in which non-fossil-
fuel-based energy sources are almost competitive, compared to fossil-fuel based
energy sources, and where a small decrease in the production costs of non-fossil-
fuel energy sources would lead to a sharp increase in its demand. When aggregating
demand for such small markets, we can employ a smooth demand function, such
as represented by a CES function.

From a modeling perspective, it is important to have a value for the elasticity
of substitution σ that is bounded and larger than one. In contrast, if one assumes
linear additivity, equivalent to taking σ = ∞, following typical bottom-up models
such as MESSAGE and CETA, one abstracts from substitution possibilities on
the aggregate level between various technologies resulting from advantages some
technologies may possess for specific markets. Assuming σ = ∞ substantially
increases the costs of substitution of energy produced by the non-fossil-fuel tech-
nology for energy produced by the fossil-fuel based technology, since it abstracts
from circumstances where the non-fossil-fuel technology may have an advantage
over the fossil-fuel technology. On the other hand, we don’t find enough justifica-
tion for assuming complementarity between the energy technologies, like Goulder
and Schneider (1999) do by taking 0 < σ < 1. Finally, we abstract from any
intrinsic advantages in the use of one particular technology over the other. Hence,
we do not attach weight parameters to F and N in our CES aggregation.3

Production of energy by a new vintage, Ỹ
j
t (j = F,N), requires investments in

the previous period and maintenance costs:

Ỹ
j
t = a

j
t I

j

t−1, (j = F,N) (3)

Ỹ
j
t = b

j
t M̃

j
t , (j = F,N) (4)

where we maintain subscripts t for the technology parameters a
j
t and b

j
t to de-

scribe decreasing costs resulting from learning-by-doing. We now elaborate on
the learning process. Production costs decrease as experience increases through
the installation of new vintages. To capture the process of gaining experience,
we introduce the variable Xt that represents the experience, or the accumulated
installed vintages at the beginning of period t :

X
j

t+1 = X
j
t + Ỹ

j
t . (j = F,N) (5)
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Furthermore, we use a scaling function gj (X) →[1,∞) that describes the relative
costs of one unit of output Ỹ

j
t as compared to potential long-term costs, given cu-

mulative experience X
j
t . For example, g(0) = 2 means that, initially, twice as much

input is needed for producing one unit of output as compared to the amount of input
needed when the learning effect has reached its maximum value. We assume that
production costs decrease as experience increases, g′(.) ≤ 0, and that production
costs converge to a strictly positive floor price (when a minimum amount of input
is required, corresponding to a maximum learning effect) given by strictly positive
a

j
∞ and b

j
∞, and gj (∞) = 1. We also assume a constant learning rate lr > 0 for

technologies at the beginning of the learning curve (that is, for small values of X).
This means that, initially, production costs decrease by a factor (1–lr), for every
doubling of installed vintages.

A function gj (.) that is consistent with all these assumptions is:4

gj (x) = cj (1 − dj )x−dj + 1, (6)

for 0 < dj < 1. We define the learning-by-doing parameters a
j
t and b

j
t , by divid-

ing the long-term productivity parameters a
j
∞ and b

j
∞ by the average value of the

scaling function gj (.):

a
j
t = aj

∞(X
j

t+1 − X
j
t )

/∫ X
j
t+1

X
j
t

gj (x)dx, (j = F,N) (7)

b
j
t = bj

∞(X
j

t+1 − X
j
t )

/∫ X
j
t+1

X
j
t

gj (x)dx. (j = F,N) (8)

Rewriting (3) and (4) using (5), (7) and (8) gives:

Gj(X
j

t+1) − Gj(X
j
t ) = aj I

j

t−1, (j = F,N) (9)

Gj(X
j

t+1) − Gj(X
j
t ) = bjM̃

j
t , (j = F,N) (10)

for time independent aj ≡ a
j
∞ and bj ≡ b

j
∞, and for the primitive function G(.),

given by:

Gj (x) = cjx1−dj + x. (11)

Equations (9) and (10) give a convenient description of investments and mainte-
nance costs as a function of the increasing accumulated vintages.

Finally, the output from the first sector is used for consumption, investments I

in all three sectors, and for maintenance M in both energy sectors:

Ct + IC
t + IF

t + IN
t + MF

t + MN
t = Y C

t . (12)
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The production using the new vintages adds to the production of previous vintages.
Old vintages are depreciated by a factor (1 − δ), so that we have:

Y C
t = (1 − δ)Y C

t−1 + Ỹ C
t , (13)

M
j
t = (1 − δ)M

j

t−1 + M̃
j
t . (j = F,N) (14)

Labor is supplied inelastically, and is assumed to increase proportionally with pop-
ulation levels. Carbon emissions, Et , are proportional to the use of fossil-fuel-based
energy Ft , via the aggregate carbon emission factor εt :

Et = εt Ft . (15)

The factor εt is assumed to be time-dependent (but exogenous), to be able to ac-
count for the de-carbonization process to which the use of fossil fuels has been
subject since the early times of industrialization, by a transition – in chronological
order – from wood to coal, from coal combustion to that of oil, and most recently
from coal and oil to natural gas. Carbon emissions are linked to the atmospheric
carbon-dioxide concentration, which in turn determines the global average surface
temperature, using a 1-box representation as in the early DICE model, and a climate
sensitivity of 3 ◦C per doubling of the atmospheric CO2 concentration (Nordhaus
and Yang, 1996).

The model as described so far can be used to calculate first-best solutions.
Similar to other welfare maximizing IAMs, the inclusion of a temperature con-
straint in the model results in a positive shadow price for carbon emissions. This
shadow price can be interpreted as the tax required on carbon emissions to meet the
temperature constraint. The learning spill-over is also internalized in the first-best
solution. Since investments in non-fossil-fuel energy production lower future costs
of energy production, the shadow price for the investments lies below the imme-
diate costs, that is, below the consumption foregone. The gap between the shadow
price and the immediate costs can be interpreted as the subsidy on investments that
internalizes the learning effect.

The model also includes a complete set of first-order conditions that allows
us to calculate equilibrium allocations that are not optimal from a social welfare
perspective. For example, if the learning spill-over effect is non-rival and non-
exclusive, we may assume that production parameters a

j
t and b

j
t are treated as

exogenous variables by the firms, and the firms will charge the user with the direct
production costs. That is, the learning spill-over effect is not internalized, unless the
government subsidizes investments in the non-fossil-fuel energy source. As part of
our sensitivity analysis, we calculate a scenario in which the government does not
internalize the learning spill-over.
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3. Calibration

The base-case values employed for some of the most important parameters used for
deriving results with DEMETER are presented and justified in this section, as well
as the range of values of these parameters used for analyzing the sensitivity of the
results of our model. Table I displays a summary of the parameters used, as well as
their meaning, and the lower bounds, central values, and upper bounds employed
for the sensitivity analysis. The sensitivity analysis focuses on the parameters de-
termining the energy production evolution paths and the associated carbon dioxide
emission dynamics. We do not perform an explicit sensitivity analysis with respect
to parameters that relate to e.g. world population growth or to detailed character-
istics of carbon cycle dynamics, since these fall beyond the scope of this paper.
However, our sensitivity analysis does include an investigation of different policy
scenarios – through a comparison of modeling constraint variations regarding the
imposed temperature increase or, as an alternative, the imposed CO2 concentra-
tion stabilization level – which in many respects is comparable to a carbon cycle
sensitivity analysis.

The world population (described by the parameter Popt ) is assumed to grow
from 5.89 billion in 1997 at a rate of 1.45% per year, leveling off and reaching
11.4 billion by 2100 (World Bank, 1999; and Nakicenovic et al., 1998). We did
not perform a sensitivity analysis for this parameter, but leave this as a subject for
other (future) research.

The dynamic parameters A1
t and A2

t describe autonomous technological
changes. Setting aside changes in energy production costs, changes in the parame-
ter A1

t describe production and consumption growth per capita with a proportional
increase in energy use. Gross World Product (GWP) in 1997 is assumed to have
been 25.1 trillion U.S.$1990 (World Bank, 1999) and its future annual per capita
growth rate is assumed to be 1.5%. As a lower and upper bound for the growth
of consumption per capita, denoted by GCPC, we choose 1.0% and 2.0% for our
sensitivity analysis.

Changes in the parameter A2
t describe the autonomous improvement in energy

efficiency. More precisely, A2
t describes the productivity of the CES aggregate of

the fossil-fuel and non-fossil-fuel energy sources, which we may interpret as a
measure for the productivity of energy services. Thereby, changes in A2

t describe
the autonomous energy services efficiency improvement (AESEI). Its assumed
value is 1.0% per year. For the sensitivity analysis, as a lower and upper bound, we
choose values for the AESEI of 0.5% per year and 1.5% per year. The value of the
AESEI is not exactly the same as the value of the autonomous energy efficiency
improvement (AEEI), commonly used in other studies. The AEEI measures the
productivity increase of the linear aggregate of energy sources (two in our case),
whereas the AESEI measures the productivity increase of our CES aggregate. Un-
der the central parameter choice (AESEI = 1.0%/yr) and with no climate change
control (the situation to which we refer as the baseline scenario), however, the two
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Table I

Parameters subject to sensitivity analysis

Parameter Meaning a Lower Central Upper

value value value

σ Elasticity of substitution between the two energy 2.0 3.0 4.0

sources (.)

γ Elasticity of substitution between the capital/labor 0.2 0.4 0.8

composite and energy composite (.)

δ Annual capital depreciation (yr−1) 0.05 0.07 0.1

GIR Gross Investment Ratio (.) b 0.2 0.25 0.3

LR Decrease in production costs per doubling of 0.1 0.2 0.3

installed vintages/learning rate (.)

LTCN Long-term costs for the non-fossil-fuel energy 0.75 1.25 2.25

source ($/J)

r Real interest rate (yr−1) c 0.03 0.05 0.08

AESEI Autonomous energy services efficiency 0.005 0.01 0.015

improvement (yr−1)

GCPC Growth of consumption per capita (yr–1) 0.01 0.015 0.02

LSI Dummy expressing whether learning spill-over 0 1 1

effects are internalized through subsidies (.)

a Units of measurement are between brackets. Brackets (.) denote that the parameter has no
dimension.
b The capital share parameter α is calculated on basis of the GIR.
c The pure time preference rate ρ is calculated on basis of the real interest rate r .

parameters are almost identical. The combined assumptions on population growth,
GWP growth and the value of AESEI result in an energy consumption growth rate
of 1.9% per year in 2000, which decreases to 0.6% per year in 2100.

The aggregation of final energy supply over various energy sources such as
electricity and heat is facilitated by conversion of all final energy data in primary
energy equivalents. Specifically, for electricity, energy flows measured in ExaJoule
per year (EJ/yr) are divided by 0.33, the typical conversion efficiency from heat to
electricity, while electricity prices, measured in U.S. dollars per GigaJoule ($/GJ),
are multiplied by 0.33, to arrive at volumes and prices, respectively, in primary
energy equivalents. Over the year 1997, commercial final energy supply (in primary
energy equivalents) based on fossil-fuel energy sources is estimated to have been
some 307 EJ, and related carbon emissions are assumed to have been 6.3 GtC.
Carbon emissions related to land-use changes and industrial processes are around
1.3 GtC, and are assumed constant over time. By dividing the fossil-fuel carbon
emissions of 6.3 GtC and the fossil-fuel commercial final energy (services) supply
of 307 EJ, one obtains the carbon emission intensity of fossil-fuel commercial final
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energy (services) supply, εt , which amounts to 0.021 gC/kJ in 1997. The fossil-fuel
technology is assumed to be subject to a ‘decarbonization’ of 0.2% per year, which
continues until a floor is reached of 0.016 gC/kJ.

The pure time preference rate, ρ, is linked to the real interest rate, r, and the
consumption growth per capita, g (or GCPC), via the Ramsey rule, r = ρ + g.
Since we assume an almost constant per capita consumption growth path (see
the discussion above), we determine the level for ρ by choosing a ‘realistic’ real
interest rate r, and subtracting the assumed consumption growth rate. As a central
value, we use a real interest rate of 5% per year. For the sensitivity analysis, we
choose a lower and upper bound of 3% and 8% per year, respectively.

In most IAMs that are comparable with DEMETER, the capital depreciation
factor δ has a value of 10% per year, see e.g., DICE (Nordhaus, 1994). However,
some of the empirical literature (e.g., Romer, 1989) suggests a much lower value
for capital depreciation of 4% per year. As our central value, we therefore choose
7% per year, with a lower and upper bound of 4% and 10% per year, respectively,
for the sensitivity analysis.

The share of capital α in the capital-labor composite determines the capital-
output ratio, and in turn the gross investment ratio (GIR), that is, the level of gross
investments relative to gross production that is necessary to maintain the capital
stock, given the depreciation factor. We follow the inverse procedure, and assume
that in the baseline scenario the model approximately follows a balanced growth
path during the first periods. That is, initially, output, consumption, investments
and energy production grow at about the same rate. Choosing the gross investment
ratio for these periods, we can determine the associated capital share factor α.
The DICE model uses a gross investment ratio of 20%. Romer (1989) finds a GIR
between 25% and 30% for a selected group of OECD countries. Mankiw et al.
(1992) confirm the findings of Romer (1989) and emphasize that human capital
should be counted as capital, and investments in education should be counted as
part of gross investments. This approach would considerably increase the GIR. For
our calculations, we choose 20% as lower bound, 25% as central value, and 30%
as upper bound for the GIR.

The long-term elasticity of energy consumption to energy prices is described by
the parameter γ , for which the central value is γ = 0.4, following Manne (1999).
For the sensitivity analysis, we take a lower bound of γ = 0.2, describing an
economy in which energy is truly essential for production, and we take an upper
bound of γ = 0.8, describing an economy in which, in the long term, capital and
labor are moderate substitutes for energy.5

The parameter σ describes the long-term elasticity of substitution between the
fossil-fuel and non-fossil-fuel energy sources. Approximately, the parameter de-
termines the share of the fossil-fuel based energy source relative to the share of
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the non-fossil-fuel energy source, (Ft/Nt), given their relative production costs,
(pF

t /pN
t ), as follows:

(Ft/Nt) = (pF
t /pN

t )−σ . (16)

On the basis of the database developed for the IIASA-WEC study (Nakicenovic
et al., 1998), final commercial energy consumption in 1997 is estimated to be (in
primary energy equivalents) 320 EJ.6 From the same database, the share of fossil-
fuel technologies in energy production (in 1997) is estimated to be 96%. This
corresponds to the 307 EJ mentioned above. The remaining share of 13 EJ is non-
fossil-fuel energy. Thus, in Equation (16), the ratio at the left-hand-side is about
24. Prices, in primary energy equivalents, for energy derived from natural gas tech-
nologies vary in a range from 2 to 3 $(1990)/GJ.7 Since coal, oil and natural gas are,
grosso modo, competitive, a good reference price in our calculations for the average
fossil-fuel energy resource is 2.5 $/GJ, in the model start-off year 1997 (this price in
primary energy equivalents corresponds to a price of 2.5×3.33 = 8.3 $/GJ in final
electricity units). A large spread exists in production costs for energy from e.g.,
wind and solar energy (electricity) options. Prices, in primary energy equivalents,
for commercial final electricity from wind turbines varied in 1995 between 2 and
7 $(1990)/GJ, in the highest-cost and lowest-cost production cases, respectively.8

Electricity production costs for photo-voltaic systems are still significantly higher
than that for wind energy.9 We consider a realistic range for the ratio of production
costs (non-fossil vs. fossil) to be a factor varying from 2 to 5, consistent with an
elasticity of substitution ranging from about σ = 2 to σ = 4. As central value,
we take σ = 3. Given fossil-fuel energy prices of 2.5 $/GJ, this value for σ is
consistent – see (16) – with production costs for the non-fossil-fuel energy source
of 7.2 $/GJ, in the year 1997 (this latter price in primary energy equivalents corre-
sponds to a price of 7.2 × 3.33 = 24 $/GJ in final electricity units). For the basis
parameter values, in 1997, energy production accounts for about 2.7% of GWP. As
lower bound for σ we take σ = 2, and we adjust the initial production costs for the
non-fossil-fuel energy source accordingly, to 12.2 $/GJ. As upper bound we take
σ = 4, and we adjust initial non-fossil-fuel prices to 5.5 $/GJ.

Finally, we come to the parameters aj , bj , cj , and dj , describing the production
costs for both energy sources in the long-term (aj and bj ), and the learning curve,
that is, the learning rate and the initial production costs given past cumulative
investments in both energy sources (cj and dj ). For fossil fuels, the assumed
distribution of costs over investments and maintenance and operation (M&O) is
20:80, where for convenience the fuel part of the costs is integrated in the M&O
costs. For non-fossil technologies, the assumed ratio is 80:20 (Schönhart, 1999).10

In combination with the central assumption on energy prices for 1997, one sees
that investment costs for non-fossil-fuel energy are assumed to be currently about
10 times those for fossil-fuel energy. For the long term, still a substantial cost
reduction is assumed to exist for new gas and coal technologies. The long-term
floor price for fossil-fuel technology is fixed at 1.25 $/GJ. Also non-fossil-fuel
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technologies are subject to substantial price decreases. The long-term lower bound
price for non-fossil technologies is fixed at the same price of 1.25 $/GJ. That is,
for the long term we do not assume a comparative advantage of fossil fuels over
non-fossil fuels, or the other way around. For the sensitivity analysis, as a lower
and upper bound for the long-term production costs for the non-fossil-fuel energy
source, we take 0.75 $/GJ and 2.25 $/GJ.

The learning rate for non-fossil-fuel energy resources is assumed to be 20% per
doubling of installed vintages, in line with the empirical evidence on this variable
for solar power and wind suggesting that the rate ranges from 8 to 35% (McDonald
and Schrattenholzer, 2000). For the sensitivity analysis, we take a lower bound and
upper bound for the learning rate of 10% and 30% per doubling, respectively. When
the non-fossil-fuel energy technology matures, its learning rate falls.11 On the other
hand, the fossil-fuel energy technology is assumed to have used most of its learning
potential already. The cumulative capacity of installed vintages up to the year 1997
is estimated to be about 1200 EJ and 32 EJ for the fossil-fuel energy option and
the non-fossil-fuel energy alternative, respectively.12 Under the baseline scenario,
the cumulative capacity of installed vintages for the carbon-free energy technology
is doubled by 2020. Consequently, under the central parameter choice, production
costs have decreased by 20%, and for σ = 3 the market share will have increased
by approximately 75%, corresponding to an increase of 3% in total energy supply,
from 4% to 7% (see also Figure 3, in the next section).

4. Results

In this section, we analyze two scenarios. The first, ‘business as usual’ (BAU) or
baseline, scenario assumes no control on carbon-dioxide emissions. It also assumes
that there is no policy stimulating the use of the non-fossil-fuel energy source, that
is, it abstracts from both taxes and subsidies, even while subsidies may be necessary
to internalize learning spill-overs. The second scenario sets a ceiling on the average
global temperature increase. This temperature is not allowed to rise above a 2 ◦C
increase compared to its pre-industrial value. Such a temperature constraint may be
necessary to prevent major ecological impacts of global warming. This scenario is
labeled ‘2DC’ (an abbreviation for ‘2 Degrees Celsius’). It is an ambitious scenario
that involves taking drastic steps that realize, first, a slow-down of and, eventually,
sharply decreasing emissions of carbon dioxide. It is partly inspired by Schneider
and Azar (2001), who argue that such a tight temperature target is both necessary
and cost efficient.13 In contrast to the first scenario, in the 2DC scenario it is as-
sumed that not only taxes on carbon emissions are applied, but that also subsidies
are available for investments in the non-fossil-fuel energy source. These subsidies
internalize learning spill-overs. As part of our sensitivity analysis, we also include
a calculation for the 2DC scenario in which it is assumed that learning spill-over
effects are not internalized.
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For a comparison between the BAU and 2DC scenarios, we first calculate the
‘timing of action’, that is, the optimal evolution of the emission path over time
(Figure 1). We then calculate the relative importance of energy savings versus the
transition from fossil-fuel energy sources towards non-fossil-fuel energy sources
for reaching our climate stabilization objective (Figures 2 and 3). We present the
sensitivity to our main modeling parameters, regarding our results on allowed emis-
sions, the share of energy savings in total emission reductions, and the share of
carbon-free energy sources in total energy supply, in 2020 (Table II). For policy-
making arguments, we also present the net present value (NPV) of consumption
in both the BAU and 2DC scenario. From these NPV results we derive the costs
incurred by constraining the temperature increase (Table III). Next, we calculate
the costs of the assumed climate stabilization objective, per period, in terms of the
decrease in consumption under the 2DC scenario, as compared to that in the BAU
scenario (Figure 4). The sensitivity of cumulative costs (as well as of taxes and
subsidies) with respect to the modeling parameters examined is presented as well
(Table IV). We have also calculated the optimal carbon emission paths under four
additional policy scenarios (Figure 5). We end by presenting the sensitivity of our
emissions and costs results to these four policy scenarios (Tables V and VI). While
we performed a sensitivity analysis for all parameters that we judged relevant, for
reasons of exposition it is impracticable to depict in the figures all corresponding
time-paths, associated with various parameter choices. Therefore we only display
time-paths that substantially deviate from the path associated with the central pa-
rameter choice. On the other hand, we report, for arguments of completeness, our
results for all parameter values in the various elaborate tables.

4.1. MECHANISMS FOR ACHIEVING THE 2 ◦C TEMPERATURE INCREASE

CEILING

Figure 1 shows the emissions of carbon dioxide over time for both the BAU and the
2DC scenario. The figure shows two bundles of paths. The upper group of paths
with solid markers represents the set of BAU scenarios, each generated with differ-
ent parameter values. The lower group of paths with non-solid markers represents
the set of 2DC scenarios. The upper most path, with emissions up to 24 GtC/yr in
2100, represents the BAU scenario when the growth of per capita consumption is
assumed to be 2% per year throughout the 21st century (GCPC = 2% per year).
This emission path almost precisely matches the scenario that assumes the central
value for consumption growth (GCPC = 1.5% per year), but that assumes less
autonomous improvement in the energy services efficiency (AESEI = 0.5%, not
included in the figure). The explanation for this outcome is rather comprehensible:
both high levels of economic growth and low levels of energy efficiency improve-
ment lead to rapidly increasing energy use, and hence carbon-dioxide emissions.
Emissions reach the level of 16 GtC/yr in 2100, when the non-fossil-fuel energy
source has a learning rate of only 10%. The reason is that the non-fossil-fuel en-
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Figure 1. Carbon-dioxide emissions.

ergy source develops more slowly into a competitive alternative for the fossil-fuel
energy source if it has only a small learning rate. In this case, the increase in carbon
emissions more closely follows the increase in energy use than when the learning
rate is higher.

As we may expect, opposite changes in parameter values imply lower future
emission levels. Emissions reach much lower levels when we assume a low con-
sumption growth path (GCPC = 1%), or assume a high autonomous improvement
of energy efficiency (AESEI = 1.5%). Emissions then increase less rapidly and
remain below 10 GtC/yr during the entire 21st century. If the non-fossil-fuel energy
source has a learning rate of 30%, it sooner becomes a competitive alternative to the
fossil-fuel energy source than with a low learning rate, so that emissions increase
more slowly. Specially dedicated climate change policies are less urgent in these
cases than in the other examples. With GCPC = 1%, emissions reach a level of
9 GtC/yr in 2100, almost a factor 3 below the level in that year of the upper path.
This long-term emission level, however, is still far too high with respect to the level
required to stabilize the temperature increase at 2 ◦C. From these BAU graphs one
concludes that baseline emission scenarios are very sensitive to assumptions on
economic growth, energy efficiency improvements, and, to a lesser extent, learning
rates. Variations in other parameters (not shown in this figure) have less (though
still possibly substantial) impact on simulated emission paths.14

As for the lower bundle of emission paths, representing the 2DC scenario for
different parameter values, it appears that, in comparison to the BAU scenarios,
the range of emission paths is much narrower. The temperature ceiling defines a
small corridor of feasible emission paths, leaving the model only the freedom to
determine the timing of emission abatement. One sees that the central scenario has
emissions of 7.8 GtC/yr in the year 2020 (see also Table II), which is a reduction of
14% relative to the BAU level in that year (for the same central parameter values).
Over the 21st century, and for the basis parameters, cumulative emissions fall from
1200 GtC in the BAU scenario to 630 GtC when the 2DC constraint is imple-
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mented. As a comparison, we note that, under the same temperature constraint,
the DICE99 model calculates emissions in the year 2020 of 8.7 GtC/yr,15 which
is at the high end of our estimates. For the timing of emission abatement, in our
model, the levels of the discount rate and the learning rate turn out to be of most
importance. Employing a pure discount rate consistent with a real interest rate of
8% per year, instead of 5% per year (the central value), implies that it is optimal to
delay abatement as much as possible. This scenario produces the upper emissions
curve for the years 2000–2060 (emissions amount to 8.5 GtC/yr in the year 2020),
which becomes the lowest curve for the years thereafter. Inversely, employing
a pure discount rate consistent with a real interest rate of 3% per year implies
immediate action, and emissions of only 6.8 GtC/yr in the year 2020. Another
important parameter for the timing of emission reductions is the learning rate.
Under an optimistic learning rate of 30%, an ambitious emission path is calculated
of only 6.7 GtC/yr in 2020, that continues to decrease thereafter. As one can see
from Table II, when assuming a pessimistic learning rate of 10%, emissions in 2020
amount to 8.0 GtC/yr, implying less emission reductions compared to the baseline
level.

We next consider the mechanisms through which emission reductions take
place. In Figure 2, we present the share of emission reductions, relative to the
BAU benchmark, that is reached through energy savings measures (the first policy
option). The remainder of the emission reductions is reached through the second
policy option (a transition to non-fossil-fuel energy sources). In formal terms, the
energy savings share is represented by:

(EBAU
t − E2DC

t )

EBAU
t

/
(EmBAU

t − Em2DC
t )

EmBAU
t

, (17)

where EmBAU
t are emissions in the BAU scenario, Em2DC

t are emissions in the 2DC
scenario, EBAU

t are energy levels in the BAU scenario, and E2DC
t are energy levels

in the 2DC scenario.
For the central parameter values, in the short term, about half of the emission

reductions is reached through energy savings. The other half is accomplished by
an increased use of the non-fossil-fuel energy source. The figure also shows that
energy savings is an option mainly for the short and medium term. At the end of
the 21st century, for all parameter choices, the policy option of energy savings is
not used anymore, or to only a limited extent. By 2100, the non-fossil-fuel energy
source has become sufficiently competitive to take over the role of the fossil-fuel
energy source as the main contributor to total energy supply (see also Figure 3).
Note that the values for the relative importance of energy savings in total emission
reduction, for the 2DC scenario, may actually fall below zero. This finding makes
clear that a successful transition to non-fossil-fuel energy sources might even en-
able an expansion of future total energy use, compared to the business as usual
benchmark path.
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Figure 2. Relative importance of energy savings in total emission reduction for the 2DC scenario.

Figure 3. Fraction of energy supply produced by the carbon-free technology.

If the non-fossil-fuel energy source has sufficient potential to replace the fossil-
fuel energy source in the short and medium term, that is, if e.g., the learning rate
is 30% or the substitution elasticity σ has the value of 4, the transition to the non-
fossil-fuel energy source is the main mechanism for emission reductions even in
early periods. The lowest line represents the scenario with LR = 30%. This line
shows that, for this parameter choice, energy savings constitute only about 40% of
emission reductions in 2000, 31% in 2020 (Table II), and almost play no role after
2050. For σ = 4, savings (also) constitute only about 40% of emission reductions
in 2000, and 36% in 2020. Inversely, when the non-fossil-fuel energy source is
no good candidate to substitute for the fossil-fuel energy source, that is, when we
assume a low learning rate, LR = 10%, or a low substitution elasticity, σ = 2,
energy savings becomes a more important window for emission reductions. For
these parameter levels (LR = 10%, σ = 2), represented by the two upper lines in
Figure 2, energy savings constitute between 60% and 80% of emission reductions
during the first half of the 21st century.
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Table II

Sensitivity of emissions, of the share of energy savings in total emission reductions, and of
the share of carbon-free energy sources in total energy supply, in 2020, when realizing a 2 ◦C
temperature increase ceiling

Lower Basis Upper Emissions in 2020 Energy savings/ Non-fossil share

value value value (GtC/yr) emission reduction in 2020 (%)

in 2020 (%)

Basis 7.8 53 12

σ (2.0, 3.0, 4.0) (7.6, 7.8) a (36, 73) a (9, 16)

γ (0.2, 0.4, 0.8) (7.7, 8.1) (52, 54) a (12, 12)

δ (0.05, 0.07, 0.1) (7.7, 7.9) a (51, 54) a (11, 13)

GIR (0.2, 0.25, 0.3) (7.8, 7.8) (53, 53) a (12, 12) a

LR (0.1, 0.2, 0.3) (6.8, 8.0) a (31, 70) a (8, 24)

LTCN (0.75, 1.25, 2.25) (7.7, 8.0) (47, 61) (10, 14) a

r (0.03, 0.05, 0.08) (6.8, 8.5) (47, 53) (8, 21) a

AESEI (0.005, 0.01, 0.015) (7.3, 8.2) a (48, 57) (9, 16) a

GCPC (0.01, 0.015, 0.02) (7.4, 8.2) (48, 56) a (8, 17)

LSI (0, 1) (7.8, 7.9) a (53, 73) a (9, 12)

Overall range (6.8, 8.5) (31, 73) (8, 24)

N.B.: The largest extremities reached are in bold and are indicated in the last row as ‘overall
range’.
a Denotes intervals where the lower bound of the sensitivity result is associated with the upper
value of the corresponding parameter.

Figure 3 shows the share of the non-fossil-fuel energy source in total energy
supply for the 2DC scenario, which constrains the temperature increase to 2 ◦C.
The lines depicted correspond to some of the paths in the lower bundle of emission
scenarios presented in Figure 1. In the long-term, the development of this share
turns out to be almost insensitive to choices for the parameter values. For the central
parameter choice, the share increases by nearly 1% per year, to a share of about
95% in 2100. This finding portrays a substantial acceleration in the transition of
the energy system to non-fossil-fuel energy sources in comparison to the BAU
reference scenario (not plotted in the figure). In the BAU scenario, under central
parameter values, the share of the non-fossil-fuel energy source increases from 4%
in 2000 to 33% in 2100. In the 2DC scenario, if the non-fossil-fuel energy source
experiences rapid learning effects, LR = 30%, the transition doubles its speed in
comparison to LR = 20%, and the share reaches 24% in 2020 (Table II). Inversely,
a non-fossil-fuel energy source with slow learning effects, LR = 10%, reaches a
share of only 8% in 2020. This is consistent with the paths depicted in Figure 2, in
which it is shown that under this parameter choice, energy savings constitute the
major mechanism for emission reductions over the first decades of the 21st century.
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Table II summarizes our findings by presenting the values of the variables plot-
ted in the figures, for the year 2020. It extends the figures by presenting the results
for all parameters analyzed. The elasticity of substitution between the two energy
sources, σ , is an important parameter. Especially if the elasticity is low, energy
saving measures will be the major channel through which emission reductions can
be achieved over the coming decades. Results are rather insensitive to the price
elasticity for energy, γ . A variation in its level has almost no effect. The same
applies for the capital depreciation factor, δ, and the gross investment ratio, GIR.
For our analysis, the learning rate appears to be the most important parameter. A
high learning rate implies a quick transition to the non-fossil-fuel energy source,
so that emissions are rapidly cut, while energy savings remain almost unnecessary.
On the other hand, a low learning rate implies a delay in the transition to the non-
fossil-fuel energy source. It is then more difficult to cut emissions, and energy
savings are necessary to reach the climate stabilization objective. Compared to
the learning rate, the long-term cost level of the non-fossil-fuel energy source is
less important. Admittedly, in the long term, this parameter will probably have a
major impact on the energy mix and associated emissions, but for the short and
medium term it is of less relevance. Applying a low real interest rate decreases the
benefits of delaying costly reductions to the future, hence a larger part of emission
reductions is achieved in the short and medium term. On the other hand, a high
real interest rate supports a delay of emission reductions. Finally, the autonomous
energy services efficiency improvement (AESEI), the assumed growth in per capita
consumption (GCPC), and the use of subsidies for internalizing learning spill-overs
(LSI) all have only minor effects on the timing of emission reductions.

4.2. COSTS AND SUPPORTING POLICIES FOR ACHIEVING THE 2 ◦C

TEMPERATURE INCREASE CEILING

Table III presents the cumulated discounted costs in terms of the loss of the net
present value for the central parameter values. Figure 4 presents the distribution
of the costs over time. Table IV presents the sensitivity analysis for the cumulated
costs. For the central parameter values, under the BAU scenario, the NPV of the
future stream of consumption amounts to 884.40 trillion U.S.$(1990). When apply-
ing the temperature ceiling, the NPV of consumption decreases to 883.83 trillion
U.S.$(1990). Cumulated discounted costs are thus 0.57 trillion U.S.$(1990), or
0.06% of the NPV of consumption (Table III). These calculated costs are remark-
ably low. A typical calculation made with DICE (Nordhaus, 1994, Table 5.1) shows
costs of a comparable climate stabilization strategy of nearly 6%, which differs by
a factor of hundred with our calculations. A careful inspection of the dynamics of
the costs can clarify the origin of the divergence between our calculations and those
made with DICE and comparable models.16

In DEMETER, when implementing the temperature ceiling, consumption is
lower than in BAU during the first two decades, both because of the lower pro-
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Table III

Net present value of consumption and costs of the tem-
perature constraint17

NPV (trillion Costs (trillion Percentage

U.S.$1990) U.S.$1990)

BAU 884.40 – –

2DC 883.83 0.57 0.06%

ductivity of capital and labor due to energy savings, and because of the additional
investments in the non-fossil-fuel energy source. For the central parameters, we
find that in 2000 consumption levels are 0.25% below the corresponding BAU lev-
els of consumption (Figure 4). However, from 2020 onwards, the consumers reap
the fruits of the early investments in the non-fossil-fuel energy source. Learning in
the new technology is enhanced, providing the economy with an alternative energy
source that contributes to diversifying the energy system, while the costs involved
can continuously decrease over time.

This pattern of costs contrasts with the common results found with most other
models (such as DICE). In these models, costs are assumed to be monotonically
increasing in the emission reduction level, and almost independent of past emission
reductions. Since emissions have to decrease over time to stabilize climatic condi-
tions, while BAU emissions increase over time, reduction levels have to increase;
the corresponding costs continuously grow in these models. The costs calculated
with DEMETER follow a different pattern, one that is more in line with the analysis
by IEA/OECD (2000, e.g., Figure 4.3). This work finds early learning investments
followed by substantial benefits later on. For most of the variations in our parameter
assumptions, our cost curve follows such a pattern. Still, there are two outlying
curves for which costs remain substantial, and positive, over the entire interval
2020–2100.

If the learning curve is relatively flat, that is, the learning rate is 10% (the lowest
curve in Figure 4), learning spill-overs and future benefits of present investments
in the non-fossil-fuel energy sources are limited. This results in increasing costs of
emission reductions, reaching nearly 1.0% of consumption at the end of the 21st
century. In this case, total costs amount to 0.16% of the NPV of the consumption
stream (Table IV), an increase of almost a factor 3 in comparison to the costs with
the central parameter values, but still much below the costs calculated with most
other models. The same cost dynamics apply when the two energy sources are not
good substitutes, i.e., when σ = 2, or when the long-term production costs for the
non-fossil-fuel energy source exceed the long-term production costs for the fossil-
fuel energy source (LTCN = 2.25$/GJ, not presented in the figure). For these two
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Figure 4. Change in consumption relative to BAU.

parameter values, the decrease in NPV of the consumption stream is 0.14% and
0.12%, respectively (Table IV). If we were to abstract from learning, and assumed
complementarity between the two energy sources, our model would probably cal-
culate cost patterns and total costs of emission reductions that are comparable to
those calculated with other models.

A pattern similar to the 2DC basis scenario, but more pronounced, is found if
we assume that the non-fossil-fuel energy source has a steep learning curve, that
is, if it has a learning rate of 30%. For this parameter value, it is optimal to boost
early investments, decreasing consumption in 2000 by about 0.4%. As a result of
high returns on these investments, however, consumption exceeds the BAU level
from about 2015 onwards. In this case, there is a double dividend. In addition to
the climate objective being met, the NPV of the consumption stream increases by
0.02% compared to the BAU scenario (Table IV), and thus the total costs of the
temperature ceiling are negative. The double dividend can occur since subsidies
on investments in new technologies, used to transform the energy system towards
the non-fossil-fuel energy source, internalize the learning spill-over and bring the
economy closer to a first-best allocation in comparison to the BAU scenario. The
other parameters, the energy elasticity (γ ), the capital depreciation (δ), the gross
investment ratio (GIR), the real interest rate (r), the autonomous energy services ef-
ficiency improvement (AESEI), the growth of per capita consumption (GCPC), and
the use of subsidies for internalizing learning spill-overs (LSI) are less important
in terms of their influence on the costs of climate change stabilization.

Two instruments exist that are applied to reach the temperature stabilization
objective. The model describes both CO2 taxes that decrease the demand for
the fossil-fuel energy source, and subsidies on investments in the non-fossil-
fuel energy sector that stimulate non-fossil-fuel energy demand as well as its
development.
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Table IV

Costs of imposing a temperature increase ceiling of 2 ◦C, and the required taxes and
subsidies in 2005

Lower Basis Upper Costs of 2DC Taxes in 2005 Subsidies in 2005

value value value (% NPV) ($/tC) (%)

Basis 0.06 6 24

σ (2.0, 3.0, 4.0) (–0.03, 0.14) a (4, 9) a (20, 32)

γ (0.2, 0.4, 0.8) (0.06, 0.08) (6, 6) (21, 30)

δ (0.05, 0.07, 0.1) (0.05, 0.08) (6, 6) a (21, 27)

GIR (0.2, 0.25, 0.3) (0.06, 0.07) (6, 6) (24, 24)

LR (0.1, 0.2, 0.3) (–0.02, 0.16) a (4, 9) a (21, 30)

LTCN (0.75, 1.25, 2.25) (0.03, 0.12) (5, 8) (23, 25) a

r (0.03, 0.05, 0.08) (0.02, 0.13) a (2, 15) a (24, 24) a

AESEI (0.005, 0.01, 0.015) (0.02, 0.13) a (5, 7) a (22, 26) a

GCPC (0.01, 0.015, 0.02) (0.03, 0.11) (4, 8) (22, 26)

LSI (0, 1) (0.06, 0.08) a (6, 15) a (0, 24)

Overall range (–0.03, 0.16) (2, 15) (0, 32)

N.B.: The largest extremities reached are in bold and are indicated in the last row as
‘overall range’.
a Denotes intervals where the lower bound of the sensitivity result is associated with
the upper value for the corresponding parameter.

Since the equilibrium calculated can be understood as the solution of a welfare
maximization problem, the tax can be interpreted as the shadow price of the carbon
emissions constraint in the welfare-optimizing framework. The initial tax (i.e., the
tax levied in 2005) of about 6 $/tC increases the price for the fossil-fuel energy
source by about 5%, reducing its demand by 2%, given the assumed elasticity of
γ = 0.4. The calculated tax steadily increases (not shown in this paper, see van der
Zwaan et al., 2002) reaching levels of about 10 $/tC in 2020 and 200 $/tC in 2100.
Most changes in parameters do not affect the carbon tax too much. Only the interest
rate and the subsidy policy are perhaps two exceptions. Using a higher discount rate
of 8% per year implies a lower shadow price of present emission reductions and
thus lower taxes, of 2 $/tC, since the temperature ceiling becomes binding only at
the end of the 21st century, and the NPV of reaching this temperature constraint is
negatively correlated to the interest rate. Using a lower discount rate increases the
2005 carbon-tax to some 15 $/tC. These results are understandable, and are in line
with what is found in the literature on this subject matter (for an extensive overview
of the discounting discussion, and controversy, in this context, see Portney and
Weyant, 1999). We also see in the table that carbon taxes need to be substantially
increased, to 15 $/tC in 2005, if the government does not internalize the spill-overs
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from the non-fossil-fuel energy source through subsidies (LSI = 0). Thus, when the
government does not directly and explicitly stimulate the development of the non-
fossil-fuel energy source, it has to do so indirectly through a tax on the competing
fossil-fuel energy source.

This brings us to the other instrument, the subsidies on investments for the non-
fossil-fuel energy source. For the central parameters, the subsidies cover 24% of
the investment costs for the non-fossil-fuel energy source. Since investment costs
make up 80% of total production costs for the non-fossil-fuel energy source, these
subsidies cover actually about 20% of total production costs. Demand increases
rapidly, and, in turn, production costs fall, so that demand is further stimulated. The
subsidies internalize the learning spill-over, so that a higher learning rate implies
higher subsidy levels. For a learning rate of 30%, optimal subsidies reach the level
of 30% of investment costs. For a low learning rate of 10%, optimal subsidies are
lowered to 21% of investment costs. As Table IV shows, the optimal subsidy level
is less sensitive to changes in almost any of the other parameters (assuming that
learning spill-overs are internalized). Only a variation in the assumed price-demand
elasticity results in the same level of sensitivity, and a variation in σ induces a wider
range of subsidies (for the latter, see Gerlagh et al., 2000).

The use of subsidies needs a further comment. There are various reasons for
public agencies not to subsidize investments in non-fossil-fuel energy sources.
First, the public authorities may consider it their task to regulate the use of the
environment as a public good through the levying of taxes, but may also consider
the development of technology-specific knowledge as the responsibility of the pri-
vate sector. Second, subsidies are often considered not to be the appropriate way to
solve market imperfections. The levying of taxes (only), on the other hand, could
be the more sound way to reach a social optimum that includes the protection of
the environment, viz. the global climate. Third, unlike our simplified model, in
reality there are many technologies that may prove a successful alternative to the
fossil-fuel energy source, e.g., different types of solar energy, wind energy, or the
more conventional hydropower and nuclear energy. The public authority may find
it too complex to determine the optimal subsidy policy. It may thus decide that it is
the market that should select the appropriate non-fossil-fuel energy source. Fourth,
while the recycling of revenues from emission taxes may raise a double dividend –
at least it offers the public authority the possibility to lower other taxes – subsidies
remain a costly instrument, since they require other taxes to be increased to main-
tain budget neutrality. Thus, when the public authority avoids the use of subsidies,
the use of carbon taxes indeed may serve a double purpose: they internalize the
climate change externality, while at the same time they stimulate the development
of non-fossil-fuel energy sources.
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Figure 5. Carbon dioxide emissions under various policy scenarios.

4.3. SENSITIVITY TO POLICY SCENARIOS

We have calculated four additional policy scenarios, with which we can investi-
gate the sensitivity of our results to different climate change targets. Instead of
involving a temperature increase constraint of 2 ◦C (2DC), these four scenarios
include, respectively, a temperature constraint of 1.5 and 3 ◦C, and an atmospheric
carbon dioxide concentration constraint of 450 ppmv and 550 ppmv. We point
out that the temperature constrained policy scenarios can also be interpreted as
sensitivity analyses on the climate sensitivity parameter, with a lower value of 2 ◦C
per atmospheric CO2 doubling (C/doubling), a central value of 3 ◦C/doubling, and
an upper value of 4 ◦C/doubling.18

Figure 5 shows the carbon dioxide emissions both under business as usual
(BAU-Basis; see also Figure 1) and for the various policy scenarios analysed. A
1.5 ◦C constraint is, naturally, more stringent than a 2 ◦C constraint, and a 3 ◦C
constraint less stringent. For the long-term, a constraint on the atmospheric carbon
dioxide concentration of 450 ppmv (CO2) is slightly more flexible than a 2 ◦C con-
straint. But for beyond the first half of the century, it is a more stringent constraint,
since, in general, concentration limits allow less ‘overshoots’ in emissions com-
pared to temperature limits. As can be seen from Figure 5, the 550 ppmv carbon
dioxide concentration scenario resembles the 3 ◦C constraint scenario.

Table V displays the sensitivity of emissions, of the share of energy savings in
total emission reductions, and of the share of carbon-free energy sources in total
energy supply, in 2020, for the various policy scenarios. One sees that whereas the
emission reduction effort strongly depends on the policy objective aimed at, the
nature of the instruments – by which the objective considered is reached – is less
dependent on the target. Irrespective of the climate change stabilization target, by
2020, about half of the emission reductions is reached by energy savings, while the
other half is reached through a transition towards non-fossil fuels.

Unlike the nature of the instruments used to reach the climate objective (that
is, savings versus transition), the costs of reaching the global warming policy are
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Table V

Sensitivity of emissions, of the share of energy savings in total emission reductions, and of the
share of carbon-free energy sources in total energy supply, in 2020, when realizing various climate
stabilization targets

Lower Basis Upper Emissions in Energy savings/ Non-fossil share

value value value 2020 (GtC/yr) emission in 2020 (%)

reduction

in 2020 (%)

Basis 7.8 52 12

CO2 ceiling (ppmv) (450 550) (7.4, 8.3) (49, 53) a (9, 14) a

Temp. ceiling (C) (1.5, 2.0, 3.0) (5.8, 8.3) (48, 49) a (9, 27) a

Overall range (5.8, 8.3) (48, 53) (9, 27)

N.B.: The largest extremities reached are in bold and are indicated in the last row as ‘overall
range’.
a Denotes intervals where the lower bound of the sensitivity result is associated with the upper
value of the corresponding parameter.

Table VI

Costs of climate stabilization targets, and the required taxes and subsidies in 2005

Lower Basis Upper Costs of target Taxes in 2005 Subsidies in 2005

value value value (% NPV) ($/tC) (%)

Basis 0.06 6 24

CO2 ceiling (ppmv) (450 550) (0.01, 0.10) a (4, 8) a (21, 26) a

Temp. ceiling (C) (1.5, 2.0, 3.0) (0.003, 0.29) a (4, 20) a (21, 30) a

Overall range (0.003, 0.29) (4, 20) (21, 30)

N.B.: The largest extremities reached are in bold and are indicated in the last row as ‘overall
range’.
a Denotes intervals where the lower bound of the sensitivity result is associated with the upper
value of the corresponding parameter.

very sensitive to the climate stabilization target. A slightly lower bound of the
temperature ceiling, from 2 to 1.5 ◦C, increases the costs dramatically – almost
five-fold – from 0.06 to 0.29% of the NPV of consumption. In 2005, the supporting
taxes corresponding to this change in temperature objective increase almost four-
fold. Subsidies are less sensitive to such a change, since their level for a large part
depends on the learning potential, and is only partially dependent on the value
of the carbon constraint. The calculated costs, taxes and subsidies are given in
Table VI.
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5. Conclusions

The novelty of the integrated assessment model of climate change DEMETER is
that it includes two energy sources (carbon and non-carbon) and learning-by-doing
for both of these energy sources. These modeling features enable us to study the
two options for emission reductions. The first is the energy savings option, in which
the substitution of capital and labor for energy is allowed for. The second is the
energy transition option, in which emission reductions can be achieved through a
transition from a carbon energy technology towards a carbon-free energy technol-
ogy. The first option turns out to be of most importance in the short run, whereas the
second option is needed to reach substantial emission reductions in the long run.
The finding that the transformation from carbon to non-carbon energy technologies
starts to play a major role only after a few decades might create the false impression
that little action is called for today. Quite on the contrary, we do not want to suggest
any delay of action. As a matter of fact, the emission paths determined by DEME-
TER clearly show that to stabilize climate change at an increase of the atmospheric
temperature of 2 ◦C, substantial emission reductions are also called for in the short
and medium term. Such reductions can be achieved by early investments in carbon-
free technologies, which are a necessary condition for accelerating the learning
process required for long-term carbon emission reductions.

The DEMETER model uses an aggregate production function that represents
the phenomenon of niche-markets. Our simulation of niche markets implies a re-
placement of the fossil-fuel energy source by the non-fossil-fuel energy source
that is endogenous to the model. It is smoother than a transition that would result
from calculations based on linear substitution possibilities between the two energy
sources. This is an important difference with energy technology transitions as sim-
ulated elsewhere in the literature, notably in detailed (cost minimization) energy
system models that not rarely display corner solutions in the selection of energy
technologies, or, alternatively, that involve exogenous transition paths determined
by specified bounds for the penetration rates of new technologies.

Admittedly, we have considerably squeezed the variety of energy resources in
our model, that is, with respect to bottom-up models that usually simulate large
ranges of possible energy options. Indeed, representing the possible renewable
energy resources by just one variable, N , is a strong abstraction, and estimating
e.g., its long-run production cost can only be done rudimentarily. The very reason
that we have performed a sensitivity analysis for the latter is to see how timing and
cost results are affected by such generalizing assumptions. While from bottom-
up models, generally relatively rich in energy technology description, more energy
technology specific lessons may be learned, they are typically less apt for analyzing
economy-wide phenomena or overall welfare-energy effects and interactions. In
this respect we think that top-down models should be considered complementary to
bottom-up models, rather than considered either superior (typically by mainstream
economists) or inferior (typically by the often natural-scientifically oriented sci-
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entists doing bottom-up energy engineering systems analyses) to the latter. We do
not think that the results of either of these approaches are insignificant, but in both
cases they should be ‘handled and interpreted with care’, and one should realize
that they might be considerably dependent on the values chosen for the parameters
involved in the model. With respect to various top-down models, our energy sim-
ulation involves an enrichment of technological specification, not only through an
inclusion of two explicit energy technologies (carbon and non-carbon) but also by
an evolvement of their costs according to observed and expected learning phenom-
ena (for a recent overview of possible enrichments of environmental technological
specification in a variety of energy-economy models, see e.g., Carraro et al., 2003).

One of our main conclusions is that by playing around with the numerous pa-
rameters and assumptions in economy-energy-climate models one loses lots of the
significance of the findings many scientists derive from them. Since this is a fact
largely under-recognized, we have made it a main theme of this paper. So, it is
both an auto-critique and a broader result with implications for the community of
integrated assessment researchers at large.

Overall, our modeling assumptions prove to be important, but the main results
regarding overall energy dynamics continue to hold when changing the parameter
values. With our simulation, we think to have contributed to understanding and
demonstrating under what conditions an expensive but learning non-carbon energy
resource can take over a cheap conventional carbon energy option. We think that
finding the answer to this question is fundamental to solving the global warming
problem, that is, to figuring out how mankind should make a transition during the
21st century from fossil to non-fossil energy use.

The costs of realizing a radical transformation of the energy production and
consumption infrastructure, in such a way as to reach the climate constraint of
not allowing the global average atmospheric temperature to increase by more than
2 ◦C, as calculated with DEMETER, are found to be low. They amount to only
about 0.06% of the net present value of consumption. This value is substantially
lower than the costs calculated with most other IAMs, as has also been pointed out
in Gerlagh and van der Zwaan (2003).

The main subject and result of this article, obtained through our sensitivity
analysis, is that the patterns of the derived dynamic energy transformation paths
are robust against most changes in the values assumed for our model’s economic
and technological parameters. Still, regarding a few of these parameters, our results
prove to be quite sensitive to the particular values used. The numerical results on
the costs and timing of emission reductions appear most sensitive to the parameters
that characterize the learning curve of the non-fossil-fuel energy source, on the
one hand, and the substitution possibilities between this energy source and the
fossil-fuel energy source, on the other hand.

The sensitivity of our results to the learning rate is understandable, since this
rate determines the intensity of the mechanism that promotes accelerated price
decreases. A low learning rate of 10% substantially increases the costs of a climate
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change stabilization program, in comparison to the costs calculated for central pa-
rameter values of the learning rate. A low learning rate also implies a delay of the
transition towards the non-fossil-fuel energy source, and hence a delay of emission
reductions. A high learning rate of 30% implies that the transition towards the non-
fossil-fuel energy source can become a beneficial venture. In other words, costs
can become negative in this case. With a high learning rate, it becomes optimal to
set in motion the transition as soon as possible: already in 2020 the non-fossil-fuel
energy source reaches a share of above 20% of total energy supply, so that already
by 2020 carbon emissions reach levels below current values.

The second important parameter in our sensitivity analysis is the elasticity σ ,
describing the substitution potential between the two energy sources. A low sub-
stitution elasticity σ = 2 decreases the potential of the second carbon mitigation
option, i.e., the transition towards the non-fossil-fuel energy source as a mech-
anism to reach the temperature stabilization objective. With a low value for σ ,
the corresponding costs are relatively high. A high substitution elasticity, σ = 4,
increases the potential of a transition policy and decreases the calculated costs.
Yet the levels of carbon taxes and subsidies for the non-fossil-fuel energy source,
required to reach the temperature change stabilization objective, remain relatively
independent of the value of this parameter.

In addition to the learning rate and the niche market elasticity, a number of other
parameters are subjected to an extensive sensitivity analysis. A few of these provide
some further useful insights. The long-term production costs for the non-fossil-fuel
energy source defines the floor of the learning curve, that is, the production costs
that apply when learning opportunities have been fully exhausted. The long-term
production cost parameter has, understandably, substantial impact on the cumula-
tive costs required to reach the temperature ceiling. In the short and medium term,
however, changes in this parameter have only a minor effect on the costs and timing
of emission reductions.

Variations in the elasticity of substitution between energy and the labor-capital
composite, γ , the capital depreciation rate, δ, and the gross investment ratio that
determines the capital share α in the capital-labor composite, have only minor im-
pact on calculated emission paths, corresponding costs, and the timing of emission
reductions. A change in the real interest rate has an impact on costs and timing as
expected: the effect of such a change has been demonstrated extensively in many
studies in the literature already. A higher interest rate implies a delay of reduction
measures and a decrease of the net present value of costs, while a lower interest rate
has the opposite effect. Under the business as usual benchmark scenario, variations
in the assumed growth in consumption per capita and the autonomous improve-
ment in energy (services) efficiency also produce results as expected. Indeed, both
parameters have an important impact, in an exogenous way, on the total required
production of energy, and hence on the carbon emissions generated. A higher
growth in consumption and a lower autonomous energy efficiency improvement
both increase the benchmark carbon emissions. These parameters are of limited
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importance, however, for the costs and timing of emission reductions, when not
trespassing a temperature ceiling is the aim.
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Notes

1 An elaborate discussion of the Japanese experience with photo-voltaic electricity production can
be found in IEA/OECD (2000, Ch. 3).

2 The DE-carbonisation Model with Endogenous Technologies for Emission Reductions.
3 Under linear additivity, it is common not to give weights to different energy resources before

aggregation (see, e.g., Peck and Teisberg, 1992). On the other hand, using a CES aggregation, weights
are often used to calibrate the model to empirical data on energy inputs and prices. These weights
can substantially differ between various energy resources (see, e.g., Goulder and Schneider, 1999),
implying that some energy resources are assumed to have a considerable intrinsic advantage over
other energy resources.

4 The MESSAGE model (Messner, 1995) uses the same function, except for the constant ‘+1’,
which in our case assures that the price of energy cannot decrease without bound. For a new tech-
nology with a limited level of cumulative experience (small x), the learning rate lr and d satisfy
d = − ln(1 − lr)/ ln 2. For small learning rates lr, the approximation d = lr/ ln 2 holds. For mature
technologies with high levels of cumulative experience, x → ∞, the learning rate drops to zero.

5 An elasticity γ = 1 would imply a Cobb-Douglas production function in which capital and
labour could completely substitute for a decrease in energy use.

6 This excludes non-commercial biomass use, as well as traditional carbon-free sources such as
nuclear and hydropower. We do not consider these energy resources in this analysis.

7 See, for example, IEA/OECD, 1999, p. 41.
8 See, for example, IEA/OECD, 2000, p. 54. In Figure 3.3 in this publication, one sees that in 1995

(in the EU) wind energy production costs varied from about 0.02 to 0.08 e(1990)/kWh. Assuming an
approximate equivalence between the Euro and Dollar, and applying the conversion factor of 0.0036
GJ/kWh to GJ, and the conversion factor 0.33 going from electricity to primary energy equivalents,
one obtains the range [1.8, 7.2] $/GJ as quoted here.
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9 See, for example, IEA/OECD, 2000, p. 21.
10 Note that this ratio is typically a fair estimate for renewables like wind and solar energy, but that

it does not apply for a renewable like biomass, since the use of the latter resembles the use of fossil
fuels in many respects, regarding e.g., fuel efficiency and conversion ratios.

11 See also note 4.
12 We identify the capacity of a vintage in the energy production sector by the average energy flow

that will be generated by the vintage in its first period. Alternatively, we could define the capacity
in terms of the peak-load, but the use of the average energy flow is more convenient and does not
alter the results. For the fossil-fuel energy source, energy production in 1997 is estimated as 96%
of 320 EJ, that is, 307 EJ. The annual growth rate of energy supply is assumed to be equal to the
annual growth rate of consumption minus the autonomous energy efficiency improvement, that is,
2.9%–0.5% = 2.4%. Given an annual replacement of δ = 7%, it follows that the cumulative installed
capacity of past vintages is approximately equal to (307 EJ) × (0.024 + 0.070)/(0.024) = 1202 EJ.
For the non-fossil-fuel energy source, a growth rate twice as high is assumed for the past years,
resulting in (13 EJ) × (0.048 + 0.070)/(0.048) = 32 EJ. Note that the calculated cumulative installed
capacity depends on parameters (such as δ) that are subject to our sensitivity analysis. Moreover,
note that the model might calculate slightly different values when calculations are based on periods
of 5 years (as we do), and not on periods of 1 year.

13 Schneider and Azar also provide plenty of rationale for why performing a temperature increase
uncertainty analysis is both necessary and insightful. In particular, in their argument to keep many
options open, they state explicitly that retaining low stabilization targets (of 2 ◦C or 450 ppmv) on
the bargaining table for climate policy options is a wise thing to do.

14 For example, all other parameters kept equal, changing σ = 3 into σ = 2 results in baseline
emissions reaching 20 GtC/yr in 2100 (instead of about 15 GtC/yr), while a change to σ = 4 implies
emissions reaching 12 GtC/yr in that year.

15 Own calculations, using the standard interest rate of the DICE99 model, which is slightly below
5%.

16 Some of these particular findings (but not the sensitivity analysis) have been presented and
discussed earlier in Gerlagh and van der Zwaan (2003).

17 Note that the various paths analysed in this paper may correspond to different real interest rates.
For this table, we used the same price deflator as in BAU, to calculate the NPV of both the BAU and
the alternative 2DC stream of consumption.

18 To put it precisely, the 1.5 ◦C stabilisation policy scenario is equivalent to a 2 ◦C stabilisation
scenario with increased climate sensitivity of 4 ◦C per doubling of atmospheric CO2. Similarly, the
3 ◦C stabilisation policy scenario is equivalent to a 2 ◦C stabilisation scenario with decreased climate
sensitivity of 2 ◦C per doubling of atmospheric CO2.
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