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Abstract

Distribution functions in hard processes can be described by quark–quark correlators, nonlocal matrix elements
fields. Color gauge invariance requires inclusion of appropriate gauge links in these correlators. For transverse m
dependent distribution functions, in particular important for describingT -odd effects in hard processes, we find that new
structures containing loops can appear in Abelian and non-Abelian theories. In transverse moments, e.g., measured in
asymmetries, these loops may enhance the contribution of gluonic poles. Some explicit results for the link structure
in high-energy leptoproduction and hadron–hadron scattering.
 2004 Elsevier B.V. All rights reserved.

1. Introduction

In this Letter we discuss the issue of color gauge invariance in bilocal operator matrix elements off th
cone[1]. Such matrix elements are relevant in hard processes in which also transverse momenta of parto
role such as semi-inclusive deep inelastic scattering (SIDIS) or the Drell–Yan process (DY). In these two cases
quark correlation functions that appear at leading order in an expansion in the inverse hard scale turn out
different gauge link structure. Upon integration over transverse momenta the difference in the gauge link struc
does not matter, but for the transverse moments it does[2–5]. For the lowest transverse moments obtained f
transverse momentum dependent distribution functions the difference corresponds to a time-reversal odd gluo
pole matrix element[6].

In the tree-level contributions to SIDIS and DY one was in essence dealing with diagrams with a single
quark. In this Letter we consider more general situations, but in order to study the basic features we sim
discussion by first considering QED-like hard interactions between the quarks. Complications that arise
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by the explicit presence of gluons will be discussed at the end, but the full treatment will be done as part o
come applications to hard QCD processes.

2. Gauge link structures in hard processes

In electroweak hard scattering processes such as deep inelastic scattering and the Drell–Yan process,
lying hard processesγ ∗ + q → q andq̄ + q → γ ∗ involve a single quark. In these processes a hard scaleQ is set
by the virtuality of the photon. The transition hadron→ quark is described by the correlator

(1)Φij (p,P ) =
∫

d4ξ

(2π)4eip·ξ 〈P |ψ̄j (0)ψi(ξ)|P 〉,

where depending on the process the nonlocality is limited.Letting the soft quark and hadron momenta determ
the lightcone directionn+, one integrates over the quark momentum componentsp− = p · n+ andpT in inclusive
deep inelastic scattering (DIS), restricting the nonlocality to the lightcone[7–9]. In the case that more external m
menta are measured, implying that other directions can be observed, one integrates only over the quark m
componentp−, restricting the nonlocality to the light-front[10–12]. Examples are 1-particle inclusive or sem
inclusive deep inelastic scattering (SIDIS) and the Drell–Yan (DY) process, both of which involve two hadr
that case one has to deal with transverse momentum dependent distribution functions. Lightlike vectorsn+ andn−
are introduced for convenience. They satisfyn− · n+ = 1 and are set by the external momenta. They define li
cone momentaa± = a · n∓ and the transverse projectorg

µν
T = gµν − n

{µ
+ n

ν}
− . Besides the correlator describing t

hadron→ quark transition, correlators̄Φ(p,P ) for the hadron→ antiquark and correlators∆(p,P ) or ∆̄(p,P )

for quark or antiquark→ hadron transitions can be written down[7,8].
Diagrams with additional gluons emerging from the soft hadronic parts are described by quark–gluon cor

(2)Φα
Aij (p,p − p1,P ) =

∫
d4ξ

(2π)4

d4η

(2π)4eip·ξ eip1·(η−ξ)〈P |ψ̄j (0)Aα(η)ψi(ξ)|P 〉.

In leading order of the expansion in inverse powers of the hard scaleQ, one needs to include theΦ+
A correlators

involving A+ = A · n− (longitudinal) gluons that are collinear with their parent hadron. Together with multi-gluo
correlators they produce gauge links along then− direction, connecting the points 0 andξ to lightcone infinity[13].
Of the correlators involving transverse gluon fields, leading parts emerge that involve gluon fields at lightcon±∞,
which in combination with the links alongn− complete the gauge links between the points 0 andξ (seeFig. 1)
[3]. The resulting gauge links can be included in the correlator in Eq.(1), making it explicitly gauge invariant. Th
link structure, arising in the off-collinear situation in which one does not integrate over all transverse mom
the quarks, turns out to have a different path structure for SIDIS as compared to Drell–Yan. In the case o
they come fromA+ gluons coupling to an outgoing quark, while in DY they come fromA+ gluons coupling to an
incoming antiquark. The resulting path structures of the link operators are shown inFig. 1.

In this Letter we present, in leading order of the inverse hard scale, the calculation of the gauge link s
in more complex hard processes. The hard subprocesses that we will consider in this section are qua
scattering and antiquark–quark scattering, which we will take as colorless interactions for the sake of sim
This suffices to illustrate the appearance of additional new structures in the gauge links.

The starting point in the calculation of high-energy hadronic scattering cross sections is the assumptio
tree-level it can be written as a convolution of hard, perturbatively calculable, partonic scattering process
(the aforementioned) correlation functions describing the hadron→ quark or quark→ hadron transitions[14–
16]. For example, the tree-level contribution to the cross section of the high-energy hadronic scattering
hA + hB → hC + hD + X (seeFig. 2) involving the amplitudeM for the hard quark–antiquark scattering proc



C.J. Bomhof et al. / Physics Letters B 596 (2004) 277–286 279

.

clusive)
icular

ferent
t
p

)
lso get
set

ns in
Fig. 1. The gauge link structurein the quark–quark correlatorΦ in SIDIS (a) and DY (b), respectively.

Fig. 2. Decomposition of the cross section for two-hadron production in hadron–hadron scattering with a hard antiquark–quark subprocess

Fig. 3. (a) Thet- ands-channel contributions to quark–antiquark scattering (q1 + q̄2 → q3 + q̄4). (b) Thet- andu-channel contributions to
quark–quark scattering (q1 + q2 → q3 + q4).

q1(p) + q̄2(l) → q3(k) + q̄4(l
′) is written as

(3)σ ∝
∫

d4p d4k d4l d4l′ Φ(p) ⊗ Φ̄(l) ⊗ ∣∣M(p,k, l, l′)
∣∣2 ⊗ ∆(k) ⊗ ∆̄(l′).

The hard partonic scattering may contain several contributions, seeFig. 3a. The correlatorsΦ, Φ̄, ∆ and∆̄ describe
the soft parts connecting the quarks in the hard process to the hadrons involved in the physical (partly in
process. The convolution in Eq.(3) indicates that one needs specific Dirac tracing, depending on the part
forms ofM.

As an illustration of Eq.(3), let us consider the situation where the incoming quark and antiquark have dif
flavors, in which case one only has thet-channel contribution in the hard process inFig. 3a. Because we wan
to illustrate the involvement of another strongly interacting particle in the hard process, it is convenient to kee
the hard process itself colorless. Therefore, we consider the exchange of a photon as indicated inFig. 4a. The
expression for the scattering cross section is

(4)σ ∝
∫

d4p d4k d4l d4l′ δ4(p + q − k)

{(
1

q2

)2

Tr
[
Φ(p)γ µ∆(k)γ ν

]
Tr

[
Φ̄(l)γν∆̄(l′)γµ

]}
,

whereq = l′ − l. To obtain the link structure of theΦ(p) correlator in Eq.(3), we consider all the (colorless
gluon insertions coming from the lower blob. All other soft correlators in the hadronic scattering process a
specific gauge link structures from their respective longitudinal gluons coupling to the hard part. Introducing a
of light-like vectorsn+ andn−, such thatn+ is proportional to the momentum of the lower blob andn− · n+ = 1,
we find that the singleA+ = A · n− gluon insertions on the l.h.s. of the cut lead to the additional contributio



280 C.J. Bomhof et al. / Physics Letters B 596 (2004) 277–286

ts of

ke
the
ion
Fig. 4. Treelevel diagram and insertions of longitudinal gauge bosons.

the cross section inFig. 4b–d

σ ∝
∫

d4p d4k d4l d4l′ δ4(p + q − k)
1

q2

{
1

q2 + iε
Tr

[
Φ(p)γ µ∆(k)γ ν

]
Tr

[
Φ̄(l)γν∆̄(l′)γµ

]

+ g2

∫
d4p1

1

q2 + iε
Tr

[
Φα

A(p,p − p1)γ
µ∆(k)(iγα)

i(/k − /p1)

(k − p1)2 + iε
γ ν

]
Tr

[
Φ̄(l)γν∆̄(l′)γµ

]

+ g1

∫
d4p1

1

(q + p1)2 + iε
Tr

[
Φα

A(p,p − p1)γ
µ∆(k)γ ν

]
Tr

[
Φ̄(l)γν

i(−/l′ + /p1)

(l′ − p1)2 + iε
(iγα)∆̄(l′)γµ

]

(5)

+ g1

∫
d4p1

1

(q + p1)2 + iε
Tr

[
Φα

A(p,p − p1)γ
µ∆(k)γ ν

]

× Tr

[
Φ̄(l)(iγα)

i(−/l − /p1)

(l + p1)2 + iε
γν∆̄(l′)γµ

]}
,

wherep andp1 are collinear withn+. For ease of distinguishing the involved fermions, the coupling constan
the longitudinal gauge particles are indicated withg1 andg2. Investigating the analytic structure inp+

1 , one finds
that the poles atp+

1 
= 0 cancel each other. This is analogous to Ward identities, where consecutive insertions ta
care of all the cancellations of the poles atp+

1 
= 0. Making use of the fact that for the leading contributions in
soft correlatorsΦ(p) ∝ /p, ∆(k) ∝ /k, Φ̄(l) ∝ /l and∆(l′) ∝ /l′ [17], the final result for the scattering cross sect
is

σ ∝
∫

d4p d4k d4l d4l′ δ4(p + q − k)

(
1

q2

)2{
Tr

[
Φ(p)γ µ∆(k)γ ν

]
Tr

[
Φ̄(l)γν∆̄(l′)γµ

]

− g2

∫
d4p1

1

−p+
1 + iε

Tr
[
Φα

A(p,p − p1)γ
µ∆(k)γ ν

]
Tr

[
Φ̄(l)γν∆̄(l′)γµ

]
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Fig. 5. The basic gauge links for distribution functions coming from the soft correlator for quark 1 that arise fromA+-gluons interacting with
the other initial- or final-state fermion legs in the amplitude (2, 3 and 4) and the conjugate amplitude (2*, 3* and 4*) for (a) quark–antiqu
scattering (q1 + q̄2 → q3 + q̄4) (b) quark–quark scattering (q1 + q2 → q3 + q4).

+ g1

∫
d4p1

1

−p+
1 + iε

Tr
[
Φα

A(p,p − p1)γ
µ∆(k)γ ν

]
Tr

[
Φ̄(l)γν∆̄(l′)γµ

]

(6)+ g1

∫
d4p1

1

p+
1 + iε

Tr
[
Φα

A(p,p − p1)γ
µ∆(k)γ ν

]
Tr

[
Φ̄(l)γν∆̄(l′)γµ

]}
.

The contributions found in Eq.(6) represent the first terms of gauge linksUg2(∞−, ξT ; ξ−, ξT ), Ug1(ξ
−, ξT ;

∞−, ξT ), andUg1(−∞−, ξT ; ξ−, ξT ), respectively. They are of the form

(7)Ug(a;b) =P exp

(
−ig

b∫
a

dx · A(x)

)
,

with the integration along a straight line betweena andb. The link structure arising in this way from the insertio
of longitudinal gluons coming fromΦ(p) (Fig. 4b–d) in the hard amplitudeq1q̄2 → q3q̄4 is indicated inFig. 5a.
The same figure also gives the results for the insertions in the conjugate diagram, which can be handl
same way and lead to the links connecting the point 0 in the correlation function to lightcone infinity. Th
order calculations presented here explicitly, can be extended to include all longitudinal gluon insertions to which
we, without giving the derivation, haveadded the transverse gauge link pieces. These transverse fields at
emerge, in the same way as for the simple processes with just a single quark line, as boundary terms
need to be substracted from transverse gluon correlatorsΦα

A to obtain gauge invariant correlators in terms of
field strength tensor[6]. For a hard quark–quark scattering amplitudeq1q2 → q3q4 the resulting link structures ar
given inFig. 5b.

Taking all the insertions of longitudinal gluons into account, as in Eq.(5), we have found that this expressi
reduces to Eq.(3) with the correlatorΦ(p) now containing a link connecting the quark fields at 0 andξ . Three
combinations of links appear

(8)U [−]
g = Ug

(
0;−∞−,0T

)
Ug

(−∞−,0T ;−∞−, ξT

)
Ug

(∞−, ξT ; ξ
)
,

(9)U [+]
g = Ug

(
0;∞−,0T

)
Ug

(∞−,0T ;∞−, ξT

)
Ug

(∞−, ξT ; ξ
)
,

(10)U [�]
g = U [+]

g U [−]†
g ,

where the latter constitutes a counterclockwise (Wilson) loop from the point 0 via lightcone infinity toξ and back
via negative lightcone infinity to 0. The result forhA +hB → hC +hD +X with the quark–antiquark subprocess
a gauge link insertionU [+]

g2 Tr(U [�]†
g1 ), shown inFig. 6a. The trace operation introduced in this figure will beco

relevant when we take the full color structure of the inserted gluons into account.
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Fig. 6. Contributions to the cross section of antiquark–quark scattering and the corresponding gauge link structures. In the contributions b–
one hasg1 = g2 = g.

An interesting case to consider is whenq1 and q̄2 are each others antiparticles. Besides thet-channel contri-
bution which we have treated above, there is also thes-channel quark–antiquark annihilation contribution (see
Fig. 3a). The link structure for thes-channel amplitude and its conjugate are, just as thet-channel contribution
given by the gauge lines inFig. 5a. Including interference terms, four contributions arise in the cross section
observe that in these terms the correlation functionΦ(p) appears with different gauge link structures as indica
in Fig. 6b–d. In the terms of the scattering cross section that contain ans-channel amplitude, we again get the pro
uct of the link operatorsU [+]

g2 andU [�]†
g1 , but in these terms we only have a single coupling constantg1 = g2 = g

and the two link operators add up to the link structureU [−]
g . We note that the result inFig. 6d actually involves

Tr(U [+]
g U [+]†

g ), i.e., the trace of the unity operator in the charge space, which becomes relevant in case the c
structure is considered.

If we take the hard processM(p,k, l, l′) in Fig. 2 to represent quark–quark scattering, the gauge links ar
from the insertions of collinear gluonsin the amplitude and its conjugate (Fig. 5b) combine into one or (in cas
of identical quarks) four possible link structures in the cross section, as summarized inFig. 7. Again we get the
product of the link operatorsU [+]

g2 andU [�]
g1 , whereU [�]

g1 is traced if the amplitudes on both sides of the cut are e
others Hermitian conjugates. For the interference termsin quark–quark scattering, however, the two operator
not add up to a simple link operator such asU [−]

g .
The loop that we have found in the gauge link disappears upon integration of the matrix elements over tra

momentum. Therefore, it only affects those processes where one is sensitive to the transverse moment
quarks inside the nucleon. These involve transverse momentsΦα

∂ (x), defined as transverse momentum weigh
integrals of thepT -dependent distribution functions. In these moments the loop will contribute through a gluon



C.J. Bomhof et al. / Physics Letters B 596 (2004) 277–286 283

e

ng yield
Fig. 7. Contributions to the cross section ofquark–quark scattering and thecorresponding gauge link structures. In the contributions b–d on
hasg1 = g2 = g.

pole matrix element, responsible for time-reversal odd distribution functions, such as the Sivers function[18,19].
For example, for unpolarized quarks in SIDIS one has[6]

Tr
[
Φ

[+]
∂ (x)γ +]

=
∫

d2pT pα
T

∫
d2ξT dξ−

(2π)3 eip·ξ 〈P,S|ψ̄ (0)γ +U [+]
g (0; ξ)ψ(ξ)|P,S〉|ξ+=0

(11)= g

2

∫
dξ−

2π
eip+ξ−〈P,S|ψ̄(0)γ +

∞∫
−∞

dη− U(0;η−)G+α(η−)U(η−; ξ−)ψ(ξ)|P,S〉|ξ+=ξT =0,

(only theT -odd part). Transverse moments appearing in processes involving hard quark–quark scatteri
different results. Taking, for instance, the link structure inFig. 7b gives

∫
d2pT pα

T

∫
d2ξT dξ−

(2π)3
eip·ξ 〈P,S|ψ̄ (0)γ +U [�]

g U [+]
g (0; ξ)ψ(ξ)|P,S〉|ξ+=0

(12)= 3
g

2

∫
dξ−

2π
eip+ξ−〈P,S|ψ̄(0)γ +

∞∫
−∞

dη− U
(
0;η−)

G+α
(
η−)

U
(
η−; ξ−)

ψ(ξ)|P,S〉|ξ+=ξT =0,
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Fig. 8. Amplitudes which contribute to the SIDIScross section in which a hard gluon is radiated.

Fig. 9. Amplitudes which contribute to the DY cross section in which a hard gluon is radiated.

where one finds that the difference is again a gluonic pole matrix element, but with a different strength. Th
strength is set by the link structure and thus by the process, a feature that also appears in non-Abelian th
we will see in the next section.

3. Link structures in QCD processes

Although we have made various simplifying assumptions in the processes that we have considered in
vious section, it illustrates the appearance of open and closed integration paths in the gauge link in the c
Φ, which we will also find in QCD. In the Abelian examples given above the only particles carrying charge
the fermions, hence the charge tracing followed the Dirac tracing. In the non-Abelian case such as QCD,
general no longer the case. In the previous section, we already indicated the charge flow and contraction
traces inFigs. 6 and 7, which is particularly relevant in QCD. The non-Abelian loops are not gauge invaria
themselves, but only together with the quark fields in the correlator or when they are color-traced. In the calculatio
of several QCD processes we find that the sum of all gluon insertions to a single amplitude again does not
poles atp+

1 
= 0.
The first example that we will give here is SIDIS at largepT , for which the leading hard parts are given

Fig. 8. One can distinguish this process from ordinary SIDIS by looking at two jet production. The longitu
gluons coming from the incoming proton are collected into links. These gluons couple to the radiated glu
fragmenting quark and the off-shell quark in the hard process. Since there are no incoming lines to wh
longitudinal gluon cancouple, loops will not appear. A calculation taking all possible insertions into accou
confirms this and shows that the link structure is similar to that in ordinary SIDIS

(13)largepT SIDIS:
TFNc

CF

U [+] 1

Nc

TrC
[
U [+]†U [+]] − TF

CF Nc

U [+] = U [+],

where the symbol TrC is used to distinguish color tracing from Dirac tracing andTF = 1/2 andCF = TF (N2
c −1)/Nc

= 4/3 in SU(3). The weighted transverse moment appearing in an appropriate azimuthal asymmetry is th
Φ

[+]α
∂ .
The second process considered here is DY at largepT , where the situation is more complicated. In simple

there is only one (incoming) line to which longitudinal gluons can couple, which leads to aU [−]-link. However,
if a hard gluon is radiated (seeFig. 9), the link structure changes completely. The outgoing line together with
incoming line give in general the possible presence of a loop and this is exactly what occurs here. The calculatio
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leads to a link structure in the quark–quark correlator for the lower hadron of the form

(14)largepT DY:
TFNc

CF

U [+] 1

Nc

TrC
[
U [�]†] − TF

CF Nc

U [−] = 9

8
U [+] 1

Nc

TrC
[
U [�]†] − 1

8
U [−].

The explicit links and their differences only appear in the (unintegrated) transverse momentum depende
distributions. After integration over transverse momenta, the differences vanish inΦ(x). Weighing withpT once,
one obtains the transverse momentsΦα

∂ (x) and, as we have seen in Eq.(12), these differences may lead to
enhancement of the gluonic pole contribution in the transverse moment. In QCD, however, this is not t
for traced loops. For a loop in the gauge link TrC [U [�]], one obtains a structure in the integrand of the fo
TrC[UG+αU], which vanishes. Therefore the transverse moment appearing in largepT DY has the link structure
9
8Φ

[+]α
∂ − 1

8Φ
[−]α
∂ . It differs from the ordinary DY process, where the transverse moment isΦ

[−]α
∂ .

We mention here two other examples, namely processes with quark–antiquark and quark–quark scattering
hard processes, relevant in processes like pion production in hadron–hadron scattering. Each of the so
such a process gets a particular link structure. Considering for hadron–hadron scattering only the con
coming from quark–antiquark scattering given inFig. 6a, with in thet-channel now gluon exchange, one finds t
all four link structures inFig. 6are involved due to the color-flow,

(15)Fig. 6a in QCD:
1

8
U [+] 1

Nc

TrC
[
U [�]†] + 7

8
U [−].

For quark–quark scattering one finds

(16)Fig. 7a in QCD:
5

4

1

Nc

TrC
[
U [�]†]U [+] − 1

4
U [�]U [+],

where the latter term is an example of an open loop, which, in analogy to Eq.(12), gives an enhancement of th
gluonic pole contribution as compared toU [+].

In the above examples we have only been concerned with the link structure of the correlatorΦ, which describes
the embedding of an incoming quark. The link structure arose from longitudinal collinear gluons. In the sa
way the other correlators must be dealt with and will acquire particular link structures, which also may i
loops. One of those correlators, which describes the fragmentation of a quark in SIDIS at largepT , receives,
for instance, a loop contribution. Since there are two sources forT -odd effects on the fragmentation side, t
transverse moment as given in Eqs.(11) and (12)consists in this case of two terms, one coming from gluonic p
and one from final state interactions. As argued in[6], the combination of these two mechanisms spoils the sim
sign relation between unintegrated fragmentation functions appearing in SIDIS and electron–positron ann
found in Ref.[20], which uses the model of Ref.[21].

4. Conclusions

In this Letter we have shown that loops can appear in link structures in the correlation functions used
processes. These link structures become relevant as soon as one is sensitive to the transverse mome
partons. The loops may contribute to the transverse moments as enhanced gluonic poles. For distribution f
gluonic poles are the origin of theT -odd distribution functions appearing in single spin asymmetries. In ord
show the appearance of loops we started with an Abelian version of QCD. However, also in non-Abelian t
loops appear for which a few explicit results have been given.

The link structures can be derived by resumming all longitudinally polarized gluons, coming from a sof
into a gauge invariant correlation function. Although this seems to break universality, this needs not to be
case inpT -integrated andpT -weighted quantities, which lead to well-defined bilocal lightcone matrix elem
Nevertheless, in the study of factorization (see, e.g.,[22,23]) and the evolution of transverse momentum depen
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distribution and fragmentation functions[24] one also needs to account for the structure and appearance of
in the gauge links. In principle things look fine for SIDIS, because we found that one is always dealing wi
U [+]-link, but in DY a gluon ladder leads to different link structure. Also for fragmentation in SIDIS one finds
differences.

We have discussed the link structures appearing in largepT SIDIS and largepT DY processes. We note th
having found the link structures, there is still work tobe done in finding out the specific observables in which
sees their effects. One needs an observable sensitive to the intrinsic transverse momentum of the partons, whic
different from the largepT [25]. T -odd observables, such as the L–R asymmetry inpp↑ → πX [26–29], may play
an important role here, as they are absent for integrated distribution functions at leading order.
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