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Abstract

It has been recently claimed that the symmetry group S4 yields to the Tri-bimaximal neutrino mixing
in a “natural” way from the group theory point of view. Approving of this feature as an indication, we
build a supersymmetric model of lepton and quark masses based on this family symmetry group. In the
lepton sector, a correct mass hierarchy among the charged leptons is achieved together to a neutrino mass
matrix which can be diagonalized by the Tri-bimaximal pattern. Our model results to be phenomenologi-
cally inequivalent with respect to other proposals based on different flavour groups but still predicting the
Tri-bimaximal mixing. In the quark sector a realistic pattern for masses and mixing angles is obtained. The
flavour structures of the mass matrices in both the sectors come from the spontaneously symmetry break-
ing of S4, due to several scalar fields, which get non-zero vacuum expectation values. A specific vacuum
alignment is required and it is shown to be a natural results of the minimization of the scalar potential and,
moreover, to be stable under the corrections from the higher order terms.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

By now there is convincing evidence that the solar and the atmospheric neutrino anomalies
can be explained by the neutrino oscillations. The �m2 values and mixing angles are known
with good accuracy [1–3]. The latest best values for �m2 are �m2

atm ∼ 2.4 × 10−3 eV2 and
�m2

sol ∼ 7.7 × 10−5 eV2. For the mixing angles, two are large and one is extremely small: the
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atmospheric angle θ23 is compatible with a maximal value, but the accuracy admits relatively
large deviations, indeed at 2σ errors it is 0.366 � sin2 θ23 � 0.602 with central value 0.466;
the solar angle θ12 is large, 0.278 � sin2 θ12 � 0.352 with central value 0.312, but about 5σ

errors far from the maximal value; the reactor angle θ13 is strongly bounded and at present it
has an upper limit of sin2 θ13 � 0.036. We underline that there are contrasting indications for a
vanishing value of the reactor angle: in [2] there is a suggestion for a positive value which, at
1.6σ , is sin2 θ13 � 0.016±0.010, while in [3] the authors find a best fit value consistent with zero
within less than 1σ . Therefore we need a confirmation by the future experiments like DOUBLE
CHOOZ [4], Daya Bay [5] and MINOS [6] in the νe appearance channel.

From the theoretical point of view, the developments about neutrino masses and mixing angles
cannot satisfy: there is a so large number of existing models, that can be interpreted as a lack of
a unique and compelling theoretical picture. However a series of models based on some discrete
non-Abelian groups seems to be extremely attractive due to their predictions: indeed it is possible
to achieve as the lepton mixing matrix the Tri-bimaximal (TB) pattern [7],
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which represents a very good approximation of the experimental data [2], providing the following
values for the mixing angles:

(2)sin2 θTB
13 = 0, sin2 θTB

23 = 1/2, sin2 θTB
12 = 1/3.

It is just the TB pattern which can suggest the type of symmetry that best describes the lepton
mixings: it is a very well known result [8] that a maximal value for the atmospheric angle can
be recovered only with a non-exact symmetry; explaining the indication for a non-vanishing, but
still very small, value for θ13, it is necessary to provide the TB pattern at the leading order (LO),
invoking corrections from the higher order terms; the solar angle is predicted to be very close,
less than 2◦, to the measured value and therefore the corrections has to be relatively small. As a
result, a realistic lepton flavour symmetry has to be broken at a certain level, predicting at the LO
the TB pattern and providing corrections at the next-to-the-leading-order (NLO) at most of about
θ2
c ≈ 2◦, where θc stands for the Cabibbo angle, which is a convenient hierarchical parameter for

both the sectors.
There is a series of models based on the symmetry group A4 [8–15], which are extremely

attractive from this point of view, fulfilling all the previous requirements. A4 is the group of the
even permutations of four objects and has 12 elements and four irreducible representations, which
are three singlets, 1, 1′ and 1′′, and one triplet 3. These models manage in deriving the TB mixing
by assuming that the A4 symmetry is realized at a very high energy scale Λ and that leptons
transform in a non-trivial way under this symmetry. Afterward the group is spontaneously broken
by a set of scalar multiplets φ, the flavons, whose vacuum expectation values (VEV) receive a
specific alignment. It is a non-trivial task to explain how to get the expected vacuum alignment in
a natural way and we consider it a fundamental requirement for a competitive model. Moreover
the TB mixing is corrected by the higher order terms by quantities of the order of 〈φ〉/Λ < 1 and
as a result the reactor angle is no longer vanishing and becomes proportional to 〈φ〉/Λ.

The common aspect of many of this projects is the structure of the neutrino mass matrix. The
most general mass matrix for the neutrinos which can be diagonalized by the TB mixing is the
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following

(3)mν ∼
⎛
⎝a + 2c b − c b − c

b − c b + 2c a − c

b − c a − c b + 2c

⎞
⎠

and it is μ ↔ τ invariant, yielding to a maximal atmospheric mixing angle and to a vanishing θ13,
and it satisfies the relation mν11 + mν13 = mν22 + mν23 , which gives the Tri-maximal solar angle
[17]. For θ13 = 0 there is no CP violation from the Dirac phase, and there are only Majorana
phases. If we disregard them, we can restrict our considerations to real parameters. Usually this
pattern can be obtained constructing the Lagrangian in such a way that the usual Weinberg op-
erator, which we can write as 		 implying 	hu	hu, is forbidden at the leading order, but appears
only at higher orders with additional flavons. Most of the models based on the A4 flavour sym-
metry, are characterized by b = 01; however, different realizations with other relations between
a, b and c have been studied, see for instance [15]. In the pattern with b = 0, the factors a in
Eq. (3) come from the term 		F1 and the factors c from 		F3, where F1 and F3 are flavons trans-
forming respectively as a singlet 1 and as a triplet 3 of A4. Presenting the same flavour structure
for the neutrino mass matrix, it is extremely difficult to distinguish one model from all the others
by the use of only observables connected to the neutrino oscillations. Some improvements in this
direction has been recently performed in [18], where the authors develop an analysis on some
lepton flavour violating processes, which can be tested in the future experiments.

Moreover the great difficulty of this kind of models is to describe correctly the quark sector.
First of all the quark mixing matrix is completely different from its lepton counterpart: the first
shows little angles and, in the contrary, the second presents two large angles. As a result, while
the lepton mixing matrix can be fairly achieved through a discrete flavour symmetry, the quark
mixings seem to be better described by some continuous symmetry, like U(2) [19]. Indeed,
according to the left and right-handed quark representation assignments, a discrete non-Abelian
flavour symmetry tends to predict no mixing at all in the quark sector, VCKM = 1, or too large
mixing angles. On the other hand, the results obtained by the U(2)-based models for the quarks
suggest that the use of the doublet representation in the quark sector should help in describing
quark mixing. However, this possibility is prevented in the A4-based models, since there are not
doublet representations. The solutions which have been proposed consist in the possibility of
add several Zn symmetries [12], in order to suppress the unwanted terms, or in adopting a larger
group, which manages in reproducing the structure of A4 in the lepton sector and possesses some
doublet representations useful to describe quarks, like for example the discrete group T ′ [20,21].
In our opinion, a good candidate to be the flavour symmetry group describing leptons and quarks
has to be as small as possible and has not to need of numerous additional elements in order to
reproduce correct fermion masses and mixing angles. Following this prejudice, we looked for a

1 The pattern with b = 0 can be obtained with A4 as flavour symmetry only with a particular flavon spectrum: the
singlets 1′ and 1′′ of A4 have not to couple to the term 		. In fact with the left-handed leptons, 	, transforming as triplet
of A4, we can switch on the entries corresponding to b by coupling 		 to the flavons F1′ and F1′′ , singlets 1′ and 1′′
respectively, as can be checked by looking in [10] and already underlined in the Appendix of [16]. Moreover, in this
case, the two couplings give two distinct contributions and as a result the mass matrix is not diagonalizable by the TB
pattern any more. To be diagonalized by this mixing scheme, it is necessary to impose the condition y1〈F1′ 〉 = y2〈F1′′ 〉,
where yi are the coupling constants of the two operators. However, keeping the model as natural as possible, i.e. without
fine-tuning, it is necessary to prevent the couplings of the two singlets F1′ and F1′′ with 		. The commonly used solution
consists in not introducing such flavons.
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proposal which manages in describing both the sectors in a realistic way, keeping as simple as
possible the symmetry content.

It has been recently claimed [22], through group theoretical arguments, that the minimal
flavour symmetry naturally related to the TB mixing is S4

2[23,24]. The group S4 is the group
of the permutations of four objects and it has 24 elements divided into five irreducible repre-
sentations: two singlets 11 and 12, one doublet 2 and two triplets 31 and 32 (a more detailed
description of S4 can be found in Appendix A). We approve of the result in [22] as an indication
and we present a model based on the discrete non-Abelian symmetry group S4, which predicts
the TB mixing in the lepton sector and a CKM matrix close to the experimental one in the quark
sector (the group S4 has already been studied in literature [25], but with different aims and differ-
ent results). Moreover we introduce an additional Z5 symmetry, which plays a similar role of the
total lepton number avoiding some dangerous terms, and a continuous U(1)FN [26], that helps to
provide the correct fermion hierarchies. S4 contains as a subgroup A4, but it has a doublet repre-
sentation, which can be used in order to describe quarks. It has the same number of elements of
T ′, but the representations are different: in particular T ′ can derive only the same neutrino mass
matrix of the A4-based models. On the other hand, the mass matrix which can be constructed
in a S4-based model is exactly that one in Eq. (3) and therefore it is more general with respect
to the previous case. From this point of view we can say that T ′ constraints the neutrino sector
in a stricter way than S4. We underline that the model cannot be embedded into a GUT context,
because of the different transformation properties of leptons with respect to quarks.3

The presence of the doublet representation, not only represents the new expedient in order to
describe the quark sector, but also introduces a new feature in the neutrino mass matrix: indeed
the terms which contribute to mν are 		F1, 		F3 and the new 		F2, where F2 represents a flavon
transforming as a doublet 2. In Eq. (3), this last contribution is represented by the term b. This
result corresponds to the neutrino mass matrix in [24]: however the presence of three parameters
in order to describe three masses prevents any predictions on the neutrino hierarchy type. For
these reasons we conclude that the S4-based model in which a singlet F1, a doublet F2 and also
a triplet F3 couple to 		 is not phenomenologically interesting. However it is not restrictive to
construct a model in which only a singlet and a doublet contribute to the neutrino mass matrix,
but in this case m1 = m3 and it would be spoiled out by the experimental observations. Moreover
it is possible to think about a model in which only a singlet and a triplet contribute to the neutrino
mass matrix: we have verified that such a model can be built, with a natural vacuum alignment.
This model provides exactly the neutrino mass matrix with b = 0 and therefore it has the same
predictions in the lepton sector as of the A4-based models. For this reason in this paper we study
the case in which only a doublet and a triplet couple to the term 		 and as a result we get an
unusual neutrino mass matrix

(4)mν ∼
⎛
⎝ 2c b − c b − c

b − c b + 2c −c

b − c −c b + 2c

⎞
⎠

2 We agree with the conclusions of the group theoretical analysis, but, in our opinion, it must not be considered a
constraint for the model realization: from the model building point of view, the most economical realization which
naturally provides the TB pattern as the neutrino mixing matrix is based on the A4 symmetry group.

3 When we were completing our work, the following paper appeared [23], in which the authors present a model based
on the symmetry group SU(5) × S4. However in this model it is not possible to explain completely the VEV alignment
and as a result the mass hierarchies and some mixings have to be fine-tuned.
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which can still be diagonalized by the TB mixing. This new pattern provides different predictions
for the 0ν2β-decay and thus this model can be distinguished from all the others which predict
the TB mixing, just looking at some observables related to the neutrino oscillations.

In the following we first provide a phenomenological analysis of the new neutrino mass ma-
trix, underlining the connections with the 0ν2β-decay. Subsequently, in Section 3, we present
the model which naturally develops the TB mixing in the lepton sector and an acceptable CKM
matrix in the quark sector in addition to realistic mass hierarchies between all the fermions. In
Section 4, we show how to get in a natural way the special vacuum alignment, used throughout
the paper. In Section 5, we present a study on the corrections introduced by the higher order
terms. Finally, we summarize the results in the conclusions. Details on the group S4, like the
conjugacy table, the complete list of the elements in a particular basis of the generators and
the respective Clebsch–Gordan coefficients, can be found in Appendix A. The complete NLO
analysis of the vacuum stability is presented in Appendix B.

2. Phenomenological analysis

The neutrino mass matrix in Eq. (4) can be diagonalized by the TB mixing and the eigenvalues
are given by

(5)m
diag
ν = (3c − b,2b,3c + b)

v2
u

Λ
.

We can now write the neutrino oscillation parameters �m2
atm and �m2

sol as follows:

(6)�m2
atm = |mν3 |2 − |mν1 |2 = 12|b||c| cos ζ

v4
u

Λ2
,

(7)�m2
sol = |mν2 |2 − |mν1 |2 = 3|b|2 − 9|c|2 + 6|b||c| cos ζ

v4
u

Λ2
,

where the angle ζ is the relative phase between b and c. This phase is related to the Majorana CP
phase α21, which is defined as follows

(8)Uν = UTB · diag
(
1, ei

α21
2 , ei

α31
2

)
.

We can express |b| and |c| as functions of �m2
atm, �m2

sol and ζ and as a result we get constraints
on the type of the neutrino spectrum, on the value of the lightest neutrino mass and on the
0ν2β parameter |mee| directly from the experimental data. In Fig. 1 on the left, we plot |mee|
as a function of the lightest neutrino mass eigenstate, mν1 in the normal hierarchy (NH) case
and mν3 in the inverse hierarchy (IH) one. On the right, we present |mee| as a function of the
Majorana phase α21. We observe from this last plot that considering the Heidelberg–Moscow
[27] experiment, which provides the lowest present bound on |mee| of about 0.35 eV, the exact
CP-conserving Majorana phase φ21 = 0 is excluded in our model. Moreover, from Fig. 1 on the
left, we conclude that the NH region falls in the quasi Degenerate Case (DC) band and therefore
we cannot speak properly of NH in this model.

Restricting our discussion to the IH case, we find a lower bound for the 0ν2β parameter,
|mee| > 14.4 meV, for the lightest neutrino mass, |mν3 | > 0.72 meV, and for the sum of the
neutrino masses,

∑
i |mi | > 89.4 meV, all of them corresponding to ζ = 0. Moreover we have a

prediction for |mee| in function of �m2
atm, r ≡ �m2

sol/�m2
atm and ζ

|mee|2 = 1 [
−(1 + r)�m2

atm +
√(

�m2
atm

)2 cos2 ζ
(
3(r − 1)2 + (r + 1)2 cos2 ζ

)
sin2 ζ

]
.
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Fig. 1. On the left it is plotted |mee| as a function of the lightest neutrino mass, mν1 in red in the case of the NH and
mν3 in blue in the case of the IH. The light colored bands represent the possible regions considering only the exact TB
pattern, while the dark colored ones are the predictions of our model. The present bound from the Heidelberg–Moscow
experiment is shown in dark gray and the future sensitivity of CUORE (∼ 15 meV), Majorana (∼ 20 meV), and GERDA
(∼ 90 meV) experiments are represented by the horizontal dashed lines, while the future sensitivity of 0.2 eV of KATRIN
experiment is shown by the vertical dashed line. On the right, |mee| as a function of the physical Majorana phase α21: in
red the NH case and in blue the IH one. The dark gray region and the dashed horizontal lines corresponds to the previous
plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

We observe that our model can be distinguished from that one in [8,10], based on A4, and that
one in [20], based on T ′, looking to the lower bound on |mee|: in fact those models predict a
lower bound for |mee|, which is about 0.005 eV. Our predictions are quite close to the future
experimental sensitivity, which are expected to reach the values of 0.090 eV [28] (GERDA),
0.020 eV [29] (Majorana), 0.050 eV [30] (SuperNEMO), 0.015 eV [31] (CUORE) and 0.024 eV
[32] (EXO).

3. The model

The discrete group S4 is given by the permutations of four objects and it is composed by 24
elements. It can be defined by two generators S and T that satisfy

(9)S4 = T 3 = (
ST 2)2 = 1.

The three relations reported above directly indicate which are the discrete Abelian subgroups of
S4: Z4,Z3,Z2 respectively. Indeed the 24 elements of S4 belong to five classes reported in Ap-
pendix A: the elements of C2,4 define two different sets of Z2 subgroups of S4, corresponding to
S2 and ST 2 respectively, those of the class C4 a set of Z3 Abelian discrete symmetries associated
to T and those belonging to C5 a set of Z4 Abelian discrete symmetries corresponding to S. From
the three relations that define the group S4 we see that it contains also a non-Abelian subgroup,
S3. Indeed defining S′ = S2 and using S2T S2 = T 2 we get the relations that define S3, namely

(10)T 3 = S′2 = (S′T )2 = 1.
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Table 1
Transformation properties of the matter fields in the lepton sector and of all the flavons of the model. We distinguish the
flavon fields on their role and thus we can consider ψ and η mainly connected to the charged lepton sector and Δ and ϕ

to the neutrino sector. All these fields together to ξ ′ are present in the quark sector. The FN field, θ , provides the correct
mass hierarchy.

	 ec μc τc hu,d θ ψ η Δ ϕ ξ ′

S4 31 12 12 11 11 11 31 2 31 2 12
Z5 ω ω3 1 ω2 1 1 ω2 ω2 ω3 ω3 1
U(1)FN 0 1 0 0 0 −1 0 0 0 0 0

Furthermore, S4 presents 5 irreducible representations: two singlets, 11,12, one doublet, 2, and
two triplets, 31 and 32. All the technical details are reported in Appendix A.

3.1. The lepton sector

In this part we illustrate the model in the lepton sector, predicting an exact TB mixing at the
LO and a realistic charged lepton mass hierarchy, by the use of flavour group Gf in addition to
the gauge group of the SM. The complete flavour group is Gf = S4 × Z5 × U(1)FN, where the
three factors play different roles: the spontaneous breaking of S4 down to its subgroup Z2 × Z2
in the neutrino sector is directly responsible for the TB mixing4; the Z5 factor plays a similar
role of the total lepton number, avoiding some dangerous terms, and, together to the U(1)FN,
is responsible for the hierarchy among the charged fermion masses. In Table 1, we can see the
lepton sector fields of the model and their transformation properties under Gf . We treat the model
in a supersymmetric scenario, because the minimization of the scalar potential is simplified, but
this is not a constraint from the construction of the model itself.

The superpotential for the leptons can be written as

(11)w	 =
4∑

i=1

θ

Λ

ye,i

Λ3
ec(	Xi)

′hd + yμ

Λ2
μc(	ψη)′hd + yτ

Λ
τc(	ψ)hd + h.c.,

(12)wν = xd

Λ2
(	hu	huϕ) + xt

Λ2
(	hu	huΔ) + h.c.,

where

(13)X = {ψψη,ψηη,ΔΔξ ′,Δϕξ ′}
using (· · ·) to refer to the contraction in 11 and (· · ·)′ to the contraction in 12. It is interesting to
underline that the first contributions containing ec would be

(14)
θ

Λ

y′
e,1

Λ2
ec(	ΔΔ)′hd + θ

Λ

y′
e,2

Λ2
ec(	Δϕ)′hd,

which would dominate with respect to the terms in Eq. (11). However an explicit computation
will show that these two terms are vanishing, once we assume that the flavons get this specific

4 This breaking is extremely unusual, indeed the common preserved subgroup is Z2. Here Z2 × Z2 provides the same
flavour structure for the neutrino mass matrix as Z2 in the A4 based models and it is associated to one element of the
class C2 and one of the class C4. The complete list of the elements are present in Appendix A.
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VEV:

(15)

〈ψ〉 =
⎛
⎝0

1

0

⎞
⎠vψ, 〈η〉 =

(
0

1

)
vη,

〈Δ〉 =
⎛
⎝1

1

1

⎞
⎠vΔ, 〈ϕ〉 =

(
1

1

)
vϕ,

〈ξ ′〉 = vξ ′ , 〈θ〉 = vθ .

We will demonstrate that this particular VEV alignment is a natural solution of the scalar poten-
tial in the following sections; moreover we will see that all the VEVs are of the same order of
magnitude and for this reason we will parameterize the ratio VEV/Λ by the parameter u. The
only VEV which originates with a different mechanism with respect to the others is vθ and we
indicate the ratio vθ/Λ by the parameter t .

With this setting, in the basis of canonical kinetic terms,5 the mass matrix for the charged
leptons is (m	 ∼ RcL, mν ∼ LT L)

(16)m	 =
⎛
⎝y

(1)
e u2t y

(2)
e u2t y

(3)
e u2t

0 yμu 0

0 0 yτ

⎞
⎠uvd,

where the y
(i)
e are the result of all the different contributions of the ye,i . For the neutrinos we get

the following mass matrix, which is exactly diagonalized by the TB pattern,

(17)mν =
⎛
⎝ 2c b − c b − c

b − c b + 2c −c

b − c −c b + 2c

⎞
⎠ v2

u

Λ
,

where b = 2xd
vϕ

Λ
and c = 2xt

vΔ

Λ
. In order to find the lepton mixing matrix we need to diagonalize

the charged lepton mass matrix and, performing a double expansion in the parameters u and t ,
we get

(18)m
diag
	 ≡ U

†
	cm	U	 = (

yeu
2t, yμu, yτ

)
uvd,

where the unitary U	 results to be the unity matrix. As a consequence we get that

(19)UPMNS ≡ U
†
	 UTB = UTB.

When we introduce the NLO terms in the Lagrangian and the corrections in the VEVs of the
flavons, we expect corrections to the TB mixing of relative order u, as we will discuss in the next
sections. As a consequence, it provides an upper bound on the parameter u, indeed the maximum
deviation from the TB pattern, which we can accept, is 0.05. For u > 0.05 the model provides
a θ12 angle which is not in agreement at 2σ error with respect to the experimental data. The
hierarchy of the charged leptons comes directly from the symmetry of the model and it is possible
to get a constraint on the parameters u and t : indeed, for a very low tanβ value, the requirement
for the Yukawa of the τ lepton to be in the perturbative regime (yτ < 4π ) corresponds to a lower

5 It has been shown in a series of papers [33] that the corrections, from the transformations needed to move in the basis
of canonical kinetic terms, appear at most as NLO deviations.
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Table 2
Transformation properties of all the fields in the quark sector.

Dq q3 uc dc cc sc tc bc θ ψ η Δ ϕ ξ ′

S4 2 11 12 12 12 11 11 12 11 31 2 31 2 12
Z5 ω4 ω3 1 1 ω2 ω2 ω2 ω2 1 ω2 ω2 ω3 ω3 1
U(1)FN 0 0 2 1 0 0 0 0 −1 0 0 0 0 0

bound for u of about 0.001. However, using this value for u, we require a particularly large value
for yμ in order to fulfill the measured value for the ratio mμ/mτ : from the requirement that also
yμ remains in the perturbative regime, the lower bound on u is raised and we fix it at 0.01. In
order to explain the ratio me/mμ, we get a range of values for the parameter t , which is to be
similar to that for u. Finally we can write

(20)0.01 < u, t < 0.05.

3.2. The quark sector

In this part we illustrate the model in the quark sector, getting a good approximation of the
experimental quark mixing matrix. In Table 2, we can see the quark sector fields of the model
and their transformation properties under S4 × Z5 × U(1)FN. The superpotential in the quark
sector can be written as

(21)

wq = yt t
cq3hu + yb

Λ
bcq3ξ

′hd

+
2∑

i=1

ytc,i

Λ2
tc

(
DqX

(1)
i

)
hu +

2∑
i=1

ybs,i

Λ2
bc

(
DqX

(1)
i

)′
hd

+
6∑

i=1

ytu,i

Λ3
tc

(
DqX

(2)
i

)
hu +

6∑
i=1

ybd,i

Λ3
bc

(
DqX

(2)
i

)′
hd

+
2∑

i=1

yc,i

Λ2
cc

(
DqX

(1)
i

)′
hu +

2∑
i=1

ys,i

Λ2
sc

(
DqX

(1)
i

)
hd

+ yct

Λ
ccq3ξ

′hu +
3∑

i=1

ysb,i

Λ2
sc

(
q3X

(3)
i

)
hd

+
6∑

i=1

ycu,i

Λ3
cc

(
DqX

(2)
i

)′
hu +

6∑
i=1

ysd,i

Λ3
sc

(
DqX

(2)
i

)
hd

+
2∑

i=1

yu,i

Λ2

θ2

Λ2
uc

(
DqX

(4)
i

)
hu +

2∑
i=1

yd,i

Λ2

θ

Λ
dc

(
DqX

(4)
i

)
hd

+
4∑

i=1

yut,i

Λ3

θ2

Λ2
uc

(
q3X

(5)
i

)
hu +

4∑
i=1

ydb,i

Λ3

θ

Λ
dc

(
q3X

(5)
i

)
hd,

where

X(1) = {ηη + ψψ},
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X(2) = {ηηξ ′,ψψξ ′,ΔΔΔ,ΔΔϕ,Δϕϕ,ϕϕϕ},
X(3) = {ψΔ,ηϕ, ξ ′ξ ′},
X(4) = {ϕϕ,ΔΔ},
X(5) = {ψψΔ,ψψϕ,ψηΔ,ηηϕ}.

With this setting, the mass matrix for the up quarks is

(22)mu =
⎛
⎝yuu

2t2 yuu
2t2 yutu

3t2

ycuu
3 ycu

2 yctu

ytuu
3 ytcu

2 yt

⎞
⎠vu,

and for the down quarks is

(23)md =
⎛
⎝ ydut ydut ydbu

2t

ysdu2 ysu ysbu

ybdu2 ybsu yb

⎞
⎠uvd,

where the Yukawas are the sum of all the different terms, which appear in the superpotential.
These mass matrices can be diagonalized by the following transformations:

m
diag
u ≡ U

†
ucmuUu = (

yuu
2t2, ycu

2, yt

)
vu,

(24)m
diag
d ≡ U

†
dcmdUd = (ydut, ysu, yb)uvd,

where the unitary matrices can be written in terms of order of magnitude of u and t as

(25)

Uu =
⎛
⎝ 1 O(u) O(u3)

−O(u) 1 O(u2)

−O(u3) −O(u2) 1

⎞
⎠ , Ud =

⎛
⎝ 1 O(u) O(u2)

−O(u) 1 O(u)

−O(u2) −O(u) 1

⎞
⎠ ,

Uuc =
⎛
⎝ 1 O(t2) −O(ut2)

−O(t2) 1 O(u)

−O(ut2) −O(u) 1

⎞
⎠ , Udc =

⎛
⎝ 1 O(t) O(ut)

−O(t) 1 O(u)

−O(ut) −O(u) 1

⎞
⎠ .

The resulting quark mixing matrix is

(26)VCKM ≡ U†
uUd �

⎛
⎜⎝

1
( ysd

ys
− ycu

yc

)
u

( ybdyc−ybsycu

ybyc

)
u2

−( ycu

yc
− ysd

ys

)
u 1 ybs

yb
u(

ybsysd − ybdys

ybys

)
u2 − ybs

yb
u 1

⎞
⎟⎠ .

In order to fit the experimental values of the mixing angles we need to invoke a moderate fine-
tuning in some parameters. The (23) entry of VCKM has to be of order θ2

c � 0.05 and therefore
suggests for u a value close to its upper bound. However this is not a strict constraint because this
value can be well explained for the entire range of u considering the Yukawas. On the other hand,
the entry (12) requires an accidental enhancement of the combination (

ysd

ys
− ycu

yc
) of order 1/θc ∼

4 in order to describe the correct Cabibbo angle. It is possible to explain such an enhancement
considering particular values of the relative phase, ζq , between ysd

ys
and ycu

yc
, which is connected

to the CP violating phase: if ζq = π , then the two factors sum up and the required values are
easily explained.
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Table 3
Transformation properties of the flavons and the driving fields.

Δ ϕ Δ0 ϕ0 ψ η ψ0 ξ ′ ξ ′0

S4 31 2 32 2 31 2 31 12 12
Z5 ω3 ω3 ω4 ω4 ω2 ω2 ω 1 1

4. The vacuum alignment

In the following we present the mechanism to get the particular VEV alignment used in the
previous sections. In Table 3 we illustrate all the flavon fields of the model and a set of new
fields, the driving fields, defined as scalar fields with vanishing VEV, which are used only to
select the particular solutions of the scalar potential. In order to distinguish between the matter
fields, the flavons and the driving fields we introduce an additional U(1)R , under which the fields
have quantum number 1, 0 and 2 respectively. The usual R-parity, useful to avoid FCNC in the
supersymmetric extensions of the SM, is a discrete group of this U(1)R .

The driving superpotential is

(27)

wd = g1
(
Δ0Δϕ

) + g2
(
ϕ0ΔΔ

) + g3
(
ϕ0ϕϕ

)
+ f1

(
ψ0ψψ

) + f2
(
ψ0ψη

) + Mξ ′ξ ′0ξ ′ + h1ξ
′0(ηϕ)′.

The equations for the minimum of the scalar potential are obtained deriving wd by the driving
fields:

(28a)g1(ϕ1Δ2 − ϕ2Δ3) = 0,

(28b)g1(ϕ1Δ1 − ϕ2Δ2) = 0,

(28c)g1(ϕ1Δ3 − ϕ2Δ1) = 0,

(29a)g2
(
Δ2

3 + 2Δ1Δ2
) + g3ϕ

2
1 = 0,

(29b)g2
(
Δ2

2 + 2Δ1Δ3
) + g3ϕ

2
2 = 0,

(30a)2f1
(
ψ2

1 − ψ2ψ3
) + f2(η1ψ2 + η2ψ3) = 0,

(30b)2f1
(
ψ2

2 − ψ1ψ3
) + f2(η1ψ1 + η2ψ2) = 0,

(30c)2f1
(
ψ2

3 − ψ1ψ2
) + f2(η1ψ3 + η2ψ1) = 0,

(31)Mξ ′ξ ′ + h1(η1ϕ2 − η2ϕ1) = 0.

The equations can be divided into almost separated groups. The first five equations, (28a)–
(29b), are satisfied by the alignment

(32)〈Δ〉 =
⎛
⎝1

1

1

⎞
⎠vΔ, 〈ϕ〉 =

(
1

1

)
vϕ,
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which is a stable solution of the scalar potential, with

(33)v2
Δ = − g3

3g2
v2
ϕ, vϕ undetermined.

The three equations (30a)–(30c), almost separated from the others, are satisfied by two different
patterns: the first is

(34)〈ψ〉 =
⎛
⎝0

1

0

⎞
⎠vψ, 〈η〉 =

(
0

1

)
vη,

with

(35)vψ = − f2

2f1
vη, vη undetermined,

and the second is

(36)〈ψ〉 =
⎛
⎝1

1

1

⎞
⎠vψ, 〈η〉 =

(
1

−1

)
vη,

with vη and vψ undetermined. Only the first solution provides the results presented in the previ-
ous sections and we need of some soft masses in order to discriminate it as the lowest minimum
of the scalar potential. We manage in doing it, considering some Z5-breaking soft terms involving
ψ and η, which in the most general form can be written as

(37)m2
ψ |ψ |2 + m2

η|η|2 + m̃2
ψψψ + m̃2

ηηη.

Assuming that m2
ψ,η < 0 the first two terms stabilize the potential for both the vacuum configu-

rations. On the other hand the last two terms vanish for the first vacuum configuration and get a
value different from zero in the second one. With an apposite choice of the soft parameters, these
contributions can be positive, distinguishing the two configurations of VEVs and assuring that
one in Eq. (34) as the setting with the corresponding lowest minimum.

Acting on the configurations of Eq. (32) or Eq. (34) with elements of the flavour symmetry
group S4, we can generate other minima of the scalar potential. These new minima are physically
equivalent to those of the original sets, but it is not restrictive to analyze the model by choosing
as local minimum exactly those ones in Eqs. (32) and (34) (it is possible to show that the different
scenarios are related by field redefinitions).

The last equation (31) connects all the sectors and fixes the VEV of ξ ′

(38)〈ξ ′〉 = vξ ′ = h1

Mξ ′
vηvϕ.

For the flavon field θ , related to the Froggatt–Nielsen symmetry, the non-vanishing VEV is
determined by the D-term associated with the U(1)FN symmetry (see [13] for more details). The
D-term in the potential is given by:

(39)VD = 1

2

(
M2

FI − gFN|θ |2 + · · ·)2
,

where gFN is the gauge coupling constant of U(1)FN and M2
FI is the Fayet–Iliopoulos term. The

vanishing of VD requires

(40)gFN|θ |2 = M2 .
FI
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Assuming that M2
FI/gFN is positive, this condition fixes the VEV of θ , given in Eq. (20).

5. NLO corrections

We now study the deviations to the LO results. We first present the analysis for the VEV
alignment and then we move to the mass matrices.

5.1. The VEV alignment

Here we only summarize the results for the vacuum alignment, while a detailed study is de-
veloped in Appendix B. The part of the superpotential depending on the driving fields Δ0, ϕ0,
ψ0 and ξ ′0 is modified into

(41)wd = w0
d + δwd,

where w0
d corresponds to Eq. (27) and δwd is the most general quartic, S4-invariant polynomial

linear in the driving fields:

(42)δwd = 1

Λ

(
5∑

i=1

xiI
Δ0

i +
6∑

i=1

wiI
ϕ0

i +
7∑

i=1

siI
ψ0

i +
2∑

i=1

viI
ξ ′0

i

)

where xi , wi , si and vi are coefficients and {IΔ0

i , I
ϕ0

i , I
ψ0

i , I
ξ ′0

i } represents a basis of indepen-

dent quartic invariants (the list of all the IΦ0

i are present in Appendix B). The new minimum is
obtained by searching for the zeros of the F terms, looking for a solution that perturbs Eq. (15) to
first order in the 1/Λ expansion: denoting the general flavon field with Φ , we can write the new
VEVs as

(43)〈Φi〉 = 〈Φi〉(LO) + δΦi.

All the perturbations are non-vanishing, a part δη1 and δη2 and one of the perturbations in the
neutrino sector, which remains undetermined. On the other hand the NLO terms fixes the relation
between vϕ and vη. We can conclude that the VEV alignment in Eq. (15) is stable under the NLO
corrections and the deviations are of relative order u with respect the LO results.

5.2. The mass matrices

In this part we present the corrections to the mass matrices due to the higher order terms in
the matter superpotential and the deviations to the VEV alignment.

5.2.1. Lepton sector
The superpotential for the charged leptons can be written as

(44)w	 = w0
	 + δw	,

where w0
	 corresponds to Eq. (11) and δw	 contains all the NLO terms. We note that the LO

operators related to ec completely fill in the first line of m	 and, as a result, the corrections can
be reabsorbed in the LO parameters. For this reason, we avoid to specify the NLO operators of
δw	 related to ec, reporting only those ones connected to μc and τ c: denoting Δ and ϕ with Φν
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and ψ and η with Φ	, we can write

(45)
τ c

Λ2
(	Φ	Φ	Φν + 	Φ	ξ

′ξ ′), μc

Λ3
(	ΦνΦνΦν + 	Φ	Φ	ξ

′).

These corrections have to be added to those ones originated by w0
	 considering the deviations

at the NLO to the vacuum alignment. Finally the corrected charged lepton mass matrix has the
following structure

(46)m	 =
⎛
⎝O(u2t) O(u2t) O(u2t)

O(u2) O(u) O(u2)

O(u) O(u) O(1)

⎞
⎠uvd,

where only the order of magnitude of the single entries are reported. As a consequence the unitary
matrix U	, which corresponds to the transformation of the charged leptons used to diagonalized
m	, is modified in the following way:

(47)U	 =
⎛
⎝ 1 T e

12u T e
13u

−T e
12u 1 T e

23u

−T e
13u −T e

23u 1

⎞
⎠ ,

where the parameters T e
ij are factors of order one.

A similar analysis can be performed for the neutrino superpotential

(48)wν = w0
ν + δwν

where w0
ν corresponds to Eq. (12) and δwν contains the only NLO operator,

(49)
x′
d

Λ3
(	hu	huϕ)′ξ ′.

In addition to this correction, we have to consider those ones from w0
ν , with the deviations at the

NLO to the VEVs. As a consequence the neutrino mass matrix is corrected by terms of relative
order u in every entry. Now the TB pattern has to be modified in order to diagonalize mν and we
can write

(50)Uν = UTB + δUνu,

where δUν can be parameterized by three angles, T ν
12, T ν

23 and T ν
13, in a similar way as in Eq. (47).

Finally, summarizing all the corrections from the higher order terms, deviations to the neu-
trino mixing matrix of relative order u with respect the LO results are generated. The corrected
neutrino mixing angles are modified as follows:

(51)tan θ23 = −1 − 2u

(
T e

23 +
√

2T ν
13 − 2T ν

23√
3

)
,

(52)tan θ12 = 1√
2

− 3u

4

(√
2
(
T e

12 + T e
13

) − √
3
(
T ν

12 + T ν
13

))
,

(53)tan θ13 = u

2
√

3

(√
6
(
T e

12 − T e
13

) + T ν
13 + 2

√
2T ν

23 − 3T ν
12

)
.

We can conclude that the NLO corrections originate deviations to the TB mixing angles of or-
der u.
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5.2.2. Quark sector
The analysis for the up and down quark mass matrices is simpler than the previous case,

because mu and md do not have any vanishing entry at LO and therefore the corrections from the
NLO operators of the superpotential and from the deviations to the VEVs introduce correcting
factors of relative order u in each entry of the mass matrices. As a result the quark mixing angles
receive deviations of relative order u, which do not spoil the LO results.

6. Conclusions

The aim of a flavour model is getting the correct mixing angles and mass hierarchies of both
leptons and quarks, without inducing not observed processes, like FCNC and proton decays.
Moreover in the context of non-Abelian flavour discrete symmetries, we face off the further
problem of keeping and preserving a different VEV alignment for the flavons and also this re-
quirement has to be naturally fulfilled.6 All these points are separated one from each other and
it seems very hard to get all of them at the same time using a single flavour symmetry group.
However if a model manages in doing it, it will be considered as the most promising model in
order to describe nature. Trying to understand what is the best candidate, many models have been
proposed based on a product of different symmetry groups. However only few of them appear
interesting: we consider fundamental aspects the lack, or at least a moderate amount, of fine-
tunings, the smallness of the number of elements in the complete flavour symmetry group and in
the list of the new scalar fields, the flavons.

Following these points, in this paper we have presented a model for fermion masses and
mixing angles based on the flavour symmetry group S4 × Z5 × U(1)FN. The main aspect is the
spontaneous breaking of S4, which guarantees the TB pattern as the neutrino mixing matrix at
LO. This feature is common to other models, like for example those based on the group A4
[8–15] or those containing A4, as the group T ′ [20,21]. The choice of S4 has been suggested by
the recent work by C.S. Lam [22]: S4 results to be the only group (with all the groups containing
S4) which predicts the TB mixing in a natural way, namely without ad hoc assumptions, from
the group theory point of view. This result is completely apart from all the possible realizations
of a model based on S4 and predicting the TB pattern: indeed, from the model building point
of view, the most economic group which realizes this particular neutrino mixing matrix is A4.
However, there are other reasons which enforce the use of S4: in the A4-based models, it seems
very difficult and unnatural to generate the correct mass hierarchies and mixings for quarks. S4
represents a viable solution to this problem, because it contains a doublet representation more
than A4, which can be used in order to describe quarks.

This is not the first attempt in this direction: in [20] the group T ′ has been studied with good
results, getting the TB mixing for leptons and a realistic quark mixings together to correct mass
hierarchies. Unfortunately, this model suffers of a fine-tuning in order to generate the up-quark
mass and the (12) entry of the CKM matrix: these negative aspects have been already underlined
in the papers by Barbieri et al., studying the continuous group U(2) [19], and it is connected to
the fact that the first two quark families, both left- and right-handed, transform as doublets. In
our model, we followed a different strategy, letting only the left-handed quarks of the first two
families transform as a doublet, while the right-handed transform as singlets of S4. We manage
in getting the correct up quark mass, but we ask to some parameters to combine in such a way to

6 Some attempts in which the VEV alignment problem in not present can be found in [34].
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bring an unjustified factor of order 1/θc or, from an alternative point of view, we ask to the phase
ζq to be close to π . From this point of view, we only partially overcome to the problems of the
previous models based on U(2) and T ′.

In the lepton sector, our model predicts a neutrino mass matrix which can be diagonalized
by the TB pattern and a realistic charged lepton mass hierarchy. With respect to the A4-based
models, we predict an inverted hierarchy for the Majorana neutrinos and we get some interesting
bounds on |mee|, which dominates the 0ν2β-decay, on the lightest neutrino mass and on the sum
of the neutrino masses:

(54)|mee| > 14.4 meV, |mν3 | > 0.72 meV,
∑

i

|mνi | > 89.4 meV.

Moreover we have a prediction for |mee| in function of �m2
atm, r and the phase ζ , defined in

Section 2,

|mee|2 = 1

36

[
−(1 + r)�m2

atm +
√(

�m2
atm

)2 cos2 ζ
(
3(r − 1)2 + (r + 1)2 cos2 ζ

)
sin2 ζ

]
.

Our predictions are quite close to the future experimental sensitivity, which are expected to reach
the values of 0.090 eV [28] (GERDA), 0.020 eV [29] (Majorana), 0.050 eV [30] (SuperNEMO),
0.015 eV [31] (CUORE) and 0.024 eV [32] (EXO). These aspects can distinguish our model
from all the others using only observables linked to the neutrino oscillations. Furthermore, other
studies, like on some lepton flavour violating precesses, can be performed in order to complete
this analysis and better characterize our proposal.
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Appendix A. The group S4

The character table of the group S4 is Table 4. The generators, S and T , obey to the following
rules

(A.1)S4 = T 3 = (
ST 2)2 = 1,
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Table 4
Character table of S4. Ci are the conjugacy classes, n the number of elements in each class, h the smallest value for
which χh = 1. In the last column we have reported an example of the elements for each class.

n h χ1 χ1′ χ2 χ3 χ3′ Example

C1 1 1 1 1 2 3 3 1
C2 3 2 1 1 2 −1 −1 S2

C3 8 3 1 1 −1 0 0 T

C4 6 2 1 −1 0 1 −1 ST 2

C5 6 4 1 −1 0 −1 1 S

and can be written in the different representations as

representation 11: S = 1, T = 1,

representation 12: S = −1, T = 1,

representation 2: S =
(

0 1

1 0

)
, T =

(
ω 0

0 ω2

)
,

representation 31: S = 1

3

⎛
⎝ −1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω

⎞
⎠ , T =

⎛
⎝1 0 0

0 ω2 0

0 0 ω

⎞
⎠ ,

representation 32: S = 1

3

⎛
⎝ 1 −2ω −2ω2

−2ω −2ω2 1

−2ω2 1 −2ω

⎞
⎠ , T =

⎛
⎝1 0 0

0 ω2 0

0 0 ω

⎞
⎠ .

The 24 elements of the group belong to five conjugacy classes

C1: 1,

C2: S2, T 2T 2, S2T S2T 2,

C3: T ,T 2, S2T ,S2T 2, ST ST 2, ST S,ST S2, S3T S,

C4 : ST 2, T 2S,T ST ,T ST S2, ST S2, S2T S,

C5 : S,T ST 2, ST ,T S,S3, S3T 2.

In the 2-dimensional representation the elements are

C1,2:

(
1 0

0 1

)
,

C3:

(
ω 0

0 ω2

)
,

(
ω2 0

0 ω

)
,

C4,5:

(
0 1

1 0

)
,

(
0 ω

ω2 0

)
,

(
0 ω2

ω 0

)
,

while for the 3-dimensional representation 31 the elements are

C1:

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠ ,
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C2:
1

3

⎛
⎝−1 2 2

2 −1 2

2 2 −1

⎞
⎠ ,

1

3

⎛
⎝ −1 2ω 2ω2

2ω2 −1 2ω

2ω 2ω2 −1

⎞
⎠ ,

1

3

⎛
⎝ −1 2ω2 2ω

2ω −1 2ω2

2ω2 2ω −1

⎞
⎠ ,

C3:

⎛
⎝1 0 0

0 ω2 0

0 0 ω

⎞
⎠ ,

⎛
⎝1 0 0

0 ω 0

0 0 ω2

⎞
⎠ ,

1

3

⎛
⎝−1 2ω2 2ω

2 −ω2 2ω

2 2ω2 −ω

⎞
⎠ ,

1

3

⎛
⎝−1 2ω 2ω2

2 −ω 2ω2

2 2ω −ω2

⎞
⎠ ,

1

3

⎛
⎝ −1 2 2

2ω2 −ω2 2ω2

2ω 2ω −ω

⎞
⎠ ,

1

3

⎛
⎝ −1 2ω2 2ω

2ω2 −ω 2

2ω 2 −ω2

⎞
⎠ ,

1

3

⎛
⎝ −1 2ω 2ω2

2ω −ω2 2

2ω2 2 −ω

⎞
⎠ ,

1

3

⎛
⎝ −1 2 2

2ω −ω 2ω

2ω2 2ω2 −ω2

⎞
⎠ ,

C4:
1

3

⎛
⎝ −1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

⎞
⎠ ,

1

3

⎛
⎝ −1 2ω 2ω2

2ω2 2 −ω

2ω −ω2 2

⎞
⎠ ,

1

3

⎛
⎝−1 2 2

2 2 −1

2 −1 2

⎞
⎠ ,

⎛
⎝1 0 0

0 0 1

0 1 0

⎞
⎠ ,

⎛
⎝1 0 0

0 0 ω

0 ω2 0

⎞
⎠ ,

⎛
⎝1 0 0

0 0 ω2

0 ω 0

⎞
⎠ ,

C5:
1

3

⎛
⎝ −1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω

⎞
⎠ ,

1

3

⎛
⎝−1 2ω2 2ω

2 2ω2 −ω

2 −ω2 2ω

⎞
⎠ ,

1

3

⎛
⎝ −1 2 2

2ω 2ω −ω

2ω2 −ω2 2ω2

⎞
⎠ ,

1

3

⎛
⎝−1 2ω 2ω2

2 2ω −ω2

2 −ω 2ω2

⎞
⎠ ,

1

3

⎛
⎝ −1 2ω2 2ω

2ω2 2ω −1

2ω −1 2ω2

⎞
⎠ ,

1

3

⎛
⎝ −1 2 2

2ω2 2ω2 −ω2

2ω −ω 2ω

⎞
⎠ ,

and finally for the 3-dimensional representation 32, the matrices representing the elements of
the group can be found from those just listed for the representation 31: for C1,2,3 are the same,
while for C4,5 are the opposite. It is connected with the generator S, which changes sign in the 31

and 32 representations: the elements in C1,2,3 contain an even number of S, while those in C4,5

contain an odd number of it.
We now report the Clebsch–Gordan coefficients for our basis. In the following we use αi to

indicate the elements of the first representation of the product and βi to indicate those of the
second representation.

We start with all the multiplication rules which include the 1-dimensional representations:

11 ⊗ η = η ⊗ 11 = η with η any representation,

12 ⊗ 12 = 11 ∼ αβ,

12 ⊗ 2 = 2 ∼
(

αβ1

−αβ2

)
,

12 ⊗ 31 = 32 ∼
⎛
⎝αβ1

αβ2

αβ3

⎞
⎠ ,
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12 ⊗ 32 = 31 ∼
⎛
⎝αβ1

αβ2

αβ3

⎞
⎠ .

The multiplication rules with the 2-dimensional representation are the following:

2 ⊗ 2 = 11 ⊕ 12 ⊕ 2 with

⎧⎪⎪⎨
⎪⎪⎩

11 ∼ α1β2 + α2β1,

12 ∼ α1β2 − α2β1,

2 ∼
(

α2β2

α1β1

)
,

2 ⊗ 31 = 31 ⊕ 32 with

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

31 ∼
⎛
⎝α1β2 + α2β3

α1β3 + α2β1

α1β1 + α2β2

⎞
⎠ ,

32 ∼
⎛
⎝α1β2 − α2β3

α1β3 − α2β1

α1β1 − α2β2

⎞
⎠ ,

2 ⊗ 32 = 31 ⊕ 32 with

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

31 ∼
⎛
⎝α1β2 − α2β3

α1β3 − α2β1

α1β1 − α2β2

⎞
⎠ ,

32 ∼
⎛
⎝α1β2 + α2β3

α1β3 + α2β1

α1β1 + α2β2

⎞
⎠ .

The multiplication rules with the 3-dimensional representations are the following:

31 ⊗ 31 = 32 ⊗ 32 = 11 ⊕ 2 ⊕ 31 ⊕ 32

with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

11 ∼ α1β1 + α2β3 + α3β2, 2 ∼
(

α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1

)
,

31 ∼
⎛
⎝2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1

⎞
⎠ , 32 ∼

⎛
⎝α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3

⎞
⎠ ,

31 ⊗ 32 = 12 ⊕ 2 ⊕ 31 ⊕ 32

with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

12 ∼ α1β1 + α2β3 + α3β2, 2 ∼
(

α2β2 + α1β3 + α3β1

−α3β3 − α1β2 − α2β1

)
,

31 ∼
⎛
⎝α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3

⎞
⎠ , 32 ∼

⎛
⎝2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1

⎞
⎠ .

Appendix B. The vacuum alignment at NLO

In this section there is the analysis for the corrections to the vacuum alignment introduced by
the higher-dimensional operators. In Table 5 there is a summary of the transformation properties
of the flavons and of the driving fields.
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Table 5
Transformation properties of the flavons and the driving fields.

Δ ϕ Δ0 ϕ0 ψ η ψ0 ξ ′ ξ ′0

S4 31 2 32 2 31 2 31 12 12
Z5 ω3 ω3 ω4 ω4 ω2 ω2 ω 1 1

The part of the superpotential depending on the driving fields Δ0, ϕ0, ψ0 and ξ ′0 is modified
into

(B.1)wd = w0
d + δwd.

The leading order contribution is

(B.2)

wd = g1
(
Δ0Δϕ

) + g2
(
ϕ0ΔΔ

) + g3
(
ϕ0ϕϕ

)
+ f1

(
ψ0ψψ

) + f2
(
ψ0ψη

) + Mξ ′ξ ′0ξ ′ + h1ξ
′0(ηϕ)′

and the minimum is

(B.3)

〈Δ〉 ∼
⎛
⎝1

1

1

⎞
⎠vΔ, 〈ϕ〉 ∼

(
1

1

)
vϕ,

〈ψ〉 ∼
⎛
⎝0

1

0

⎞
⎠vψ, 〈η〉 ∼

(
0

1

)
vη,

〈ξ ′〉 ∼ vξ ′ ,

where

(B.4)v2
Δ = − g3

3g2
v2
ϕ, vψ = − f2

2f1
vη, vxi′ = h1

Mξ ′
vηvϕ.

The remaining part, δwd , is the most general quartic, S4-invariant polynomial linear in the driving
fields:

(B.5)δwd = 1

Λ

(
5∑

i=1

xiI
Δ0

i +
6∑

i=1

wiI
ϕ0

i +
7∑

i=1

siI
ψ0

i +
2∑

i=1

viI
ξ ′0

i

)
,

where xi , wi , si and vi are coefficients and {IΔ0

i , I
ϕ0

i , I
ψ0

i , I
ξ ′0

i } represents a basis of independent
quartic invariants:

IΔ0

1 = (
Δ0(Δϕ)31

)′
ξ ′, IΔ0

4 = ((
Δ0η

)
31

(ψψ)31

)
,

IΔ0

2 = (
Δ0(ΔΔ)31

)′
ξ ′, IΔ0

5 = ((
Δ0ψ

)
2(ηη)2

)
,

IΔ0

3 = ((
Δ0ψ

)
2(ψψ)2

)
,

I
ϕ0

1 = (
ϕ0(ΔΔ)2

)′
ξ ′, I

ϕ0

4 = (
ϕ0η

)
(ψψ),

I
ϕ0

2 = (
ϕ0(ϕϕ)2

)′
ξ ′, I

ϕ0

5 = (
ϕ0η

)
(ηη),

I
ϕ0

3 = ((
ϕ0η

)
2(ψψ)2

)
,
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(B.6)

I
ψ0

1 = ((
ψ0ψ

)
2η

)′
ξ ′, I

ψ0

4 = ((
ψ0ϕ

)
31

(ΔΔ)31

)
,

I
ψ0

2 = ((
ψ0Δ

)
2(ΔΔ)2

)
, I

ψ0

5 = ((
ψ0Δ

)
2(ϕϕ)2

)
,

I
ψ0

3 = (
ψ0Δ

)
(ΔΔ), I

ψ0

6 = (
ψ0Δ

)
(ϕϕ),

I
ξ ′0

1 = ξ ′0ξ ′ξ ′ξ ′, I
ξ ′0

2 = ξ ′0ξ ′(ϕη),

I
ξ ′0

2 = ξ ′0ξ ′(Δψ).

The new minimum for Δ, ϕ, ψ , η and ξ ′ is obtained by searching for the zeros of the F terms,
the first derivative of wd + δwd , associated to the driving fields Δ0, ϕ0, ψ0 and ξ ′0. We look for
a solution that perturbs Eq. (B.3) to first order in the 1/Λ expansion: denoting the general flavon
field with Φ , we can write the new VEVs as

(B.7)〈Φi〉 = 〈Φi〉(LO) + δΦi.

The minimum conditions become equations in the unknown δΦi , vϕ and vη. By keeping only
the first order in the expansion, we see that the equations can be separated into different groups:
the first five concern only the neutrino sector, the second three only the charged lepton one and
the last one connects the two sectors. Finally all the perturbations are non-vanishing, a part δη1
and δη2 and one of the perturbations in the neutrino sector, which remain undetermined. On the
other hand the NLO terms fixes the relation between vϕ and vη. We can conclude that the VEV
alignment in Eq. (B.3) is stable under the NLO corrections and the deviations are of relative order
u with respect to the LO results.
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