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Abstract

A variational analysis of the pui®J(N) gauge theory in 3- 1 dimensions at finite temperature is performed, extending the
work of Kogan et al. [JHEP 0212 (2002) 017, hep-ph/0208053]. A de-confining phase transition is found at a temperature of
470 MeV, somewhat higher than lattice estimates [hep-th/9812187]. This value is however rather sensitive, for reasons which
are discussed. A more robust quantity is the ratio of the transition temperature to the lightest glueball mass in the model. This is
0.18, in agreement with the lattice estimate 8i(3) to two significant figures. Ways of further improving the calculation are
discussed.
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1. Introduction minimise the expectation value of the Hamiltonian
with respect to those parameters. This provides an
upper bound for the ground state (vacuum) energy.
The method at finite temperature is analogous: in the
canonical ensemble formulation of quantum statistical
mechanics, one forms an ansatz for the density matrix,
with free parameters, and minimises the expectation
value of the Helmholtz free energy. This provides an
upper bound for the free energy at a given temperature.
In Section 2, we begin with a précis of the approach
followed in [1]. The calculation generalises the vari-
ational analysis at zero temperature performed in [3];
E-mail addresses: b.gripaios1@physics.ox.ac.uk an additional kern_eH in th(_a ansatz correqunds to thg
(B.M. Gripaios), gui@nat.vu.nl (J.G. Milhano). effect of thermal disorder in the system. This kernel is

In a recent paper [1], a variational method is
used to study the deconfinement transition in the
pure SU(N) gauge theory at finite temperature. The
method mimics the Rayleigh—Ritz variational method
in the Schrodinger formulation of quantum mechan-
ics. There, the standard procedure is to take a physi-
cally motivated ansatz for the ground state wavefunc-
tion, parameterized by some free parameters, and to
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taken to be small, and only the leading order correction
to the entropy of ordef log H is considered. In this
approximation a deconfining phase transition is found
to occur at a temperature of 450 MeV.

In Section 3, we consider higher order corrections
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with §9° = S tr(z* Uz U), A¢ ;;tr(raUTa,-U), and
t¢/2 form an N x N Hermitian representation of
SUN): [t9/2,7%/2] = ifeb % with normalisation
tr(z?c?) = 289b.

The kernelsG—! and H are arbitrary variational

in H to the entropy. It is shown that (within approx- functions. To facilitate the calculation, they are re-
imations already present in the Kogan—Kovner model stricted to be isotropic in colour and space indices.
at zero temperature) one can calculate the entropy to Fyrthermore, one splits the momenta into high and low

all orders inH in the high temperature phase. In this  modes withk < M and restricts the kernels to the one
extended analysis, the transition temperature is shifted parameter momentum space forms

to 470 MeV, which is high compared to lattice esti-

mates [2]. However, this value depends on a mean- G-1(;) — {M, k<M,

field estimate of the critical coupling in a sigma model k, k>M,

which arises in the analysis, and is therefore only ap- H, k<M,

proximate. The ratio of the transition temperature to H (k) = {o, k>M. )

the lightest glueball mass in the model, which is inde-
pendent of this mean field estimate, is 0.18. This is in
agreement with the lattice estimate fad(3) to two
significant figures.

We conclude in Section 4 by discussing our results,
and suggesting further improvements.

The form forG—! is motivated by the propagator for
a massive scalar field, vizk? + M?)/2; the form
for H assumes that only the low modes are thermally
excited at the temperatures of interéswith the
above restrictions on the kernels, only two variational
parametersy andH, remain.

Before discussing the variational analysis at finite
temperature, let us recall the analysis at zero tempera-
ture. The former will turn out to be a straightforward

The ansatz is constructed by considering density 9eneralisation of the latter. At =0, H = 0 and the
matrices which in the field basis have Gaussian matrix @nalysis reduces to the minimisation of the energy,
elements, and where gauge invariance is explicitly that is of the expectation value of the Hamiltonian,
imposed by projection onto the gauge-invariant sector U = tr’Hp/trp, where
of the Hilbert space. It reads

2. Theorder Hlog H analysis

H= %[E2+BZ], (5)
with E{ = §/8A¢ and B = (3, A + gf*" A% x

A} /2). Thisis equivalentto the analysis originally per-
formed by Kogan and Kovner in [3]. Firstly, one per-
forms the Gaussian integrals over the gauge fidlds
This leaves integrals over the gauge transformations
U, evaluated with respect to a sigma model ‘action’
which is both non-local and non-polynomialén. To
simplify the action, the gauge transformatidiisare
split into parts dependent on high and low momentum
modes, withk < M as above. The effect of integrat-
ing out the high modes is to effect a renormalisation
group transformation: the coupling of the low mode
sigma model is replaced by the renormalised coupling

1
p[A,A’]:fDUexp{—E[AG_lA+A’UG_1A’U

1)

where, under aBU(N) gauge transformatioti, A —
AY andDU is theSU(N) group-invariant measure. In
the above we employ a matrix notation, with, e.g.,

—2AHA/U]},

AGHA= /dx dydz A{ (x)G{P (x — y)

x Hi (y = 2) A} 2). )

Here, indicesi, j, k,... € {1,2,3} anda,b,c,... €
{1,2,..., N? — 1} denote the spatial Lorentz compo-
nents and colour components of the gauge field, re-
spectively. Explicitly, the gauge transformations are

®)

1 Non-zeroH in (1) corresponds to thermal disordering, since

Al (x) — AI-U” x) = S”b(x)Aﬁ’(x) + A (x), H =0 corresponds to a pure state.
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g%(M). So M acts as a UV cut-off for the low mode
theory. Furthermore, the theory is asymptotically free
[4,5]. ProvidedM is sufficiently large (ang?(M) suf-
ficiently small) one can then consider the low mode
theory to leading order ip?(M). The relevant Euclid-
ean actions are

A 1 A 1 -1
S[A] = A+§ G A+ - |+ -AG A,

2 4 ©

for the A fields and
M 3, 4.1
F[U] = Wtrw(N)fd x8,-U (X)al‘U(X), (7)

for the low modeU fields, where the trace is per-
formed overSU(N) matricesU. The high modes do

B.M. Gripaios, J.G. Milhano / Physics Letters B 564 (2003) 104-110

argument is modified: one must consider the balance

between energy and entropys, minimising the free

energyFF = U — TS. Since the parametdd corre-

sponds to thermal disordering, one expects generically

that S will vanish for vanishingH . In the SU(N) the-

ory at moderate temperatures, the degrees of freedom

correspond to glueballs. Since these are heavy, the ex-

citations (disordering), and consequently the entropy,

will be small. One can thus attempt to calculate the

entropy as some expansion in the small param@ter
The leading order contribution i is [1] a term of

the form H log H, multiplied by a coefficient which

is an U(N)L ® SU(N)r symmetric correlator of

U fields. In the disordered (symmetric) phase of

the sigma model, this expectation value vanishes.

contribute to the energy at zero temperature. HOWever, g rthermore, since the leading order contribution in

they do not yield any additional contribution at finite
temperature, sincé/, which parameterizes the ther-
mal disorder in the theory, is zero for> M.

Next consider this low mode sigma model as a
statistical mechanical system at ‘temperatg&M).

The system undergoes a phase transition with spon-
taneous symmetry breaking from a disordered state

at small M (large g2(M)) to an ordered state at
large M. Calculations in the disordered phase are per-
formed in the mean field approximation: tlié are
treated asv? free fields obeying the unitarity con-
straintUTU = 1. In the ordered phase the sigma model
is treated in leading order perturbation theory, writing
U = ¢'¢9"7"/2 and expanding the exponential. In the
disordered phase, the enefgg minimised close to
the phase transition withf >~ M.,

_ NZmf
3072

and g?(M.) = n?/N. In the ordered phase, one
obtains

N°M*
=, ©)
1207
so that the energy is indeed minimised Mt~ M.,

U= (8)

H to the energy is positive definite, one finds that the
free energy is minimised witlif = 0 at the minimum
of theenergy.

Thus, in the disordered phase of the sigma model,
the minimum of the free energy is & ~ M. with,
from (8),

N2M?

B

In the ordered phase of the sigma model, the leading
contribution to the entropy at small is

(10)

2a43
M
S=———HIlogH. 11
62 g (11)
Then, from (9),
NZ2Mm*4 N2Mm3
F = T HlogH. 12
12002 ! gz 1109 (12)

Minimising with respect toH and M, one finds
that F is minimised in the sigma model disordered
phase (with(U) =0) fromT =0 up toT =T, ~
0.33M,, beyond whichF is minimised with M in

the ordered phase of the sigma model (With # 0).
Since U plays the same role as the Polyakov loop
variable at finite temperature, this corresponds to a

on the disordered side of the sigma model phase deconfinement phase transition in the p@g(N)

transition.

The extension to finite temperature was discussed

in [1]. At finite temperatures, the energy minimisation

2 Here and throughout, extensive quantities are written per unit
volume.

gauge theory.

As a result of the minimisation procedure one finds
that the dimensionless quantify/M is equal toe=1.
This raises the question of whether neglected terms of
O (H), which have the same magnitude as the retained
terms of O(H log H), could considerably affect the
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calculation. It would, therefore, be desirable to extend
the calculation to higher order iH. This we do in the
remainder of this Letter.

3. Extended analysis

We wish to extend the previous calculation to in-
clude terms beyond the leading order in the kernel cor-
responding to thermal disordéf. Although it is not
at all clear a priori how one might do this in general,
we shall, by providing an alternative procedure to that
underlying the results of [1,3] outlined above, show
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non-zero in the latter—that this sigma model phase
transition corresponds directly to the deconfinement
transition in theSU(N) theory.

This argumentis quite general; on review, it is clear
that our only assumptions are that the ansatz is suffi-
ciently close toSU(N) and that the low mode sigma
model undergoes a symmetry-breaking phase transi-
tion. In particular, let the ansatz, which is arbitrary
and need not be Gaussian, be terect density ma-
trix for SU(N). The first assumption is certainly true.

If the second assumption is also true, then we have
constructed an exact argument that the deconfinement
transition inSU(N) corresponds to the phase transi-

that an extended analysis is indeed possible within the tion in the low mode sigma model.

context and inherent approximations of the Kogan—
Kovner model. It should be recalled that the stumbling
block to any improvement is the calculation of the en-
tropy, S = —trplogp.

Let us try the following gambit. Instead of re-
stricting ab initio the density matrix to the form (1),
imagine that we take some arbitrary gauge-invariant
density matrix ansatz depending on thefields and
integrated over th& fields. We allow this new ansatz
(and whatever kernels it may contain) to remain arbi-
trary until we have no choice but to restrict it. Now we
integrate out thet fields to obtain a partition function
of U fields with respect to some action.

Next we introduce a separation of momenta into
high and low modes withk < M and integrate out
the high modédV fields as before. This effects a renor-
malisation group transformation on the low modes, re-
placing the bare coupling2—which is not arbitrary,
since it is defined by the gauge transformations (3)—
by the running couplingz?(M). Now provided our
ansatz is sufficiently close to the correct density matrix
for SU(N), the theory will be asymptotically free. We
are thus left with an action for the low modes which
is again some complicated sigma model, with a renor-
malised coupling;?(M) which we expect to be small
providedM is large and vice versa.

Now consider this model as a statistical mechanical
model at ‘temperatureg?(M). We make the plausible
assumption that this sigma model will, a¥ is
varied, undergo a symmetry-breaking transition at
‘temperature’g<(M.) from a ‘thermally disordered’
(symmetric) phase at large?(M.) to an ordered
phase at smalg2(M.). Further, it is clear—since the
Polyakov loop(U) is zero in the former phase and

Thus, in order to study deconfinement$i(N),
our aim should be to model the physics of each sigma
model phase as accurately as possible and calculate
the transition scald/.. We then calculate the free en-
ergy of SU(N) in each phase, including any possible
contribution from the high modes, at temperatdre
and extract the minimal free energy. The deconfine-
ment transition occurs at the temperature for which the
free energies calculated in the ordered and disordered
phases of the low mode sigma model coincide.

Although we will take (1) as the ansatz for the
density matrix, we shall keep the kernéls® and H
arbitrary until we have no choice but to restrict them.

In the disordered phase no progress seems possible
without restricting the arbitrary kernels. Following [1],
we adopt the forms (4) as before and the analysis
is identical. The Boltzmann factor is ™s/T in this
case whereM, is the lightest glueball mass, so we
expand the small entropy to leading order and get zero
as before. The resulting minimal free energy is thus
independent of the temperature and we find

_Neme

3072’
where M, >~ 1.33 GeV is the sigma model transition
scale predicted by the mean field calculation of [3].

In the leading order perturbation theory approxima-
tion to the ordered phase of the sigma model, how-
ever, minimisation with respect to arbitrary kernels
G~1 andH for both high and low modes is possible.
Further, the analysis can, as desired, be carried out to
all orders in the thermal disorder kernél

In this approximation, theU matrices can be
parameterised in the standard exponential form and

F= (13)
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expanded in the coupling The kernels which minimise the free energy are
7@ 74 14 e 20/T
et 1 a__ = [ a__ oo -1 e _—
U—eXD{lg(p 2}—1+1gg0 > +---. (14) G _p<1_62p/r>,
Hence at leading order one can take e ?/T
g H=2p|\ — =75 (20)
B 1—e—2r/
. T
U~1, U= lgaﬂﬂ”?- (15) and the minimal value of the free energy at tempera-
) tureT is
Thus, the gauge transformations (3) reduce to
o0
-1 p _
A! — AY — 99" (16) fpzdp|:§+Tlog(1—e p/T)]
and the Hamiltonian (5) reduces to 0
o
1 X _ (N?-pr? J x3
H=S[Ef+ (eixd; A%)°]- (7 EEG Yoo
0
But these last two equations describe the theory 72(N2 — )T
U1V~ in the leading order of sigma model pertur- = BT-S— (21)

bation theory, the8U(N) Yang—Mills theory reduces

to the U(l)Nz—1 free theory. Moreover, the density
matrix (1) becomes Gaussian again, because the gaug
transformations are linear. One has

where the zero-point term has been discarded. All of
this is of course consistent with the standard analysis
of photon gases in statistical mechanics.
The minimal free energy oBU(N) in the or-

, 1 1 dered phase of the sigma model at temperafuis,
plA, A]= / Dgex _E[AG A from (21) and dropping sub-leading contributions of
: 1 O (N9,
+ (A" —03¢)G (A" — d9)
n?N?T4
—2AH(A' — 8(,0)]}. (18) F=-—0%" (22)

So we see that the free energy3f(N) is minimised
with M = M, in the disordered phase of the sigma
model for temperatures from zero up to a temperature

Now the theory of N2 — 1 U(1) free fields in
3 + 1 dimensions is completely tractable; the vari-
ational analysis for thd/ (1) theory (with Gaussian

T. where
ansatz (18)) was discussed in [6]. The free energy in ¢ W
momentum space in terms of the arbitrary kerris N2M? n2N2TH
andH is =T 3002 ~ a5 (23)
1 which in turn implies
F =
2 3\ /4
) T, = (_) —< ~ 470 MeV. (24)
/ [ la+6H)+p?’cA-GH)? 2 7
GH We note that the transition temperature is shifted by
[ s ] only a very small amount compared to the regult-
— (G2 - (1-GH) 450 MeV obtained in [1]. The calculation is improved
— (1_ (GH)2)1/2 in the sense that, in the high temperature phase of
} U (N), which corresponds to the ordered phase of the
21/2 sigma model, we have been able to extend the original
— (- (GH)) ))] (19) analysis to include all orders of the thermal disorder
- (GH)Z)l/2 (1-GH) kernel. This is desirable because at higthis kernel,
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which corresponds to the Boltzmann factor, is of order perature, the phase transition corresponds to a jump

unity. The calculation is also improved in that the
minimal kernels in the higli' phase, approximated as

between the two sectors. So in doing the analysis, we
are really asking the question: at what temperature

free gluons, are the exact ones. If we had performed does the freé](l)N ~1 gauge theory become thermo-

the calculation with the kernels (4), we would not
have been able to obtain the true minimum of the
free energy. As in [1], we find that the deconfinement
phase trezmiition is strongly first order with latent heat
AE =2 CT8,

Finally, it will also be of interest to calculate
the ratio of the transition temperature to the lightest
glueball mass in the model, which 92 [7]. One
obtains

dynamically more favourable than the low energy the-
ory calculated in the mean field approximation?

Whilst this is a perfectly sensible question, to
which we have obtained a sensible answer, one must
ask whether this means anything for the f8lJ(N)
gauge theory. One is interpolating between a low
energy theory, which is already only approximate,
and a high energy theory which is only correct in
the ultra-violet limit. This is, to say the least, rather

crude. However, we believe that tipeinciple of the
method is rather powerful, in that there is scope to
improve upon the calculation. The simplest way in
which this can be done is to include perturbative cor-
rections to the free energy coming from the high
modes. The finite-temperature corrections should be
added to (21). In contrast, only the zero-temperature
In this extended variational analysis, we have iden- corrections should be added to (13), since there are
tified a phase transition (within the approximations no thermal contributions in this sector by assump-
made) at 470 MeV. This seems rather high in com- tion.
parison with numerical simulations performed on the The second way in which improvements can be
lattice, which give around 280 MeV foBU(3) [2]. made is to improve corrections to the low mode sector.
However, the estimate obtained for the transition tem- We believe that the crudest approximation here is in
perature is only expected to be approximate since it is taking the leading order of perturbation theory in the
sensitive to the value of the critical scalé., which ordered phase of the sigma model. Clearly this is not
is calculated in the mean field approximation of the appropriate close to the sigma model phase transition,
sigma model. This sensitivity can be removed by com- which corresponds also to ti8J(N) phase transition
puting theratio of the transition temperature to the in this model. So if there are large shifts in the sigma
lightest glueball mass in the model (25). One then ob- model behaviour near the transition, we would expect
tains a value of 0.18, which agrees with the lattice re- the transition temperature to be significantly shifted.
sult for SU(3) to two significant figures. Furthermore, An improved treatment of the sigma model near the
this is a significant improvement on rather larger es- phase transition necessarily calls for a higher order
timates obtained by generic statistical bag models of or non-perturbative calculation to be performed. But
hadrons [8]. then one has to calculate the entropy for a non-free
There are other reasons why we expect the calcula-theory. Such a task is beyond our present calculational
tion to be only approximate. The most important point abilities. However, we are encouraged by the fact that
to be aware of is that in the original zero tempera- the all orders inH result for the free energy in the
ture analysis, th&UJ(N) gauge theory was hived into  ordered phase obtained in this Letter differs only very
two parts (the high and low modes) for the purpose slightly near the phase transition from the one obtained
of tractability. The former corresponds approximately in [1] where only the leadingd logH contribution
to the perturbative gauge theory, which is well under- was taken into account. This is, of course, why
stood (and which we have treated in the zeroth order) the transition temperature is not significantly shifted
and the latter to the low energy sector, which is less by the improved analysis. Now a non-perturbative
well understood and is treated in the mean field ap- calculation of the entropy to ordéf log H does seem
proximation. In considering the theory at finite tem- to be possible, and is currently under way [9].

1/4
T _ i<§) ~ 018, (25)

2M, 27 \2

4, Discussion



110 B.M. Gripaios, J.G. Milhano / Physics Letters B 564 (2003) 104-110

Acknowledgements

We thank I. Kogan and A. Kovner for their contri-
bution during the early stages of this work.

References

[1] I.l. Kogan, A. Kovner, J.G. Milhano, JHEP 0212 (2002) 017,
hep-ph/0208053.
[2] M.J. Teper, hep-th/9812187.

[3] I.I. Kogan, A. Kovner, Phys. Rev. D 52 (1995) 3719, hep-
th/9408081.

[4] W.E. Brown, I.I. Kogan, Int. J. Mod. Phys. A 14 (1999) 799,
hep-th/9705136.

[5] W.E. Brown, Int. J. Mod. Phys. A 13 (1998) 5219, hep-
th/9711189.

[6] B.M. Gripaios, Phys. Rev. D 67 (2003) 025023, hep-
th/0211104.

[7] B.M. Gripaios, Int. J. Mod. Phys. A 18 (2003) 85, hep-
ph/0204310.

[8] N. Ishii, H. Suganuma, hep-ph/0210158.

[9] B.M. Gripaios and J.G. Milhano, in preparation.



	Improved variational analysis of deconfinement in SU(N)  gauge theory
	Introduction
	The order H logH analysis
	Extended analysis
	Discussion
	Acknowledgements
	References


