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Abstract The energy cost of offspring is important in the conversion of resources
allocated to reproduction to numbers of offspring, and in obtaining energy budget
parameters from quantities that are easy to measure. An efficient numerical procedure
is presented to obtain this cost for eggs and foetusses in the context of the dynamic
energy budget theory, which specifies that birth occurs when maturity exceeds a thre-
shold value and maternal effects determine the reserve density at birth. This paper
extends previous work to arbitrary values of the ratio of the maturity and somatic
maintenance costs. I discuss the body size scaling implications for the relative size
and age at birth and conclude that the size at birth, contrary to the age at birth, cova-
ries with the maintenance ratio. Apart from evolutionary adaptation of the maturity at
birth, this covariation might explain some of the observed scatter in the relative length
at birth. The theory can be used to evaluate the effects of the separation of cells in
e.g. the two-cell stage of embryonic development, and of the removal of initial egg
mass. If cell separation hardly affects energy parameters, body size scaling relation-
ships imply that cell separation can only occur successfully in species with sufficiently
large maximum body length (as adult); i.e. some two times that of Daphnia magna.
Toxic compounds that increase the cost of synthesis of structure, decrease the allo-
cation to reproduction indirectly via the life cycle, because food uptake is linked to
size. They can also decrease the egg size, however, such that the reproduction rate is
stimulated at low concentrations. The present theory offers a possible explanation for
this well-known phenomenon.
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1 Introduction

The embryonic stage is rarely a topic of ecological texts, but nonetheless very important
for the estimation of energy budget parameters [23]. Knowledge of energy costs of an
embryo is required in the specification of the reproduction rates in models that deal
with resource allocation. Knowledge of reproduction rates is basic for e.g. population
dynamics and ecotoxicology, where effects of chemical compounds on reproduction
rates are studied. The dynamics of the state variables of an embryo can also yield
valuable information about the physiology of post-embryonic stages.

Twenty years ago I wrote a paper with the title “What the hen can tell about her
egg” [18] demonstrating that the standard dynamic energy budget (DEB) model [19]
captures egg development data very well for a number of species [19, Fig. 3.15–16],
on the assumption that embryos behave as juveniles that do not eat and start their
development with a negligibly small amount of structure. The model is meant to apply
to all embryonic stages, such as eggs in animals, seeds in plants, spores in fungi and
bacteria, as well as the pupation stage of holometabolic insects [19, Fig. 7.24].

The reserve density, i.e. the ratio of the amounts of reserve and structure, at birth
tends to covary with that of the mother at egg production; well-fed mothers give birth
to well-fed offspring. Such maternal effects are typical and have been found in e.g.
birds [29], reptiles, amphibians [25], fishes [12], insects [26,31,32], crustaceans [9],
rotifers [36], echinoderms and bivalves [3]. However, some species seem to produce
large eggs under poor feeding conditions, e.g. some poeciliid fishes [30], daphnids
[10] and Sancassania mites [2]. Moreover, egg size can vary within a clutch [6,28,35],
according to geographical distribution [33], with age [26] and race.

DEB theory specifies the costs for structure, the somatic and maturity maintenance
costs and the processes of growth and maturation. The additional specification of
the reserve density at birth to accomodate maternal effects also specifies the initial
amount of reserve (so the cost of an egg) indirectly, but its evaluation is not very simple.
Maternal effects make that the cost per egg varies in time, with the consequence that
this cost has to be evaluated for each time increment if reproduction rates are required
as functions of time. This motives searching for an efficient algorithm.

Since [18] a lot of work has been done on many aspects of DEB theory, including
work on the embryonic stage. (The next section summarizes the relevant aspects of
the model.) The spectacular matches of model predictions with a much wider set
of empirical data on embryonic growth and respiration on a wide variety of species
[19,37,38] confirmed the existence of generally applicable rules for egg development
as provided by DEB theory and motivated further work. It became clear that if the
maturity and somatic maintenance rate coefficients are equal, stage transitions not
only occur at exceeding threshold values for maturity, but also for structural mass
(independent of the trajectory of food levels). If so, this simplifies matters considerably,
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What the egg can tell about its hen: Embryonic development 379

Fig. 1 The scheme of pools and
fluxes as specified by the
standard DEB model for egg
development. The fluxes are,
1 mobilisation, 2 somatic
maintenance, 3 maturity
maintenance, 4 growth,
5 maturation

and the cost of an embryo can be obtained explicitly. It has been the reason to assume
this equality in an early stage of the development of the DEB theory.

Over the years it became evident, however, that there is little theoretical ground
for this equality and that size at birth (the initiation of assimilation) and puberty
(the initiation of reproduction) do vary somewhat in response to variations in food
availability (although much less than age at birth). This variation can be used to access
the maturity maintenance rate coefficient [23]. Defence systems, such as the immune
system, are fuelled from maturity maintenance, and parasites can affect it (see e.g.
[8]) and so change the maturity maintenance rate coefficient. Toxicants can affect the
somatic maintenance rate coefficient [14]. The implication is that size at birth and
puberty must depend on the concentration of toxicant as well as on food density. This
is exactly what has been observed [1]. These arguments prompted us to deal with the
less simple case of unequal maintenance rate coefficients.

The primary aim of this paper is to present an efficient procedure to obtain the
cost of an egg in the general case of unequal maturity and somatic maintenance rate
coefficients. Moreover, I will discuss how the body size scaling relationships of DEB
theory work out for this cost, and for the age and length at birth. Finally I discuss
the results of egg size manipulations on the age and length at birth in the light of the
standard DEB model. I start with the specification the standard model for embryonic
development in the next section.

2 The standard DEB model for embryonic development

The standard DEB model for egg development can be summarised as follows: biomass
consists of reserve and structure; the structure develops at the expense of the reserve,
see Fig. 1. Structure requires (somatic) maintenance, reserve does not. Age zero is taken
to coincide with the start of the growth of structure; the initial amount of structure
is negligibly small. The mobilisation rate of reserve follows from weak and strong
homeostasis assumptions [34]; a mechanism is presented in [24]. Allocation to growth
and somatic maintenance (so to the soma) comprises a fixed fraction of mobilised
reserve, the remaining fraction is allocated to maturation and maturity maintenance.
The reserve density at birth equals that of the mother at embryo production. The
transition to the juvenile stage (i.e. birth) occurs by initiating assimilation when the
maturity exceeds a threshold value.

Foetal development represents a variation on that of egg development, assuming
that the foetus receives reserve from the mother during development at a rate that
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Table 1 The 5 budget parameters (upper panel) and 4 variables (lower panel) of the standard deb model
for embryonic development in the length-mass frame

Symbol Unit Description

v̇ m day−1 Energy conductance

g – Energy investment ratio

k̇ J day−1 Maturity maintenance rate coefficient

k̇M day−1 Somatic maintenance rate coefficient

κ – Allocation fraction to soma

a, ab day Age, at birth

L , Lb m Structural length, at birth

UH , Ub
H day m2 Scaled maturity, at birth

UE , U0
E , Ub

E day m2 Scaled reserve, at the start, at birth

The values of the variables at birth are also indicated; Ub
H and Ub

E L−3
b serve as parameters. The value of

UE at the start is indicated, while that of a and UH are zero at the start. The values U0
E , Ub

E , ab and Lb
are functions of the 5 + 2 parameters; this paper aims to identify these functions from the model structure.
Dots above symbols mean “per time”

no longer restricts development. In DEB theory, this has the consequence that foetal
weight becomes proportional to cubed age, a well-known empirical finding [13] that
has astonishing accuracy [19, Fig. 3.18]. In other words, most of the complexity of egg
development in DEB theoretic context results from the deceleration of development
due to depletion of reserve towards the end of incubation.

Table 1 presents the variables and parameters of the standard DEB model for the
embryonic stage. Two parameters deserve extra discussion in the context of this paper:
the somatic and maturity maintenance rate coefficients. The somatic maintenance rate
coefficient k̇M has the interpretation of the ratio of the structure-specific somatic main-
tenance cost and the cost for the synthesis of a unit of structure; the somatic main-
tenance cost is assumed to be proportional to the amount of structure (in all stages).
Likewise the maturity maintenance rate coefficient k̇ J is the ratio of the maturity-
specific maturity maintenance cost and the cost for a unit of maturity; the maturity
maintenance cost is assumed to be proportional to the level of maturity. Maturity
represents information, and not mass or energy; physiologically it stands for a set of
regulation systems that structures the various metabolic activities in an individual. If
the individual dies, no mass or energy is released from the maturity of the corpse;
it simply becomes lost. We avoid quantification of information, however. Maturity
is quantified as the cumulative investment of reserve into maturity, but after having
increased maturity, the invested reserve is excreted into the environment in decompo-
sed form. I treat k̇ J as a primary parameter. If the maintenance ratio k = k̇ J/k̇M equals
one, maturity is proportional to the amount of structure in the embryonic and juvenile
stages and the structure-specific maturity maintenance cost is constant; [19] worked
with this parameter to avoid discussing the concept “information”. For k �= 1 the
use of the structure-specific maturity maintenance cost is no longer handy, however,
because is not constant.
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What the egg can tell about its hen: Embryonic development 381

The weight of an egg typically changes during development due to loss of water in
terrestrial environments (some 10% in birds), or uptake of water in aquatic environ-
ments (some factor 8 in daphnids). Reptile eggs manage to take up water in terrestrial
environments [4]. I avoid dealing with these changes, using mass of reserve and struc-
ture, excluding contributions by water. Apart from these changes in the amount of
water, eggs loose mass because of the use of reserve for maintenance, growth and
maturation.

The parameter values are individual-specific, but the differences between indivi-
duals of the same species are usually small compared to the differences in nutritional
condition, especially if eggs are compared of different clutches, environments and/or
years. The most likely value to differ among eggs of the same species in the context
of DEB theory is the reserve density at birth. The significance of the theory presented
in this paper is the implied prediction for how age at birth, weight at birth and initial
weight covary as a result of the variation in the reserve density at birth. This covariation
can be used to yield information about parameter values.

Although the model is still identical to the original one (and the notation changed
little only during 30 years of research on DEB theory), this presentation differs by the
variables scaled reserve UE = ME/{ J̇E Am} and scaled maturity UH = MH /{ J̇E Am},
where ME and MH stand for the mass of reserve and maturity, and { J̇E Am} for the
surface area-specific maximum reserve assimilation rate. Although the variables might
not have a straightforward intuitive interpretation, this scaling is done to avoid the
introduction of mass or energy, so that the whole discussion can be confined to the
dimensions length and time. This not only simplifies the theoretical discussion, but
also the procedure to extract parameter values from experimental data (see the Sect. 7).

In mathematical terms, the standard DEB model for the change in embryonic age
a, scaled reserve UH , length L and scaled maturity UH amounts to

d

da
UE = −SC with SC = L2 ge

g + e

(
1 + k̇M L

v̇

)
and e ≡ UE v̇

L3 (1)

d

da
L = v̇e − k̇M gL

3(e + g)
(2)

d

da
UH = (1 − κ)SC − k̇ J UH (3)

where the variable (UE , L , UH ) evolves from value (U 0
E , 0, 0) at a = 0 to value

(U b
E , Lb, U b

H ) at a = ab, which is at birth. Apart from the five parameters k̇M , k̇ J ,
v̇, g, κ , only the scaled maturity at birth U b

H and the (dimensionless) scaled reserve
density at birth eb = v̇U b

E L−3
b are given and the problem is to find U 0

E and so ab, U b
E

and Lb. For the special case k = 1 (i.e. k̇ J = k̇M ), the solution is given in [19], but
the present problem is to find expressions for the general case that k �= 1.

All symbols in this paper stand for real non-negative quantities; the biologically
meaningful ranges, as deduced from the model structure, are e > eb and eb < 1 and

0 < l < lb < eb and 0 < UH < U b
H <

(1−κ)v2

g2 k̇3
M

and 0 < κ < 1 and 0 < k <
(1−eb)e3

b v̇

U b
H g2 k̇2

M
.
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Table 2 The definitions for the dimensionless scaled variables and parameters that are used to find the
initial amount of scaled reserve u0

E = U0
E g2 k̇3

M/v̇2

τ = ak̇M τb = abk̇M l = Lgk̇M /v̇ lb = Lbgk̇M/v̇

uE = UE g2 k̇3
M/v̇2 ub

E = Ub
E g2 k̇3

M/v̇2 u H = UH g2 k̇3
M/v̇2 ub

H = Ub
H g2 k̇3

M/v̇2

e = guE / l3 eb = gub
E / l3

b eH = gu H / l3 eb
H = gub

H / l3
b

x = g
e+g xb = g

eb+g α = 3gx1/3/ l αb = 3gx1/3
b / lb

y = xeH
1−κ

yb = xbeb
H

1−κ
= gxbvb

H l−3
b k = k̇ J /k̇M vb

H = ub
H

1−κ

3 Initial amount of reserve and age, length at birth

The key to finding the cost of an egg is finding an appropriate scaling of variables
for solving the boundary value problem. Table 2 shows the scaled variables. I first
remove 2 parameters by scaling the variable (a, UE , L , UH ) to the dimensionless
variable (τ, uE , l, u H ) or, alternatively, to the dimensionless variable (τ, e, l, eH ).
This is possible because the original problem has dimensions length and time, which
can be eliminated.

The reformulated problem is now: find τb, lb, u0
E given ub

H , k, g, κ and ub
E = ebl3

b/g.
We also have 0 < k < (1 − κ)e3

b/ub
H and ub

H < 1 − κ .
For the variable (τ, uE , l, u H ) evolving from the value (0, u0

E , 0, 0) to the value
(τb, ub

E , lb, ub
H ), the scaled model amounts to

d

dτ
uE = −uEl2 g + l

uE + l3 (4)

d

dτ
l = 1

3

guE − l4

uE + l3 (5)

d

dτ
u H = (1 − κ)uEl2 g + l

uE + l3 − ku H (6)

or alternatively for variable (τ, e, l, eH ) evolving from the value (0,∞, 0, e0
H ) to the

value (τb, eb, lb, eb
H )

d

dτ
e = −g

e

l
(7)

d

dτ
l = g

3

e − l

e + g
(8)

d

dτ
eH = (1 − κ)

ge

l

l + g

e + g
− eH

(
k + g

l

e − l

e + g

)
(9)

where e0
H = (1 − κ)g is such that d

dτ
eH (0) = 0, else d

dτ
eH (0) = ±∞. If k = 1 we

have eH (τ ) = e0
H for all τ and u H (τ ) = (1 − κ)l3

b . For k > 1, eH is decreasing in
(scaled) age, and for k < 1 increasing.
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Before I derive expressions for τb, u0
E and lb, I first make an observation on α (see

Table 2) that is used later.
From Table 2 and ode’s Eqs. (7–8), we have

d

dτ
x = gx

1 − x

l
(10)

d

dτ
l = g − xg − lx

3
(11)

d

dτ
α = x1/3

1 − x

d

dτ
x (12)

so

α = 3g(u0
E )−1/3 + Bx

(
4

3
, 0

)
(13)

where Bx (a, b) ≡ ∫ x
0 ya−1(1 − y)b−1 dy is the incomplete Beta function, which

reduces for this particular case to

Bx

(
4

3
, 0

)
= √

3

(
arctan

1 + 2x1/3

√
3

− arctan
1√
3

)

+1

2
log(1 + x1/3 + x2/3) − log(1 − x1/3) − 3x1/3.

Consequently we have

αb − α = Bxb

(
4

3
, 0

)
− Bx

(
4

3
, 0

)
(14)

1

l
= 1

lb

( xb

x

)1/3 − Bxb(
4
3 , 0) − Bx (

4
3 , 0)

3gx1/3 (15)

We need this expression for l(x) later in the derivation of lb.
I now first derive expressions for τb and u0

E assuming that lb is known, and then I
derive an expression for lb.

3.1 Scaled age at birth τb

The scaled age at birth τb follows from Eqs. (10) and (15) by separation of variables
and integration

τb = 3

xb∫
0

dx

(1 − x)x2/3(αb − Bxb(
4
3 , 0) + Bx (

4
3 , 0))

(16)

Equation (16) is consistent with the one for k = 1 [19, Eq. (3.33)], but lb in αb is
not a parameter and given below.
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3.2 Scaled initial amount of reserve u0
E

The scaled initial amount of reserve u0
E directly follows from Eq. (13) for x = xb and

α = αb

u0
E =

(
3g

αb − Bxb

( 4
3 , 0

)
)3

(17)

Equation (17) is consistent with the one for k = 1 [19, Eq. (3.31)], but lb in αb is
not a parameter and given below.

3.3 Scaled length at birth lb

The pièce de resistance for solving our boundary value problem is finding lb, which
turns out to be rather straightforward once the appropriate transformation of variables
is found (namely y(x), see Table 2). For the variable (τ, x) evolving from the value
(0, 0) to the value (τb, xb) and the variable (τ, eH ) evolving from the value (0, e0

H ) to
the value (τb, eb

H ) we have the ode for x , Eq. (10), and

d

dτ
eH = (1 − κ)g(1 − x)

(
g

l(x)
+ 1

)
− eH

(
k − x + g

1 − x

l(x)

)

Now consider the variable (x, eH ) evolving from the value (0, e0
H ) to the value (xb, eb

H )

or the variable (x, y) evolving from the value (0, 0) to the value (xb, yb):

d

dx
eH = e0

H

x

(
l(x)

g
+ 1

)
− eH

x

(
k − x

1 − x

l(x)

g
+ 1

)
for e0

H = eH (0) = (1 − κ)g

d

dx
y = r(x) − ys(x) for r(x) = g + l(x); s(x) = k − x

1 − x

l(x)

gx
(18)

where l(x) is given in Eq. (15). The ode for y can be solved to

y(x) = v(x)

x∫
0

r(x1)

v(x1)
dx1 with v(x) = exp

⎛
⎝−

x∫
0

s(x1) dx1

⎞
⎠

The quantity lb must be solved from yb = y(xb) = gxbv
b
H l−3

b , see Table 2. So we
need to find the root of t as function of lb with

t (lb) = xbgvb
H

v(xb)l3
b

−
xb∫

0

r(x)

v(x)
dx = 0 (19)
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From this equation it becomes clear that the parameters κ and ub
H affect lb only via

vb
H = ub

H
1−κ

; a conclusion that is more difficult to obtain using the ode for the scaled
maturity density eH rather than that for abstract variable y. Notice that the solution of
lb (and that of u0

E and τb) for the boundary value problem for the ode for (uE , l, eH ) as
given in Eqs. (4–6) depends on the four parameters g, k, vb

H and eb only. The solution
for lb must be substituted into Eq. (17) to obtain u0

E and in Eq. (16) to obtain τb; the
scaled reserve at birth is ub

E = ebl3
b/g.

3.4 Numerical solution for scaled length at birth lb

This subsection discusses numerical methods to obtain the root of function t as given
in Eq. (19). The shooting method (in one dimension) on the ode for y, Eq. (18),
turns out to be rather stable, where y(xb) = yb is evaluated by integrating d

dx y using

lb = (
vb

H

)1/3
as starting value, which is the exact solution for k = 1. Since lb is

a scaled length, vb
H has the interpretation of a scaled volume, which has been the

motivation for the choice of the symbol.
Alternatively the Newton–Raphson procedure li+1

b = li
b − t (li

b)/t ′(li
b) can be used

to solve Eq. (19) with

l(x) =
(

1

lb

( xb

x

)1/3 − Bx (
4
3 , 0) − Bxb (

4
3 , 0)

3gx1/3

)−1

; l ′(x) = l2(x)

l2
b

( xb

x

)1/3

v(x) = exp

⎛
⎝−

x∫
0

k−x1

1−x1

l(x1)

g

dx1

x1

⎞
⎠ ; v′(x)=v(x) exp

⎛
⎝−

x∫
0

k−x1

1−x1

l ′(x1)

g

dx1

x1

⎞
⎠

r(x) = g + l(x); r ′(x) = l ′(x)

t (lb) = xbgub
H

(1 − κ)v(xb)l3
b

−
xb∫

0

r(x)

v(x)
dx

t ′(lb) = − xbgub
H

(1 − κ)v(xb)l3
b

(
3

lb
+ v′(xb)

v(xb)

)
−

xb∫
0

(
r ′(x)

r(x)
− v′(x)

v(x)

)
r(x)

v(x)
dx

The problem here is in the accurate evaluation of the integrals. Euler integration
requires a fine grid if k � 1, but the combination of the Newton–Raphson method and
the Euler integration is nonetheless much faster than the shooting method, especially
if started for the lb of the foetus. Moreover, data indicates that k < 1 is more typical
in practice.

3.5 Special case e → ∞: foetal development

The special case e → ∞, which is approximative for foetal development, makes that
d

dτ
l = g/3, or l(τ ) = gτ/3. We further have
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386 S. A. L. M. Kooijman

d

dτ
u H = (1 − κ)l2(g + l) − ku H

u H (τ ) = g3(1 − κ)

33k4

(
k2τ 2(3k + kτ − 3) + 6(k − 1)(1 − τ − exp(−kτ))

)

The equation u H (τb) = ub
H has to be solved numerically for τb, but for k = 1 we have

ub
H = (1−κ)3−3g3τ 3

b = (1−κ)l3
b , from which τb can be solved easily and be used as

a starting value for the case k �= 1. The solution of this equation is stable and fast; the
resulting scaled length at birth lb = gτb/3 can be used to start the Newton–Raphson
procedure to find lb for an egg. This start is preferable if k is substantially different
from 1. From lb < 1, so τb < 3/g, we can derive the constraint

k2ub
H

1 − κ
< k + g(k − 1) + g3 k − 1

k2

1 − 3/g − exp(−3k/g)

9/2

It can be shown that 1 <
gτb
3lb

< 1 + g
eb

generally holds, see [23]; the range in the
foetus case being restricted to zero (eb → ∞).

For ub
E = uE (τb), the cost for a foetus amounts to

u0
E = ub

E + κl3
b + ub

H +
τb∫

0

(κl3(τ ) + ku H (τ )) dτ = ub
E + l3

b + 3

4

l4
b

g
(20)

where the five terms correspond with the costs of reserve, structure, maturity, somatic
and maturity maintenance, respectively. The second equality follows from the structure
of DEB theory; the investment in maturity plus maturity maintenance equals 1−κ

κ
times

the investment in structure plus somatic maintenance and l(τ ) = gτ/3. The cost of a
foetus as given in Eq. (20) is somewhat smaller than that of an egg as given in Eq. (17),
because development decelerates towards the end of incubation; the structure has to
be maintained over a longer period.

4 Body size scaling relationships

DEB theory implies rules for how the primary parameters of the standard model covary
among species [17,20,34], generally known as body-size scaling relationships where
the variation of parameter values are studied as function of the maximum structural
length of a species, Lm = v̇

gk̇M
[19, p. 94], which is defined as the cubic root of the

maximum structural volume. In the DEB theory this length is a compound parameter,
so a consequence of underlying processes (assimilation, allocation and maintenance),
rather than a basic quantity. This section discusses some of the (compound) parameters
of the standard DEB model as function of the (dimensionless) zoom factor z, which is
the maximum structural length of a species, relative to a reference value. The mainte-
nance rate coefficients k̇ J and k̇M , the energy conductance v̇ and the allocation fraction
κ are independent of the zoom factor. This implies that the energy investment ratio g
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What the egg can tell about its hen: Embryonic development 387

tends to covary inversely to the zoom factor. The scaled maturity at birth U b
H cova-

ries with the squared zoom factor. This is because the (unscaled) maturity at birth
Mb

H = U b
H { J̇E Am} covaries with the cubed zoom factor, and the surface area specific

reserve assimilation rate { J̇E Am} covaries with the zoom factor. The energy investment
ratio g is a compound parameter, which has { J̇E Am} is its denumerator and so covaries
with the inverse zoom factor [19, p. 270].

These variations of parameter values among species determine how functions of
these parameters, such as length and age at birth, and initial amount of reserve covary
with maximum length. Parameter values that quantify metabolic traits are rather pre-
dictable, while life history parameters, such as the maturity at birth, are highly adap-
table (from an evolutionary point of view). Within particular taxa the variation is less,
however. The primary parameter that is in control of length at birth is the maturity at
birth. Previously [18, p. 283] I discussed the logic behind the relatively small egg size
of the (European) cuckoo, as an adaptation to match the incubation time of the eggs of
its much smaller host, and the relatively large eggs of the tube-noses (Procellariformes
to which albatrosses belong) as an adaptation to shorten the time that they are bound to
a particular nesting site. Like the more general classification of birds (and other taxa)
in altricial and precocial ones, variation in the maturity at birth is the key to understand
these patterns in the context of DEB theory, and I am still behind this point of view.
I will now discuss another source of variation of relative egg size, cq length at birth,
that is new and deserves noticing.

Figure 2 shows the scaled initial amount of reserve, and the scaled length and scaled
age at birth as a function of the zoom factor for a large range of 104. If k = 1 and
αb >> Bxb(

4
3 , 0), the initial reserve scales approximately with the zoom factor to the

power 4. The scaled initial reserve u0
E scales, therefore, scales with the zoom factor,

which is confirmed in the figure. If k = 1, the structural volume at birth is proportional
to the maturity at birth, so length at birth scales with the zoom factor, which means that
scaled length is independent of the zoom factor. If k = 1 age at birth, and therefore
also scaled age at birth, scales with the zoom factor [18]. These results are known
for two decades now [18], but now shown for scaled variables to study the effect for
k �= 1.

The scaling is more complex if k �= 1, especially for the length at birth and the initial
reserve; I presented the approximate scaling exponents to comply with the traditional
way to present these types of relationships. It is remarkable that taxa show a wide
scatter in scaling relationships for specially these quantities (as well as the length at
puberty, which is not discussed in this paper). This suggests that taxa might differ in
the maintenance ratio. The increase in the maintenance ratio k goes with an increase
in the relative size at birth for any given value of the zoom factor, but the effect is
bigger for the large-bodied species. Since protein turnover is an important component
of somatic maintenance costs, and activity is typically a minor component, it is not
likely that species differ a lot in the somatic maintenance costs. I expect that the cost
for defence (e.g. the immune system) varies more among species. It is tempting to
speculate about the relatively small egg size of dinosaurs (indicating small maturity
maintenance costs) versus the relatively large size at birth of mammals (indicating
high maturity maintenance costs).
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Fig. 2 The scaled initial reserve (left), length at birth (middle), and age at birth (right) as function of the
zoom factor, log–log plotted (base 10). Each plot has three curves, corresponding to maintenance ratio
k = 0.1 (lower), 0.5 (middle), 1 (upper). Parameters: g = 80/z, ub

H = 0.005, eb = 1. The curves are
approximately allometric with slopes for large zoom factors

Maintenance ratio k 0.1 0.5 1.0

Scaled initial reserve u0
E 0.55 0.83 1.00

Scaled length at birth lb −0.14 −0.04 0.00

Scaled age at birth τb 0.85 0.89 0.93

5 Separation of cells in the two or four-cell stage

Suppose that the cells in the two-cell stage of an embryo are identical in terms of
amounts of maturity, reserve and structure. If the cells are separated, the three amounts
are halved. It is not obvious from the definition of maturity that maturity of the daugh-
ter cells is half of that of the mother, but since the two-cell stage is very early in the
development, so the maturity level is very small, this problem is numerically not impor-
tant. Figure 3 shows the expected results of such an event, which sometimes occurs
spontaneously. The plots for maturity and structural volume are almost identical in
this case because k̇ J /k̇M is very close to 1; the maturity density then remains constant.

The parameter values for Daphnia magna at 20◦C are U b
H = 0.012 d mm2, g =

0.422, k̇ J = 1.70 d−1, k̇M = 1.71 d−1, v̇ = 3.24 mm d−1, which gives a scaled
maturity maintenance rate of k 	 1 and a scaled maturity at birth of ub

H = 0.001 [23].
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Fig. 3 The scaled maturity (left), reserve (middle), and structural volume (right) during embryonic deve-
lopment. Each plot has three curves, corresponding with a reduction of the reserve, structure and maturity
by factor 1, 0.8 and 0.5. Multiplication by 1 represents the “blank” situation. Multiplication by 0.8 at τ = 0
represents a (small) reduction of the initial amount of reserve, and by a factor 0.5 at τ = τb/3 a separa-
tion of cells in the two-cell stage. The age of this stage is here chosen arbitrarily. Parameters: κ = 0.8,
g = 0.422/1.87, k = 0.99415; ub

H = 0.001, eb = 1. The parameter values are chosen such that the twins
cease maturation at birth. (The 0.5-curve in the first graph has tangent zero at τ = τb .) Given the values for
κ , k and ub

H only species with a smaller value for g can successfully separate cells in the two-cell stage

If one would try to separate cells in this species, the theory predicts that the initial
reserve is not enough the cover embryonic development. This result is remarkable
because these parameters imply that a fraction of 0.63 of the initial amount of reserve
is still left at birth at abundant food, see [23]. The explanation is that the mobilisation
of reserve decreases with the reserve density. It might be, of course, that maturity at
birth is affected by cell separation, which can still allow this to occur successfully in
small-bodied species. However, I am unaware of any empirical evidence for this.

The reserve density capacity [Em] = { J̇E Am}/v̇ scales with the zoom factor. So
species with a larger ultimate body size tend to have a relatively larger reserve capacity.
It turned out that for the combination of parameter values as found for D. magna we
have to reduce g be a factor of at least z = 1.87 to arrive at a minimum maximum
body size for which cell separation might be successful. Figure 3 illustrates embryo
development with this reduced value for g, where maturation ceases at birth. Since k
is close to 1, this almost coincides with the condition that growth ceases at birth. This
is a worst case situation because abundant food conditions are used (eb = 1) for the
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maternal effect. Successful cell separation at lower food densities for the mother can
only occur in even larger species (so smaller values for g).

For k > 1, the structural volume at birth increases after halving, and decreases for
k < 1. Since reserve contributes to weight, the weight at birth is close to half of the
original weight at birth, irrespective of the value of k. The age of the two-cell stage is
probably smaller than τb/3, but the results are not sensitive to this choice.

Hart [11] studied the effect of separation of the embryonic cells of the sea urchin
Strongylocentrotus droebachiensis in the two-cell stage on the energetics of larval
development. Both the size and the feeding capacity of the resulting larva were reduced
by about one-half, but the time to metamorphosis is about the same (7 days at 8–13◦C).
The maximum clearance rate of dwarf and normal larvae was found to be the same
function of the ciliated band length. Larvae fed at smaller ration had longer larval
periods, but food ration hardly affected size at metamorphosis. Egg size affected
juvenile test diameter only slightly. These qualitative observations are consistent with
the standard DEB model for k < 1, which results in a reduced size at birth, while
feeding rate is proportional to surface area.

A full treatment of the effect of cell separation on size at birth for foetal development
is beyond the scope of this paper. Ignoring effects of endothermy, a simple application
can illustrate how the theory works in practice. Armadillo’s typically separate cells
in the four-cell stage of the embryo, giving birth to four identical offspring. Humans
rarely do this successfully, then giving birth to four babies of about 1 kg each, rather
than the typical 3 kg. In terms of an effect on length this reduction amounts to a factor
(1/3)1/3 = 0.69. The human growth curve fits the von Bertallanffy curve very well,

with a von Bertalanffy growth rate of ṙB = k̇M g
3(e+g)

= 0.123 a−1 [19, p. 262]. We can
safely assume that the scaled reserve density was close to its maximum e = 1 for the
post-embryonic stages. Moreover, the age at birth is ab = 3lb

gk̇M
= 0.75 a for humans. If

we take a typical maximum adult weight of 70 kg, then the scaled length at birth equals
lb = (3/70)1/3 = 0.35. So the energy investment ratio equals g = lb

abṙB
− 1 = 2.79,

the somatic maintenance rate coefficient k̇M = 3lb
gab

= 0.5 a−1 and the scaled age at

birth τb = abk̇M = 0.375. With these values for g, eb and lb, the scaled cost amounts
to u0

E = 0.062 from Eq. 20. In the case of 4 babies with a reduced length by a factor
0.69, the scaled cost per baby equals u0

E = 0.02, so summed over the 4 babies this is
1.3 times the amount of a single baby; not a surprising result, in view of the 4 kg of
babies relative to the 3 kg for a single baby.

6 Removal of some initial reserve

To simulate effects of caloric restriction of the mother on embryo development, resear-
chers sometimes remove an amount of reserve at the start of the development, e.g.
[7,15,16,27,33]. Figure 3 shows the expected results, namely an elongation of the
incubation time, and a reduction of the reserve at birth. The pattern is rather similar
to that of the separation of cells at an early stage, because reductions of structure and
maturity at an early stage have little effect. Although not very obvious in these plots,
the initial amount of reserve is a U-shaped function of the reserve at birth. The right

123



What the egg can tell about its hen: Embryonic development 391

Fig. 4 The scaled length at birth (left), age at birth (middle), and initial reserve (right) as function of the
scaled reserve at birth for various values of k. The length, age and reserve at lb = eb is also indicated; the
structure is shrinking at birth for smaller values of eb , so smaller values [i.e. left of the (lb = eb)-curve]
hardly have biological meaning. Parameters: κ = 0.8, g = 0.5, ub

H = 0.001

branch is explained by the larger amount of reserve at birth, the left branch by the larger
age at birth, which comes with larger cumulative somatic maintenance requirements.

A reduction of the initial amount of reserve comes with an increase of the age at birth,
see Fig. 4. This has been observed in e.g. the gypsy moth [32]. Crested penguins sport
egg size dimorphy [35]. The standard DEB model correctly predicts that, although
the 1.5 times larger egg is produced some days later, it hatches first, if fertile. Figure
4 shows little variation of (scaled) length at birth for k < 1. The variation is larger,
however, for larger values of ub

H . The size of neonates of trout and salmon, was found
to increase with the initial egg size [6,12], suggesting that k < 1 for samonids. This
also applies to the emu [5], and probably represents a general pattern.

7 Discussion

The standard DEB model implies von Bertalanffy growth curves for post-embryonic
stages at constant food levels. Its three parameters at several (>1) food levels, in
combination with the length at puberty and the maximum reproduction rate (so for
a fully grown adult) at abundant food, determine the values of seven parameters:
allocation fraction κ , energy investment ratio g, maturity maintenance rate coefficient
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k̇ J , somatic maintenance rate coefficient k̇M , energy conductance v̇, scaled maturity at
birth U b

H , scaled maturity at puberty U p
H [23]. I here provided an efficient algorithm to

obtain the scaled initial reserve U 0
E and age at birth ab from six of the seven parameters.

This is remarkable, because no measurements of food intake are required, for instance,
to access the scaled cost of eggs. No advanced data is required for practical application
of the theory.

The significance of this for energetics is that, in combination with the measured
initial mass ME , the scaled initial amount of reserve U 0

E gives access to the surface
area specific maximum assimilation flux { J̇E Am} = M0

E/U 0
E [23]. Knowledge about

this key parameter is essential to make the step from compound to primary DEB para-
meters. In combination with the measured maximum surface area-specific food uptake
rate { J̇X Am}, the digestion efficiency yields, for instance, via yEV = { J̇E Am}/{ J̇X Am}.
This procedure circumvents the problem of accessing the digestion efficiency via the
difference of ingested food and excreted faeces: the gut micro-flora takes its share,
so part of the difference never entered the animal. In combination with the measured
mass at birth, knowledge of U 0

E gives access to the yield of structure on reserve yV E ,
see [23]. These applications of the theory show that the embryo can reveal valuable
information about the juvenile and adult stages, as the title suggests.

The relationship between the initial amount of reserve and budget parameters has
many consequences, and some of them are quite unexpected (at least for me). Some
toxic compounds, for instance, have the effect of increasing the cost of synthesis
of structure, which is a component of the energy investment ratio g. This has the
indirect effect of decreasing the allocation to reproduction, since food uptake increases
with size over the life cycle. However, it also reduces the initial amount of reserve
(by decreasing the amount of structure at birth). This has the overall effect that the
reproduction rate, i.e. the ratio of the reserve allocated to reproduction and the initial
amount of reserve, can increase for increasing concentrations of toxic compound, as
long as these concentrations are low. This seemingly stimulating effect on reproduction
that some toxic compounds can have at low concentrations is well know in practice,
especially in the Daphnia reproduction test, as standardised by the OECD and the ISO
[21,22]. The phenomenon is known as hormesis, but the mechanisms are typically
enigmatic. The present analysis reveals a potential mechanism that needs experimental
verification.

All computations that are discussed in this paper have been included in the freely
down-loadable package DEBtool (Octave and Matlab): http://www.bio.vu.nl/thb/deb/
deblab/debtool. Toolbox animal has functions get_lb, get_ue0 and get_tb
to obtain lb, u0

E and τb from κ , k, ub
H g and eb. Earlier versions of DEBtool used a

shooting method for (UE , L , UH ) (so in three dimensions) to find the scaled cost of
an egg U 0

E . The substantial computational effort of this method slowed down (para-
meter estimation) routines that frequently require the evaluation of reproduction rates.
On the basis of the results mentioned in this paper these DEBtool routines are now
replaced and are both more accurate and orders of magnitude faster, at least for some
combinations of parameter values.
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