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Abstract 
 
The main condition for the normal functioning of the power system is the balance 
between the power production and the power consumption at any moment. The 
increasing amount of power that comes from the renewable sources of energy such as 
wind and sun, and more variable and uncertain power consumption have lead to that 
the imbalances in the power system occur more frequently.  
 
If an imbalance occurs in the operating hour, it will be dealt with by activating the 
balancing power reserves. The activation of the reserves will cause an extra cost to the 
market actors that are responsible for the imbalance. The market actors have also the 
possibility to offer their production capacity to the Balancing power market, and gain 
an extra income if their bids will be activated. That is why having an accurate forecast 
of the balancing power volume and the balancing power price for an operating hour 
could have been an advantage for the market actors in order to reduce their imbalance 
costs and to possible gain an extra income.  
 
In this master thesis the possibility of forecasting the balancing power volume and the 
balancing power price by using the Machine Learning algorithms has been examined. 
The Boosted Decision Tree regression model and the Decision Forest regression 
model provided by the Microsoft Azure Machine Learning Studio have been used to 
obtain the forecast of the balancing power volume and the balancing power price for 
an operating hour in the price area NO3 day ahead and closer to the operating hour.  
 
The results obtained under this work have shown that it is impossible to get an 
accurate forecast of the balancing power volume without using the past values of the 
balancing power volume as one of the predictors, and without taken into consideration 
the influence of the events, which have occurred outside of the NO3, on the activation 
of the balancing power reserves in the NO3. An accurate enough forecast of the 
balancing power volume can be made a couple of hours ahead when using the past 
values of the balancing power volume as an explanatory variable. However, when 
taken into account the situation in the other price areas and forecasting the total 
imbalance in price area NO3, a forecast with a high accuracy can be conducted day 
ahead. The balancing power price can also be forecasted with a good accuracy, but an 
accurate forecast of the balancing power volume is required.  
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Sammendrag 
 
Balansen mellom kraftproduksjonen og kraftforbruket til enhver tid er den viktigste 
forutsetningen for at kraftsystemet skal fungere uten forstyrrelser. Økende mengde av 
kraft som kommer fra fornybare energikilder, og mer variabel og usikker 
strømforbruk har ført til at flere ubalanser oppstår i kraftsystemet. 
 
Ved en ubalanse i driftstimen, vil et behov for aktivering av regulerkraftreserver 
oppstå. Aktivering av reserver vil føre til en ekstra kostnad for markedsaktørene som 
er ansvarlige for ubalansen. Markedsaktørene har også mulighet til å tilby sin 
produksjonskapasitet i Regulerkraftmarkedet, og få en ekstra inntekt dersom deres 
bud vil bli aktivert. Derfor vil en nøyaktig prognose av regulerkraftvolumet og 
regulerkraftprisen i en driftstime være til en fordel for markedsaktørene med tanke på 
å redusere deres ubalansekostnader og å skaffe en ekstra inntekt. 
 
I denne masteroppgaven har muligheten til å forutse regulerkraftvolumet og 
regulerkraftprisen ved hjelp av Machine Learning algoritmer blitt undersøkt. Boosted 
Decision Tree regresjonsmodellen og Decision Forest regresjonsmodellen fra 
Microsoft Azure Machine Learning Studio har blitt brukt til å lage prognosen av 
regulerkraftvolumet og regulerkraftprisen i prisområdet NO3 en dag fremover og 
noen timer før den faktiske driftstimen. 
 
Resultatene som har blitt oppnådd under arbeidet, har vist at det er umulig å skaffe en 
nøyaktig prognose av regulerkraftvolumet for en time uten å ha regulerkraftvolumet 
fra tidligere timer som en av forklaringsvariablene, og uten å ta hensyn til hendelser 
som har skjedd utenfor NO3. En god nok prognose av regulerkraftvolumet kan bli 
skaffet et par timer før den faktiske driftstimen dersom regulerkraftvolumverdiene fra 
tidligere timer er brukt som en av forklaringsvariablene. Imidlertid, ved å ta hensyn til 
situasjonen i de andre prisområdene og å forutse den totale ubalansen i prisområdet 
NO3, kan en nøyaktig prognose for et døgn i forveien, bli skaffet. Regulerkraftprisen 
kan også bli forutsett med en god nøyaktighet, men en nøyaktig prognose for 
regulerkraftvolumet er påkrevd. 

 
 
 
 
 
 



	
   VI	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   VII	
  

 

Acknowledgments 
 
I would like to express my gratitude to my supervisor, Professor Magnus Korpås, for 
his guidance, encouragement and support throughout the work with this master thesis.  
I would also like to thank all of the employees that I have met and worked beside at 
Stakraft. And especially I would like to thank Eirik Mo and Mads Vilhelm Lindsjørn 
at Statkraft for all guidance, interesting discussions and help during the work.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   VIII	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   1	
  

Table of contents 
Abstract	
  ...............................................................................................................................	
  III	
  

Sammendrag	
  .........................................................................................................................	
  V	
  

Acknowledgments	
  .............................................................................................................	
  VII	
  
Table of contents	
  ..................................................................................................................	
  1	
  

List of figures	
  ........................................................................................................................	
  5	
  
List of tables	
  ..........................................................................................................................	
  7	
  

Introduction	
  ..........................................................................................................................	
  9	
  
1.1 Motivation	
  .......................................................................................................................	
  9	
  
1.2 Problem definition	
  .....................................................................................................	
  10	
  
1.3 Literature study	
  ..........................................................................................................	
  11	
  

The Nordic Power Market	
  ..............................................................................................	
  13	
  
2.1 The Nordic Power System	
  ........................................................................................	
  13	
  
2.2 The Nordic Power Market	
  .......................................................................................	
  14	
  
2.3 Congestion management	
  ...........................................................................................	
  16	
  
2.4 Balancing the power system	
  .....................................................................................	
  17	
  
2.5 The Balancing Power Market	
  .................................................................................	
  18	
  
2.4 Pricing of the activated balancing power	
  ..............................................................	
  19	
  
2.6 Special regulation	
  .......................................................................................................	
  21	
  
2.7 Influence factors on the balancing power volumes	
  .............................................	
  22	
  
2.8 Influence factors on the regulating power prices	
  ................................................	
  25	
  

Time series forecasting	
  ....................................................................................................	
  29	
  
3.1 Some basics of time series analysis	
  .........................................................................	
  29	
  
3.2 Type of forecasting method	
  ......................................................................................	
  31	
  

3.2.1 A brief introduction to univariate forecasting methods	
  ...................................................	
  32	
  
3.2.3 Multivariate forecasting methods	
  ...........................................................................................	
  33	
  

3.3 Estimation of forecast error	
  .....................................................................................	
  33	
  
3.4 Use of Machine Learning for time series forecasting	
  .........................................	
  34	
  

3.4.1 Machine learning	
  ..........................................................................................................................	
  34	
  
3.4.2 Types of machine learning problems	
  .....................................................................................	
  35	
  
3.4.3 The Boosted Decision Tree regression	
  .................................................................................	
  37	
  
3.4.4 The Decision Forest regression	
  ...............................................................................................	
  39	
  

Statistical analysis of data	
  ...............................................................................................	
  41	
  
4.1 Statistical analysis of the balancing power volume	
  ............................................	
  41	
  

4.1.1 Improvement and expansion of the correlation analysis	
  .................................................	
  42	
  
4.1.2 Modell description	
  .......................................................................................................................	
  45	
  
4.1.3 Analysis objectives	
  ......................................................................................................................	
  46	
  
4.1.4 Correlation between the set of balancing options and the set of disturbance factors
	
  .......................................................................................................................................................................	
  47	
  
4.1.5 Dependence of the balancing power volumes on the temperature	
  ..............................	
  50	
  
4.1.6 Correlation between the balancing power volume in an hour and the balancing 
power volume in the previous hours	
  .................................................................................................	
  52	
  
4.1.7 Summarizing the results	
  .............................................................................................................	
  52	
  

4.2 Statistical analysis of the balancing power price	
  .................................................	
  55	
  



	
   2	
  

4.2.1 Model description	
  ........................................................................................................................	
  55	
  
4.2.2 Analysis objectives	
  ......................................................................................................................	
  55	
  
4.2.3 Examining daily, weekly and annual variation of the balancing power price	
  .........	
  57	
  
4.2.4 Correlation between the balancing power premium and the balancing power 
volume	
  ........................................................................................................................................................	
  63	
  
4.2.5 Correlation between the balancing power premium and the spot price	
  .....................	
  64	
  
4.2.6 Correlation between the balancing power premium and the slope of the bid curve
	
  .......................................................................................................................................................................	
  65	
  
4.2.7 Correlation between the balancing power premium and the inflow	
  ...........................	
  68	
  
4.2.8 Power premium in an hour and the balancing power premium in the previous 
hours	
  ............................................................................................................................................................	
  71	
  
4.2.9 Summarizing the results	
  .............................................................................................................	
  74	
  

Forecasting model for the balancing power volume and price	
  ...............................	
  77	
  
5.1 Model objectives	
  .........................................................................................................	
  77	
  
5.2 The choice of the method for the balancing power volume and the balancing 
power premium forecast.	
  ................................................................................................	
  78	
  
5.3 The choice of the regression model for the balancing power volume and the 
balancing power premium forecast.	
  .............................................................................	
  79	
  
5.4 Choice of predictors	
  ...................................................................................................	
  80	
  

5.4.1 Predictors for the balancing power volume	
  .........................................................................	
  80	
  
5.4.2 Predictors for the balancing power price	
  ..............................................................................	
  82	
  
5.4.3 Variable transformation	
  .............................................................................................................	
  82	
  
5.4.4 Final set of predictors	
  .................................................................................................................	
  84	
  
5.4.5 Missing values	
  ...............................................................................................................................	
  85	
  

5.5 Hyper Parameter Optimization	
  ..............................................................................	
  85	
  
5.6 Forecasting the balancing power volume	
  .............................................................	
  86	
  

5.6.1 Constructing the experiment for the balancing power volume forecast	
  ....................	
  86	
  
5.6.2 Forecasting the balancing power volume without considering the past values of the 
balancing power volume	
  .......................................................................................................................	
  87	
  
5.6.3 Forecasting the balancing power volume while considering the past values of the 
balancing power volume	
  .......................................................................................................................	
  90	
  
5.6.4 Forecasting the total imbalance in the NO3 by using the set of the predictors	
  .......	
  95	
  
5.6.5 The influence of the past values of the total imbalance on the forecast’s quality	
  100	
  

5.7 Forecasting the balancing power price	
  ................................................................	
  105	
  
5.7.1 Constructing the experiment for the balancing power premium forecast	
  ..............	
  105	
  
5.7.2. The choice of the form of forecasting the balancing power premium	
  ...................	
  107	
  
5.7.3 Forecasting the balancing power premium using the balancing power volume as 
one of the predictors	
  ............................................................................................................................	
  110	
  
5.7.4 Forecasting the balancing power premium without the balancing power volume in 
the set of the predictors	
  ......................................................................................................................	
  115	
  

Discussion	
  .........................................................................................................................	
  123	
  
Conclusion	
  ........................................................................................................................	
  127	
  

Further work	
  ...................................................................................................................	
  129	
  

Bibliography	
  ....................................................................................................................	
  131	
  
Appendix A	
  ......................................................................................................................	
  135	
  

Appendix B	
  .......................................................................................................................	
  139	
  
Appendix C	
  ......................................................................................................................	
  141	
  

Appendix D	
  ......................................................................................................................	
  143	
  



	
   3	
  

Appendix E	
  .......................................................................................................................	
  144	
  

Appendix F	
  .......................................................................................................................	
  146	
  
Appendix G	
  ......................................................................................................................	
  147	
  

Appendix H	
  ......................................................................................................................	
  149	
  
Appendix I	
  ........................................................................................................................	
  151	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
	
  
	
  
	
  



	
   4	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

 

 
	
  
	
  
	
  



	
   5	
  

List of figures 
Figure 2.1. Power market structure in Norway.	
  ......................................................................	
  16	
  
Figure 2.2. Market splitting. (T.Kristiansen, 2004)	
  ................................................................	
  17	
  
Figure 3.1. Developing a forecasting model.	
  ............................................................................	
  29	
  
Figure 3.2. Patterns of the time series.	
  ........................................................................................	
  31	
  
Figure 3.3. Algorithm cheat sheet. (Microsoft Azure A, 2016)	
  .........................................	
  36	
  
Figure 3.4. Decision tree structure.	
  ..............................................................................................	
  38	
  
Figure 4.1. Daily, weekly and annual variation of the balancing power volume.	
  ........	
  44	
  
Figure 4.2. Scatter plot of a set of balancing options versus a set of balance 

disturbance factors.	
  ..................................................................................................................	
  49	
  
Figure 4.3. Sensitivity of the correlation between the LHS and the RHS of the 

equation 4.6 to the temperature deviation.	
  .......................................................................	
  51	
  
Figure 4.4.  Scatter plot of the balancing power volume in an hour versus the  

balancing power volume in the previous hours.	
  ............................................................	
  54	
  
Figure 4.5. Matrix for testing the daily variation of the balancing power premium.	
  ..	
  57	
  
Figure 4.6. Matrix for testing the weekly variation of the balancing power premium.

	
  ........................................................................................................................................................	
  58	
  
Figure 4.7. Matrix for testing the annual variation of the balancing power premium.	
  58	
  
Figure 4.8. Daily variation of the balancing power premium.	
  ............................................	
  60	
  
Figure 4.9. Weekly variation of the balancing power premium.	
  .......................................	
  61	
  
Figure 4.10. Annual variation of the balancing power premium.	
  ......................................	
  62	
  
Figure 4.11. Scatter plot of the balancing power premium versus thebalancing power 

volume.	
  ........................................................................................................................................	
  63	
  
Figure 4.12. Scatter plot for the balancing power premium versus the spot price.	
  .....	
  65	
  
Figure 4.13. The Elspot bid curve.	
  ...............................................................................................	
  67	
  
Figure 4.14. Scatter plot of the balancing power premium versus the slope of the.	
  ...	
  68	
  
Figure 4.15. Scatter plot of the balancing power premium versus inflow.	
  .....................	
  70	
  
Figure 4.16. Scatter plot of the balancing power premium in an hour versus the 

balancing power premium in the previous hours.	
  .........................................................	
  73	
  
Figure 5.1. Structure of the power market.	
  ...............................................................................	
  81	
  
Figure 5.2. Transformation to the polar coordinates.	
  ............................................................	
  83	
  
Figure 5.3. The variables before the transformation.	
  .............................................................	
  84	
  
Figure 5.4. Structure of the experiment.	
  ....................................................................................	
  87	
  
Figure 5.5. Scatter plot of the actual values of the balancing power volume versus the 

forecasted ones.	
  ........................................................................................................................	
  89	
  
Figure 5.6. Forecast of the balancing power volume for a week.	
  ......................................	
  89	
  
Figure 5.7. Forecast of the balancing power volume for a week with the balancing 

power volume from t-1 in the set of the predictors.	
  .....................................................	
  93	
  
Figure 5.8. Forecast of the balancing power volume for a week with the balancing 

power volume from t-2 in the set of the predictors.	
  .....................................................	
  94	
  
Figure 5.10. Scatter plot for the actual versus the forecasted values of the balancing 

power volume.	
  ...........................................................................................................................	
  97	
  
Figure 5.11. Forecast of the balancing power volume for a week.	
  ...................................	
  98	
  
Figure 5.12. Forecast of the total imbalance for a week with the total imbalance from 

t-1 in the set of the predictors.	
  ...........................................................................................	
  102	
  
Figure 5.13. Forecast of the total imbalance for a week with the total imbalance from 

t-2 in the set of the predictors.	
  ...........................................................................................	
  103	
  
Figure 5.14. Structure of the experiment.	
  ................................................................................	
  107	
  
Figure 5.15. Linear approximation.	
  ...........................................................................................	
  109	
  



	
   6	
  

Figure 5.16. Forecast of the balancing power premium for a week.	
  ..............................	
  112	
  
Figure 5.17. Forecast of the balancing power premium for a week when using the 

actual balancing power volume.	
  ........................................................................................	
  113	
  
Table 5.23. Sensitivity of the result when using the actual balancing power volume.

	
  ......................................................................................................................................................	
  114	
  
Figure 5.18. Forecast of the balancing power premium for a week with the balancing 

power premium from t-1 in the set of the predictors.	
  ................................................	
  117	
  
Figure 5.19. Forecast of the balancing power premium for a week with the balancing 

power premium from t-2 in the set of the predictors.	
  ................................................	
  118	
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   7	
  

List of tables 
Table 2.1. Annual production per production type of the year 2015 for each of the 

Nordic countries.	
  ......................................................................................................................	
  13	
  
Table 2.2 Pricing the deviation between the Elspot/Elbas obligation and actual power 

production or power consumption. (Bye et al, 2010)	
  ..................................................	
  21	
  
Table 2.3. The Elbas market.	
  .........................................................................................................	
  25	
  
Table 4.1. Results of the correlation test	
  ...................................................................................	
  49	
  
Table 4.2. Results of the correlation test	
  ...................................................................................	
  52	
  
Table 4.3. Results of the correlation analysis.	
  .........................................................................	
  63	
  
Table 4.4. Results of the correlation analysis.	
  .........................................................................	
  64	
  
Table 4.5. Results of the correlation analysis.	
  .........................................................................	
  67	
  
Table 4.6. Correlation between the balancing power premium and the inflow.	
  ..........	
  69	
  
Table 4.7. Results of the correlation analysis.	
  .........................................................................	
  71	
  
Table 4.8. Summarized results.	
  .....................................................................................................	
  74	
  
Table 5.1. The set of predictors.	
  ...................................................................................................	
  84	
  
Table 5.2. Parameter settings for the Boosted Decision Tree regression model.	
  ........	
  88	
  
Table 5.3. Parameter settings for the Decision Forest regression model.	
  .....................	
  88	
  
Table 5.4. Forecast error.	
  ...............................................................................................................	
  90	
  
Table 5.5. Forecast error for the Decision Forest regression model.	
  .............................	
  92	
  
Table 5.6. Forecast error for the Boosted Decision Tree regression model.	
  ................	
  93	
  
Table 5.7. Sensitivity of the forecast error when having the balancing power volume 

from t-1 as a predictor.	
  ..........................................................................................................	
  94	
  
Table 5.8. Sensitivity of the forecast error when having the balancing power volume 

from t-2 as a predictor.	
  ..........................................................................................................	
  95	
  
Table 5.9. Parameter settings for the Boosted Decision Tree regression model.	
  ........	
  97	
  
Table 5.10. Parameter settings for the Decision Forest regression model.	
  ...................	
  97	
  
Table 5.11. Forecast error.	
  ............................................................................................................	
  99	
  
Table 5.12. Sensitivity of the results to the different predictors.	
  .....................................	
  100	
  
Table 5.13. Sensitivity of the forecast error when having the balancing power volume 

from t-1 as a predictor.	
  ........................................................................................................	
  101	
  
Table 5.14. Sensitivity of the forecast error when having the balancing power volume 

from t-2 as a predictor.	
  ........................................................................................................	
  102	
  
Table 5.15. Sensitivity of the forecast error when having the balancing power volume 

from t-1 as a predictor.	
  ........................................................................................................	
  104	
  
Table 5.16. Sensitivity of the forecast error when having the balancing power volume 

from t-2 as a predictor.	
  ........................................................................................................	
  104	
  
Table 5.17. Sensitivity of the forecast error when having the balancing power volume 

from t-3 as a predictor.	
  ........................................................................................................	
  105	
  
Table 5.18. The results of the examination.	
  ............................................................................	
  108	
  
Table 5.19. Parameter settings for the Boosted Decision Tree regression model.	
  ...	
  110	
  
Table 5.21. Forecast error.	
  ..........................................................................................................	
  112	
  
Table 5.22. Forecast error when using the actual balancing power volume.	
  .............	
  113	
  
Table 5.24. Forecast error for the Decision Forest regression model.	
  .........................	
  116	
  
Table 5.25. Forecast error for the Boosted Decision Tree regression model.	
  ............	
  116	
  
Table 5.26. Sensitivity of the forecast error when having the balancing power 

premium from t-1 as a predictor.	
  ......................................................................................	
  119	
  
Table 5.27. Sensitivity of the forecast error when having the balancing power 

premium from t-2 as a predictor.	
  ......................................................................................	
  120	
  



	
   8	
  

Table 5.28. Sensitivity of the forecast error when having the balancing power 
premium from t-3 as a predictor.	
  ......................................................................................	
  120	
  

Table 5.29. Sensitivity of the forecast error when having the balancing power 
premium from t-4 as a predictor.	
  ......................................................................................	
  121	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   9	
  

Chapter 1 

Introduction 
 

1.1 Motivation 
In 2007 EU legislated a so-called 20-20-20 target, which implies a 20% reduction of 
greenhouse gas emissions, 20% reduction of the power consumption and a 20% 
increase of the use of energy from the renewable sources.  
 
The national targets of increasing the share of renewable energy vary for the different 
countries. In Norway, Sweden, Denmark and Finland the share of the renewable 
energy in each of the countries gross final energy consumption should be, 
respectively, 67.5%, 49%, 30% and 28% by 2020. (European Commission, 2016) 
Figure 1.1 shows the expected installed electricity production capacity from the 
different energy sources in some European countries in 2020. As it can be seen from 
the figure the electricity production capacity from the renewable energy sources will 
increase in many countries considerably.  
 

Figure 1.1. Expected installed production capacity in European countries in 2020.    
(Statnett, 2014) 
 

Most of the power production from the renewable sources is variable and 
uncontrollable. This increases the value and the demand for the power production that 
is suitable for up- and down-regulation in the power system.  
 
At the same time the power consumption has become more variable and uncertain due 
to a different reasons, such as implementation of measurers for improving energy 
efficiency of the buildings, integration of new technologies (electrical cars and solar 
panels) in daily life, and the climate change. More variable power production and 
consumption will lead to a greater need to balance the power system. 
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Activation of the balancing power reserves imposes an extra cost on those who is 
responsible for the imbalances in the power. Nevertheless, the power producers have 
a possibility to gain income when providing the balancing power reserves to the 
balancing power marked for up- or down-regulation. Since more frequently 
imbalances in the power system can both bring an extra expense and an extra income 
to the power producers, it is useful to know in advance about, if and when, the 
balancing power reserves will be activated and for which price. Knowing this, the 
power producers can decide how they will handle their imbalances and if it is 
beneficial for them to offer any production capacity to the balancing power marked.  
 

1.2 Problem definition  
Statkraft has a leading position in Europe when it comes to the power production 
from the renewable sources of energy. The core activity of Statkraft is mainly 
hydropower production and wind power production. The company has a big share of 
the controllable hydropower production, some uncontrollable hydropower production 
and some wind power production. The company has also plans to build out 1000 MW 
of wind power in Trøndelag (in price area NO3) in the upcoming years.   
 
With increasing amount of wind power production in Statkraft’s production portfolio, 
the company’s expenses related to causing the imbalances in the power system will 
increase. This is one of the reasons why the Balancing power market has become 
increasingly more interesting for the company. The big share of the hydropower 
production in the company’s production portfolio, gives Statkraft a high flexibility 
and a production that is suitable for a quick up- and down-regulation, which the 
company wishes to utilize on the most cost-efficient way.  
 
In order to reduce the cost associated with causing the imbalances in the power 
system and the possibility of gaining an extra income from trading in the Balancing 
power market, having a robust forecast for the balancing power volume and the 
balancing power volume is an advantage. That is why Statkraft has an interest of 
investigating the possibility of obtaining an accurate forecast of the balancing power 
volume and the balancing power price.  
 
The aim of this master thesis is to examine the possibility of making forecasts for the 
balancing power volume and the balancing power price by using a set of input 
factors/variables. Following subtasks are included: 

1. Conduct a statistical analysis of the balancing power volume and the balancing 
power price. Investigate the relationship between the balancing power volume 
and the factors that influence the balance in the power system.  

2. Conduct a statistical analysis of the balancing power price. Investigate the 
relationship between the balancing power price and the factors that can have 
an influence on it.  
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3. After identifying the factors that can indicate an up- or a down-regulation in 
the power system and the factors that affects the balancing power price, make 
a forecast of the balancing power volume and the balancing power price for 
the price area NO3 by using algorithms provided by the Microsoft Azure 
Machine Learning Studio and the factors mentioned above as a model input.  

4. Evaluate and discuss the results. 
 
 

1.3 Literature study 
Before starting the work with the developing of the forecasting model for the 
balancing power volume and the balancing power price, the literature concerning the 
topics about forecasting the balancing power volume and the balancing power prices 
has been studied in order to get an overview of it. 
 
All existing models can by distinguished between the models, which model the 
regulation states first and uses it as an input variable to forecast the regulating prices 
and the models that do not take into account the regulating volume forecasting the 
regulating prices.  
 
Klæboe, Eriksrud & Fleten (2015) have formulated five different forecasting models 
in order to examine the possibility of forecasting the balancing power price 
(premium), which are based on the models that have earlier been developed by 
Jaehnert, Farahmand & Doorman (2009), Olsson and Soder (2008), Boomsma, Juul & 
Fleten (2014) and Conejo et al (2005).  
 
Jaehnert, Farahmand & Doorman (2009) have developed a price-forecasting model 
that consists of a short-term model based and a long-term model. The short-term 
model determines the regulation state and the volume by using the SARIMA process. 
Further he uses statistical description of the regulating power volumes as an input 
variable into the long-term model where the linear relationship between the regulating 
volumes and the regulating prices is utilized to generate future price scenarios.  
 
Olsson and Soder (2008) used the Markov model to determine the regulation state and 
the SARIMA process for forecasting the Regulating power market premium for either 
an up- or a down-regulation depending on the forecasted state.  
 
Boomsma, Juul & Fleten (2014) have developed a model that predicts the regulating 
prices without taken into account the expected state of regulation. Boomsma, Juul & 
Fleten (2014) use in their forecasts an autoregressive time series and an external input 
in form of the spot prices.  
 
Gro Klæboe et al. (2015) have concluded their work with that the balancing power 
volume and the balancing power premium in the Balancing power market are random.  
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However, they have pointed out that even though the models formulated in the work, 
it have not managed to forecast the balancing power premium precisely. It does not 
mean that the Balancing power market forecasting is futile, and that the models that 
take into consideration the expected regulation state, give a far better explanation of 
the future balancing power volume and the future balancing power premium, than the 
models without the balancing state information.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



	
   13	
  

Chapter 2 

The Nordic Power Market 
 

2.1 The Nordic Power System 
The power systems of Norway, Sweden, Finland and Denmark, except Jylland, create 
one synchronised Nordic Power System. Jylland is synchronised with the continent 
and is connected to the Nordic Power system via connections with Norway, Sweden 
and East Denmark. (Statnett, 2014) 
 
The Nordic Power System can be defined as a hydrothermal power system, where 
share of hydropower production in the annual Nordic power production is 61%, share 
of thermal production is 30% and the remaining 10% is wind power production.  
 
The Norwegian power production is dominated by hydropower, covering 96% of the 
annual power production in Norway. In Sweden, hydropower production make up 
around 52% and thermal power production constitutes about 39% of the annual 
Swedish power production.  The Finish power production is dominated by thermal 
power, at 69%, the remaining 31% is divided between hydropower production, at 
24%, and other types of production. Due to environmental policy, feed-in tariffs and 
investment incentives that makes it possible for expansion of power production from 
renewable sources of energy, the Danish power system, in contrast to the other Nordic 
countries, has a high share of wind power production, which is at 49%. The remaining 
production is covered by thermal power.  
 
The annual production of 2015 per production type for each of the different Nordic 
countries is represented in the table 2.1. The information in this table is conducted 
from the ENTSO-E Transparency Platform.  
 
 
 
Type of 
production 

Actual production per production type 
per country [TWh] 

Total production per 
production type 
[TWh] Norway Sweden Denmark Finland 

Hydro  132.5 70.6 0.02 15.5 218.62 
Nuclear - 47.3 - 22.2 69.5 
Other thermal 2.9 5.5 13.7 22.1 36.5 
Wind 2.3 13.4 13.6 2.1 31.4 
Other  0.3 - 0.7 2.1 3.1 

Table 2.1. Annual production per production type of the year 2015 for each of the 
Nordic countries. 
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From table 2.1 one sees that the Nordic power system is dominated by the 
hydropower production that gives high production flexibility in combination with 
relatively low costs. It gives the possibility to store water in the reservoirs over the 
days and seasons, which enables them to produce the power when the price is high. 
The decision of the producers to produce or not will depend on the demands for 
electricity and current, and the expected reservoir levels. In the power system where 
the share of the uncontrollable production from renewable sources of energy, such as 
wind and solar, steady increases, the role of the hydropower production is crucial 
when it comes to the quick adjustment of the production in order to cover the 
electricity demand and to keep balance in the system.  
 

2.2 The Nordic Power Market 
The Nord Pool Spot is the Nordic market place where trade of physical contracts for 
electricity delivery takes place, owned by the Nordic and Baltic TSOs. The Nord Pool 
Spot runs Elspot Market, Elbas Market and N2EX Market and offers both the day-
ahead and intraday trading to the customers. The N2EX Market applies to the UK, 
and is therefore not discussed in this paper. Power producer, Transmission System 
Operators (TSOs), power intensive industries, large consumers and power companies 
actively participates in the power markets and are defined as power market actors.   
 
Elspot is a day-ahead market where the market actors enter into contracts for physical 
delivery of power for the next day. Within 12 a.m. the day before the actual delivery, 
market actors submit their bids to the market where they provide information about 
amount of how much power and at which price that they are willing to sell/purchase 
for, at each hour of the following day. At the market clearing the spot price for each 
price area will be determined based on the electricity demand and the electricity 
supply and transmission capacities between the areas. In addition, the system price 
will be calculated under the assumption that there are not any limitations in the 
transmission capacity between the price areas. The system price is used as a reference 
for trading in the Financial market. 
 
Between the clearing of the Elspot and the actual delivery of the power, the 
consumption and the production can change so that an imbalance in the power system 
occurs. In order to adjust the imbalance, the market actors can take an advantage of 
using the Elbas market.  
 
Elbas market is an intraday market in Norway, Sweden, Denmark, Finland, Germany, 
Latvia, Lithuania, Estonia, the Netherlands, the UK and Belgium where power 
producers and power consumers continually can adjust their imbalances up to one 
hour before the actual power delivery. As trading in the Elbas is continually, no 
clearing price will be establish meaning that trading in the Elbas works in the same 
way as any sales or purchases in a regular stock market. (Bye et al, 2010) 
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The TSOs have the responsibility for adjusting the imbalances in the power system 
that occurs in the operating hour. To obtain the reserves that are required in order to 
balance the system, the TSOs have established several markets including the 
Balancing power market and the Balancing power option market. 
 
Participation in the Balancing power market is voluntary making it in some periods 
important for the TSOs to ensure sufficient reserves in the Balancing power market. 
The TSOs in the aforementioned countries have different ways to obtain necessary 
reserves. The Norwegian system operator, Statnett, uses the Balancing power option 
market in order to ensure enough reserves for the up-regulation in the Norwegian part 
of the Balancing power market in a certain period of time, mainly during the winter 
months. Statnett assesses the need for the reserves on the basis of the current energy 
situation, forecasts for consumption, production, potential bottlenecks and power 
exchanges with foreign countries. This is the reason why Statnett enters into contracts 
with power producers and consumers as a guarantee of their participation in the 
Balancing power market in a certain time period. (Statnett, 2013) Suppliers of the 
reserves get paid a certain price for providing  the reserves in the disposal of Statnett, 
in addition to the price determined in the Balancing power market for the amount of 
energy that eventually may be used. The capacity that is accepted in the Balancing 
power option market can because of this no longer be offered in the Elspot.  
 
Market participants uses the Financial market at Nasdaq OMX for risk hedging and 
risk management where they have the possibility to trade financial products 
(contracts) for up to six years in the future. The contracts entered in this market does 
not imply the physical delivery of power, meaning that any technical limitations in the 
power grid is not taken into consideration during the trading. The following financial 
products can be purchased in the market: Futures, Forwards, Electricity Price Area 
Differentials (EPAD) and options. (Olje- og energidepartementet, 2014) 
 
Futures and Forwards are contracts that hedge the difference between the contract 
prices and the variations in the system price compared to the settled amount of power 
for a certain period of time. Futures can be settled in both the trading and the delivery 
period, while the settlement of the Forwards occurs only in the delivery period. 
Electricity Price Area Differentials are Forwards contracts, which provide the 
opportunity to hedge either the difference between the system price and area prices or 
spatial differences between area prices. (Wangensteen, 2012) Options sold at 
NASDAQ OMX are European options conferring rights to purchase or sell Forwards 
in the future for an agreed price. (Olje- og energidepartementet, 2014) 
 
The figure 2.1 below shows the structure and the functioning of the Norwegian power 
market. 
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Figure 2.1. Power market structure in Norway. 
 

 

2.3 Congestion management 
The Nordic region is divided into 12 price areas that reflect the presence of physical 
limitations in the transmission capacity in the transmission grid. In order to achieve a 
secure operation of the power grid and to make use of the power resources on the 
most cost efficient way, the transmission capacity limitations between areas have to 
be taken into consideration at the power market clearing. This will result into different 
prices in different areas. 
Congestion occurs if the market efficient power flow exceeds transmission capacity 
between the price areas. There are many different ways that the TSOs can use, in 
order to manage congestion between the areas.  The Nordic TSOs use the market 
splitting to handle the bottlenecks. This method is based on splitting the power 
exchange into geographical areas that have a limited exchange capacity. Nord Pool 
Spot performs the market splitting. First the market price or the system price is found 
by calculating the supply and demand in the power exchange. Then the TSO will 
calculate the necessary power flow and determine bottlenecks in the system.  If the 
bottlenecks are identified between the areas, a new spot price for each area will be 
calculated. (Wangensteen, 2012)     
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Figure 2.2. Market splitting. (T.Kristiansen, 2004) 
 
 
The figure 2.2 shows an example of using the market splitting for two areas with 
insufficient exchange capacity. Area A is a surplus area and area B is a deficit area, 
which means the surplus power can be exported from area A to area B. This flow will 
lead to a decreased power price in area B and an increased power price in area A, and, 
if there are no limitations in exchange capacity between area A and B, the power price 
in both areas will be equal to the system price. With a limited exchange capacity the 
areas will still have two different prices: area A will have a lower price than area B.  
 
 

2.4 Balancing the power system 
The TSOs have the responsibility for keeping balance in the power system and 
restoring it, in case of which an unexpected event occurs. As mentioned before the 
market participants have the possibility to adjust their imbalances by trading in the 
Elbas, up to one hour before the actual power delivery. The immediate changes in the 
operating hour will be handled by the TSO. In this chapter the control mechanisms for 
balancing the power system used by the Norwegian TSO, Statnett, will be described.  
 
Statnett has three levels of control reserves: 

1. Primary or Frequency Containment Reserves that are used in order to deal 
with the system imbalances instantly by automatic activation of the 
production.  

2. Secondary or Automatic Frequency Restoration Reserves that are used to deal 
with the imbalances and bring the system frequency closer to the nominal 
value. Activation of the Secondary Reserves also releases the Primary reserves 
so that it can handle the new imbalances. 
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3. Tertiary Reserves or the Balancing Power Market is used for the release of the 
Primary and Secondary Reserves and for dealing with the regional 
bottlenecks.  

4.  
From the figure 2.3 that shows the principles for the activation of the reserves, one 
sees that if an imbalance occurs in the operating hour, Statnett will begin to activate 
its balancing reserves in order to restore the nominal frequency in the system. First the 
Primary reserves activate automatically and run up to two minutes before the 
Secondary reserves will be activated. After about 15 minutes with an imbalance in the 
system, Statnett will manually start to activate its Tertiary Reserves, so that the 
Secondary Reserves will be released.  
 

 
Figure 2.3. Principles for the activation of the reserves. (Bye et al, 2010) 

 

2.5 The Balancing Power Market 
The Balancing power market is a physical power market that is used by the Nordic 
TSOs to ensure frequency stability in the power system and balance between the 
power production and the power consumption in the operating hour. The Norwegian 
TSO, Statnett and the other Nordic TSOs drive this market, which are Svenska 
Kraftnät in Sweden, Energinet in Denmark and Fingrid in Finland. 
 
The Balancing power market opens for submission of the balancing power bids for 
the next day at 1 p.m. the day before. At this moment the power producers get to 
know which one of their bids that got excepted in the day-ahead market and the spot 
price in the different price areas, so they can assess whether or not they have any 
production to offer in the Balancing power market. Only the producers that can adjust 
their production within 15 minutes notice, and large power consumers that can reduce 
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their consumption at a short times notice can participate in this market. (Statnett, 
2015) 
 
Market participants submit their reserves for both up- and down-regulation separately. 
In the bids, they specify how much power and at which price it is offered for 
regulation in each hour of the following day. Preliminary bids have to be submitted 
before 9:30 p.m. the same day. Market participants can also change their bids or 
submit more bids, but no later than 45 minutes before the operating hour. (Statnett, 
2015) All submitted bids gathers into a common list in the price merit order so that 
the TSOs can exchange their balancing reserves between each other.  
 
The bids for an up- or down-regulation will be activated in the case of an imbalance 
in the power system that varies longer then 15 minutes. If the actual consumption is 
greater than the power production in the operating hour, a need for an up-regulation in 
the system will occur. Which means that the power producers will have to increase 
their production or the power consumers will have to decrease their consumption. If 
the actual power consumption is less than the power production in the operating hour, 
the system has to be down regulated, by decreasing the production. In principle, the 
consumption can also be decreased, but this is hardly relevant. 
 
The balancing power volumes and prices will be announced at the end of the 
operating hour. In case the direction of the regulation changes in the same operating 
hour, the dominating direction will be determined based on the net regulated volume 
in the operating hour. In hours when no regulation occurs the balancing power 
volumes will be set to zero. 
 

 

2.4 Pricing of the activated balancing power  
Before offering reserves in the Balancing power market the market participants 
evaluates possible start and stop costs, maintenance costs etc. that can incur if their 
bids will be activated. The power consumers consider the costs that can be caused by 
the reduction of the consumption. The reduction of the consumption at a short notice 
is very expensive, so the TSOs use the consumption side for up-regulation only under 
certain conditions. (Bye et al, 2010)  
 
If regulation is needed, the TSOs start to activate bid after bid in the Balancing Power 
Market. The last activated bid in the operating hour will determine the price of the 
balancing power in this hour. In the hour when an up-regulation takes place, the most 
expensive bid that has been activated will determine the balancing power price in this 
hour. In the hour with a down-regulation the cheapest activated bid will determine the 
price of the regulation.   
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The balancing power price under an up-regulation is usually equal or higher than the 
spot price in a price area, and it is equal or lower than the spot price in a price area 
under a down-regulation. The reason for this is that for an up-regulation, the power 
producers offer production, which has not been accepted in the Elspot, i.e. production 
with higher marginal cost than the spot price in a price area. So the price-determining 
unit in the Elspot market is the cheapest unit in the Balancing power market if an up-
regulation occurs, in the power system. For a down-regulation, the power producers 
offer production units that are already in use, i.e. the units that have been accepted in 
the Elspot market. So the price-determining unit in the Elspot is the most expensive 
unit in the Balancing Power market under a down-regulation of the power system. It 
is cost efficient to reduce the production of the Elspot’s price-determining unit first. 
The balancing power price for each price area is determined at the end of each hour. 
In hours when no regulation takes place, the balancing power price is equal to the spot 
price of a price area. (Statnett, 2015) 
 
The market actors that have caused an imbalance will pay for the balancing reserves 
that have been activated, in order to restore balance in the power system. The 
Norwegian TSO, Statnett, uses two different strategies when charging producers and 
consumers for their imbalances.  
 
The table 2.2 shows how the power consumers and producers will be priced for 
causing imbalances in the power system. The power consumers will be charged with a 
one-price system, which means that they will always pay or get paid the balancing 
power price.   
 
Statnett uses a two-price system in order to price imbalances from the power 
producers, so that any deviation in the power production in the opposite direction to 
the regulation direction will be penalized. If the power production exceeds the amount 
of power, which has been determined in the Elspot or Elbas market, and there is a 
need for an up-regulation in the system, the power producer will be paid the spot price 
for their surplus power. If the power producers produce less, they will have to pay the 
balancing power price in order to cover their imbalance.  
 
It there is a need for a down-regulation in the system and the producers produce more 
power than they are supposed to, they will get paid the balancing power price. While 
producers that produce less will have to pay the spot price. Such system gives the 
power producers an initiative to remain in the balance. (Statnett, 2015)  
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                                   System 
Actor 

Deficit – up-regulation Surplus – down-regulation 

Produces too much Will be paid the spot price Will be paid the balancing power 
price 

Produces too little Will be charged the balancing 
power price 

Will be charged the balancing 
power price 

Consumes too much  Will be charged the balancing 
power price 

Will be charged the balancing 
power price 

Consumes too little  Will be paid the balancing power 
price 

Will be paid the balancing power 
price 

Table 2.2 Pricing the deviation between the Elspot/Elbas obligation and actual power 
production or power consumption. (Bye et al, 2010) 
 

 

2.6 Special regulation 
The limitations in the transmission capacity in the central and regional grid, internal 
bottlenecks in a price area or fault situations, will be taken care of with by using the 
special regulation.  Under the special regulation, Statnett activates bids from the 
common balancing power list. However, number of bids that can be used will be 
reduced due to limitations in the transmission capacity, so that Statnett will not 
always be able to activate the bids according to the price order. Statnett will cover the 
additional cost associated with the activation of bids outside of the price order under 
the special regulation, i.e. the price difference between bids which are denoted as 
special regulation and the current balancing power price in the operating hour. The 
market actors responsible for the imbalance in the system will be charged the 
remaining costs of the bid activation. (NVE, 2014) 
 
The limitations in the transmission capacity between the price areas will be 
determined in the Elspot market, while internal bottlenecks in a price area will be 
handle under the special regulation. However, in some cases up- or down-regulation 
in a price area will be used as a special regulation: 

-­‐ When power production in a price area exceeds the export’s transmission 
capacity from this area, down-regulation in the area will be replaced with the 
special regulation.  

-­‐ When power consumption in a price area exceeds the import’s transmission 
capacity to this area, up-regulation in the area will be replaced with the special 
regulation. 

In both cases the bottlenecks between the price areas will cause different balancing 
power prices in these areas.   
 
The equal spot prices in each different price area indicate the availability of the 
transmission capacity between them. So that if there is any need for a regulation in 
one of the areas, Statnett can activate the balancing power bids in the price order and 
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the regulation can take place in the price area with imbalances, as well as in any other 
price area. (NVE, 2104) 
 

2.7 Influence factors on the balancing power volumes  
One of the fundamentals of the power system is that the power production has to be 
equal to the power consumption at any time. Both the power production and the 
power consumption will be determined one day before the actual delivery. The actual 
situation in the operating hour may differ from what was planed a day earlier, due to 
different reasons, so that the TSO will need to activate its balancing power reserves in 
order to restore the balance in the power system. Some suggestions for reasons or 
factors that can influence the power system balance are listed below: 
 
Power consumption 
Various power consumers have different load patterns that vary within a year, during 
a week and over the course of a day or night. In recent years the power consumption 
has been more variable and more difficult to predict. There are numerous reasons 
why. 
 
In countries where electricity primarily is used for space heating, power consumption 
strongly depends on the outside temperature. Climate change has led to milder winters 
in the Nordic region and thus lower power consumption at wintertime compared to 
earlier years.  
 
Power consumption in buildings and households has also been influenced in recent 
years, by implementation of energy efficiency measures. This has resulted that less 
electricity is required for space heating in the winter season and more electricity is 
required for space cooling in the summer season compared to how it was before.  
Another difficulty with power consumption is that there is a delayed response from 
the consumption side on the temperature change. Which means that if the temperature 
increases or decreases by a few degrees, it will take some hours before consumers will 
adjust their load.   
 
Overall adaptations of the new technologies in everyday life e.g. different household 
appliances’, computers, electrical cars, among others, increase electricity 
consumption in general, which makes the load increase and decrease impulsively.  
 
All these aspects will influence the accuracy of the power consumption forecasts, and 
as a result, compliance between the predicted and the actual power consumption.  
 
The deviation between the actual and the forecasted power consumption if the actual 
power consumption exceeds the predicted power consumption, will lead to an up-
regulation in the power system, and vice versa.  
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Temperature 
Temperature does not directly affect balance in the power system, but indirectly 
through having influence on the power consumption. The power consumption 
forecasts are conducted based on the temperature forecasts.  So any deviations 
between the actual temperature and the temperature forecast will cause the deviation 
between the actual and the forecasted power consumption. Which means that if the 
temperature is milder than the forecasted temperature, the power consumption will be 
lower than expected, and therefore a down-regulation in the power system will be 
necessary. If the temperature is lower than the forecasted temperature, the power 
consumption will be higher than forecasted and consequently it will be a need for an 
up-regulation in the power system.   
 
Wind power production 
Expansion of the wind power production makes it challenging for the TSO to keep 
balance in the power system, due to the fact that the wind is a variable and an 
uncontrollable source of energy. Wind power producers estimate how much power 
they can produce the next day, based on wind forecasts that entail some uncertainty. 
This is why the actual wind power production will often deviate from the estimates in 
the operating hour and thereby will cause an imbalance in the power system. If the 
actual wind power production is higher than expected, down-regulation will take 
place in the power system. If the actual wind power production is lower than 
expected, the power system will be up-regulated.  
Another disadvantage with the wind power production, considering balance in the 
power system, is the dependency of it on extreme weather conditions. So if the wind 
speed exceeds 25 m/s, the windmills will stop completely and a need for an up-
regulation of the production will occur.  
 
Power plant outage 
Unexpected power plant outages can occur just as likely before the actual operating 
hour as well as in the operating hour. If an outage occurs before the Elspot market 
closes, the market actors will be able to take that into consideration when handling 
their bids for the next day. So the outage will influence balance in the power system 
only during the current day. However, if an outage occurs after the Elspot market has 
closed, it will influence the system balance both during the current and the next day. 
Whether or not the power plant outage will lead to an up-regulation of the production 
or a down-regulation of the consumption in the system, it will depend on the strategy 
that the power producer will use in order to solve the problem. They can choose 
between the handling of the outage by themselves, by replacing the failure unit with 
another one or, if possible, by increasing production of the units which are already in 
operation. Another option will be leaving the responsibility for dealing with the 
imbalance, due to the outage, to the TSO that will result in an up-regulation of the 
production or a down-regulation of the consumption.  
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Nuclear power plant outage  
On the basis of information posted on ENTSO-E Transparency Platform, the installed 
capacity of nuclear power constitutes approximately 23% (8890 MW) in Sweden, and 
18% (2782 MW) in Finland of the total installed capacity for different production 
types. (ENTSOE-E, 2016) The total installed capacity of nuclear power in Sweden is 
allocated to 8 reactors and in Finland it is allocated to 2 reactors.  
 
So an outage of one of the nuclear reactors will cause a big impact on the power 
system balance. The outages of the nuclear power plant will also lead to an up-
regulation of the production or a down-regulation of consumption, just as for outages 
of any power plant 
 
Power line outages between price areas 
Outages on power lines will limit the transmission capacity between price areas. So 
power line outages where power export was planed, will lead to a down-regulation in 
the export area. Power line outages where power import was planed, will lead to an 
up-regulation in the import area.  
 
Sun radiation 
As with the temperature, the sun radiation will influence balance in the power system 
by affecting the power consumption. It is not always easy to estimate how the 
intensity of the sun radiation will affect the power consumption. In hours where the 
sun radiation is high compared to the previous hours, it is difficult to fully estimate 
the affect of the heating of the sun on the consumption which would lead to a down-
regulation of the power system. 
 
The factors described above will affect the balance in the power system and lead to 
activation of the balancing power reserves.  In addition to the balancing power 
market, it exists other ways/mechanisms that the market actors can use in order to 
deal with their imbalances.          
 
Elbas market 
Market actors have a possibility to trade their imbalances in the Elbas market during 
the day. Since trading in this market stops one hour before the actual delivery, it can 
be difficult for market actors to evaluate the actual situation in the operating hour. 
Market actors can trade too much power and cause imbalance with opposite sign in 
the operating hour or too little power so that part of the imbalance will occur in the 
operating hour. Therefore, trading in Elbas can either be a cause of an imbalance in 
the operating hour or it can contribute to removing the imbalance in the operating 
hour. In the Table 2.3 below the distribution of hours for each scenario is shown.  
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                                     Number of hours 
Direction of regulation 

Year Analysis 
period 

Elbas market Balancing market 2013 2014 2015 
Up Up 1469 1878 1522 4869 
Down Down 2503 1796 1775 6074 
Up Down 2030 1740 1894 5664 
Down Up 1380 1513 1251 4144 
Up Zero 577 658 652 1887 
Down Zero 652 599 511 1762 

Table 2.3. The Elbas market. 
 
Special regulation 
If an imbalance occurs, the TSO will normally activate bids from the balancing power 
list following the price order balancing the system. However, in the case of limited 
transfer capacity internally in a price area or when a failed situation occurs, the TSO 
will remain with a limited number of bids to restore the systems frequency. In this 
case, activating the balancing recourses the TSO will not take into consideration the 
prices of the bids and will activate the best suitable bid from the balancing power list 
in order to handle an imbalance/problem in the most possible efficient way.  
 
Special regulation takes place in the operating time and the TSO activates bids from 
the balancing power list so that is why the special regulation will be considered as a 
part of the balancing power in this thesis. This will influence the value of the 
balancing power volumes by balancing some parts of the total imbalance in the 
system.  
 
Deviation between the actual and the planed power flow between the price areas  
If an imbalance occurs in one price area, it can be taken care of by activating 
balancing reserves either in the same area or in another price area. Since, as long as 
there is no need for a special regulation, the TSO will first make use of the least 
expensive reserves regardless on where these reserves are located. In this case the 
power flow between these price areas will be adjusted. This will cause a deviation 
between the planed and the actual power flow. That is why it is considered as an 
option to balance the system. 
 
 

2.8 Influence factors on the regulating power prices 
 
To be able to forecast the regulating power prices it is important to find the factors 
that the prices correlate with and that can be an indicator of which price to expect.  
 
In principle the regulating price is volume dependent. Which means that the 
regulating price will increase with the increasing purchased volume. So one of the 
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main factors affecting the regulating price is the activated regulating power volume. It 
should be noticed that in the case of an up-regulation, the regulating price will 
increase as more reserves will be activated, and in case of a down-regulation the 
regulating price will decrease, as more reserves will be activated due to reasons 
described in subsection 2.7.  
 
However, by using only the relationship between the balancing prices and the size of 
the activated balancing power volume it is not possible to explain all of the prices that 
have or/and will occur in the Balancing Power market. So it has to be some other 
factors that influence the balancing power price. Some factors/ events that are 
supposed to explain some of the balancing power prices are described below. 
 
 
 
Spot price  
The balancing power price is limited by the spot price. The balancing power price for 
a down-regulation is always lower than the spot price, and the balancing power price 
for an up-regulation is always higher than the spot price. So, in hours with high prices 
in the Elspot market, the probability to get high regulating power prices in the case of 
an up-regulation increases, especially in combination with the high up-regulation 
volumes. In hours with low spot price the probability for getting low balancing power 
price for a down-regulation is high.  
 
Spot bid curve 
The power production bids that have not been accepted in the Elspot market can be 
offered to the Balancing power market. The less unaccepted bids that are left in the 
bid curve over the given price, the bigger the chance to getting higher regulating 
power prices under the up-regulation. The slope of the bid curve that will lay to the 
right from the system price can affect the balancing power price if the down-
regulation will occur in the system. The less steeper the bid curve is, the bigger 
chance of getting the balancing power price closest to the system price is. 
 
The regulating power prices can also be influence by the share of production units 
with a high degree of regulation that does not run. It is a high probability that the 
regulating power price will be high if most of the power plants with a high degree of 
regulation are running, and in the case of an up-regulation a power plant with a low 
degree of regulation has to be started up.  
 
Inflow 
The inflow is usually the highest in the spring when the snow melts; it is also high 
during the summer and autumn due to heavy rainfall. In these periods the power 
consumption is low and the power producers will store the biggest part of the inflow. 
In periods with a high inflow, especially in combination with a high reservoir level, 
the risk for the water loss or/and flood is high. Due to the fact that the spot price will 
be low, the balancing power price in the case of a down-regulation will also be low. 
In periods with a low inflow, especially in combination with a low reservoir level, the 
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spot price will be high, which will lead to the high balancing power prices for the up-
regulation. 
 
It is also suspected that the regulating power prices can depend on the day of the week 
and the hour of day. For example, an up-regulation can be more expensive in the 
weekends when thermal power plants are less prepared for running.  
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Chapter 3  

Time series forecasting 
 
The process of developing a forecasting model for a variable of interest by using 
given data can be divided into number of steps shown in the figure 3.1.  
 

Figure 3.1. Developing a forecasting model. 
 

First the data that will be used in the analysis need to be described by using summary 
statistics and/or graphical methods. Secondly, it is necessary to find a suitable 
statistical model to describe the data generating process. Then by using the statistical 
model, the future values of the variable of interest will be predicted. In order to 
evaluate the goodness and suitability of the data to the given dataset, the forecasting 
results need to be estimated. To fulfil each of these steps requires knowledge of the 
theoretical concepts.   
 
In this chapter will be given a simple introduction to the some basic concepts of data 
description (subsection 3.1). Subsection 3.2 gives some overview over existing types 
of forecasting methods and subsection 3.3 describes the methods of estimating the 
forecasting results.  
 
In the subsection 3.4, the concept of Machine learning as a forecasting tool will be 
also introduced. The parts of this subsection namely 3.4.2, 3.4.3 and 3.4.4 are devoted 
to an introduction to Microsoft Azure Machine Learning Studio and Microsoft Azure 
Machine Learning Studio regression models that has been used to develop a 
forecasting model for the balancing power volume and price. 

 

3.1 Some basics of time series analysis 
Chatfield (2001) defines a time series as “a set of observations measured sequentially 
through time” (Chatfield 2001, p.1). Depending on either the measurements of time 
series values have been made continuously or discrete set of time points, it can be 
distinguished between continuous and discrete time series respectively.  
Before choosing a forecasting model and make forecasts for future values of a time 
series, it could be worthwhile to examine the series for historical patterns that can be 
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used in forecasting. While exploring historical patterns it can be convenient to 
distinguish between seasonal variation, trend, other cycle variation and irregular 
fluctuations of the series values.  
 
Seasonal variation of a variable can be defined as similar patterns of behaviour of the 
variable observed at a certain time period of a year. An example is the power 
consumption pattern during the year that is always higher at wintertime.  
Trend is an upward or a downward movement in time series values that can be 
identified over a long time periods. An example of trend is decreasing of power 
consumption over the last years due to implementation of energy efficiency measures 
in buildings.  
 
Other cycle variations are upward or downward movements in time series values that 
can have duration from at least two years. Changing power demand of industry due to 
changes in world’s economical situation can be an example on cycle variations. 
(Bowerman & O’Connell, 1993) 
 
Irregular fluctuations are variations in the time series that do not follow any 
recognizable or regular patterns. It are movements in the data that can not be 
explained either by seasonal variation, trend or other cycle variation.  
Time series that display seasonal variation (3.1(b)), trend (3.1(a)) and other cycle 
variation (3.1(c)) are shown in figure 3.1.  
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Figure 3.2. Patterns of the time series. 

 

3.2 Type of forecasting method 
Forecasting methods can be defined as approaches that can be used in order to make 
predictions of variable of interest from historical data. There are many different 
forecasting methods for forecasting of future events. In this chapter the brief overview 
over existing forecasting methods will be given. 
 
Forecasting methods can be classified in different ways. Bowerman and O’Connell 
(1993) classify forecasting method into qualitative methods that are based on 
subjective expert opinions and quantitative methods in that statistical technics for 
analysis of historical data are used in order to forecast future values of a variable. And 
the quantitative methods are divided on causal and univariate methods. Qualitative 
technics includes such as subjective curve fitting, Delphi Method, technological 
comparisons, cross-impact methods etc.  
 
Quantitative methods can be divided into univariate and causal methods. Univariate 
methods make forecasts for future values of a time series using the present or past 
values of this time series. When using an univariate method for time series prediction, 
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the time series will be analysed for having any trends/patterns. These methods based 
on an assumption about that the existing trend would continue in the future.  
 
When causal methods are used, the variables, which variable to be predicted could 
depend on, will be identified. These relationships will be used in order to predict 
future values of variable of interest.  
 
Chatfield (2001) classifies forecasting methods as judgemental forecast, univariate 
methods and multivariate methods. This classification is very similar to Bowerman 
and O’Connell (1993) classification where qualitative methods and causal methods 
correspond to respectively to judgemental forecasts and multivariate methods in 
Chatfield (2001) classification.  
 
Chatfield (2001) also distinguishes between non-automatic methods, which requires 
human intervention and automatic methods, which do not; and between simple and 
complicated methods. Univariate methods are defined as simple methods, and 
multivariate methods as complicated methods. 
 

3.2.1 A brief introduction to univariate forecasting methods 
In this section a short overview over some univariate methods will be given. 
Generally, all univariate methods can be divided into model-based forecasting 
methods and ad hoc forecasting methods.  
 
When model-based forecasting methods is used, a particular univariate model for a 
particular time series will be build, then the parameters of the model will be estimate 
and the time series forecasts from the fitted model will be made.  Univariate models 
can be divided into ARIMA models, state space models, growth curve models and 
non-linear models. The detail description of these types of models can be found at 
Chatfield (2001). 
 
Ad hoc methods are forecasting techniques that are not based on explicitly on the 
probability models. These methods are based on assumption that analysed data has a 
compositional structure and involves breaking up and composing time series into 
supposed patterns. Ad hoc methods include simple exponential smoothing, Holt’s 
linear trend method, the Holt-Winters forecasting procedure etc. more about these 
methods can be found at Chatfield (2001) and Talluri and Van Ryzin (2005).  
 
It should be noticed that there are several univariate time series methods in addition to 
those that have been described above. 
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3.2.3 Multivariate forecasting methods 
Multivariate forecasting methods utilize the relationships between a variable to be 
predicted, which is called dependent variable or response variable, and values of 
additional time series time series, which are called predictors. The response variable 
can depend totally or partly on the predictors. There are a various number of 
multivariate models that multivariate forecasting methods based on. In general it can 
be distinguished between single-equation model, vector AR and ARMA models etc. 
The single-equation models include all types of regressions and transfer function 
models.  (Chatfield, 2001) 
 

3.3 Estimation of forecast error 
All forecasts contain some uncertainty that will lead to the forecast errors. In order to 
evaluate the forecast errors several types of error estimators can be used.  
 
The forecast error 𝑒!  for a particular forecast i can be found by subtracting the 
forecasted value 𝑦! of a variable of interest from the its actual value 𝑦! and can be 
defined as 
 
𝑒! =   𝑦! −   𝑦!                                                   (Eq. 
3.1) 
 
To measure the magnitude of the forecast errors over a time period the forecast errors 
𝑒! for a particular forecast i over the time period could be summed.  However, the 
forecast errors 𝑒! can take as positive as negative values, and sum of the errors can be 
near zero. So that wrong conclusions can be made about the forecast accuracy. In 
order to avoid it the absolute deviation of the forecasting error, which is defined in 
equation 3.2, can be considered.  
 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒  𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒  𝐸𝑟𝑟𝑜𝑟 = 𝑒! =    𝑦! −   𝑦!                                 
(Eq.3.2) 
 
Known the absolute deviation, Mean Absolute Error (MAE) that measures the 
average of the absolute deviations 𝑒!  for all forecasts n can be defined (se Eq.3.3).  
 

MAE = !!
!
!!!
!

= !!!!!
!

!
!!!                                                                          

(Eq.3.3) 
 
Another option is to square the forecast error 𝑒! as it is shown in equation 3.4. 
 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒  𝑆𝑞𝑢𝑎𝑟𝑒𝑑  𝐸𝑟𝑟𝑜𝑟 =   𝑒!! =    𝑦! − 𝑦! !                (Eq.3.4) 
 
Using the squared error the Mean Squared Error (MSE) can be define: 
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𝑀𝑆𝐸 = !!
!!

!!!
!

= !!!!! !
!
!!!

!
                                                                                   (Eq. 

3.5) 
 
So the Mean Squared Error is the average of the squared errors for all forecasts. 
(Bowerman & O’Connell, 1993) 
 
Coefficient of Determination or R2 can also be used in order to evaluate performance 
of a forecasting model. The Coefficient of Determination can be expressed by: 
 

R2 =1- !!
!!

!!!

!!!
!
! !!!

!!!
!!

!!!

                                                                                                 

(Eq. 3.6)  
(Walpole, 2012) 
 
 

3.4 Use of Machine Learning for time series forecasting 
The Microsoft Azure Machine Learning Studio is used in this master thesis in order to 
develop a forecasting model for the balancing power volume and price. This 
subsection has been written in order to give an introduction to the machine learning in 
general (subsection 3.4.1) and to the Microsoft Azure Machine Learning Studio. 
Some common problems that can be solved by using the machine learning technics 
and the algorithms that are available with Microsoft Azure Machine Learning Studio 
are briefly described in the subsection 3.4.2. In section 3.4.3 the regression algorithms 
will be described in more details  
 
 

3.4.1 Machine learning 
Machine learning can be defined as “ a set of methods that can automatically detect 
patterns in data, and then use the uncovered patterns to predict future data, or to 
perform other kinds of decision making under uncertainty” (P.Murphy, 2012, p.1). 
Machine learning based technology has been broadly used for different type of tasks: 
blant annet learning of a digital camera to detect faces, learning of anti-spam software 
to filter text massages, applications in smart-phones learn to recognize voice 
commands.  
 
The role of tum for choosing the machine learning algorithms prior direct 
programming of a computer to perform a task is a problem with high complicity and a 
need for adaptivity. An example of problems that are to complex to program is task 
performed by humans/animals such as speech recognition and image understanding, 
or analysis that involve examination of large datasets. Compared to the programmed 
tools the machine learning has ability to adapt to the new input. All programmed tools 
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have one limitation: once they are written down and installed, they will remain 
unchanged. Such tools are not able to adapt to the changes in the tasks over the time 
or from one user to another, i.e. they are static.  The machine learning tools are able to 
adapt their behaviour to the new data input and to suggest a solution for such issues. 
The machine learning tools are, by nature, dynamic and are adaptive to the 
environment that they interact with. (Shalev-Shwartz & Ben-David, 2014)  
 
There are many different types of machine learning. In general they can be classified 
as:   

-­‐ Supervised versus Unsupervised learning. In supervised learning the data will 
be distinguished into the training data and test data. The training data is 
labeled with a correct answer. The labels provide extra information to the 
learner, which he will use under training in order to “gain expertise by using 
experience”. By using the acquired expertise the learner can then predict that 
missing information for the test data.  Classification and regression are the 
most common types of this type of learning.  
In unsupervised learning the data will not be characterized into the training 
data and the test data. The learner will process the data in order to summarize 
it or compress it on one or another way. Clustering and dimension reduction 
are typical examples of unsupervised learning.  

-­‐ Active versus passive learners. The machine learning algorithms can be 
classified by the learner’s role. An active learner interacts with the 
environment under the training time, while a passive learner only observes the 
information provided by the environment without influencing it.  

-­‐ Helpfulness of the teacher. This criteria divides the machine learning 
algorithms into ones with an active teacher and ones with a passive teacher. 

-­‐ Online versus Batch Learning Protocol. In case of Online Learning Protocol 
the learner has to respond throughout the learning process. In case of Batch 
Learning Protocol the learner has to engage the acquired expertise after 
processing large amount of data. (Shalev-Shwartz & Ben-David, 2014) 

3.4.2 Types of machine learning problems 
All algorithms provided by the Microsoft Azure Machine Learning Studio are 
represented in the Microsoft Azure Machine Learning Algorithm Cheat Sheet that is 
shown in the figure 3.3 and can by classified by the type of the problem to be 
addressed and divided into four categories: 

-­‐ Regression algorithms are used in order to predict a numerical or continuous 
value of the variable of interest for the new data given in the dataset that 
contains one or more features or dependent variables.  

-­‐ Classification algorithms address the problems of assigning the new unknown 
inputs to one or more labels or classes.  If data needs to be assigned into two 
categories two-class classification will be used. The multi-class classification 
will be used for assigning data into tree or more categories.  
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-­‐ Clustering algorithms are used to discover a structure of the data by grouping 
similar objects together and separate dissimilar objects into the different 
groups.  

-­‐ Anomaly detection algorithms are used in order to detect unusual data points 
in the dataset. (Barga, Fontama & Tok, 2014) 
 

 

Figure 3.3. Algorithm cheat sheet. (Microsoft Azure A, 2016) 
 
 
As it can be seen from the figure 3.3 the Microsoft Azure Machine Learning Studio 
supports various regression, classification, clustering and anomaly detection 
algorithms. However, the focus in this thesis will not be on all of these algorithms, but 
a two of them that will be used in order to develop a forecasting model for the 
balancing power volume and price. The description of the algorithms can be found on 
the Microsoft Azure Machine Learning Studio webpage (Microsoft Azure, 2015) and 
a rigorous introduction to the concepts underlying the machine learning algorithms 
are made by Shalev-Shwartz & Ben-David (2014).  
 
The Boosted Decision Tree regression and the Decision Forest regression will be used 
to develop a forecasting model for the balancing power volume and price and 
therefore need to be presented in order to understand the concept that underlying these 
two regressions.  
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3.4.3 The Boosted Decision Tree regression 
The Boosted Decision Tree regression is a supervised learning method that predicts 
the target variable by creating an ensemble of decision tree by using boosting. Each 
new tree created depends on the prior tree and learns by fitting the residuals of the 
tree that comes before it. (Microsoft Azure B, 2016)  
 
The Decision Tree algorithm is a hierarchical technique that processes the data by 
splitting the dataset iteratively based on a certain criteria and thereby creates a 
decision tree. The goal of decision tree is to maximize the variance across the nodes 
in the tree and to minimize the variance within each node. This algorithm provides a 
tree-based approximation of a regression function for a given dataset.  
(Barga, Fontama & Tok, 2014)  
 
Each decision tree consists of a rote node, internal nodes and leafs or terminals. 
The rote node has no incoming branches and has a zero or more outgoing branches. 
The node contains all the data in the dataset. Each of internal nodes has one incoming 
branch and two or more outgoing branches. The internal nodes and the root node 
contain test conditions that are used to separate the records in the dataset with 
different characteristics. Each of the leafs has one incoming branch and has no 
outgoing branches. Leafs contain scored labels of the target variable. Barga, Fontama 
& Tok, 2014) 
 
The structure of a decision tree is shown in the figure 3.3 by a simple example of how 
decision tree algorithm can be used in order to predict the balancing power premium 
in an area. The decision tree starts from checking either the spot price is higher than 5 
EUR. If the spot price is higher than 5 EUR, the tree turns to examine the hour of the 
day, and after determining the hour of the day it assigns a scored label to the leafs, i.e. 
predicts a possible balancing power premium. If the price is lower than 5 EUR, the 
tree start study the balancing power volume and then draws conclusions about the 
balancing power premium by assigning scored labels to each of the leafs. 
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Figure 3.4. Decision tree structure. 
 
In principle, there are exponentially many decision trees that can be constructed from 
a given dataset. These trees will have different accuracy and it is computationally 
infeasible to search for the optimum among them. Therefore, a number of efficient 
algorithms have been develop that have an aim to create a reasonably accurate, albeit 
suboptimal decision tree in a reasonable amount of time. There are different 
algorithms that are used in order to construct regression decision trees. Some of the 
commonly used algorithms are Iterative Dichotomizer 3 (ID3), C4.5 and C5.0 
(successors of ID3), Automatic Interaction Detection (AID), and Classification and 
Regression Tree (CART). Barga, Fontama & Tok, 2014) A seminal work in the area 
of developing algorithms for decision tree constructing is done by Breiman et al 
(1984), Sonquist & Morgan(1964) and others. The differences of the algorithms will 
not be discussed in this thesis.  
 
Decision tree based models have number advantages: they are easy to interpret, they 
are not effected by non-linear relationship between variables, they provide automatic 
parameter selection and computational efficiency and are able to handle unknown 
attributes and categorical data. However, the models have some disadvantages as well 
including the overfitting and instability due to at a small variation in data can lead to 
that different trees will be generated.  
In order to address such an issue as overfitting boosting techniques can be used. 
 
Boosting is one of the methods that are used in machine learning in order to create 
ensemble models. There is various numbers of boosting algorithms that can be used in 
machine learning. In the Microsoft Azure Machine Learning Studio the 
implementation of Multiple Additive Regression Trees (MART) gradient boosting 
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algorithm is used. The algorithm constructs each regression tree step by step. Using 
the predefined loss function it measures the error in each step and correct it in the next 
one. The prediction model is an ensemble of the weaker prediction models. In the 
regression problem, boosting creates a series of trees in a step-wise fashion, and then 
using an arbitrary differentiable loss function, selects the optimal tree. (Microsoft 
Azure B, 2016) 
 

3.4.4 The Decision Forest regression 
The Decision Forest regression is a supervised learning method that creates a 
regression model consisting of an ensemble of randomly trained decision tree. It 
creates a number of decision trees that have the structure described in the subsection 
3.4.3. Decision trees are non-parametric models that perform a series of simple tests 
for each instance, traversing a binary tree data structure until a leaf node is reached. 
The outputs of each tree in the decision forest is a Gaussian distribution by way of 
prediction.  The algorithm then performs an aggregation over the ensemble of trees in 
order to find a Gaussian distribution closest to the combined distribution for all trees 
in the model. (Microsoft Azure C, 2016) 
The output of the model in general can be represented as: 
 
𝑝 𝑦 𝑣 =    !

!
𝑝! 𝑦 𝑣!

!                                                                                                 
(Eq. 3.7) 
 
where  
𝑝! 𝑦 𝑣  is posterior distribution obtained by the t th tree. 
T is number of trees in the forest. (Criminisi & Shotton, 2013)  
 
The decision tree in the Decision Forest regression have the same advantages and 
disadvantages as regular decision tree described in the subsection 3.4.3. 
 
 
 
 
 

 
 
 
 
 
 



	
   40	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   41	
  

Chapter 4 

Statistical analysis of data 
 
In this thesis it will be attempted to predict the balancing power volume and the 
balancing power prices by the use of a regression model. As known, a regression 
model predicts the variable of interest by utilizing the relationships between it, and a 
set of predictors, i.e. the variables the variable of interest is depending on. In order to 
get a good prediction of the balancing power volume and the balancing power prices, 
by using a regression model, it is important to identify the variables that can be used 
as predictors. To do this the correlation analysis for the balancing power volume and 
price, and the factors that are suspected for having an influence on them, have been 
carried out and are described in this chapter. 
 
Subsection 4.1 describes the correlation analysis for the balancing power volumes and 
the factors that influence the power system balance. This subsection is a continuation 
of the work that have been conducted in advance of this master thesis, so the new 
experiments that have been carried out and the important results from the previous 
work for this thesis will be represented in subsection 4.1.  
 
In subsection 4.2 the statistical analysis of the balancing power prices is performed. 
This subsection is divided into different parts – the analysis of the balancing power 
prices for having daily, weekly or annual variation (subsection 4.2.3) and the 
correlation analysis for the balancing power prices and the factors that can influence it 
(subsection 4.2.4 – 4.2.8). 
 

4.1 Statistical analysis of the balancing power volume 
This subsection is based on the preliminary work that has been made in advanced of 
writing this master thesis. The aim was to conduct a statistical analysis for data of the 
balancing power volume and to test the relationship between the balancing power 
volume and the power system disturbance factors. 
 
The results from this work that are important for this thesis and the extension of the 
analysis that have been made in order to conduct more accurate results is written in 
subsection 4.1.1. The description of the model that will be used in the analysis and the 
analysis objectives are described in subsection 4.1.2 and subsection 4.1.3 respectively. 
Subsection 4.1.4 and subsection 4.1.5 describes the work that have been done in order 
to carry out the correlation analysis between the balancing power volume and the set 
of the power system disturbance factors. In subsection 4.1.6, the dependence of the 
balancing power volume in an hour on the past values of the balancing power volume 
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from the previous hours has been examined. The results of this analysis are 
summarized in subsection 4.1.7.  
 

4.1.1 Improvement and expansion of the correlation analysis 
The purpose of the preliminary work, which this section is based on, was to study the 
balancing power volume data for having daily, weekly or annual variation and to 
determine the possible relationship between the balancing power volume and the 
disturbance factors that influences the balance in the power system. 
 
The results of the analysis were that the balancing power volume has some daily, 
weekly or annual variation that is shown in the figure 4.1. 
 
The correlation between the balancing power volume and some balance disturbance 
factors, such as deviation between the forecasted and the actual temperature, power 
consumption and the wind power production on the weekdays is as follows: 

-­‐ Correlation between the balancing power volume and the deviation between 
the actual and the forecasted temperature is -0.1 

-­‐ Correlation between the balancing power volume and the deviation between 
the actual and the forecasted power consumption is 0.54 

-­‐ Correlation between the balancing power volume and the deviation between 
the actual and the forecasted wind power production is 0.09. 

 
From the results it can be concluded that the deviation between the actual and the 
forecasted wind power production and the deviation between the actual and the 
forecasted temperature have little influence on the balancing power volumes. One 
sees also that only the deviation between the actual and the forecasted power 
consumption has some significant impact on the balancing power volumes. 
 
However, the balance in the power system can be influenced by one disturbance 
factor or more disturbance factors at the same time. These factors can contribute to 
the same regulation state (two or more factors indicate an up- or down-regulation) or 
can counteract each other (one or more factors indicate the opposite regulation state). 
Therefore, when considering just one disturbance factor at the time, one risks to 
underestimate or overestimate the net imbalance volume in the system.  It is also 
important to remember the other options for balancing the power system such as 
power flow adjustments between price areas, trading in the Elbas and special 
regulation, which can be used in order to remove the imbalances in the system, partly 
or whole. The impacts of those mentioned above were not taken into consideration 
under the previous correlation analysis.  
 
When studying the time series for the balancing power volume one noticed that the 
regulation state often tends to last longer than one hour. When analysing the duration 
of the regulation state in the Nordic region it was found that: 
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-­‐ If no balancing reserves have been activated in under 1 hour, the state is most 
likely to change 

-­‐ If the up-regulation has lasted no longer than 3 hours, the regulation state will 
most likely continue in the next hour 

-­‐ If the down-regulation has lasted no longer than 4 hours, the regulation state 
will most likely continue in the next hour 

More detailed results can be found in Appendix A. The impact of the past values of 
the balancing power volume on the future ones has not been taken into consideration 
under the previous correlation analysis.  
 
Due to these arguments it was decided to conduct a new correlation analysis for the 
balancing power volumes and the factors that influence the balance in the power 
system while taking into consideration the reflections above.  
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Figure 4.1. Daily, 

weekly and annual variation of the balancing power volume. 
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  variation	
  of	
  the	
  balancing	
  power	
  volume	
  in	
  
the	
  Swedish	
  and	
  Danish	
  price	
  areas.	
  

(d)	
  Weekly	
  variation	
  of	
  the	
  balancing	
  power	
  volume	
  in	
  
the	
  Swedish	
  and	
  Danish	
  price	
  areas.	
  

(e)	
  Annual	
  variation	
  of	
  the	
  balancing	
  power	
  volume	
  in	
  
the	
  Norwegian	
  price	
  areas.	
  

(c)	
  Weekly	
  variation	
  of	
  the	
  balancing	
  power	
  volume	
  in	
  
the	
  Norwegian	
  price	
  areas.	
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4.1.2 Modell description  
For the analysis, the same model that was used in the preliminary work will be used. 
 
The whole Nordic region, except Jylland, is one joint synchronised area. This means 
that the power system in all the Nordic countries has the same frequency, and 
therefore an imbalance in one price area will affect the balance of the whole system. 
(Statnett, 2014) The Nordic TSOs also exchange their balancing power resources with 
each other through the common balancing power list, where the only one criterion for 
activating a bid is its price (do not include situations when special regulation takes 
place). If an imbalance occurs in one price area, activating the balancing reserves in 
any other price area and adjusting the power flow between the areas can balance it.  
 
That is why, when carrying correlation analysis between the balancing power 
volumes and the factors described above, it will be natural to look at the balancing 
power volumes of the whole Nordic region and not only on the balancing power 
volumes in each price area separately.  
 
When conducting the correlation analysis it was chosen to consider Norway, Sweden 
and Denmark together as one common area with aggregated balancing power 
volumes, consumption, production etc. It was decided to keep Finland outside of the 
analysis for a number of reasons: 

-­‐ Spot price in Finland is usually higher compared to the spot price in the other 
Nordic price areas. That is why the power often flows towards Finland. 

-­‐ Statkraft has a low activity in Finland and that is why they are not particularly 
interested in the balancing power forecasts there.   

-­‐ Hydropower is not a dominating type of production in Finland, so the Finish 
power system is not particularly flexible.  

-­‐ There is one big actor in the Finish power market that has the major share of 
both the power consumption and the power production so the imbalances 
caused by this actor often are regulated internally.  
 

Possible exchange of the balancing power resources between Finland and each of the 
three countries, which are Norway, Sweden and Denmark, will be taking into account, 
by considering the deviation between the actual and the spot power flow between the 
price areas NO4-FI, SE1-FI and SE3-FI.  
The deviation between the actual and the spot power flow between price areas in 
Norway, Sweden and Denmark and countries outside the Nordic region, whom they 
have connections with, will be considered as the balancing power reserves exchange, 
in order to balance the power system in the Nordic region or outside of it.   
Since Norway, Sweden and Denmark will be treated as one price area, for each 
variable, which will be considered in the analysis, aggregated time series will be used. 
The detailed overview over the time series used in the analysis is provided in 
Appendix B.  
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4.1.3 Analysis objectives  
The main purpose of this analysis is to investigate possible dependences between the 
balancing power volume and the balance disturbance factors, such as deviation of the 
actual consumption, wind power production or/and temperature from the forecasted 
values. In the correlation analysis other options that can be used to balance the power 
system, such as adjustment of the power flow between the price areas, special 
regulation and trading in the Elbas market, will be taking into account. So that, 
instead of looking at the correlation between the balancing power volumes and each 
of the balance disturbance factors individually, in this correlation analysis it will be 
looked for a correlation between a set of disturbance factors and a set of options that 
market actors can choose between in order to balance the power system. The 
correlation analysis will be carried out for a time period from 2013 to 2015. The 
choice of the length of the analysis period was based on how long back in time the 
records goes in the time series, and also on that the power market is dynamic and that 
it continually undergoes changes in form of changing the trading rules, the price areas 
boarders and construction of new power lines etc. So the data that lays too long back 
in time will not be that relevant in order to estimate the present situation in the power 
system. All experiments under the correlation analysis will be carried out with the 
help of Statkraft’s database called Fame.  
 
Under the analysis following will be tested out: 

-­‐ Correlation between a set of balancing options and a set of balance 
disturbance factors 

-­‐ Dependence of the balancing power volume on the temperature fluctuation 
-­‐ Correlation between the balancing power volume in an hour and the balancing 

power volume in the previous hours 
 
It should be noticed that some of the influencing factors described in chapter 2 will 
not be taken into account when conducting the analysis due to data unavailability.  
 
In this analysis the effect of the power plants outages on the balancing power volumes 
would not be taken into account due to a lack of data of the power plant outages. 
However, it should be noticed that the overview over the power plant outages could 
be conducted from the Urgent Market Massages (UMM), but it has not been done due 
to two reasons. Firstly, conducting information from the UMMs for several years is 
time consuming. Secondly, power producer reports about their power plants outages 
independent on if the imbalances, due to these outages, were handled by the power 
producers themselves by activating other production units or if they have decided to 
handle the responsibility for balancing the system over to the TSO. Which means 
power plant outages will not always lead to the activation of the balancing reserves.          
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The influence of the sun radiation will not be taken into account as well. The reason 
for that is a lack of data for the whole Nordic region, so the result conducted under the 
experiment using only the sun radiation data for Norway are not necessarily 
significant, and it can only be elaborated if these results can give any additional 
information about the balancing power volume in the whole Nordic region.   
 

4.1.4 Correlation between the set of balancing options and the set of 
disturbance factors  
In order to analyse the relationship between a set of balancing options and a set of 
possible disturbance factors, it was decided to take the starting point in one of the 
fundamentals of the power system. To maintain the power system frequency 
continually at 50 Hz, the power production in the system must always be equal to the 
consumption. The balance between the power production and the consumption in 
general can be expressed as:  
 
Power production = Power consumption + Export – Import                   (Eq. 4.1) 
 
By any disturbances in the system, the balancing reserves will be activated in order to 
restore the system balance. The equation (1) can be rewritten as: 
 
                                   Power production + Regulating power = 
                  = Power consumption + Export – Import + Imbalance                     (Eq. 4.2) 
 
The equation (2) can be simplified and rewritten as: 
  
                                           Regulating power = Imbalance                                  (Eq. 
4.3) 
 
By placing the deviation between the actual and the forecasted power consumption, 
deviation between the actual and the forecasted wind power production on the right 
hand side (further RHS) of equation 3 and the balancing power volumes, special 
regulation and the deviation in the power flow on the left hand side of equation 3 
(further LHS), the correlation between a set of balancing options and a set of possible 
disturbance factors can be tested by testing the correlation between the RHS and the 
LHS of equation 4. 
 
                  Balancing power volume + ΔPower flow + Special regulation = 
                          = ΔWind power production + ΔConsumption                         (Eq. 4.4) 
 
where  
ΔPower flow = Actual power flow – Spot power flow 
ΔWind power production = Forecasted wind power production – Actual wind power production 
ΔConsumption = Actual consumption – Forecasted consumption 
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As one can see, volumes traded in the Elbas have not been assigned to either the left 
hand side or the right hand side of the equation. As it has been mentioned before in 
chapter 2.1.1, trading in the Elbas market can contribute to the power system balance 
as well as being a reason for the imbalance in the power system. To decide on which 
side of the balance equation (4) to place the Elbas volumes, the following hypothesis 
will be tested: 
H0: Trading in the Elbas is a balance disturbance factor in the power system  
H1: Trading in the Elbas contributes to balance in the power system. 
To determine which of these two hypotheses one should reject, the correlation 
between the RHS and the LHS of the following equations will be tested: 
 
Balancing power volume + ΔPower flow + Special regulation + Elbas volume = 
                   = ΔWind power production + ΔConsumption                              (Eq. 4.5) 
 
             Balancing power volume + ΔPower flow + Special regulation = 
       = ΔWind power production + ΔConsumption + Elbas volume             (Eq. 4.6) 
 
If the correlation between the RHS and the LHS is stronger when it comes to equation 
5, the hypothesis H1 will be rejected. If not, the hypothesis H0 will be rejected.  
 
The correlation between the RHS and the LHS of equation 5 is 0.50. The correlation 
between the RHS and the LHS of equation 6 is 0.59. Since the correlation between the 
RHS and the LHS is higher when it comes to equation 6, the hypothesis H1 has been 
rejected, and trading in the Elbas will from now on be considered as a balance 
disturbance factor of the power system.  
 
Activation of volumes in Balancing power market, special regulation and the 
deviation between the actual and the spot power flow are considered as a set of 
balancing options. The deviation between the actual and the forecasted power 
consumption, the deviation between the actual and the forecasted wind power 
production and the Elbas volumes are considered as a set of balance disturbance 
factors. The correlation between a set of balancing options and a set of the balance 
disturbance factors is 0.59. Figure 4.2 shows a scatter plot of a set of balancing 
options and a set of the balance disturbance factors. 
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Figure 4.2. Scatter plot of a set of balancing options versus a set of balance 
disturbance factors. 
 
By removing a variable one by one on both sides of equation 6 and by testing the 
correlation between the RHS and LHS of each new variation for equation 6, the 
importance of taking into consideration all the factors and aspects which the 
balancing power volume can depend on, has been shown. The results for all of the 
possible variable combinations on the RHS and LHS of equation 6 are shown in 
Appendix C. The results of the correlation between the LHS and the reduced RHS of 
equation 6 are shown in table 4.1.  
 
LHS of the equation 6 RHS of the equation 6 Correlation coefficient 
Balancing power + ΔPower 
flow + Special regulation 

ΔWind power production + 
Elbas volume 
 

0.31 

Balancing power + ΔPower 
flow + Special regulation 

ΔConsumption + Elbas volume 
 

0.58 

Balancing power + ΔPower 
flow + Special regulation 

ΔWind power production + 
ΔConsumption 

0.54 

Balancing power + ΔPower 
flow + Special regulation 

ΔConsumption  
 

0.52 

Balancing power + ΔPower 
flow + Special regulation 

ΔWind power production  
 

0.20 

Balancing power + ΔPower 
flow + Special regulation 

Elbas volume 
 

0.35 

Table 4.1. Results of the correlation test  
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Correlation between the set of the balancing options and the set of the disturbance 
factors of 0.59, applies for all of the weekdays and also the weekends and the holidays 
in the analysis period. However, it is believed that the correlation between them in the 
weekdays will be stronger than in the weekends. This assumption is based on, that in 
the weekends and the holidays the market actors have a much less overview over the 
situation in the power system due to less people at work and more events takes place 
on the consumer side that the consumption forecasts not always are able to capture. 
This will lead to more disturbances in the data, which reduces the correlation.  
 
To test this hypothesis the correlation between the RHS and the LHS of equation 6 
was tested separately for the weekdays, and the weekends and the holidays. The 
correlation between the set of the balancing options and the set of disturbance factors 
on the weekdays, and the weekends and the holidays are respectively 0.62 and 0.51 
that confirms the assumption made earlier.  
 
From figure 4.2, it can be seen that as bigger the imbalance in the power system is, 
the more balancing reserves will be activated in order to balance the system. This 
yields for both an up- and a down-regulation. The values of the balancing power 
volume depends both on the total imbalance in the power system and the other 
options that can be used in order to deal with the imbalance, i.e. activation of the 
balancing reserves in an other price area and special regulation. The importance of 
taken into consideration all these factors when carrying out the correlation analysis 
for the balancing power volume, and the power system disturbance factors can be 
seen in the table 4.1 and Appendix C. That is where the sensitivity of the correlation 
between the set of the balancing options and the set of the disturbance factors to the 
substitution of the different factors is shown. The correlation is highest when all the 
factors are taken into consideration, and will decrease when the number of factors is 
reduced. This correlation will also vary for the weekdays and the weekends/holidays, 
and it will be highest during the weekdays.  
 

4.1.5 Dependence of the balancing power volumes on the temperature 
Testing the correlation between the sum of the balancing power volumes, special 
regulation volumes, the deviation between the actual and the spot power flow and the 
sum of the deviation between the actual and the forecasted power consumption, wind 
power production and the Elbas volumes, the influence of the deviation between the 
actual and the forecasted temperature has not been taken into account due to two 
reasons. The first reason is low correlation between the balancing power volumes and 
the deviation between the actual and the forecasted temperature (subsection 4.1.1). 
The second reason is that the error in the temperature forecast most likely affects the 
balancing power volumes indirectly by affecting the power consumption, and by this, 
causing the deviation between the actual and the forecasted consumption. So the 
influence of the deviation between the actual and the forecasted temperature on the 
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balancing power volumes will be taken into account via the deviation between the 
actual and the forecasted power consumption.  
 
However, it was decided to investigate whether or not the correlation between the 
balancing power volumes and the disturbances factors will differ depending on the 
size of the deviation between the actual and the forecasted temperature.  
The starting point was taken in equation 6 and the correlation between the RHS and 
the LHS of the equation was tested for different temperature intervals.  
The deviation between the actual and the forecasted temperature, ΔTemperature is 
defined as: 
 
ΔTemperature = Forecasted temperature- Actual temperature                      (Eq. 4.7) 
 
Zero was chosen as a starting point for the intervals and the length of each interval 
was sett to 1 degree. The maximum and minimum deviation between the actual and 
the forecasted temperature, as it is defined in equation 4.7, is around 2 and -3 degrees 
respectively. The results of the test were summarized in figure 4.3. From the figure, 
one sees that the correlation between the RHS and the LHS of the equation differs for 
different intervals of the deviation between the actual and the forecasted temperature. 
The correlation is quite constant when the actual temperature does not exceed the 
forecasted temperature by more than 2 degrees, and when the forecasted temperature 
does not exceed it by more than 1 degree. The more the actual temperature exceeds 
the forecasted temperature, the more the correlation increases. The correlation 
between the RHS and the LHS of equation 4.6 will be the lowest in the case when the 
forecasted temperature exceeds the actual temperature by 2 degrees.  
 
  

 

Figure 4.3. Sensitivity of the correlation between the LHS and the RHS of the 
equation 4.6 to the temperature deviation. 
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4.1.6 Correlation between the balancing power volume in an hour 
and the balancing power volume in the previous hours 
The correlation between the balancing power volume in an hour and the past values of 
the balancing power volume has been examined. For the paste values the records of 
the balancing power volume that go 1, 2, 3, 4, 5, 6 and 7 hours back in time, have 
been taken. The correlation coefficients for each of the cases are represented in table 
4.2, and the scatter plots for the values of the balancing power volume in an hour 
versus the past values of the balancing power volume are shown in figure 4.4. 
 
Hours back in time Correlation coefficient 
1 0.88 
2 0.72 
3 0.62 
4 0.53 
5 0.47 
6 0.42 
7 0.38 

Table 4.2. Results of the correlation test  
 
From the scatter plots and the table one sees that the values of the balancing power 
volume in an hour have a linear dependence on the past values of the volume, and as 
bigger the value of the activated balancing power volume in the previous hours, the 
bigger the value of the volume in an hour will be. However, as longer back in time the 
past values of the balancing power volume goes, the lower the correlation coefficient 
will be. So the values of the balancing power volume in an hour will be mostly 
affected by the past values of the balancing power volume that does not go too long 
back in time.  
 
 

4.1.7 Summarizing the results 
In this subsection the correlation analysis for the balancing power volume and the 
power system disturbance factors has been carried out. The results of the analysis 
have shown the importance of taken into consideration all the options that are 
available for balancing the power system and all balance disturbance factors in order 
to draw the right conclusions about the dependence of the balancing power volume on 
the factors influencing the system balance. It can be seen that when testing the 
dependence between the balancing power volume and each of the disturbance factors, 
a low or no correlation will be obtained between the balancing power volume and 
each of the factors. The correlation between the balancing power volume and the 
deviation between the actual and the forecasted consumption is 0.40, the deviation 
between the actual and the forecasted wind power production is 0.20 and the Elbas 
volumes is 0.01. However, by looking at the sum of all the imbalances in the system, 
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the correlation of 0.49 between the balancing power volume and the net imbalance in 
the system can be obtained.  
 
The correlation between the balancing power volume and the net imbalance in the 
system will be higher (0.59), when taking into consideration the other options that the 
market actors can make use of to balance the system such as special regulation and 
power flow adjustment between the price areas. However, the special regulation does 
not have a big impact when it comes to dealing with the total imbalance in the system, 
since it is used in order to deal with the local bottlenecks. So if it is not taken into 
consideration the correlation between the net balancing power and the net imbalance 
in the system will remain the same, i.e. 0.59. 
 
The deviation between the actual and the forecasted temperature has no direct 
influence on the balancing power volume. However, the correlation between the net 
balancing power and the net imbalance in the system varies for the different values of 
the temperature forecast error. It will also vary depending on the day of the week, and 
is the highest, at 0.62, on the weekdays. 
The balancing power volume in an hour is also influenced by the values of the 
balancing power volume in the previous hours. The highest correlation coefficient of 
0.88 is obtained when testing the correlation between the balancing power volume in 
an hour and the balancing power volume from the previous hour. The correlation 
between the balancing power volume in an hour and the past values of the balancing 
power volume will be lower as the past values of the balancing power volume, which 
are used in the analysis, goes further back in time.   
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Figure 4.4.  Scatter plot of the balancing power volume in an hour versus the  
balancing power volume in the previous hours.  
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4.2 Statistical analysis of the balancing power price 
In this subsection the statistical analysis of the balancing power price is performed. In 
sections 4.2.1, and 4.2.2 the model description and the objectives of the analysis are 
given. The analysis of the balancing power price having any daily, weekly or annul 
patterns is conducted in subsection 4.2.3.  Various experiments that have been done 
within the correlation analysis for the balancing power premium and the different 
factors that are supposed to influence it, are presented in subsections 4.2.4-4.2.8. 

4.2.1 Model description 
When analysing the regulating power prices, it is natural to analyse the prices for each 
price area separately. It is also intuitive to consider the balancing power prices for up- 
and down-regulation separately.   
 
When conducting the analysis and further developing of the forecasting model, the 
concept of the regulating premium, which is stated below in equation 4.8, will be 
utilized 
  

∆𝑝 =
𝑝!" − 𝑝!"#$                                                                              𝑖𝑓  𝑢𝑝 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑝!"#$ − 𝑝!"#$                                                                                  𝑖𝑓  𝑑𝑜𝑤𝑛 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
0                                                                                                                    𝑖𝑓  𝑛𝑜  𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

                 (Eq. 

4.8) 
 
Equation 2.7 defines the premium for activating regulating reserves ∆𝑝 as a difference 
between the regulating price 𝑝!"/𝑝!"#$  and the spot price 𝑝!"!". 
When using such a concept, it is important to define what is a high premium and what 
is a low premium. When it comes to the premium for up-regulation, everything is 
straight forward, and as high the difference between the balancing power price for up-
regulation and the spot price is, the higher the premium is. 
With premium for down-regulation it is not that simple and defining the premium as 
low or high can easily be misunderstood. The balancing power price for a down-
regulation is always lower than the spot price, so when subtracting the spot price from 
the balancing power premium, as it is shown in equation 4.8, the last one will be 
negative. Which means the balancing power premium for a down-regulation actually 
cannot be high. However, the balancing power premium for a down-regulation will be 
defined as high, when it is closest to zero and it will be defined as low, as it decreases.  
  

4.2.2 Analysis objectives  
The purpose of the analysis is to investigate the balancing power premium for having 
a daily, a weekly or an annual variation and to find out if the premium will be 
influenced by the factors described in the chapter 2 and by the past values of the 
balancing power premium from the previous hours.  
Following experiments will be conducted: 
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-­‐ Analysis of the balancing power premium for having a daily, a weekly or an 
annual variation 

-­‐ Test of the correlation between the balancing power premium and the 
balancing power volume 

-­‐ Test of the correlation between the balancing power premium and the spot 
price 

-­‐ Test of the correlation between the balancing power premium and the slope of 
the bid curve 

-­‐ Test of the correlation between the balancing power premium and the inflow 
-­‐ Test of the correlation between the balancing power premium in an hour and 

the past values of the balancing power premium from the previous   hours 
 
The analysis period for all experiments is from 2013 to 2015, and the overview over 
the time series used in the analysis can be found in Appendix D. All the experiments 
will also be conducted with the help of Fame. 
In order to capture the possible dependence of the value of the balancing power 
premium on the day of the week and the hour of the day, when examining the 
correlation between the balancing power premium and the balancing power volume, 
the spot price or the slope of the bid curve, the correlation coefficient will be obtained 
for five different cases: 

-­‐ For the whole analysis period   
-­‐ For weekdays 
-­‐ For weekends 
-­‐ Day hours 
-­‐ Night hours 

 
When searching for the balancing power premium variation, the premium in the price 
areas in Norway, Sweden and Denmark will be taken into consideration in order to be 
able to analyse the patterns in all of the price areas and in order to find some common 
attributes.    
 
For the correlation analysis, it was decided to use only the price area NO3, since the 
forecasting model will be developed based on the data from the NO3.  
 
The NO3 is not isolated and it has interconnections with the neighbour areas. So, the 
balancing power premium in the NO3, can also be influenced by the other areas. 
However, it is impossible to know which area, at which situation, that can influence 
the premium in the NO3, so it would be very time consuming to carry out the 
correlation analysis taking into consideration all the possible combinations of how the 
different areas can influence the balancing power premium in the NO3. So when 
carrying out the correlation analysis, the influence on the balancing power premium in 
the NO3 by the other areas will not be considered.   
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4.2.3 Examining daily, weekly and annual variation of the balancing 
power price 
When analysing the time series, it is important to examine whether or not the time 
series follows some seasonal or any other types of variation, since the knowledge 
about the time series variation can be helpful in order to predict the future values. In 
this chapter the daily, weekly and the annual variation of the balancing power 
premium will be examined. The variation of the balancing power premium in each 
price area in Norway, Sweden and Denmark will be examined for following any 
specific patterns. Then each pattern will be compared to each other to find some 
common attributes. The balancing power premiums for up- and down-regulation will 
be tested for having a variation separately.  
 
In order to determine if the balancing power premium has any daily variation, the 
values in the time series have been organized in the matrix that has the hour of the day 
as column indexes and the days of the year as row indexes. The matrix is shown in 
figure 4.5 below. The prices in each column were added to each other, and their sum 
has been divided by the number of rows in the matrix. The obtained result represents 
an average value of the balancing power premium per hour of the day for the whole 
analysis period.  
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Figure 4.5. Matrix for testing the daily variation of the balancing power premium. 
 
To examine the balancing power premium for having a weekly and an annual 
variation, the similar procedure to the one described above has been done. The 
difference is in indexing of columns and rows in the matrixes. When searching for a 
weekly variation the constructed matrix has the day of the week as column indexes 
and the week of the year as row indexes (see figure 4.6). The values in the matrix 
represent an average value of the balancing power premium per day in the analysis 
period.  
When examining the balancing power premium for the annual variation the 
constructed matrix has the month of the year as column indexes and the year as row 
indexes (see figure 4.7). The values in the matrix represent an average value of the 
balancing power premium per month in the analysis period.  
 
The Fame code that has been used to conduct results can be found in the Appendix E. 
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Figure 4.6. Matrix for testing the weekly variation of the balancing power 
premium. 
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Figure 4.7. Matrix for testing the annual variation of the balancing power 
premium. 
 
The daily variation of the balancing power premium is shown in figure 4.8, and the 
weekly variation and the annual variation are shown in figures 4.9 and 4.10, 
respectively.  
 
The daily variation of the balancing power premium for an up-regulation for the 
different price areas and the daily variation of the balancing power premium for a 
down-regulation for the different prices is presented in figures 4.8(a), 4.8(b), 4.8(c) 
and figures 4.8(d), 4.8(e), 4.8(f) respectively. From the figures, it can be seen that the 
balancing power premium for the up-regulation has an evident pattern: it has a peak 
between 6 a.m. and 10 a.m. and between 4 p.m. and 8 p.m., which approximately 
corresponds to the spot price peaks. The balancing power premium for the down-
regulation follows a certain daily pattern as well. It is highest between 10 a.m. and 4 
p.m. and during the night hours. Comparing the premium for an up- and a down-
regulation one sees that in hours when the premium for the up-regulation is high the 
premium for the down-regulation is low, and vice versa.  
In figures 4.9(a), 4.9(b), 4.9(c) the weekly variation of the balancing power premium 
for the up-regulation is shown. The patterns for the different price areas differ, but it 
is possible to highlight some common attributes. It can be seen that the premium for 
the up-regulation is highest on Mondays. It decreases during the week, it is quite low 
on Fridays and Saturdays and it starts to increase again on Sundays. The weekly 
variation of the balancing power premium for the down-regulation, which is shown in 
the figures 4.9(d), 4.9(e), 4.9(f), is similar to the weekly regulation of the premium for 
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the up-regulation, but has one difference- it has two peaks, one on Mondays and one 
on Fridays.  
 
The annual variation of the balancing power premium for the up- and down-
regulation is shown in the figures 4.10(a), 4.10(b), 4.10(c) and 4.10(d), 4.10(e), 
4.10(f) respectively. In annual patterns of the premium for both the up- and down-
regulation one sees some variations for the different price areas. However, the high 
premium for the up-regulation can be identified from April until July, and then it 
decreases before taken off again around October-November. When it comes to the 
annual pattern of the premium for the down-regulation, it can be seen that it also 
varies for the different price areas, but three peaks in the premium during the year in 
all areas can be determined. The balancing power premium for the down-regulation is 
highest between May and September; it is also high between November and April. 
 
It should be noticed that these patterns does not provide any information about the 
value of the regulating power premium, but about how the balancing power premium 
changes during a day, a week or a year. 
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Figure 4.8. Daily variation of the balancing power premium. 
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Figure 4.9. Weekly variation of the balancing power premium. 
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Figure 4.10. Annual variation of the balancing power premium. 
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4.2.4 Correlation between the balancing power premium and the 
balancing power volume 
If an imbalance occurs in the system the TSO starts to activate the balancing reserves. 
As more reserves will be activated, the higher the cost of the regulation will be. In 
order to test this dependence, the correlation between the balancing power premium 
and the balancing power volume has been tested. First, the correlation between the 
balancing power premium and the balancing power volume has been tested for the 
whole analysis period. Then the analysis period has been divided into working 
days/weekends and day/night hours, and the correlation test has been carried out one 
more time for each of the cases. 
 
The results of the analysis and the scatter plots of the balancing power volume and the 
balancing power price under both the up- and down-regulation are shown in table 4.2 
and in figure 4.11, respectively. 
 

Filter Correlation coefficient 
Up-regulation Down-regulation 

All hours 0.28 0.23 
Weekdays 0.24 0.20 
Weekends 0.44 0.30 
Day 0.33 0.19 
Night 0.53 0.32 

Table 4.3. Results of the correlation analysis.  
 
 
 

 
 

Figure 4.11. Scatter plot of the balancing power premium versus thebalancing 
power volume. 
 
Figure 4.11(a) and figure 4.11(b) shows the scatter plot for the balancing power 
premium versus the balancing power volume in all hours of the analysis period for the 
up- and down-regulation receptively. One sees that even though the correlation 
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between the balancing power premium and the balancing power volume for both the 
up- and down-regulation is quite low, (0.28 for up-regulation and 0.23 for down-
regulation), the balancing power volume and premium have some linear dependency. 
As bigger the balancing power volume under the up-regulation is, the higher the 
premium, and as bigger the balancing power volume for the down-regulation is, the 
lower the premium. However, numerous outlying points that can be seen in the figure 
make the correlation between the balancing power volume and the balancing power 
premium lower. From table 4.3 it can also be seen that the correlation between the 
balancing power volume and the balancing power premium varies for the different 
hours of the day and for the different days of the week.  
 

4.2.5 Correlation between the balancing power premium and the spot 
price 
As it was mentioned in chapter 2, the balancing power price is limited by the spot 
price, and the balancing power price is higher and lower then the spot price for the up- 
and down-regulation respectively. However, it is not suitable to say that the balancing 
power premium is limited by the spot price and that it has the same dependence on it 
as the balancing power price. Since the balancing power premium is a remaining 
value when subtracting the spot price from the balancing power price, and it 
represents the extra cost of activating the balancing reserves. So, for example, even 
though the spot price is low, the balancing power premium for the up-regulation can 
be really high, if there is a need for a lot of regulation, and the bids that have been 
submitted to the Balancing power market have a high price. The balancing power 
premium for the down regulation can be low even though the spot price is high if it is 
a great need for a down-regulation in the system.  
 
It is difficult to say precisely which dependence there is between the balancing power 
and the spot price. So the correlation between the balancing power premium and the 
spot price has been examined. The correlation between them in the whole analysis 
period and in weekdays/weekends and day/night hours is shown in Table 4.4. The 
scatter plot for the balancing power premium versus the spot price in the whole 
analysis period can be seen in figure 4.12 
 

Filter Correlation coefficient 
Up-regulation Down-regulation 

All hours 0.34 -0.36 
Weekdays 0.36 -0.49 
Weekends 0.17 -0.09 
Day 0.24 -0.08 
Night 0.38 -0.45 

Table 4.4. Results of the correlation analysis.  
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Figure 4.12. Scatter plot for the balancing power premium versus the spot price. 
 
From the results in table 4.4 and figure 4.12(b), it can be seen that the balancing 
power premium for the down-regulation is negatively correlated with the spot price: 
as lower the spot price is, the higher the balancing power premium will be and as 
higher the spot price is, the lower the premium will be. The balancing power premium 
for the up-regulation is positively correlated with the spot price: the higher the spot 
price is, the higher the premium will be. However, from figure 4.12(a), it can be 
noticed that there are many outlying points, and in some hours the premium was 
really high even though the spot price is relatively low and vice versa.  
 
The balancing power premium for both the up- and down-regulation is not strongly 
correlated with the spot price, and the correlation coefficient between the premium 
and the spot price is 0.34 in the case of an up-regulation, and -0.36 in the case of a 
down-regulation. The correlation coefficient also varies for the different days of the 
week and for the different hours of the day. The balancing power premium and the 
spot price are correlated the most at the night hours and the weekdays in case of both 
an up- regulation and a down-regulation.  
 

4.2.6 Correlation between the balancing power premium and the 
slope of the bid curve 
As it was mentioned before in chapter 2, the fewer bids that are left after the Elspot 
clearing, that have not been accepted, the bigger the chance is to get a high regulating 
price in case of an up-regulation, and it is a bigger chance to get the balancing power 
price that are high under a down-regulation, when many bids that has been accepted 
in the Elspot have the same or almost the same price. The balancing power premium 
is most likely to have the same dependence on the bids that have been accepted in the 
Elspot and their price.  
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In order to investigate the relationship between the balancing power premium and the 
bids that have been accepted in the Elspot in case of a down-regulation and that have 
not been accepted in the Elspot in case of an up-regulation, it was decided to look at 
the relationship between the premium and the slope of the Elspot bid curve.  
 
The Elspot bid curve has been generated for each hour in the analysis period by using 
the algorithm developed by Statkraft. The curve has been aggregated from both the 
bids for demand and the bids for supply, due to that many market actors submit their 
bids for both supply and demand, and under the Elspot clearing these bids will be 
cleared as a net value.  
 
All bids in the bid curve that will lie to the left of the system price are assumed to be 
submitted to the Balancing Power market for the same price as they were submitted in 
the Elspot. It should be noticed that in reality, bids that have not been accepted in the 
Elspot will be submitted to the Balancing Power market, since the market actors will 
evaluate the suitability of the remaining units for a quick up- or down-regulation and 
the profitability of the bidding in the market, and then decide whether or not to offer 
their reserves to the Balancing Power market. The price of the submitted bids will 
also be higher due to start-up cost, cost of running only in few hours and so on. So the 
bid curve for the Balancing Power market will have a steeper slope and will lie higher 
up along the price-axis than the Elspot curve.  
 
When calculating the slope of the bid curve, the expression stated below is used: 
 
Slope = !!!!!

!!!!!
                                                                                                           (Eq. 

4.9) 
   
where V1 and V2 are volumes that lie 1000MW below and over in relation to the last 
accepted bid in the Elspot V, and P1 and P2 are prices that corresponds to them as 
shown in figure 4.13.  
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Figure 4.13. The Elspot bid curve. 
 
The Fame code that has been used to obtain the slope of the Elspot bid curve for each 
hour of the analysis period can be found in Appendix F. 
 
After finding the slope, the correlation between the slope of the bid curve and the 
balancing power premium has been determined. The results are shown in table 4.5.  
 

Filter Correlation coefficient 
Up-regulation Down-regulation 

All hours 0.35 -0.44 
Working days 0.35 -0.51 
Weekends 0.16 -0.32 
Day 0.19 -0.37 
Night 0.39 -0.48 

Table 4.5. Results of the correlation analysis.  
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Figure 4.14. Scatter plot of the balancing power premium versus the slope of the. 
 
As it can be seen from table 4.5, the balancing power premium is correlated with the 
slope of the bid curve: in the case of an up-regulation, the correlation coefficient is 
0.35, and in the case of a down-regulation, the correlation coefficient is  -0.44. The 
premium for the down-regulation will be lower as the slope of the bid curve will be 
steeper, and the premium for the up-regulation will be higher as the slope of the curve 
will be steeper. However, as one sees from figures 4.14(a) and 4.14(b) there are many 
outlying points that cannot be described with this relationship. The balancing power 
premium is more dependent on the slope of the bid curve on the working days and at 
night hours. 
 

4.2.7 Correlation between the balancing power premium and the 
inflow 
In chapter 2 the possible dependence between the balancing power price and the 
inflow has been described. When it comes to the relationship between the balancing 
power premium and the inflow, it most likely is the same. So in periods with a low 
inflow and a low reservoir level the premium for the up-regulation can be high, and in 
periods with a high inflow, especially in combination with a risk for a flood, the 
premium for the down-regulation can be really low.  
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When testing the correlation between the inflow and the balancing power premium, 
the analysis period has been divided into periods with a high and a low inflow: 

-­‐ Winter period (from December to middle of April), when inflow is low and 
consumption is high 

-­‐ Spring (from middle of April to middle of July), when inflow is very high due 
to snow melting 

-­‐ Summer and autumn (from middle of July to November), when inflow can be 
high due to rainfall 
 

The results of the analysis and the scatter plot of the balancing power premium and 
the inflow for the different periods are shown in table 4.6 and figure 4.15, 
respectively.  
 

Period Correlation coefficient 
Up-regulation Down-regulation 

Winter -0.06 -0.04 
Spring -0.04 0.16 
Autumn and Summer 0.09 -0.10 

Table 4.6. Correlation between the balancing power premium and the inflow.  
 
As it can be seen from table 4.6, the correlation between the balancing power 
premium and the inflow for the different periods is close to zero. However, the scatter 
plots 4.15(c) and 4.15(f) show some relation between the inflow and the premium in 
the winter period and the scatter plot 4.15(d) shows some relation between the 
balancing power premium for an up-regulation and inflow in the summer/autumn 
period. It is, however, impossible to distinguish any clear trends from the figures.  
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Figure 4.15. Scatter plot of the balancing power premium versus inflow. 
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4.2.8 Power premium in an hour and the balancing power premium 
in the previous hours 
It is assumed that the value of the balancing power premium in an hour can be 
influenced by the past values of the premium. In order to prove or disapprove this 
assumption, the correlation between the values of the balancing power premium and 
the past values of the premium has been examined.  
 
In the previous subsection, when carrying out the experiments, the balancing power 
premium for an up-regulation and the balancing power premium for a down-
regulation have been considered separately. However, in this subsection when testing 
the correlation between the balancing power premium in an hour and the balancing 
power premium from the previous hours, one will look at an aggregated time series of 
the balancing power premium in price area NO3. The time series has been aggregated 
from the time series of the balancing power premium for an up-regulation and a 
down-regulation. The hours with zero values in the series correspond to the hours 
when the balancing power reserves have not been activated.  
 
For the past values, the records of the balancing power premium that go 1, 2, 3, 4, 5, 6 
and 7 hours back in time, have been taken into consideration. The correlation between 
the past and the future values of the balancing power premium for an up- and a down-
regulation has been tested separately. The obtained correlation coefficients for each of 
the cases are shown in table 4.7, and the scatter plots for the values of the balancing 
power premium in an hour versus the past values of the balancing power volume are 
shown in figure 4.16. 
 

Hours back in time Correlation coefficient 

1 0.72 
2 0.48 
3 0.35 
4 0.27 
5 0.22 
6 0.20 
7 0.16 

Table 4.7. Results of the correlation analysis.  
 
Both from the table and from the figures it can be concluded that the balancing power 
premium in an hour is correlated with the values of the balancing power premium 
from the previous hours. The correlation between the balancing power premium in an 
hour and the past values of the balancing power premium from the previous hour and 
one hour before the previous hour is the strongest. However, the correlation 
coefficient between the premium in an hour and the past values of the premium from 
the previous hours decreases as the past values go further back in time.  
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In general the relationship between the premium in an hour and the past values of the 
premium can be described as follows: as higher the balancing power premium in the 
previous hours is, the higher the balancing power premium in an hour will be, and as 
lower the balancing power premium in the previous hours is, the lower the balancing 
power premium in an hour will be. 
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Figure 4.16. Scatter plot of the balancing power premium in an hour versus the 
balancing power premium in the previous hours. 
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4.2.9 Summarizing the results 
In this subsection the balancing power premium has been examined for having a 
daily, a weekly and an annual variation and for having a dependence on one or more 
factors that are supposed to influence it. The number of conclusions has been made. 
 
The balancing power premium for the up- and down-regulation has a daily, a weekly 
and an annual variation. The premium in different price areas does not always follow 
completely the identical daily, weekly or annual patterns, but it is still possible to 
indicate some common attributes between the patterns. 
 
The balancing power premium in the NO3 is correlated with the balancing power 
volume in the NO3, the slope of the Elspot bid curve and the spot price in the NO3. 
The correlation coefficient between the premium and each of these factors varies 
depending on the day of the week (weekday/weekend) and hour of the day (day/night) 
and it depends on the state of the regulation. The results of the correlation analysis 
have been summarized in the table below:  
 
 Correlation coefficient 
Factor Balancing power 

volume 
Slope of the Elspot 
bid curve 

Spot price 

    Regulation  
                 
state 
Filter 

Up Down Up Down Up Down 

All hours 0.28 0.23 0.35 -0.44 0.34 -0.36 
Weekdays 0.24 0.20 0.35 -0.51 0.36 -0.49 
Weekends 0.44 0.30 0.16 -0.32 0.17 -0.09 
Day 0.33 0.19 0.19 -0.37 0.24 -0.08 
Night 0.53 0.32 0.39 -0.48 0.38 -0.45 

Table 4.8. Summarized results. 
 
As one sees from the table, the balancing power premium does not have a strong 
correlation with any of the factors due to the many outlying points, but it can still be 
indicated some dependences from the scatter plots 4.11, 4.12 and 4.14: 

-­‐ As bigger the balancing power volume is, the higher the balancing power 
premium in case of an up-regulation will be, and as bigger the volume 
activated under a down-regulation is, the lower the balancing power premium 
will be; 

-­‐ As higher the spot price is, the higher the balancing power premium in case of 
an up-regulation will be, and as lower the spot price is, the higher the 
balancing power premium for a down-regulation will be; 

-­‐ As steeper the slope of the Elspot bid curve is, the higher the balancing power 
premium in case of an up-regulation will be, and as steeper the slope of the bid 
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curve is, the lower the balancing power premium for a down-regulation will 
be. 
 

The balancing power premium does not have any linear dependence on the inflow, 
but from the scatter plot 4.15, the relationship between the premium and the inflow 
can be identified.  
 
The balancing power premium in an hour is also influenced by the past values of the 
premium in the previous hours. The impact of the past values of the premium on the 
future ones decreases as the past values go further back in time. Thus, the correlation 
coefficient between the balancing power premium in an hour and the balancing power 
premium in the previous hour is 0.72, the correlation coefficient between the 
balancing power premium in an hour and the balancing power premium in one hour 
before the previous hour is 0.48 and so on.  
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Chapter 5  

Forecasting model for the balancing power 
volume and price 
 
The aim of this master thesis is to examine the possibility of using a regression model 
in order to forecast the balancing power volume and the balancing power premium. 
When developing the forecasting model for both the balancing power volume and the 
premium, the regression models provided in the Microsoft Azure Machine Learning 
Studio will be used. In this chapter the model objectives, the stepwise development of 
the model and the results obtained from the model testing are represented. In section 
5.1 the aim of the model is described.  
 
The reasons for choosing the Machine Learning algorithms and the specific regression 
model for making the forecast of the balancing power volume and the balancing 
power premium are given in subsections 5.2 and 5.3, respectively. Section 5.4 
describes the choice of the variables for the set of the predictors that will be used as 
an input into the forecasting model. 
 
The development of the experiment/model for forecasting the balancing power 
volume and the balancing power premium and the results obtained under the model 
running are represented in subsections 5.5, 5.6 and 5.7.  
 

5.1 Model objectives 
In this chapter the possibility of forecasting the balancing power volume and the 
balancing power premium will be examined. As mentioned before, there are 12 price 
areas that exchange the balancing power reserves between each other, and the 
balancing power volume in a price area can be influenced by the imbalances that have 
occurred in the other price areas. The same comes to the balancing power premium: 
the balancing power premium in a price area is also influenced by the events that have 
occurred in the other price areas. So, in principle, when forecasting the balancing 
power volume and the balancing power premium, the forecast needs to be made for 
all of the price areas. If not, the influence of the events that takes place in the other 
price areas on the balancing power volume and the balancing power premium in a 
price area needs to be taken into consideration. However, it is too time consuming. 
That is why it has been decided to limit the work by forecasting the balancing power 
volume and the balancing power premium only in one price area.  
 
When selecting the price area for making the forecast, the choice fell on price area 
NO3 due to two main reasons:  
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-­‐ The NO3 has some wind power production and in a couple of years the share 
of the power production from the wind power will increase 

-­‐ Statkraft will build out more capacity for the wind power production. 
 
When it comes to the selection of the time when the forecasting of the balancing 
power volume and the balancing power premium in an hour will be made, it has been 
decided that the forecast can earliest be carried out after the closing of the Elspot 
market.  
 
One of the conclusions that Gro Klæboe (2015) have drawn in her work, is that it is 
impossible to forecast the balancing power price before the closing of the Elspot 
market. When testing the correlation between the balancing power volume and the 
disturbance factors that influence the balance in the power system and the correlation 
between the balancing power premium and the factors that influence it, the 
dependence of the balancing power volume and the balancing power premium on the 
variables that are known after the closing of the Elspot market, has been identified. If 
one wants to use those variables as an input into the forecasting model, the balancing 
power volume and the balancing power premium can be forecasted after the Elspot 
market closes.  
 
A day-ahead forecast of the balancing power volume and the balancing power 
premium will be made. The possibility of improving the accuracy of the forecast for 
an hour, when having new information that will be available during the day, will also 
be examined.  
 
In this thesis, the balancing power volume and the balancing power premium in an 
hour, which is forecasted by using the information available a day before (or by using 
the information that is available some hours before) in relation to the hour of the 
forecast are referred to as a day-ahead forecast (or X-hour-ahead forecast) of the 
balancing power volume and the balancing power premium. However, the output of 
the forecasting model in reality is an extrapolation of the balancing power volume and 
the balancing power premium. The reason for this is that the forecast of the volume 
and the premium will be made for the year 2015 and the model will be trained by 
using the information from the previous years. When making an actual day-ahead 
forecast (or X-hour-ahead forecast), the model will be trained again every day (or 
every hour).  
 
 

5.2 The choice of the method for the balancing power 
volume and the balancing power premium forecast. 
In order to forecast the balancing power volume and the balancing power premium in 
NO3, it has been decided to use the Machine Learning algorithms, more particular, 
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the algorithms provided by the Microsoft Azure Machine Learning Studio. The choice 
fell on the Machine Learning algorithms, due to several reasons.  
 
One of the reasons is an availability of the Machine Learning algorithms to adapt to 
new conditions and rules. The situation in the price areas continuously undergoes 
changes, such as new interconnection, changes in the power consumption and power 
production changes in the boarder of the price areas. For example, a new power line 
between the NO3 and the NO5 has been set into operation at the end of the 2015, and 
the wind power expansion in the NO3 in the coming years will cause “new 
conditions”, which the Machine Learning algorithms will be able to take into 
consideration.  
 
Another reason is that the Machine Learning algorithms can solve complex problems 
and deal with non-linear relationships between variables.   
 
The last reason is that it is possible to retrain the model that are based on the Machine 
Learning algorithms by taking into consideration the errors that have been made in the 
previous forecasts. It will not be done in this thesis, but it is a possibility for 
improving the forecast, when one re-runs the model every day or every hour. The 
forecast errors that have been made in the previous day or the previous hour can be 
added into the model as an extra input variable. 
 

5.3 The choice of the regression model for the balancing 
power volume and the balancing power premium forecast.  
When developing a forecasting model for the balancing power volume and the 
balancing power premium, algorithms, which are available in the Microsoft Azure 
Machine Learning Studio, are used. The Microsoft Azure Machine Learning Studio 
offers several implemented regression models. The choice of the model can be based 
on time required in order to conduct result, accuracy of the model performance or 
objectives of using the model.  
 
The desired output of the future forecasting model is a value of the balancing power 
volume and the balancing power premium.  Knowing the desired model output, the 
opportunities one can choose from between the models, can be narrowed down by not 
taken into consideration the regression models, and only consider the models, which 
have as a result, a numerical value of a variable of interest. From the algorithms cheat 
sheet, one sees that the Ordinal regression model is used to predict the ranked values, 
the Poisson regression model is used to predict event counts and the Fast Forest 
Quantille regression model is used to predict the distribution of the predicted variable. 
Which is why these models will not be considered. 
 
The Bayesian regression model suits best for the small datasets. The dataset, which 
will be used in order to forecast the balancing power volume and the balancing power 
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premium, contains over x variables, in which all of them have 15000 records each, is 
considered as a big one. This is why the Bayesian regression model has been removed 
from the choices as well.  
 
The Linear regression model that uses the ordinary least squares method or the online 
gradient descent method, has been found to be too simple in order to catch the 
dependences between the balancing power volume/price and the explanatory variables 
that can be non-linear.  
 
The Neural Network regression model is used widely for the deep learning and the 
modelling of the complex problems. This model is, for example, used for the spot 
price forecasting. The Neural Network regression uses a complex algorithm and the 
performance of the regression is sensitive to the chosen tuning parameters. So it was 
decided to not consider this algorithm in this master thesis. 
 
The Decision forest regression model and the Boosted decision tree regression model 
will be used in order to forecast the balancing power volume and the balancing power 
premium. It is difficult to make a choice between these models, since both models 
provide a good accuracy of the forecasts and have fast training time. So it was 
decided that both of the models will be run parallel for the same dataset and their 
performance will be evaluated and compared.  
 
  

5.4 Choice of predictors 
In chapter 4, the correlation between the balancing power volume/premium and the 
different factors, which are supposed to have an influence on the volume/premium in 
the Balancing power market, was examined. It was done in order to find variables that 
can be used as explanatory variables for the balancing power volume/premium when 
developing the forecasting model.  
 
However, not all factors that have been considered in the correlation analysis can be 
used as predictors in the regression model.  
 

5.4.1 Predictors for the balancing power volume 
Under the correlation analysis for the balancing power volume the variables such as 
Elbas volume, special regulation, deviation between the actual and the planed power 
flow, deviation between the actual and the forecasted consumption, and deviation 
between the actual and the forecasted wind power production in an operating hour 
were claimed to have influence on the balancing power volume.  
 
When making forecast of the balancing power volume in an hour the values of special 
regulation, the actual power flow, the actual power consumption and the actual wind 
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power production in this hour will be unknown. So such variables as the special 
regulation, the deviation between the actual and the planed power flow, the deviation 
between the actual and the forecasted consumption, and the deviation between the 
actual and the forecasted wind power production can not be used as explanatory 
variables in the analysis. However, the power consumption forecast, the wind power 
production forecast and the planed power flow (spot power flow) are known when 
forecasting the balancing power volume for the next day or for the next hour, that is 
why it has been decided to include these variables in the set of predictors. 
 
The Elbas volume in an operating hour can only be used as a predictor in really short-
term forecasts, i.e. one hour before the operating hour. Since the trading in the Elbas 
closes one hour before the operating hour and bids in the Balancing Power Market 
can be adjusted at latest, 45 minutes before the operating hour (see figure 5.1), and the 
market actors would have a possibility to make a new forecast of the balancing power 
volume with the Elbas volume taken into consideration.  
 
Due to the fact that the Elbas volume can be used only in a short-term forecast of the 
balancing power volume, and its influence on the balancing power volume is 
controversial, it was decided to not take it into consideration when making the 
forecast.   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1. Structure of the power market. 
 
Some implicit dependence between the balancing power volume and the deviation 
between the actual and the forecasted temperature was identified as well in chapter 4. 
The actual temperature will not be known at the moment of making the forecast, the 
deviation between the actual and the forecasted temperature cannot be used as a 
predictor, but the temperature forecast will be known and that is why it can be used as 
an explanatory variable. 
 
The past values of the balancing power volume can also be used as a predictor for the 
balancing power volume in an hour. However, in subsection 4.1.6, it has been found 
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out that the past values of the balancing power volume that do not lay too long back in 
time, has the strongest correlation with the balancing power volume in an hour. That 
is why it is quite uncertain if it is possible to use the past values of the balancing 
power volume to make the forecast of the balancing power volume in an hour for 
many hours ahead or not. Due to this issue the past values of the balancing power 
volume will be considered when making the forecast, but not in first place.  
 
 

5.4.2 Predictors for the balancing power price 
The correlation analysis that has been carried out in order to find any relationships 
between the balancing power price and the factors, which are supposed to influence it, 
has shown dependence of the balancing power premium in an area on the balancing 
power volume, spot price in the price area and the slope of the Elspot bid curve. All 
these variables, except the balancing power volume are known at the moment of 
making the balancing power price forecast, and can be used as predictors.  
 
The actual balancing power volume in an operating hour is not be known at the 
moment of the forecast, but the forecast for the volume will be available before 
forecasting the balancing power price and it can be used as a predictor.  
 
The inflow in price area NO3 has not shown to have any linear relationship with the 
balancing power premium in the area, but as it can be seen from figure 4.15 in 
subsection 4.2.7, a sort of a non-linear relationship between them is possible. That is 
why it has been decided to include the inflow in the NO3 into the set of predictors and 
examine whether or not it can be used in order to explain the values of the balancing 
power premium.   
 
The balancing power premium in an hour has also been found to correlate with the 
balancing power premium from the previous hours. However, similar to the balancing 
power volume, the correlation between them will be lower as the past values of the 
balancing power premium that goes too long back in time are used, in order to predict 
the values of the balancing power premium in an hour. So if by using the past values 
of the balancing power volume in the set of predictors, it will, most likely, be possible 
to conduct only a short-term forecast of the premium. That is why the time series 
containing the past values of the balancing power premium will be considered as an 
explanatory variable, but only after examining the possibility of forecasting the 
balancing power premium without using its past values as a predictor. 

5.4.3 Variable transformation 
The balancing power volumes claim to have a daily, weekly and annual variation. In 
order to be able to reflect these variations in the model, this periodicity needs to be 
presented as a variable. Three variables will be created, which are: hour of the day, 
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hour of the week and hour of the year. These variables have been transformed into 
polar coordinates via (sin;cos) pair of variables. 
   
Following formula for the transformation has been used: 
𝑥 → 𝑦!;𝑦! = [sin !!"

!
; cos(!!!

!
)]      (Eq. 5.1) 

 

where x is a variable to be transformed and 𝜔 is a period of variation. (Busseti, 
Osband & Wong, 2012) The period for the daily variation is 24 hours, the weekly 
variation is 168 hours and the annual regulation is 8760 hours. The result of the 
transformation is shown in figure 5.2. 

 

 

Figure 5.2. Transformation to the polar coordinates. 
 
It should be pointed out that by transforming the variables the piecewise linear 
representation of the hour of the day, week and year will be avoided. In figure 5.3, the 
variables, which have not been applied on the transformation to the polar coordinates, 
are shown.  Having variables in the linear form will lead to additional splits in the 
model, in the places where it can be avoided. For example, the hours of the day 
denoted from 0 to 23. In the model, the balancing power volume in hour 0 and hour 
23 will be considered as having different characteristics and will be split, even though 
the characteristics of the volumes in these hours are most likely the same and could 
actually be treated together. By representing hour of the day, hour of the week and 
hour of the year as continuous variables, unnecessary splits in the model will be 
avoided. 
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Figure 5.3. The variables before the transformation.  
 
*The transformation of the hour of the day, hour of the week and hour of the year into 
the polar coordinates will be used as input variables for the model, and in the 
following subsections it will be referred to as the hour of the day, hour of the week 
and hour of the year. 
 

5.4.4 Final set of predictors  
The predictors that will be used in order to forecast the balancing power volume and 
the balancing power price are gathered in the table below: 
 
Predictors for the balancing power 
volume 

Predictors for the balancing power 
price  

Hour of the day Hour of the day 
Hour of the week Hour of the week 
Hour of the year Hour of the year 
Wind power production forecast NO3 Balancing power volume NO3 
Power consumption forecast NO3 Inflow NO3 
Spot power flow NO3 NO4 Slope of the bid curve 
Spot power flow NO3 SE2 Spot price NO3 
Temperature forecast NO3 Balancing power premium in hour t-1 
Balancing power volume in hour t-1* Balancing power premium in hour t-2 
Balancing power volume in hour t-2 Balancing power premium in hour t-3 
Balancing power volume in hour t-3 Balancing power premium in hour t-4 
Balancing power volume in hour t-4  

Table 5.1. The set of predictors. 
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In order to be able to use those variables in the Microsoft Azure Machine Learning 
Studio, the variables need to be gathered into the CSV-file together with the balancing 
power volume and the balancing power premium. It has been decided to create two 
separate CSV-files for forecasting the balancing power volume and the balancing 
power premium.  
 
The CSV-file that will be used in order to forecast the balancing power volume 
contains the predictors for the balancing power volume from the table above, and the 
actual values of the balancing power volume in an hour. The CSV-file that will be 
used in order to forecast the balancing power premium contains the predictors for the 
balancing power premium from the table above, and the actual values of the balancing 
power premium in an hour.   
 
 

5.4.5 Missing values 
Data of the power consumption forecast and the wind power production forecast has 
31% of missing values. These two variables are used as predictors for the balancing 
power volume forecast. So when developing the model for the balancing power 
volume, it is necessary to handle the missing values in these time series. In order to 
pre-process data, the Clean Missing Data module will be used.  
 
Clean Missing Data gives the possibility to either remove the missing values, to 
replace them with mean, placeholder or other value, or to completely remove rows 
with the missing values. When using the Clean Missing Data, the initial dataset will 
not be changed. The module creates a new dataset in the workspace and will use it in 
the subsequent workflow. Clean Missing Data also gives an option to save the cleaned 
dataset and reuse it. (Microsoft Azure D, 2016) 
 
It was decided to clean the missing values in the data of the power consumption and 
the wind power production forecast by removing all the rows in the dataset that 
contains missing values. The decision was made based on that the dataset has 26280 
hours of registered data; so removing 31%, i.e. 8256 hours, of the records will not 
influence the quality of model training and the model scoring in large extent. 
 

5.5 Hyper Parameter Optimization 
One of the conditions for getting the best predictive model is to choose the right 
values for the algorithms tuning parameters. There are no fixed rules or guidance that 
would help in advance to determine the best parameters. So in order to find the 
parameters that will give the best forecast, a hyper parameter optimization has to be 
done manually or by the use of the Tune Model Hyperparameters module.  
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When doing the parameter optimization manually the n models with m parameter set 
has to be tested. It is also necessary to keep track on the testing results in order to be 
able to compare them and to make a decision about which parameter set will ensure 
the best model performance.  
 
On the other hand, the Tune Model Hyperparameters module gives the possibility to 
build and train the model by using different combinations of settings and to find out 
optimum model parameters for the given dataset. The module supports two different 
methods in order to obtain the optimum parameters: Integrated train and tune that uses 
a parameter sweep to train a model and Cross validation with tuning that divides the 
data into some numbers of folds, and then build a model for each fold and then tests 
them to identify the best parameters for each fold. Finally, when the optimum 
parameter settings are found, they will be used to train the entire training data. 
(Microsoft Azure E, 2016)  
 
In order to find the optimum parameters for the model the Tune Model 
Hyperparameters module will be used. The random sweep of the parameters will be 
performed. The maximum number of sweeps is set to 30. 
 

5.6 Forecasting the balancing power volume 

5.6.1 Constructing the experiment for the balancing power volume 
forecast 
The experiment constructed in order to forecast the balancing power volume is shown 
in figure 5.4. The dataset is divided into two sets by using the Split Data module. The 
dataset is divided by rows, and in order to ensure that the data that has been used for 
the model training will not be used for the model testing, the Randomized split option 
has been disabled. The first set, which is 70% of the original dataset will be used to 
train the model, the second set that represents the remaining 30% of the original 
dataset will be used to generate the predictions. The data from 2013 to 2014 will be 
used for the model training and the data from 2015 will be used for the model testing.   
 
The Decision Forest regression model and the Boosted Decision Tree regression 
model are used in the experiment. Training and testing of each model will be run 
independently and the performance of each model will be evaluated. The result from 
the model evaluation will then be used in order to compare these models and identify 
the most suitable model for the given prediction task and dataset. 
 
The Score Model module generates predictions using a trained model, and the dataset, 
which has been put aside for testing. The output of this module for the Decision 
Forest regression model is a scored label standard mean and a scored label standard 
deviation. For the Boosted Decision Tree regression the output of this module is 
scored labels.  
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The Evaluate Model module is used to determine the accuracy of the models and to 
compare their performances. The module calculates Negative Log Likelihood, Mean 
Absolute Error, Root Mean Squared Error, Relative Absolute Error, Relative Squared 
Error and Coefficient of Determination. The description of these values can be found 
in subsection 3.3. 
 
The Select Column in the Dataset module is added to the experiment in order to be 
able to choose which of the columns in the dataset that will be used in the experiment. 
The Edit Metadata module is used to change the metadata associated with the dataset, 
if necessary.  
 
 

Figure 5.4. Structure of the experiment. 
 

5.6.2 Forecasting the balancing power volume without considering 
the past values of the balancing power volume 
The balancing power volume has been forecasted using the experiment that is shown 
in figure 5.4 and the dataset that contains the following attributes: the hour of the day, 
the hour of the week, the hour of the year, the power consumption forecast, the wind 
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power production forecast, the spot power flow between NO3 and NO4, the spot 
power flow between NO3 and SE2 and the temperature forecast.  
 
The accuracy of the models has been evaluated by using the Mean Absolute Error and 
Root Mean Squared Error. The correlation coefficient between the forecasted and the 
actual values of the balancing power volume has also been considered when 
estimating the quality of the model performance. 
 
When training both the Decision Forest regression model and the Boosted Decision 
Tree regression model, 30 different sets of the model parameters have been tested in 
order to find the optimal parameter settings, which will provide the best model output.  
 
The three best parameter settings and the corresponding Mean Absolute Error (MAE) 
and the Root Mean Squared Error (RMSE) for each of the regression models are 
given in tables 5.2 and 5.3. All parameter sets that have been considered under the 
training of the models are represented in Appendix G.  
 
Boosted Decision Tree regression 
Parameter 
set 

Number 
of leaves 

Minimum 
leaf 
instances 

Learning 
rate 

Number 
of trees 

MAE RMSE 

1 117 2 0.22 482 12.13 24.40 
2 68 3 0.13 258 12.49 24.79 
3 124 4 0.22 94 12.90 25.19 

Table 5.2. Parameter settings for the Boosted Decision Tree regression model. 
 
 
Decision Forest regression 
Parameter 
set 

Minimum 
number 
of 
samples 
per leaf 
node 

Number 
of 
random 
splits per 
node 

Maximum 
depth of 
the trees 

Number 
of trees 

MAE RMSE 

1 2 200 32 19 13.79 28.03 
2 2 627 36 21 13.73 28.08 
3 4 155 29 14 14.52 29.36 

Table 5.3. Parameter settings for the Decision Forest regression model. 
 
Figure 5.6 is the graph of the forecasted values of the balancing power volume for a 
one-week period, and figure 5.5 represents the scatter plot for the actual values versus 
the forecasted values of the balancing power volume.  
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Figure 5.5. Scatter plot of the actual values of the balancing power volume versus 
the forecasted ones. 

 

Figure 5.6. Forecast of the balancing power volume for a week. 
 
From both figures one sees that neither the Boosted Decision Tree regression model 
nor the Decision Forest regression model have managed to make a good prediction of 
the balancing power volume day ahead, by using the given set of predictors.  
 
When evaluating the performance of the models, two aspects in the forecasted results 
have been studied: the capability to determine the right regulation state, and the 
capability to capture the magnitude of the balancing power volume.  
 
The balancing power volume has been forecasted in 5357 hours, and only in about 
20% of the cases the models managed to predict the right regulation state. The models 
failed to predict the up-regulation in 94% of the cases and the down-regulation in 
25% of the cases, and the models did not distinguish the balance in the system as a 
regulation state at all.  

a)	
  Boosted	
  Decision	
  Tree	
  regression	
   b)	
  Decision	
  Forest	
  regression	
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When it comes to the capability of the models to make a correct forecast on the size of 
the activated balancing reserves, it can be seen from figure 5.6 that both of the models 
that are used are insufficient to do this. Even though it is not required from the models 
to predict an exact value of the balancing power volume, but to be able to indicate an 
approximate magnitude of the expected balancing power volume, i.e. to indicate the 
peaks in the balancing power volumes for both the up- and down-regulation, they will 
fail to do this. The models do not manage to indicate hours where the balancing 
power volume under the up- or down-regulation will have it peaks. In hours with no 
regulation the models, in many cases, predict high values for the up- or down-
regulation.  
 
The insufficiency of the model is reflected in the high Mean Absolute Error (MAE), 
the high Root Mean Squared Error (RMSE) and the low correlation coefficient 
between the actual and the forecasted values of the balancing power volume, shown 
in table 5.4. 
 
               
Estimator  
Model 

MAE RMSE Correlation 
coefficient 

Boosted Decision 
Tree regression 

25.90 47.14 0.01 

Decision Tree 
Forest regression 

27.73 49.58 -0.01 

Table 5.4. Forecast error.  
 

5.6.3 Forecasting the balancing power volume while considering the 
past values of the balancing power volume 
In the previous subsection, the values of the balancing power volume for the next day 
were forecasted by using the set of predictors that are available at the moment of 
making the forecast. It can be noticed that when making the forecast of the balancing 
power volume in an hour, the models do not take into consideration the forecasts that 
have been made for the hours earlier. Both the Boosted Decision Tree regression 
model and the Decision Forest regression model, when forecasting the target variable, 
do not consider the past values of the target variable as long as they are not added 
explicit as variables in the dataset, since the models will process the dataset as 
separate rows both under the model training and the generating of the forecast. 
 
However, in subsection 4.1.6, it was shown that the values of the balancing power 
volume from an hour correlate with the values of the balancing power volume from 
the previous hours. So that having the values of the balancing power volume from the 
previous hours as one of the explanatory variables, will most likely give a better 
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forecast result. It has been clear that the set of the predictors used in the forecast does 
not manage to explain the values of the balancing power volume and it is impossible 
to make the day-ahead forecast of the volume by using only these predictors. 
 
To examine the effect of the past values of the balancing power volume on the quality 
of the forecast the times series containing the values of the balancing power volume 
from the previous hours, have been added to the set of the predictors. The dataset in 
this experiment contains the following attributes:  hour of the day, hour of the week, 
hour of the year, power consumption forecast, wind power production forecast, spot 
power flow between NO3 and NO4, spot power flow between NO3 and SE2, 
temperature forecast and the past values of the balancing power volume.  
When using the past values of the total imbalance as an explanatory variable, it is 
important to find out which of the time series containing the past values of the total 
imbalance, is relevant to use as a predictor, as they go further back in time. From the 
correlation analysis in subsection 4.1.6, it can be seen that as longer back in time the 
past values of the balancing power volume goes, the less influence they will have on 
the future ones. So the values of the volume that do not go more than a couple of 
hours back in time will provide the best information about the future volume values. 
When examining the influence of the past values of the balancing power volume on 
the forecast accuracy, it was decided to forecast the balancing power volume in an 
hour, by using the past values of the time series from the previous hour first, then 
using the values from one hour earlier than the previous hour, and then using the 
values from two hours earlier than the previous hour and finally, by using the values 
from three hours earlier than the previous hour. 
 
The model shown in figure 5.4 has been run four times, each time the past values of 
the balancing power volume from different hours were considered alternately. From 
tables 5.5 and 5.6, which contains the results from the testing, one sees that the 
balancing power volume can be forecasted with a good enough accuracy only 1-2 
hours ahead. In other words, only the adding of the past values of the balancing power 
volume that lays no longer than two hours back in time, improves the accuracy of the 
forecast.  
 
The model gives the best forecast for an hour, when having the past values of the 
balancing power volume from the previous hour and the values of the balancing 
power volume from one hour before the previous hour. In figures 5.7 and 5.8 the 
forecasted values of the balancing power volume for a week have been plotted. It can 
be seen that when having the past values of the balancing power volume from the 
previous hour, the performance of the model improves significantly, compared to 
when having the set of the predictors that was used to predict the balancing power 
volume in the previous subsection. The model gives a good forecast of both the 
magnitude of the balancing power volume and the expected regulation state in an 
hour. The correct regulation state has been predicted at about 72% of the cases and in 
around 77% of the cases (a small deviation of  ±2MW is allowed between the actual 
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and the predicted values) when having the past values of the balancing power volume 
from the previous hour and one hour before the previous hour respectively.  
 
From tables 5.5 and 5.6 it can be noticed that the error of the forecast of the balancing 
power volume is lower, when having the values of the balancing power volume from 
the previous hour compared to when having the values of the balancing power volume 
from one hour before the previous hour in relation to the hour the forecast has been 
made for. However, when using the past values of the volume from one hour before 
the previous hour, the model predicts the correct regulation state more frequently. A 
higher forecast error when using the past values of the volume from one hour before 
the previous hour is caused by that the model gives a worse indication of the 
magnitude (the size) of the balancing power volume in this case.    
 
It can be noticed that the forecasted values lag the actual values of the balancing 
power volume by one hour when having the time series containing the past values of 
the balancing power volume from one hour back in time as one of the predictors. This 
trend also has been noticed in cases when one predicts the balancing power volume in 
an hour, by using the past values of the volume that goes two, three and four hours 
back in time. Only in these cases the forecasted values have lagged the actual values 
by two, three and four hours respectively.  
 
 Decision Forest regression 
                 Estimator 
 
Additional variable 

MAE RMSE Correlation 
coefficient 

- 27.73 49.58 -0.01 
The balancing power 
volume in hour t-1 

11.37 25.55 0.81 

The balancing power 
volume in hour t-2  

16.29 34.48 0.61 

The balancing power 
volume in hour t-3 

25.42 44.99 0.09 

The balancing power 
volume in hour t-4 

25.84 45.46 0.09 

Table 5.5. Forecast error for the Decision Forest regression model. 
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Boosted Decision Tree regression 
                 Estimator 
 
Additional variable  

MAE RMSE Correlation 
coefficient 

- 25.90 47.14 0.01 
The balancing power 
volume in hour t-1 

12.09 25.89 0.80 

The balancing power 
volume in hour t-2  

21.08 39.27 0.45 

The balancing power 
volume in hour t-3 

29.20 48.68 0.05 

The balancing power 
volume in hour t-4 

28.37 48.04 0.06 

Table 5.6. Forecast error for the Boosted Decision Tree regression model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7. Forecast of the balancing power volume for a week with the balancing 
power volume from t-1 in the set of the predictors. 
 
It can be seen that when having the time series of the past values of the balancing 
power volume that goes one or two hours back in time, in the set of predictors, the 
accuracy of the forecast has been significantly improved. So most likely, the past 
values of the balancing power volume from the previous hours have the biggest 
impact on the forecasted value of the balancing power volume in an hour, and it can 
probably be used alone when making the forecast. In order to investigate this 
possibility and study the importance of each of the predictors to the models, the 
impact of each variable from the set of predictors that has been used to make the 
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forecast, has been examined. One by one, the predictors have been removed from the 
set, and the Mean Absolute Error and the Root Mean Squared Error have been 
obtained for each of the cases.  

 

Figure 5.8. Forecast of the balancing power volume for a week with the balancing 
power volume from t-2 in the set of the predictors. 
 
Tables 5.7 and 5.8 show how the Mean Absolute Error and the Root Mean Squared 
Error for each of the regression models changes when removing the temperature 
forecast from the set of the predictors first, then removing the wind power production 
forecast and so on. The result can be seen in the tables below: 
 
Regression Decision Forest 

regression 
Boosted Decision Tree 
regression 

Number of 
variables in the set 
of predictors 

    Estimator 
 
Variable  
removed  
from the set 

MAE RMSE Correlation 
coefficient 

MAE RMSE Correlation 
coefficient 

9 - 11.38 25.55 0.81 12.09 25.89 0.80 
8 Temperature 

forecast 
11.37 25.57 0.81 12.05 25.89 0.80 

7 Wind power 
production forecast  

11.41 25.66 0.81 12.50 26.63 0.79 

6 Power consumption 
forecast 

11.40 25.61 0.81 12.39 26.66 0.79 

4 Spot flow NO3-
NO4 and NO3-SE2 

11.39 25.69 0.81 11.76 25.87 0.80 

1 Daily, weekly and 
annual variation 

11.21 25.58 0.81 11.26 25.73 0.81 

Table 5.7. Sensitivity of the forecast error when having the balancing power volume 
from t-1 as a predictor. 
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Regression Decision Forest 
regression 

Boosted Decision Tree 
regression 

Number of 
variables in the set 
of predictors 

    Estimator 
 
Variable  
removed  
from the set 

MAE RMSE Correlation 
coefficient 

MAE RMSE Correlation 
coefficient 

9 - 16.29 34.48 0.61 21.08 39.27 0.45 
8 Temperature 

forecast 
16.32 34.40 0.62 20.40 39.16 0.45 

7 Wind power 
production forecast  

16.32 34.48 0.62 21.49 39.34 0.46 

6 Power consumption 
forecast 

16.32 34.39 0.62 20.40 38.46 0.48 

4 Spot flow NO3-
NO4 and NO3-SE2 

16.01 34.70 0.61 21.13 40.88 0.42 

1 Daily, weekly and 
annual variation 

16.10 34.22 0.62 16.28 34.41 0.61 

Table 5.8. Sensitivity of the forecast error when having the balancing power volume 
from t-2 as a predictor. 
 
From the table it can be concluded that the Decision Forest regression model gives an 
almost equally accurate forecast when only having the past values of the balancing 
power volume as a predictor and when having the past values of the balancing power 
volume as one of the predictors in the set of predictors. Hence the past values of the 
volume that go no longer than two hours back in time will dominate, and other 
variables will not have any impact on the model output.  
 
When it comes to the Boosted Decision Tree regression model, the over-fitting of the 
model occurs when having the past values of the balancing power volume along with 
the other variables in the set of predictors. The Boosted Decision Tree regression 
model gives a more accurate forecast of the balancing power volume in an hour when 
only having the past values of the balancing power volume from the previous hours in 
the set of predictors. 
 

5.6.4 Forecasting the total imbalance in the NO3 by using the set of 
the predictors 
In the two previous subsections the possibility of making the forecast for the 
balancing power volume activated in the NO3 for the next day by using the regression 
models and the set of the predictors has been examined. The accuracy of the obtained 
forecast when having the set of the predictors that does not contain the past values of 
the balancing power volume is rather low. However, when making the prediction of 
the balancing power volume in price area NO3, the influence of the imbalances that 
have occurred outside of the price area, have not been taken into consideration. The 
quality of the forecast can possible be improved if the influence of the events that 
have occurred in the other price areas, will be taken into account. The influence of the 
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factors from the other price areas on the balancing power volume in the NO3 can be 
taken into account by considering the deviation between the actual and the spot power 
flow between the NO3 and its neighbour price areas. 
 
Based on that, it was decided to examine the possibilities of forecasting the total 
imbalance in the NO3 by utilizing the same regression models and the same set of the 
predictors that have been used in order to forecast the balancing power volume. 
 
The total imbalance has been defined as the sum of the balancing power volume 
activated in the NO3 and the deviation between the actual and the planed power flow 
between the NO3 and the neighbour areas: NO1, NO4 and SE2. The power flow 
between the NO3 and the NO5 will not be taken into consideration since the time 
period that is used for the training and the testing of the model; the line between them 
has not been in operation yet. The special regulation volume will not be taken into 
consideration as well since it has been shown in subsection 4.1.4 that it contributes 
little to the removal of the imbalance. So the total imbalance in the NO3 has been 
defined as follows: 
 
The total imbalance = The balancing power volume  
                                           + Actual power flow NO3-NO1 
                                           + Actual power flow NO3-NO4 
                                           + Actual power flow NO3-SE2 
                                           - Planed power flow NO3-NO1 
                                           - Planed power flow NO3-NO4 
                                           - Planed power flow NO3-SE2 
 
Using the model/experiment shown in figure 5.4 and the set of the predictors 
described containing the following attributes: hour of the day, hour of the week, hour 
of the year, power consumption forecast, wind power production forecast, spot power 
flow between the NO3 and the NO4, spot power flow between the NO3 and the SE2 
and temperature forecast; the total imbalance in the NO3 has been forecasted.  
 
The accuracy of the models has been evaluated by using the Mean Absolute Error and 
the Root Mean Squared Error. The correlation coefficient between the forecasted and 
the actual values of the total imbalance in the NO3 will also be considered when 
estimating the goodness of the forecast.  
 
In tables 5.9 and 5.10 the three best parameter settings and the corresponding Mean 
Absolute Error (MAE) and Root Mean Squared Error (RMSE) for each of the 
regressions, are shown. All parameter sets that have been considered under the 
training of the models are represented in Appendix H.  
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Boosted Decision Tree regression 
Parameter 
set 

Number 
of leaves 

Minimum 
leaf 
instances 

Learning 
rate 

Number of 
trees 

MAE RMSE 

1 108 31 0.06 376 87.92 119.83 
2 117 2 0.22 482 86.06 119.96 
3 124 4 0.22 94 87.62 120.43 

Table 5.9. Parameter settings for the Boosted Decision Tree regression model. 
 
Decision Forest regression 
Parameter 
set 

Minimum 
number of 
samples 
per leaf 
node 

Number 
of 
random 
splits per 
node 

Maximum 
depth of 
the trees 

Number of 
trees 

MAE RMSE 

1 2 200 32 19 86.76 121.39 
2 2 627 36 21 87.27 122.54 
3 4 318 16 25 89.22 123.51 

Table 5.10. Parameter settings for the Decision Forest regression model.  
 
By using the most optimal parameter settings, the models have obtained the forecast 
of the total imbalance in the NO3. In figures 5.10 and 5.11 the scatter plot of the 
actual versus the forecasted total imbalance in the NO3 and the graph of the 
forecasted values of the total imbalance for a one-week period are respectively shown.  
 
 

Figure 5.10. Scatter plot for the actual versus the forecasted values of the balancing 
power volume. 
 

a)	
  Boosted	
  Decision	
  Tree	
  regression	
   b)	
  Decision	
  Forest	
  regression	
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Figure 5.11. Forecast of the balancing power volume for a week. 
 
From both figures it can be seen that both the Boosted Decision Tree regression 
model and the Decision Forest regression model have manage to make a good enough 
day ahead prediction of the total imbalance in the NO3 by using the given set of 
predictors. The models fail to predict the exact values of the total imbalance, but the 
output of the models gives a good indication of the imbalance direction, i.e. the need 
for an up- or a down-regulation in the area, and of the expected magnitude of the 
imbalance. The total imbalance in the NO3 has been predicted for 5357 hours, and the 
correct state of the regulation has been indicated in 87% of the cases.  
 
However, it can be noticed that the Decision Forest regression in many hours gives a 
more accurate result than the Boosted Decision Tree regression. That is also reflected 
in the value of the Mean Absolute Error (MAE), the Root Mean Squared Error 
(RMSE) for each of the regression and the correlation coefficient between the actual 
and the forecasted total imbalance in the NO3, that are shown in table 5.11. It can be 
seen that the values of the errors are quite high, even though the correlation 
coefficient between the actual and predicted imbalance is high. The reason for this is 
that the models have managed to capture the change in the magnitude of the 
imbalance, but in many cases the forecasted value will lay some MW below or above 
the actual ones.  
 
Despite of the deviation between the actual and the forecasted values of the 
imbalance, the models are able to capture the peaks in the total imbalance and predict 
the right direction of the imbalance in around 86% of the cases. It should be noticed 
that in all hours which the forecast have been made for, there have been some 
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imbalances in the NO3, and the models had to distinguish only between the need for 
the up-regulation and the need for the down-regulation. 
 
               
Estimator 
Model 

MAE RMSE Correlation 
Coefficient 

Boosted Decision 
Tree regression 

186.32 230.93 0.81 

Decision Tree 
Forest regression 

183.58 226.86 0.81 

Table 5.11. Forecast error. 
 
The importance of each of the predictors in order to obtain the forecast result has been 
examined. One variable at a time will be removed from the set of the predictors, and 
the remaining variables in the set will be used to forecast the balancing power 
premium. By changing place with the first variable, one by one of the variables will 
be taken out of the set, and consequently the variable that was already taken out, will 
be taken back into the set. Each time a variable changes place, a forecast of the 
balancing power premium is done and the Mean Absolute Error (MAE), the Root 
Mean Squared Error (RMSE) and the correlation coefficient between the actual and 
the predicted values of the total imbalance that are shown in table 5.12 are obtained.  
 
From the table it can be concluded that each of the variables that have been included 
in the set of the predictors when making the forecast, has an influence on the 
forecasted values and the accuracy of the forecast. The removal of the temperature 
forecast and the spot flow between the NO3-NO4 and the NO3-SE2 has the largest 
impact on the accuracy of both the Boosted Decision Tree regression model and the 
Decision Forest regression model and makes the value of the errors considerably.  
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Regression Decision Forest 
regression 

Boosted Decision Tree 
regression 

               Estimator 
Variable  
removed from  
the set 

MAE RMS
E 

Correlati
on 
coefficie
nt 

MAE RMS
E 

Correla
tion 
Coeffici
ent 

- 183.58 226.86 0.81 186.32 230.93 0.81 
Temperature forecast 191.52 236.56 0.81 190.04 234.20 0.81 
Wind power production 
forecast  

184.90 229.20 0.80 186.25 229.84 0.80 

Power consumption 
forecast 

186.00 228.58 0.80 185.36 228.01 0.80 

Spot flow NO3-NO4 and 
NO3-SE2* 

298.69 369.92 0.33 296.46 366.24 0.33 

Daily, weekly and annual 
variation** 

184.14 227.52 0.81 186.32 230.93 0.81 

Table 5.12. Sensitivity of the results to the different predictors.  
 

5.6.5 The influence of the past values of the total imbalance on the 
forecast’s quality 
In subsection 5.5.3 it was shown that the forecasting results for the balancing power 
volume have been improved by adding, into the set of the predictors, the past values 
of the balancing power volume. Only the past values that go no longer than 2-3 hours 
back in time in relation to the hour for which the forecast is made, will contribute to 
the most accurate forecast of the balancing power volume. Knowing this, it was 
decided to examine whether or not the adding of the past values of the total imbalance 
in the set of the predictors will improve the forecast’s result for the total imbalance in 
the NO3.  
 
The forecast for the total imbalance in the NO3 in an hour will be made for the 
following cases: when adding the values of the total imbalance from the previous 
hour, when adding the values of the total imbalance from one hour earlier than the 
previous hour, when adding the values of the total imbalance from two hours earlier 
than the previous hour and finally when adding the values of the total imbalance from 
three hours earlier than the previous hour. The model shown in figure 5.4 will be used 
in order to conduct the results.  
 
The accuracy of the models has been evaluated by using the Mean Absolute Error 
(MAE) and the Root Mean Squared Error (RMSE). The correlation coefficient 
between the forecasted and the actual values of the total imbalance has also been 
considered when estimating the model performance.  
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The results of the model evaluation are shown in tables 5.13 and 5.14. From the table 
one sees that the forecast of the total imbalance for an hour is more accurate when 
having the value of the total imbalance from the previous hour as one of the 
predictors. The accuracy of the forecast decreases as the past values of the total 
imbalance goes longer back in time in relation to the hour of the forecast.  
 
In figures 5.12 and 5.13, two day-ahead and two-hour-ahead forecasts from the 
Boosted Decision Tree and the Decision forest regression of the total imbalance in the 
NO3 for a week are shown. To make the hour ahead forecast, the past value of the 
total imbalance hour prior to the hour of the forecast has been used as one of the 
predictors. The day-ahead forecasts are the forecasts from the previous subsection.  
 
When using the past values of the total imbalance from the previous hour and one 
hour before the previous hour as one of the predictors, the accuracy of the forecast has 
been improved the most. In the first case the correct regulation state has been 
predicted in 92% of the hours for which the forecast has been made, and in the second 
case the correct regulation state has been predicted in 89% of the hours. 
 
 Decision Forest regression 
                 Estimator 
 
Additional variable 

MAE RMSE Correlation 
coefficient 

- 183.58 226.86 0.81 
Total imbalance in hour 
t-1 

90.75 123.09 0.93 

Total imbalance in hour 
t-2  

127.28 163.31 0.89 

Total imbalance in hour 
t-3 

144.82 182.66 0.86 

Total imbalance in hour 
t-4 

155.42 193.79 0.85 

Table 5.13. Sensitivity of the forecast error when having the balancing power volume 
from t-1 as a predictor. 
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Boosted Decision Tree regression 
                 Estimator 
 
Additional variable  

MAE RMSE Correlation 
coefficient 

- 186.32 230.93 0.81 
Total imbalance in hour 
t-1 

102.19 135.02 0.93 

Total imbalance in hour 
t-2  

135.18 172.76 0.88 

Total imbalance in hour 
t-3 

148.13 186.34 0.86 
 

Total imbalance in hour 
t-4 

155.79 194.92 0.85 

Table 5.14. Sensitivity of the forecast error when having the balancing power volume 
from t-2 as a predictor. 
 
 

 

Figure 5.12. Forecast of the total imbalance for a week with the total imbalance 
from t-1 in the set of the predictors. 
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Figure 5.13. Forecast of the total imbalance for a week with the total imbalance 
from t-2 in the set of the predictors. 
 
When using the past values of the total imbalance that lays a few hours prior to the 
hour, in which the forecast has been made for, in the set of the predictors, the 
accuracy of the forecast increases. So the time series with the past values of the total 
imbalance is a dominating variable among the other predictors when it comes to 
making a short-term forecast. This raises the question about the possibility to predict 
the total imbalance by using only the past values of the total imbalance as an 
explanatory variable and about the impact of the other predictors on the accuracy of 
the forecast. To examine this possibility, one by one of the variables has been 
removed from the set of the predictors and the models have been re-run for each of 
the cases. The Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE) 
and the correlation coefficient between the forecasted and the actual values of the 
total imbalance that have been obtained are shown in the tables below: 
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Regression Decision Forest 

regression 
Boosted Decision Tree 
regression 

Number of 
variables in the 
set of predictors 

    Estimator 
 
Variable 
removed  
from the set 

MAE RMSE Correlation 
coefficient 

MAE RMSE Correlation 
coefficient 

9 - 90.75 123.09 0.93 102.19 135.02 0.93 
8 Temperature 

forecast 
90.43 123.83 0.93 97.34 130.33 0.93 

7 Wind power 
production 
forecast  

89.06 122.78 0.93 92.65 124.95 0.94 

6 Power 
consumption 
forecast 

86.49 120.34 0.94 93.02 127.81 0.93 

4 Spot flow NO3-
NO4 and NO3-
SE2 

69.75 106.38 0.95 70.36 106.77 0.95 

1 Daily, weekly 
and annual 
variation 

69.32 105.93 0.95 70.36 106.77 0.95 

Table 5.15. Sensitivity of the forecast error when having the balancing power volume 
from t-1 as a predictor. 
 
Regression Decision Forest 

regression 
Boosted Decision Tree 
regression 

Number of 
variables in the 
set of predictors 

    Estimator 
 
Variable 
removed  
from the set 

MAE RMSE Correlation 
coefficient 

MAE RMSE Correlation 
coefficient 

9 - 127.28 163.31 0.89 135.18 172.76 0.88 
8 Temperature 

forecast 
130.77 168.05 0.88 136.01 172.97 0.88 

7 Wind power 
production 
forecast  

125.03 162.17 0.89 125.42 161.24 0.89 

6 Power 
consumption 
forecast 

131.55 171.90 0.87 134.08 175.45 0.87 

4 Spot flow NO3-
NO4 and NO3-
SE2 

115.74 164.29 0.87 116.60 165.15 0.87 

1 Daily, weekly 
and annual 
variation 

115.17 163.89 0.87 116.60 165.15 0.87 

Table 5.16. Sensitivity of the forecast error when having the balancing power volume 
from t-2 as a predictor. 
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Regression Decision Forest 
regression 

Boosted Decision Tree 
regression 

Number of 
variables in the 
set of predictors 

          Estimator 
 
Variable 
removed  
from the set 

MAE RMSE Correlation 
coefficient 

MAE RMSE Correlation 
coefficient 

9 - 144.82 182.66 0.86 148.13 186.34 0.86 
8 Temperature 

forecast 
146.18 184.78 0.86 149.37 187.47 0.87 

7 Wind power 
production 
forecast  

140.65 178.73 0.87 140.40 177.46 0.87 

6 Power 
consumption 
forecast 

158.46 202.96 0.83 158.43 201.01 0.83 

4 Spot flow NO3-
NO4 and NO3-
SE2 

152.75 206.77 0.79 153.39 207.04 0.79 

1 Daily, weekly 
and annual 
variation 

152.45 206.33 0.79 153.39 207.04 0.79 

Table 5.17. Sensitivity of the forecast error when having the balancing power volume 
from t-3 as a predictor. 
 
From the tables it can be concluded that an over-fitting of both the Decision Forest 
regression model and the Boosted Decision Tree regression model occurs, when 
having the past values of the total imbalance that go 1-2 hours back in time in relation 
to the hour of the forecast, along with other explanatory variables in the set of the 
predictors. The accuracy of the models output in this case is lower than, when having 
the past values of the total imbalance as an only explanatory variable. However, when 
having the past values of the balancing power volume that goes more than 2 hours 
back in time in relation to the hour of the forecast in the set of the predictors, the 
models will give a better output when having the time series with the past values in 
the set of the predictors among the other variables.  
 
 

5.7 Forecasting the balancing power price 

5.7.1 Constructing the experiment for the balancing power premium 
forecast 
In order to forecast the balancing power premium for the next day an experiment that 
is similar to the one from subsection 5.6, has been constructed. The difference in the 
experiment structure of the experiment, which is shown in figure 5.14, consists in 
number and placement of the Split Data modules. In the experiment, two Split Data 
modules are used due to the structure of the time series of the balancing power 
volume that will be used in order to forecast the balancing power premium. The actual 
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values of the balancing power volume in the time series in hours, for which the 
balancing power volume has been forecasted, are overwritten with predicted values. 
The dataset then is divided into the dataset that will be used for the training and into 
the dataset that will be used in order to generate the predicted values. The first dataset 
contains the actual values of the balancing power volume and the second one contains 
the forecasted values of the balancing power volume that have been obtained in the 
previous subsection 5.6. 
  
In order to ensure that the actual values of the balancing power volume will not be 
used to generate the predicted values of the balancing power premium, the dataset has 
been divided by using a relative expression. From the hour 21501 (count of the hours 
starts from the 1st. of January 2013 at 1 a.m.) the actual values of the balancing power 
volume are overwritten by the forecasted values, so the dataset will be split at hour 
21501. Still the data from the years of 2013 to 2014 will be used for the model 
training and data from the year of 2015 will be used for the model testing. Since 
belonging of the records is determined by the hour in which they are made, and the 
variable that identifies the hour will not be used in order to train the model and to 
generate predictions (the projection of this variable into the polar coordinates is used), 
the Split Data modules have been placed on the top of the experiment. This gives the 
possibility to divide the dataset by using the hour, and then to avoid of having it as 
one of the variable that will be used in order to train the model and to generate 
predictions. The relative expression in the first Split Data module (the left one) is 
Hour < 21501, and the relative expression in the second Split Data module is Hour ≥ 
21501 (the right one). 
 
Besides this, the structure of the experiment is the same as the experiment described 
earlier in subsection 5.6. 
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Figure 5.14. Structure of the experiment. 
 

5.7.2. The choice of the form of forecasting the balancing power 
premium 
From the structure of the experiment one sees that that the model will be trained by 
using the dataset containing the hours in which either an up-regulation, a down-
regulation or a balance in the power system has taken place.  
 
However, in the hours when it is balance in the power system, the balancing power 
premium is equal to zero. If knowing that it will be a balance in the power system 
before making the forecast of the balancing power premium, there will be no need in 
the forecast of the premium.  
 
When knowing if an up-regulation or a down-regulation occurs in the system, one can 
run two separate models in order to predict the balancing power volume. This can 
give a more accurate forecast of the balancing power premium.  
In order to find out the most suitable way for forecasting the balancing power 
premium, the accuracy of the forecast of the balancing power premium has been 
tested for the following cases: 
Case 1: The model is trained by using the dataset that contains both the hours with an 
up-regulation, with a down-regulation and with a balance in the power system. The 
prediction is generated only for the hours in which a down-regulation has occurred.  
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Case 2: The model is trained by using the dataset that contains only hours with a 
down-regulation in the power system. The prediction is generated only for the hours 
in which a down-regulation has occurred.  
Case 3: The model is trained by using the dataset that contains both hours with an up-
regulation, with a down-regulation and with a balance in the power system. The 
prediction is generated only for the hours in which an up-regulation has occurred.  
Case 4: The model is trained by using the dataset that contains only hours with a 
down-regulation in the power system. The prediction is generated only for the hours 
in which a down-regulation has occurred.  
Case 5: The model is trained by using the dataset that contains both hours with an up-
regulation, with a down-regulation and with a balance in the power system. The 
prediction is generated only for the hours in which an up-regulation or a down-
regulation has occurred.  
Case 6: The model is trained by using the dataset that contains both hours with an up-
regulation and with a down-regulation in the power system. The prediction is 
generated only for the hours in which an up-regulation or a down-regulation has 
occurred.  
Case 7: The model is trained by using the dataset that contains both the hours with an 
up-regulation, with a down-regulation and with a balance in the power system. The 
prediction is generated for the hours in which an up-regulation, a down-regulation or 
a balance has occurred in the power system.  
 
The forecast has been made using as an input in the dataset containing the following 
variables: the hour of the day, the hour of the week, the hour of the year, the inflow in 
the NO3, the slope of the Elspot bid curve, the balancing power volume in the NO3 
(actual values for both the training of the model and for the generating of the 
predictions) and the spot price in the NO3. 
The results of this examination are shown in the table below: 
 
 Decision Forest regression Boosted Decision Tree 

regression 
 MAE RMSE MAE RMSE 
Case 1 2.85 3.81 2.89 3.93 
Case 2 2.72 3.50 2.89 3.97 
Case 3 7.86 11.78 6.46 13.56 
Case 4 6.73 11.72 6.49 13.75 
Case 5 4.43 7.33 4.02 8.28 
Case 6 3.59 6.99 4.13 8.47 
Case 7 2.01 4.51 1.61 5.11 

Table 5.18. The results of the examination. 
 
From the table it can be seen that the error of the balancing power premium is 
minimal when having the model that makes the forecast of the balancing power 
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premium for an up-regulation, a down-regulation or no regulation. However, when 
having a model that forecasts the balancing power premium in the hours with either 
an up-regulation or a down-regulation, i.e. when knowing that it will be no regulation 
in the system, the balancing power premium is set to zero and no forecast is 
necessary, the error of the forecast increases. This indicates that a lower forecasting 
error in case 7 is caused by that the approximation line will go through the zero point, 
and that in the time series of the balancing power premium there are many hours in 
which the balancing power premium are equal to zero.  
 
When having two separate models for forecasting the balancing power premium for 
an up-regulation and a down-regulation, the error of the forecast is lower in the case 
of a down-regulation and it is higher in the case of an up-regulation compared to cases 
5 and 6. The reason why the comparison to cases 5 and 6 has been done is that when 
approximation line goes through the zero point the forecast error will be lower 
compared to all of the other cases. However, if the zero point is not included in the 
forecast  (case 5 and 6), the forecast error will be higher. In order to decide whether it 
is more adventitious to have a model forecast the balancing power premium for any 
regulation state or two models that forecasts the balancing power premium for an up-
regulation and a down-regulation separately, it is more intuitive to compare the 
forecast error cases 1-4 with the forecast error in cases 5-6. This issue is shown in 
figure 5.15.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.15. Linear approximation. 
 
 
Taking into consideration the results represented in table 5.18, and that in case of 
having two separate forecasting models for the premium in the case of an up-
regulation and in the case of a down-regulation, one is dependent on having a very 
accurate forecast of the regulation state, it has been decided to have one model that 
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makes a forecast of the balancing power volume in the hours in which either an up-
regulation, a down-regulation or no regulation has occurred.   
 

5.7.3 Forecasting the balancing power premium using the balancing 
power volume as one of the predictors 
One of the predictors that are supposed to be used in order to forecast the balancing 
power premium is the balancing power volume. This requires the availability of an 
accurate forecast of the balancing power volume. In subsection 5.6 it was concluded 
that the most accurate forecast of the balancing power volume in an hour can be 
conducted when having the values of the balancing power volume from the previous 
hour. In this case, only a short-term forecast (1 hour ahead) of the balancing power 
premium can be made.  
 
The balancing power premium has been forecasted by using the set of the predictors 
which contains the following attributes: the hour of the day, the hour of the week, the 
hour of the year, the inflow in the NO3, the slope of the Elspot bid curve, the 
balancing power volume in the NO3 (actual values for the training of the model and 
the forecasted values for the generating of the predictions), the spot price in the NO3.  
 
Under the training of both the Boosted Decision Tree regression and the Decision 
Forest regression model, 30 iterations with parameter settings switching have been 
done in order to find an optimum parameter set. All parameter settings that have been 
considered under training can be found in Appendix I, and the best three parameter 
sets and the corresponding Mean Absolute Error (MAE) and the Root Mean Squared 
Error (RMSE) are shown in the table below: 
 
Boosted Decision Tree regression 
Parameter 
set 

Number 
of leaves 

Minimum 
leaf 
instances 

Learning 
rate 

Number 
of trees 

MAE RMSE 

1 17 10 0.211194 299 1.708919 6.799584 
2 23 10 0.253417 140 1.687187 6.820208 
3 4 20 0.331017 117 1.769563 6.93115 

Table 5.19. Parameter settings for the Boosted Decision Tree regression model. 
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Decision Forest regression 
Parameter 
set 

Minimum 
number 
of 
samples 
per leaf 
node 

Number 
of 
random 
splits 
per node 

Maximum 
depth of 
the trees 

Number 
of trees 

MAE RMSE 

1 7 998 56 31 2.213226 7.529644 
2 5 722 61 31 2.271652 7.548914 
3 10 850 44 18 2.291713 7.617313 
Table 5.20. Parameter settings for the Decision Forest regression model. 
 
The results of the evaluation of the models are shown in table 5.21. The graph of the 
forecasted and the actual values of the balancing power volume for a week is shown 
in figures 5.16.  
 
From the table it can be concluded that the Boosted Decision tree regression gives a 
more accurate forecast compared to the Decision Forest regression model. However, 
the overall performance of both models is rather poor. The models struggle to predict 
the correct sign and the size of the premium. The balancing power premium has been 
forecasted in 5367 hours. The correct sign of the balancing power premium (a small 
deviation of +-1 Euro, from zero has been allowed) has been predicted in 58% of the 
cases by the Boosted Decision Tree regression and in 20% of the cases by the 
Decision Forest regression.  
 
In most of the cases the prediction of an incorrect sign of the premium is caused by 
the failed prediction of the regulation state when forecasting the power volume. The 
accuracy of the forecast of the balancing power volume has also an impact on the 
accuracy of the prediction of the balancing power premium size. So a forecast of the 
balancing power volume that has a low accuracy will cause a low accuracy when 
forecasting the balancing power premium. 
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Figure 5.16. Forecast of the balancing power premium for a week. 
 
               
Estimator 
Model 

MAE RMSE Correlation 
Coefficient 

Boosted Decision 
Tree regression 

4.84 8.15 0.06 

Decision Tree 
Forest regression 

9.36 11.16 0.05 

Table 5.21. Forecast error. 
 
To examine how the availability of a very accurate forecast of the balancing power 
volume will affect the accuracy of the forecast of the balancing power premium it has 
been assumed that a perfect forecast of the balancing power volume is available when 
making the forecast of the balancing power premium. The actual values of the 
balancing power volume will be used in order to predict the premium. The results of 
the accuracy evaluation of the forecasted values are shown in table 5.22, and figure 
5.17 shows the actual and the forecasted values of the balancing power premium for 
the same week as in figure 5.16. 
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Estimator 
Model 

MAE RMSE Correlation 
Coefficient 

Boosted Decision 
Tree regression 

1.61 5.11 0.66 

Decision Tree 
Forest regression 

2.01 4.51 0.70 

Table 5.22. Forecast error when using the actual balancing power volume. 
 

 

Figure 5.17. Forecast of the balancing power premium for a week when using the 
actual balancing power volume. 
 
From the table and the figure it can be concluded that when having an “ideal” forecast 
of the balancing power volume, an accurate enough forecast of the balancing power 
premium can be obtained. In this case both of the models manage to predict the 
correct sign of the premium almost in all hours (95%) that the forecast have been 
made for, to indicate the hours when the premium is zero (a small deviation of +-1 
Euro, from zero has been allowed), and to indicate an increase and a decreases in the 
value of the balancing power premium. However, the Boosted Decision Tree 
regression model makes a more accurate forecast compared to the Decision Forest 
regression model.  
 
The accuracy of the forecast of the balancing power premium depends a lot on the 
quality of the time series of the balancing power volume. However, there are several 
variables in the set of the predictors that has been used in order to forecast the 
balancing power premium and that influence the accuracy of the forecast as well. To 
investigate the impact of each of the predictors on the forecast result, the sensitivity of 
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the forecast accuracy to the removal of the different variables from the set of the 
predictors have been tested.    
 
One variable at a time will be removed from the set of the predictors, and the 
remaining variables in the set will be used to forecast the balancing power premium. 
By changing place with the first variable, one by one of the variables will be taken out 
of the set, and consequently the variable that was already taken out, will be taken back 
into the set. Each time a variable changes place, a forecast of the balancing power 
premium is done. The results of this examination can be found in the table below: 
 
Regression Decision Forest 

regression 
Boosted Decision Tree 
regression 

               Estimator 
Variable  
removed from  
the set 

MAE RMSE Correlation 
coefficient 

MAE RMSE Correlatio
n 
coefficient 

- 2.01 4.51 0.70 1.61 5.11 0.66 
Balancing power volume 
in NO3 

3.02 6.19 0.02 3.47 6.47 0.02 

Spot price in the NO3 1.84 4.51 0.72 1.85 5.38 0.69 
Slope of the Elspot bid 
curve 

1.91 4.44 0.70 1.82 5.51 0.69 

Inflow in the NO3 1.98 4.53 0.70 1.76 4.83 0.70 
Daily, weekly and annual 
variation 

1.98 4.49 0.70 1.82 5.34 0.69 

Table 5.23. Sensitivity of the result when using the actual balancing power volume.  
 
As it can be seen from the table, the accuracy of the forecast made by both the 
Boosted Decision Tree regression model and by the Decision Forest regression model 
reduces the most when removing the balancing power volume from the set of the 
predictors. When removing other variables from the set of the predictors, the accuracy 
of the forecast made by the Boosted Decision Tree regression model reduces, but the 
accuracy of the forecast from the Decision Forest regression model increases. 
However, since the Boosted Decision Tree regression model gives a better forecast of 
the balancing power premium, the sensitivity of this model to the removal of the 
different variables from the set of the predictors will be considered. So it can be 
concluded that in order to get the most accurate forecast of the balancing power 
premium, it is important to take into consideration both the balancing power volume 
in the NO3, the spot price in the NO3, the slope of the Elspot bid curve, the inflow in 
the NO3, the hour of the day, the hour of the week and the hour of the year. 
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5.7.4 Forecasting the balancing power premium without the 
balancing power volume in the set of the predictors 
From the previous subsection it can be concluded that accuracy of the forecast of the 
balancing power premium depends a lot on the quality of the time series of the 
balancing power volume. At the moment of making the forecast of the balancing 
power premium in an hour, the actual balancing power volume in this hour is not 
known, so one is depended on having an accurate forecast of the balancing power 
volume. The most accurate forecast of the balancing power volume that has been 
conducted, is not good enough in order to use it to forecast the balancing power 
premium. That is why it has been decided to investigate the possibility of forecasting 
the balancing power premium without having the time series of the balancing power 
volume as one of the predictors. 
 
When examining the sensitivity of the forecast accuracy to the removal of the 
different variables from the set of predictors in the previous subsection, it has been 
found out that it is impossible to get an accurate forecast of the balancing power 
premium using the set of the predictors that contains the spot price in the NO3, the 
slope of the Elspot bid curve, the inflow in the NO3, the hour of the day, the hour of 
the week and the hour of the year. So it is necessary to have additional explanatory 
variables in order to get a more accurate forecast.  
 
The balancing power premium in an hour has shown to have a correlation with the 
past values of the balancing power premium. It is, most likely, that in the similarity to 
the balancing power volume, the premium in an hour will be better explained by the 
past values of the balancing power premium from the previous hour and from one 
hour before the previous hour. The reason for this is that the correlation between the 
balancing power premium in an hour and the past values of the premium decreases as 
the past values that is used under the correlation goes further back in time, just like in 
the case of the balancing power volume. So the past values of the balancing power 
premium that will be used in order to forecast the balancing power premium in an 
hour goes no longer than four hours further back in time in relation to the hour in 
which the premium is predicted.  
 
The balancing power premium in an hour has been forecasted by using the model 
shown in figure 5.14 and the set of the predictors containing the following variables: 
the past values of the balancing power premium, the spot price in the NO3, the slope 
of the Elspot bid curve, the inflow in the NO3, the hour of the day, the hour of the 
week and the hour of the year.  
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The results are shown in the table below: 
 
 Decision Forest regression 
                 Estimator 
 
Additional variable 

MAE RMSE Correlation 
coefficient 

Balancing power 
premium in hour t-1 

2.01 4.53 0.67 

Balancing power 
premium in hour t-2  

2.57 5.42 0.45 

Balancing power 
premium in hour t-3 

2.80 5.81 0.32 

Balancing power 
premium in hour t-4 

2.83 5.89 0.27 

Table 5.24. Forecast error for the Decision Forest regression model. 
 
Boosted Decision Tree regression 
                 Estimator 
 
Additional variable  

MAE RMSE Correlation 
coefficient 

Balancing power 
premium in hour t-1 

1.67 4.50 0.68 

Balancing power 
premium in hour t-2  

2.42 5.45 0.45 

Balancing power 
premium in hour t-3 

2.70 5.57 0.40 

Balancing power 
premium in hour t-4 

2.83 5.89 0.27 

Table 5.25. Forecast error for the Boosted Decision Tree regression model. 
 
 
From the tables it can be seen that the forecast of the balancing power premium in an 
hour is most accurate when having the past values of the balancing power premium 
from the previous hour as one of the predictors. And the accuracy of the forecast 
decreases, when the past values of the balancing power premium that have been used 
in the set of the predictors, goes further back in time. Both the Boosted Decision Tree 
regression model and the Decision Forest regression model gives almost equally 
accurate forecast of the balancing power premium, but it can be seen that the forecast 
made by the Boosted Decision Tree regression model has a slightly lower forecast 
error. 
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When comparing the accuracy of the forecast that is made using the balancing power 
volume (actual values) as an explanatory variable, with the accuracy of the forecast 
that is made using the past values of the balancing power premium as one of the 
predictors, it can be seen that the forecast error in the first case (MAE=1.61, 
RMSE=5.11) and the lowest forecast error in the second case (MAE=1.67, 
RMSE=4.5) are almost equal to each other. This holds when the balancing power 
premium from the previous hour in relation to the hour the forecast is made for is one 
of the explanatory variables. When the balancing power premium in an hour has been 
forecasted by using the past values of the balancing power premium that goes more 
than one hour back in time in relation to the hour the forecast is made for, the forecast 
error increases. The forecast error in this case will be higher than the forecast error 
when having the balancing power volume (actual values) in the set of the predictors. 
 
Figures 5.18 and 5.19 show the balancing power premium forecast for a week when 
having the past values of the balancing power premium from the previous hour and 
from one hour before the previous hour in relation to the hour, which the forecast has 
been made for, respectively. 
 

 

Figure 5.18. Forecast of the balancing power premium for a week with the 
balancing power premium from t-1 in the set of the predictors. 
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Figure 5.19. Forecast of the balancing power premium for a week with the 
balancing power premium from t-2 in the set of the predictors. 
 
 
From the figures it can be seen that both the Boosted Decision Tree regression model 
and the Decision Forest regression model manage to indicate the correct sign and the 
magnitude of the balancing power premium. However, the predicted values have a 
tendency to lag the actual values of the balancing power premium with one and two 
hours when having the past values of the balancing power premium that goes one and 
two hours further back in time in relation to the hour the forecast is made for, 
respectively. When having the past values of the balancing power premium from three 
and four hours further back in time in relation to the hour the forecast has been made 
for, the forecasted values lag the actual ones with three and four hours respectively.  
 
The balancing power premium has been predicted in 5357 hours. When forecasting 
the balancing power premium in an hour using the past values of the balancing power 
premium from the previous hour, the correct sign of the regulation premium (a small 
deviation of ±1 Euro has been allowed) has been predicted in around 86% of the 
cases. The number of hours with the correct predicted sign of the premium decreases 
as the past values of the balancing power premium that are used in order to predict the 
premium in an hour, go further back in time. So when using the past values of the 
premium that lays two hours back in time in relation to the hour the forecast has bee 
made for, the correct regulation state has been predicted in 78% of the cases. When 
using the past values of the premium that lays three hours back in time and four hours 
back in time in relation to the hour the forecast has been made for, the correct 
regulation state has been predicted in 74% and 52 % of the cases, respectively.  
 
When using the past values of the balancing power premium that lays a few hours 
prior to the hour, which the forecast has been made for, in the set of the predictors, the 
accuracy of the forecast is higher compared to the case when the balancing power 
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premium have been predicted using the set of the predictors that does not contain 
either of the past values of the premium or the values of the balancing power volume. 
So the time series with the past values of the balancing power premium is, most 
likely, a dominating variable among the other predictors when it comes to making a 
forecast using the set of the predictors in which the values of the balancing power 
volume are included. This raises a question about the possibility to predict the 
balancing power premium by using only the past values of the balancing power 
premium as an explanatory variable and about the impact of the other predictors on 
the accuracy of the forecast. To examine this possibility, the same procedure that has 
been used in order to test the possibility of forecasting the balancing power volume 
(subsection 5.6.2) and the total imbalance (subsection 5.6.4) by using only its past 
values has been done. One by one of the variables has been removed from the set of 
predictors and the models have been re-run for each of the cases. The Mean Absolute 
Error (MAE), the Root Mean Squared Error (RMSE) and the correlation coefficient 
between the forecasted and the actual values of the balancing power premium that 
have been obtained are shown in the tables below: 
 
Regression Decision Forest 

regression 
Boosted Decision Tree 
regression 

Number of 
variables in the 
set of the 
predictors 

           Estimator 
 
Variable 
removed  
from the set 

MAE RMSE Correlation 
coefficient 

MAE RMSE Correlation 
coefficient 

7 - 2.01 4.53 0.67 1.67 4.50 0.68 
6 Inflow 2.09 4.56 0.66 1.68 4.50 0.68 
5 Spot price  1.80 4.49 0.68 1.68 4.50 0.68 
4 Slope of the 

bid curve 
1.71 4.58 0.66 1.65 4.48 0.68 

1 Daily, weekly 
and annual 
variation 

1.73 
 

4.60 0.66 1.65 4.48 0.68 

Table 5.26. Sensitivity of the forecast error when having the balancing power 
premium from t-1 as a predictor. 
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Regression Decision Forest 
regression 

Boosted Decision Tree 
regression 

Number of 
variables in the 
set of the 
predictors 

          Estimator 
 
Variable 
removed  
from the set 

MAE RMSE Correlation 
coefficient 

MAE RMSE Correlation 
coefficient 

7 - 2.57 5.42 0.45 2.42 5.45 0.45 
6 Inflow 2.49 5.39 0.46 2.45 5.46 0.45 
5 Spot price  2.51 5.42 0.46 2.45 5.46 0.45 
4 Slope of the 

bid curve 
2.50 5.61 0.42 2.44 5.45 0.45 

1 Daily, weekly 
and annual 
variation 

2.51 5.60 0.42 2.44 5.45 0.45 

Table 5.27. Sensitivity of the forecast error when having the balancing power 
premium from t-2 as a predictor. 
 
Regression Decision Forest 

regression 
Boosted Decision Tree 
regression 

Number of 
variables in the 
set of the 
predictors 

          Estimator 
 
Variable 
removed  
from the set 

MAE RMSE Correlation 
coefficient 

MAE RMSE Correlation 
coefficient 

7 - 2.80 5.81 0.32 2.70 5.57 0.40 
6 Inflow 2.68 5.62 0.38 2.91 5.80 0.35 
5 Spot price  2.82 5.65 0.38 2.91 5.80 0.35 
4 Slope of the 

bid curve 
2.88 6.07 0.28 2.81 5.74 0.36 

1 Daily, weekly 
and annual 
variation 

2.89 6.08 0.28 2.81 5.74 0.36 

Table 5.28. Sensitivity of the forecast error when having the balancing power 
premium from t-3 as a predictor. 
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Regression Decision Forest 
regression 

Boosted Decision Tree 
regression 

Number of 
variables in the 
set of the 
predictors 

            Estimator 
 
Variable 
removed  
from the set 

MAE RMSE Correlation 
Coefficient 

MAE RMSE Correlation 
Coefficient 

7 - 2.83 5.89 0.27 2.83 5.89 0.27 
6 Inflow 2.81 5.78 0.31 3.07 5.96 0.28 
5 Spot price  2.98 5.82 0.31 3.07 5.96 0.28 
4 Slope of the 

bid curve 
3.04 6.18 0.22 2.98 5.91 0.29 

1 Daily, weekly 
and annual 
variation 

3.05 6.19 0.22 2.98 5.91 0.29 

Table 5.29. Sensitivity of the forecast error when having the balancing power 
premium from t-4 as a predictor. 
 
From the tables it can be concluded that when having the past values of the balancing 
power premium that go no longer than two hours further back in time in relation to 
the hour, which the forecast is made for, the accuracy of the forecast from both the 
Boosted Decision Tree regression model and the Decision Forest regression model 
will approximately be same independent of if the past values of the premium is the 
only variable in the set of the predictors or not. This indicates that besides the past 
values of the balancing power premium, other variables in the set of the predictors 
will not have any effect on the results of the forecast. 
 
In case of using the past values of the balancing power premium that goes more than 
2 hours further back in time in relation to the hour, which the forecast has been made 
for, in the set of the predictors, the results of the examination are different. The 
accuracy of the forecast is lower when having only the past values of the balancing 
power premium than when having more variables in the set of the predictors. So as 
further back in time the past values of the balancing power premium goes in relation 
to the hour, which the forecast is made for, the less they will explain the forecasted 
value of the balancing power premium.   
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Chapter 6  

Discussion 
 
In this master thesis the possibility of forecasting the balancing power volume and the 
balancing power premium using a regression model and the set of the predictors has 
been examined. It has been chosen to use the regression model based on the Machine 
Learning algorithms, and more precisely the model provided by the Microsoft Azure 
Machine Learning Studio. Among many different models that can be found in the 
Microsoft Azure Machine Learning Studio, the Boosted Decision Tree regression 
model and the Decision Forest regression model have been chosen in order to forecast 
the balancing power volume and the balancing power premium.  
 
In chapter 4 a statistical analysis of the time series of the balancing power volume and 
the time series of the balancing power premium has been presented in order to 
possibly identify the variables that can be used as input factors for the regression 
model. Not all of the variables that the balancing power volume and the balancing 
power premium have shown to depend on have been used as input variables for the 
model. The reason for this is the unavailability of the values for some of the variables 
at the moment of making the forecast. For example, the actual power consumption 
and the actual wind power production in an operation hour that have an influence on 
the balancing power volume, are not known before the operational hour ends. The 
time series for both the balancing power volume and the balancing power premium 
has also been claimed to have a daily, a weekly and an annual variation that has been 
used as one of the explanatory variables.  
 
In chapter 5 the balancing power volume and the balancing power premium in the 
price area NO3 have been forecasted. In subsection 5.6.2, the possibility of 
forecasting the balancing power volume by using the variable that are known at the 
moment of the opening of the Balancing power market for the submission of bids, as 
an input into the regression model. The forecast obtained in this case has a lower 
accuracy; so one could have concluded that it is impossible to predict the balancing 
power volume day ahead. However, when making the forecast, only the factors 
influencing the balance in the power system in price area NO3 have been taken into 
consideration. The balancing power volume in one price area can be influence by the 
events that take place as in this price area, as well as in the other price areas since the 
TSOs in Norway, Sweden, Denmark and Finland exchange their balancing power 
reserves between each other. By taken into consideration the situation in the other 
price areas, the accuracy of the forecast can be significantly improved.  
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It is possible to obtain an accurate enough forecast of the balancing power volume in 
an hour by using the past values of the balancing power volume from the previous 
hours as an explanatory variable. A forecast with a good accuracy has been conducted 
when using the values of the balancing power volume that lays one or two hours 
further back in time in relation to the hour, in which the forecast is made for. The 
forecasted values of the balancing power volume in an hour has the best accuracy 
when having the values of the balancing power volume from the previous hour in the 
set of the predictors. However, due to the market structure, in reality the value of the 
balancing power volume from the previous hour is not known when the market actors 
have their last chance to adjust their bids for the balancing power in the operating 
hour. The market actors can adjust their bids at latest 45 minutes before the operating 
hour, and the balancing power volume that has been activated in the previous hour in 
relation to the operating hour at this moment is unknown. So the last value of the 
balancing power volume that is known 45 minutes before the operating hour lies two 
hours further back in time in relation to the operating hour. In this case the obtained 
forecast is less accurate compared to when using the value of the balancing power 
volume that lies one hour forward in time, but still the forecast in this case has a better 
accuracy than in the case when using the past values of the balancing power volume 
in the set of the predictors. In this case the balancing power volume can be forecasted 
two hours ahead.  
 
It is worth to point out that as further back in time the past values of the balancing 
power volume that has been used in the forecast goes, the lower the accuracy of the 
forecast will be. The past values of the volume that lies further than two hours back in 
time in relation to the hour, which the forecast has been made for, are not sufficient in 
order to explain the values of the balancing power volume that have been forecasted.  
 
The influence of the situation in other price areas on the balancing power volume in 
the NO3 can be taken into account in the model by considering the flow of the 
deviation between the actual and the spot power flow. If the balancing power reserves 
in the NO3 have been activated due to imbalances in other price areas, or the 
imbalance that has occurred in the NO3, has been regulated by reserves activation 
outside the NO3, the flow between the NO3 and the neighbour areas will be adjusted 
and a deviation between the actual and the spot flow will occur. In subsection 5.6.4, 
the deviation between the actual and the spot power flow for the NO3 has been taken 
into consideration by adding it to the balancing power volume, and then making the 
forecast for the total imbalance in the NO3 a day ahead. The forecast results that have 
been obtained, have a high accuracy. The correct direction of the total imbalance has 
been predicted in 87% of the hours, in which the forecast has been made. The model 
has also managed to indicate the peaks in the magnitude of the total imbalance. The 
forecast of the total imbalance can also be improved, as more information will be 
available towards the operating hour.  
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The values of the total imbalance do not give per se information about the balancing 
power volume in the NO3. However, if one manages to predict the total imbalance in 
all of the 12 price areas with an equally good accuracy, the obtained forecast can be 
used to calculate the value of the balancing power volume that has been activated. 
Some of the imbalances will be regulated by the other imbalances with an opposite 
sign. In order to regulate the remaining imbalance, the balancing power reserves will 
be activated. In this case the value of the balancing power volume for Norway, 
Sweden, Denmark and Finland will be obtained. Exactly in which price area the 
balancing power volume will be activated will depend on how the market actors can 
and are willing to offer their production capacity into the Balancing power market. 
The activity of the market actors in the Balancing power market can change over 
time. In order to identify in which price area the regulation will take place, the power 
flow between the price areas, in principle, can be modelled as long as the total 
imbalance in all of the price areas is known.   
    
However, the total imbalance in the NO3 can directly be used by the market actors in 
order to reduce their imbalance costs. Knowing the total imbalance in the area, market 
actors can evaluate whether or not their imbalances have the same direction with the 
total imbalance, and then they can make a decision about if the imbalance should be 
traded in the Elbas market or if it can be left for the regulation in the Balancing power 
market. Having their imbalances in the same direction with the total imbalance in the 
price area is essential for the market actors in order to avoid to be penalized for 
having their imbalance in the opposite direction of the system imbalance. So knowing 
the value and the direction of the total imbalance, the market actors can reduce their 
imbalance costs and probably, insure some income by trading their imbalances in the 
Elbas market.  
 
When forecasting the balancing power premium, it has been evident that the accuracy 
of the forecast of the balancing power premium depends on the quality of the time 
series of the balancing power volume that is used as an input into the model. In other 
words, an accurate forecast of the balancing power volume is required in order to 
obtain an accurate forecast of the balancing power premium. The most accurate 
forecast of the balancing power volume that has been conducted in this thesis is not 
sufficient enough to provide an accurate forecast of the balancing power volume. 
However, as it is mentioned above, when having a forecast of the balancing power 
volume that has a high accuracy, for all of the price areas, an accurate forecast of the 
balancing power volume per price area can be obtained.  
 
An accurate enough forecast of the balancing power premium can be obtained without 
using the balancing power volume as one of the explanatory variables. In this case the 
past values of the balancing power premium that lay more than one hour further back 
in time in relation to the hour, in which the forecast is made for, have been used in the 
set of the predictors. However, the best accuracy of the forecast that has been 
obtained in this case is still lower compared to the accuracy of the forecast of the 
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balancing power premium when the balancing power volume has been used as an 
explanatory variable. The forecast of the balancing power premium can also not be 
obtained more than for two hours ahead.  
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Chapter 7  

Conclusion 
 

The aim of this thesis was to evaluate the possibility of forecasting the balancing 
power volume and the balancing power premium in price area NO3 by using the 
regression model based on the Machine Learning algorithms and a set of the 
predictors. From the results obtained in this work, the following conclusions can be 
made: 

• It is impossible to obtain an accurate forecast of the balancing power volume 
day ahead in the price area without taking into consideration the events that 
occur outside of the area. 

• An accurate enough two-hours-ahead forecast of the balancing power volume 
in an hour can be obtained when using the values of the balancing power 
volume that have occurred to hours earlier.  

• It is possible to obtain a day-ahead forecast of the total imbalance in the price 
area with a high accuracy.  

• In order to get an accurate forecast of the balancing power premium, a very 
accurate forecast of the balancing power volume is required. 

• The balancing power premium in an hour can be predicted two hours ahead 
with a good enough accuracy when using the values of the balancing power 
premium that have occurred two hours earlier.  
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Chapter 8  

Further work 
 
Despite of the fact that a very accurate forecast of the balancing power volume and of 
the balancing power premium has not been conducted, a very promising results that 
can be a basis for further work have been obtained.   
 
An accurate forecast of the total imbalance in price area NO3 has been obtained. If 
the corresponding forecast of the total imbalance will be conducted in the other price 
areas, it will be, most likely, possible to obtain the balancing power volume. The 
accuracy of the values of the balancing power volume in this case will depend on the 
accuracy of the forecast of the total imbalance. When having an accurate forecast of 
the balancing power volume, it can be used in order to get a robust forecast of the 
balancing power premium.  
 
So the model needs to be extended for all of the price areas in Norway, Sweden, 
Denmark and Finland. The accuracy of the forecast of the balancing power volume 
and the balancing power premium can be possibly improved by taken into 
consideration the other factors that can have an impact on them. An example on such 
factors can be the power production outages, sun radiation etc. 
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Appendix A 
The duration of the regulation state and the possibility of that a regulation state in an 
hour will remain the same of will change with another regulation state in the next 
hour or in the future hours has been examined. The examination has been done for the 
period from 2013 to 2015. Three regulation states are possible: a down-regulation, an 
up-regulation or balance. These three regulation states can change each other or 
remain the same during the time. Following is possible: 

-­‐ If there is a down-regulation in an hour, it will be a down-regulation in the 
next hour. 

-­‐  If there is a down -regulation in an hour, it will be an up-regulation in the next 
hour. 

-­‐ If there is a down-regulation in an hour, it will be balance in the system in the 
next hour. 

-­‐ If there is an up-regulation in an hour, it will be an up-regulation in the next 
hour. 

-­‐  If there is an up -regulation in an hour, it will be a down-regulation in the next 
hour. 

-­‐ If there is an up-regulation in an hour, it will be balance in the system in the 
next hour. 

-­‐ If there is balance in the system in an hour, it will be balance in the system in 
the next hour. 

-­‐  If there is balance in the system in an hour, it will be a down-regulation in the 
next hour. 

-­‐ If there is balance in the system in an hour, it will be an up-regulation in the 
next hour. 

When examining the aggregated times series of the balancing power volume a count 
of these events has been hold track on. In addition the number of times when one 
regulation state has been changed with another one or remained the same after x hours 
has been counted. For example, it has been counted how many times a down-
regulation has changed an up-regulation in the system after 5 hours with an up-
regulation in the system. 
Then the possibility for that regulation state will remain the same in the several hours 
has been calculated by using the following formula: 
 
P(RS->RS)=!"#$%&  !"  !"#$#  !!!"  !"#$%&'()*  !"#"$  !!"  !"#$%&"'  !!!  !"#$  !"#$%  !  !!"#$  

!"#$%&  !"  !!"#$  !"#!  !"#$!!"#$%&'()*
 

 
In order to calculate the possibility for that a regulation state in the power system will 
be changed by another regulation state after x hours, the Bayes’ theorem has been 
used:   
 

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)  

where 
A-regulation state in hour x 
B-regulation state in hour x 
P(A)-probability for regulation state A 
P(B)-probability for regulation state B 
𝑃 𝐴 𝐵 - probability for observing regulation state A given that B is true 
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𝑃 𝐵 𝐴 - probability for observing regulation state B given that A is true 
 
The results of this examination are shown in the table below: 
 
Hour  The possibility for that a regulation state will change or will continue 

Down-
>Down 

Down-
>Up 

Down-
>Balance 

Up-
>Up 

Up-
>Down 

Up-
>Balance 

Balance-
>Balance 

Balance-
>Down 

Balance-
>Up 

1 0,894 0,069 0,036 0,863 0,013 0,048 0,559 0,232 0,209 
2 0,735 0,168 0,097 0,656 0,057 0,126 0,328 0,355 0,317 
3 0,606 0,210 0,184 0,530 0,054 0,215 0,208 0,407 0,385 
4 0,501 0,302 0,197 0,432 0,059 0,273 0,138 0,504 0,358 
5 0,433 0,288 0,279 0,351 0,055 0,393 0,089 0,516 0,396 
6 0,378 0,268 0,355 0,288 0,059 0,417 0,055 0,600 0,345 
7 0,316 0,421 0,263 0,232 0,076 0,413 0,033 0,322 0,644 
8 0,273 0,498 0,229 0,191 0,067 0,469 0,022 0,544 0,435 
9 0,241 0,358 0,401 0,163 0,073 0,384 0,014 0,448 0,538 
10 0,208 0,417 0,375 0,135 0,089 0,376 0,010 0,424 0,566 
11 0,187 0,502 0,311 0,123 0,037 0,482 0,005 0,284 0,711 
12 0,164 0,544 0,293 0,108 0,046 0,535 0,003 0,499 0,499 
13 0,147 0,518 0,335 0,094 0,069 0,415 0,002 0,000 0,998 
14 0,127 0,462 0,411 0,081 0,063 0,501 0,002 0,000 0,000 
15 0,114 0,548 0,337 0,066 0,040 0,747 0,002 0,000 0,000 
16 0,105 0,559 0,336 0,058 0,046 0,579 0,002 0,000 0,000 
17 0,092 0,495 0,413 0,046 0,127 0,381 0,001 0,000 0,999 
18 0,082 0,516 0,401 0,041 0,053 0,533 0,001 0,000 0,999 
19 0,075 0,569 0,356 0,037 0,030 0,688 0,001 0,000 0,000 
20 0,068 0,645 0,287 0,033 0,034 0,691 0,001 0,000 0,000 
21 0,063 0,268 0,669 0,031 0,053 0,000 0,001 0,000 0,000 
22 0,057 0,600 0,343 0,027 0,041 0,695 0,001 0,000 0,000 
23 0,052 0,237 0,711 0,024 0,024 0,781 0,001 0,000 0,000 
24 0,046 0,174 0,781 0,021 0,026 0,734 0,001 0,000 0,000 
25 0,042 0,479 0,479 0,020 0,029 0,654 0,001 0,000 0,000 
26 0,040 0,720 0,240 0,017 0,095 0,393 0,000 0,000 1,000 
27 0,039 0,000 0,961 0,015 0,038 0,000 0,000 0,000 0,000 
28 0,037 0,642 0,321 0,014 0,039 0,000 0,000 0,000 0,000 
29 0,033 0,322 0,645 0,013 0,123 0,000 0,000 0,000 0,000 
30 0,030 0,323 0,647 0,012 0,047 0,000 0,000 0,000 0,000 
31 0,027 0,195 0,779 0,011 0,000 0,989 0,000 0,000 0,000 
32 0,023 0,559 0,419 0,010 0,000 0,990 0,000 0,000 0,000 
33 0,020 0,245 0,735 0,008 0,124 0,000 0,000 0,000 0,000 
34 0,019 0,000 0,981 0,008 0,071 0,000 0,000 0,000 0,000 
35 0,017 0,655 0,328 0,007 0,000 0,993 0,000 0,000 0,000 
36 0,017 0,000 0,983 0,007 0,000 0,993 0,000 0,000 0,000 
37 0,017 0,000 0,000 0,005 0,000 0,995 0,000 0,000 0,000 
38 0,015 0,492 0,492 0,005 0,111 0,000 0,000 0,000 0,000 
39 0,015 0,000 0,000 0,005 0,000 0,000 0,000 0,000 0,000 
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Hour The possibility for that a regulation state will change or will continue 
Down-
>Down 

Down-
>Up 

Down-
>Balance 

Up-
>Up 

Up-
>Down 

Up-
>Balance 

Balance-
>Balance 

Balance-
>Down 

Balance-
>Up 

40 0,014 0,493 0,493 0,004 0,000 0,996 0,000 0,000 0,000 
41 0,014 0,986 0,000 0,004 0,000 0,000 0,000 0,000 0,000 
42 0,012 0,659 0,329 0,004 0,000 0,000 0,000 0,000 0,000 
43 0,011 0,989 0,000 0,004 0,000 0,996 0,000 0,000 0,000 
44 0,011 0,000 0,989 0,003 0,000 0,997 0,000 0,000 0,000 
45 0,009 0,495 0,495 0,002 0,200 0,000 0,000 0,000 0,000 
46 0,009 0,000 0,991 0,002 0,000 0,998 0,000 0,000 0,000 
47 0,008 0,496 0,496 0,002 0,000 0,000 0,000 0,000 0,000 
48 0,007 0,497 0,497 0,002 0,000 0,000 0,000 0,000 0,000 
49 0,007 0,000 0,000 0,001 0,333 0,000 0,000 0,000 0,000 
50 0,007 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
51 0,006 0,000 0,994 0,001 0,000 0,000 0,000 0,000 0,000 
52 0,006 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
53 0,006 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
54 0,006 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
55 0,005 0,000 0,000 0,001 0,500 0,000 0,000 0,000 0,000 
56 0,005 0,995 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
57 0,005 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
58 0,005 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
59 0,005 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
60 0,004 0,498 0,498 0,001 0,000 0,000 0,000 0,000 0,000 
61 0,003 0,000 0,997 0,001 0,000 0,000 0,000 0,000 0,000 
62 0,002 0,000 0,998 0,001 0,000 0,000 0,000 0,000 0,000 
63 0,002 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
64 0,002 0,998 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
65 0,002 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
66 0,002 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
67 0,001 0,999 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
68 0,001 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
69 0,001 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
70 0,001 0,999 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
71 0,001 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
72 0,001 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
73 0,001 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 
74 0,001 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 
75 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
76 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
77 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
78 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
79 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
80 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
81 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
82 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
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Hour The possibility for that a regulation state will change or will continue 
Down-
>Down 

Down-
>Up 

Down-
>Balance 

Up-
>Up 

Up-
>Down 

Up-
>Balance 

Balance-
>Balance 

Balance-
>Down 

Balance-
>Up 

83 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
84 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
85 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
86 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
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Appendix B 
Following time series have been used in the statistical analysis of the balancing power 
volume: 

-­‐ Balancing power volume contains hourly observation from 1.01.2013 to 
31.12.2015. The time series has been aggregated from the time series of the 
balancing power volume for each of the price areas price area, i.e. NO1, NO2, 
NO3, NO4, NO5, SE1, SE2, SE3, SE4, DK1 and DK2 and for each regulation 
state, i.e. up-regulation and down-regulation. Source is Statkraft. 

-­‐ Actual power consumption contains hourly observation from 1.01.2013 to 
31.12.2015. The time series has been aggregated from the time series of the 
actual power consumption for each of the price areas price area, i.e. NO1, 
NO2, NO3, NO4, NO5, SE1, SE2, SE3, SE4, DK1 and DK2. Source is 
Statkraft. 

-­‐ Forecasted power consumption contains hourly observation from 1.01.2013 to 
31.12.2015. The time series has been aggregated from the time series of the 
Forecasted power consumption for each of the price areas price area, i.e. NO1, 
NO2, NO3, NO4, NO5, SE1, SE2, SE3, SE4, DK1 and DK2. Source is 
Statkraft. 

-­‐ Actual wind power production contains hourly observation from 1.01.2013 to 
31.12.2015. The time series has been aggregated from the time series of the 
actual wind power production for each of the price areas price area, i.e. NO1, 
NO2, NO3, NO4, NO5, SE1, SE2, SE3, SE4, DK1 and DK2. Source is 
Statkraft. 

-­‐ Forecasted wind power production contains hourly observation from 
1.01.2013 to 31.12.2015. The time series has been aggregated from the time 
series of the Forecasted wind power production for each of the price areas 
price area, i.e. NO1, NO2, NO3, NO4, NO5, SE1, SE2, SE3, SE4, DK1 and 
DK2. Source is Statkraft. 

-­‐ Actual temperature contains weighted hourly observation from 1.01.2013 to 
31.12.2015. The time series has been aggregated from the time series of the 
actual temperature for cities Oslo, Bergen, Trondheim, Tromsø, Stockholm, 
Malmo, Göteborg, Luleå and Sundsvall. Source is Statkraft. 

-­‐ Forecasted temperature contains weighted hourly observation from 1.01.2013 
to 31.12.2015. The time series has been aggregated from the time series of the 
forecasted temperature for cities Oslo, Bergen, Trondheim, Tromsø, 
Stockholm, Malmo, Göteborg, Luleå and Sundsvall. Source is Statkraft. 

-­‐ Actual power flow contains hourly observation from 1.01.2013 to 31.12.2015. 
The time series has been aggregated from the time series of the actual power 
flow between the price areas DEU-SE4, POL-SE4, DEU-DK1, DEU-DK2, 
NLD-NO2, FIN-SE3, FIN-SE1. Source is Statkraft. 

-­‐ Spot power flow contains hourly observation from 1.01.2013 to 31.12.2015. 
The time series has been aggregated from the time series of the spot power 
flow between the price areas DEU-SE4, POL-SE4, DEU-DK1, DEU-DK2, 
NLD-NO2, FIN-SE3, FIN-SE1. Source is Statkraft. 

-­‐ Special regulation contains hourly observation from 1.01.2013 to 31.12.2015. 
The time series has been aggregated from the time series of the special 
regulation for each of the price areas price area, i.e. NO1, NO2, NO3, NO4, 
NO5, SE1, SE2, SE3, SE4, DK1 and DK2 and for each regulation state, i.e. 
up-regulation and down-regulation. Source is Nordpool. 
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-­‐ Elbas volume contains hourly observation from 1.01.2013 to 31.12.2015. The 
time series has been aggregated from the time series of the Elbas volume for 
each of the price areas price area, i.e. NO1, NO2, NO3, NO4, NO5, SE1, SE2, 
SE3, SE4, DK1 and DK2 and for each regulation state, i.e. up-regulation 
(volume bought in the Elbas market) and down-regulation (volume sold in the 
Elbas market). Source is Nordpool. 
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Appendix C 
 
 
Left hand side of balance 
equation 

Right hand side of 
balance equation 

Correlation between the 
left and the right hand 
side of equation 

Balancing power + ΔPower 
flow + Special regulation 

ΔWind power production + 
ΔConsumption + Elbas volume 
 

0.59 

Balancing power + ΔPower 
flow  

ΔWind power production + 
ΔConsumption + Elbas volume 
 

0.59 

Balancing power + Special 
regulation 

ΔWind power production + 
ΔConsumption + Elbas volume 
 

0.57 

Balancing power  ΔWind power production + 
ΔConsumption + Elbas volume 
 

0.49 

 
Left hand side of balance 
equation 

Right hand side of 
balance equation 

Correlation between the 
left and the right hand 
side of equation Balancing power + ΔPower 

flow + Special regulation 
ΔWind power production + 
Elbas volume 
 

0.31 

Balancing power + ΔPower 
flow + Special regulation 

ΔConsumption + Elbas volume 
 

0.58 

Balancing power + ΔPower 
flow + Special regulation 

ΔWind power production + 
ΔConsumption 

0.54 

Balancing power + ΔPower 
flow + Special regulation 

ΔConsumption  
 

0.52 

Balancing power + ΔPower 
flow + Special regulation 

ΔWind power production  
 

0.20 

Balancing power + ΔPower 
flow + Special regulation 

Elbas volume 
 

0.35 

 
Left hand side of balance 
equation 

Right hand side of 
balance equation 

Correlation between the 
left and the right hand 
side of equation Balancing power + ΔPower 

flow  
ΔWind power production + 
Elbas volume 
 

0.34 

Balancing power + ΔPower 
flow  

ΔConsumption + Elbas volume 
 

0.57 

Balancing power + ΔPower 
flow  

ΔWind power production + 
ΔConsumption 

0.54 

Balancing power + ΔPower 
flow 

ΔConsumption  
 

0.49 

Balancing power + ΔPower 
flow 

ΔWind power production  
 

0.20 

Balancing power + ΔPower 
flow 

Elbas volume 
 

0.36 
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Left hand side of balance 
equation 

Right hand side of 
balance equation 

Correlation between the 
left and the right hand 
side of equation Balancing power + Special 

regulation 
ΔWind power production + 
Elbas volume 
 

0.16 

Balancing power + Special 
regulation 

ΔConsumption + Elbas volume 
 

0.47 

Balancing power + Special 
regulation 

ΔWind power production + 
ΔConsumption 

0.50 

Balancing power + Special 
regulation 

ΔConsumption  
 

0.49 

Balancing power + Special 
regulation 

ΔWind power production  
 

0.17 

Balancing power + Special 
regulation 

Elbas volume 
 

0.01 

 
Left hand side of balance 
equation 

Right hand side of 
balance equation 

Correlation between the 
left and the right hand 
side of equation Balancing power ΔWind power production + 

Elbas volume 
 

0.19 

Balancing power ΔConsumption + Elbas volume 
 

0.44 

Balancing power ΔWind power production + 
ΔConsumption 

0.51 

Balancing power ΔConsumption  
 

0.49 

Balancing power ΔWind power production  
 

0.20 

Balancing power Elbas volume 
 

0.01 
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Appendix D 
Following time series have been used in the statistical analysis of the balancing power 
premium: 

-­‐ Balancing power premium in the price area NO3 contains hourly observation 
from 1.01.2013 to 31.12.2015. The time series has been conducted by 
substitution of the values of the spot price from the values of the balancing 
power price. There are different time series for each regulation state, i.e. up-
regulation and down-regulation. Source is Statkraft. 

-­‐ Balancing power volume in the price area NO3 contains hourly observation 
from 1.01.2013 to 31.12.2015. There are different time series for each 
regulation state, i.e. up-regulation and down-regulation. Source is Statkraft. 

-­‐ Inflow in the price area NO3 contains hourly observation from 1.01.2013 to 
31.12.2015. Source is Statkraft. 

-­‐ Spot price in the price area NO3 contains hourly observation from 1.01.2013 
to 31.12.2015. Source is Statkraft. 

-­‐ The slope of the bud curve of the Elspot market contains hourly observation 
from 1.01.2013 to 31.12.2015. The values of the slope of the bud curve have 
been calculated from the bud curve of the Elspot market provided by Statkraft.  
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Appendix E 
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Appendix F 
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Appendix G 
 
Parameters of the Decision Forest regression model: 
 
Minimum 
number of 
samples 
per leaf 
node 

Number 
of 
random 
splits per 
node 

Maximum 
depth of 
the trees 

Number 
of trees 

MAE RMSE Coefficient of 
Determination 

15 582 4 9 19.97 45.42 0.16 
6 1015 3 22 19.88 46.98 0.10 
11 1018 20 2 19.10 37.54 0.43 
6 24 7 28 18.97 41.80 0.29 
15 80 33 5 18.66 36.79 0.45 
15 18 42 9 18.64 37.79 0.42 
13 628 7 24 18.62 39.90 0.35 
7 495 14 3 17.57 35.57 0.49 
14 31 33 30 17.52 36.06 0.47 
7 955 9 22 17.40 36.47 0.46 
1 370 54 2 17.37 37.43 0.43 
15 602 49 11 17.37 35.11 0.50 
11 913 42 8 17.09 34.15 0.53 
14 558 50 16 16.93 34.41 0.52 
13 658 37 18 16.79 34.12 0.53 
13 582 41 17 16.74 34.09 0.53 
8 59 18 16 16.44 33.26 0.55 
10 850 44 18 16.21 32.96 0.56 
4 136 57 6 16.10 32.01 0.58 
8 653 21 12 16.05 32.61 0.57 
6 535 18 16 15.42 31.45 0.60 
4 485 13 28 15.42 31.77 0.59 
1 398 52 7 15.41 31.16 0.61 
7 998 56 31 15.29 31.52 0.60 
3 189 39 8 15.22 30.68 0.62 
4 155 29 14 15.14 30.59 0.62 
4 318 16 25 14.93 30.66 0.62 
5 722 61 31 14.73 30.31 0.63 
2 200 32 19 14.37 28.93 0.66 
2 627 36 21 14.29 28.98 0.66 
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Parameters of the Boosted Decision Tree regression model: 
 
Number 
of leaves 

Minimum 
leaf 
instances 

Learning 
rate 

Number 
of trees 

MAE RMSE Coefficient of 
Determination 

2 18 0.34 49 22.55 47.03 0.10 
4 20 0.33 117 19.54 37.60 0.43 
86 49 0.14 50 17.41 31.79 0.59 
46 49 0.04 352 16.92 31.21 0.60 
37 35 0.38 494 16.78 27.32 0.70 
54 48 0.36 486 16.69 26.88 0.71 
60 24 0.11 54 16.61 32.21 0.58 
18 31 0.23 334 16.57 28.61 0.67 
123 29 0.31 175 16.45 27.38 0.70 
91 44 0.27 142 16.33 27.41 0.69 
79 41 0.28 293 16.11 26.70 0.71 
52 46 0.07 355 16.05 28.54 0.67 
113 27 0.32 266 15.84 26.57 0.71 
127 28 0.05 146 15.69 29.44 0.65 
108 28 0.27 267 15.67 26.38 0.72 
63 32 0.14 197 15.66 27.63 0.69 
104 32 0.24 285 15.53 26.46 0.72 
50 26 0.13 263 15.48 27.71 0.69 
23 10 0.25 140 15.38 28.62 0.67 
35 24 0.10 446 15.29 27.53 0.69 
34 7 0.36 105 15.21 27.64 0.69 
17 10 0.21 299 15.17 27.74 0.69 
108 31 0.06 376 14.82 26.77 0.71 
34 16 0.12 396 14.78 26.89 0.71 
31 8 0.19 236 14.40 26.59 0.71 
124 4 0.22 94 13.46 26.33 0.72 
127 1 0.27 153 13.12 26.73 0.71 
44 2 0.06 441 13.08 26.03 0.72 
68 3 0.13 258 12.88 25.64 0.73 
117 2 0.22 482 12.83 26.08 0.72 
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Appendix H 
 
Parameters of the Decision Forest regression model: 
 
Minimum 
number of 
samples 
per leaf 
node 

Number 
of 
random 
splits per 
node 

Maximum 
depth of 
the trees 

Number 
of trees 

MAE RMSE Coefficient of 
Determination 

6 1015 3 22 195.34 246.84 0.66 
15 582 4 9 169.51 213.40 0.74 
6 24 7 28 130.37 165.62 0.84 
13 628 7 24 127.34 162.99 0.85 
7 955 9 22 112.11 146.05 0.88 
15 18 42 9 109.22 142.90 0.88 
11 1018 20 2 106.83 145.29 0.88 
15 80 33 5 104.19 138.26 0.89 
1 370 54 2 103.89 147.44 0.88 
14 31 33 30 103.80 136.91 0.89 
7 495 14 3 101.31 138.69 0.89 
15 602 49 11 101.02 135.10 0.90 
14 558 50 16 99.46 133.00 0.90 
13 582 41 17 98.75 132.26 0.90 
13 658 37 18 98.53 132.66 0.90 
11 913 42 8 98.52 133.30 0.90 
10 850 44 18 96.15 130.49 0.90 
8 59 18 16 96.08 129.54 0.91 
8 653 21 12 94.61 129.15 0.91 
4 485 13 28 93.35 126.76 0.91 
4 136 57 6 92.89 128.37 0.91 
7 998 56 31 92.15 126.54 0.91 
6 535 18 16 92.06 126.71 0.91 
1 398 52 7 91.02 127.64 0.91 
3 189 39 8 90.40 126.15 0.91 
4 155 29 14 89.94 124.14 0.91 
5 722 61 31 89.75 123.94 0.91 
4 318 16 25 89.22 123.51 0.91 
2 627 36 21 87.27 122.54 0.92 
2 200 32 19 86.76 121.39 0.92 
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Parameters of the Boosted Decision Tree regression model: 
 
Number 
of leaves 

Minimum 
leaf 
instances 

Learning 
rate 

Number 
of trees 

MAE RMSE Coefficient of 
Determination 

2 18 0.34 49 138.10 174.46 0.83 
4 20 0.33 117 117.92 151.96 0.87 
60 24 0.11 54 101.23 132.72 0.90 
46 49 0.04 352 97.99 130.04 0.90 
86 49 0.14 50 97.92 129.86 0.90 
23 10 0.25 140 97.81 130.14 0.90 
17 10 0.21 299 96.64 128.78 0.91 
34 7 0.36 105 95.93 128.77 0.91 
18 31 0.23 334 95.27 127.66 0.91 
31 8 0.19 236 93.37 125.48 0.91 
52 46 0.07 355 92.88 124.61 0.91 
44 2 0.06 441 92.54 124.05 0.91 
127 28 0.05 146 92.42 124.15 0.91 
37 35 0.38 494 92.15 125.18 0.91 
34 16 0.12 396 91.63 123.54 0.91 
35 24 0.10 446 91.61 123.77 0.91 
50 26 0.13 263 91.24 123.20 0.91 
63 32 0.14 197 91.23 122.77 0.91 
54 48 0.36 486 91.06 124.05 0.91 
91 44 0.27 142 90.85 123.08 0.91 
79 41 0.28 293 89.59 122.10 0.92 
127 1 0.27 153 89.24 123.44 0.91 
113 27 0.32 266 89.15 122.38 0.92 
123 29 0.31 175 88.61 121.90 0.92 
108 28 0.27 267 88.59 121.88 0.92 
68 3 0.13 258 88.47 120.73 0.92 
108 31 0.06 376 87.92 119.83 0.92 
104 32 0.24 285 87.75 120.57 0.92 
124 4 0.22 94 87.62 120.43 0.92 
117 2 0.22 482 86.06 119.96 0.92 
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Appendix I 
 
Parameters of the Decision Forest regression model: 
 
Minimum 
number of 
samples 
per leaf 
node 

Number 
of 
random 
splits per 
node 

Maximum 
depth of 
the trees 

Number 
of trees 

MAE RMSE Coefficient of 
Determination 

6 24 7 28 3.55 10.22 0.00 
15 18 42 9 3.53 10.23 0.00 
14 31 33 30 3.38 10.08 0.03 
8 59 18 16 3.12 9.89 0.07 
1 370 54 2 2.86 8.68 0.28 
4 136 57 6 2.80 8.78 0.26 
7 495 14 3 2.78 8.58 0.30 
15 80 33 5 2.77 9.38 0.16 
15 582 4 9 2.74 9.51 0.13 
11 1018 20 2 2.73 8.38 0.33 
6 1015 3 22 2.71 9.48 0.14 
8 653 21 12 2.70 8.42 0.32 
3 189 39 8 2.69 8.60 0.29 
7 955 9 22 2.68 8.74 0.27 
4 155 29 14 2.68 9.08 0.21 
13 582 41 17 2.67 8.34 0.34 
2 200 32 19 2.66 9.05 0.22 
6 535 18 16 2.65 8.63 0.29 
4 318 16 25 2.65 9.07 0.21 
4 485 13 28 2.63 8.89 0.24 
13 628 7 24 2.59 9.15 0.20 
15 602 49 11 2.55 8.30 0.34 
14 558 50 16 2.55 8.28 0.34 
13 658 37 18 2.52 8.29 0.34 
2 627 36 21 2.51 8.42 0.32 
10 850 44 18 2.43 8.15 0.37 
1 398 52 7 2.41 8.43 0.32 
11 913 42 8 2.39 8.15 0.36 
5 722 61 31 2.29 8.02 0.39 
7 998 56 31 2.24 8.02 0.39 
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Parameters of the Boosted Decision Tree regression model: 
 
Number 
of leaves 

Minimum 
leaf 
instances 

Learning 
rate 

Number 
of trees 

MAE RMSE Coefficient of 
Determination 

2 18 0.34 49 1.93 7.97 0.39 
54 48 0.36 486 1.88 7.68 0.44 
37 35 0.38 494 1.88 7.68 0.44 
113 27 0.32 266 1.86 7.71 0.43 
108 28 0.27 267 1.86 7.67 0.44 
104 32 0.24 285 1.85 7.64 0.44 
117 2 0.22 482 1.84 7.83 0.41 
123 29 0.31 175 1.84 7.61 0.45 
79 41 0.28 293 1.84 7.53 0.46 
4 20 0.33 117 1.83 7.25 0.50 
18 31 0.23 334 1.83 7.18 0.51 
63 32 0.14 197 1.79 7.40 0.48 
91 44 0.27 142 1.79 7.32 0.49 
34 7 0.36 105 1.79 7.18 0.51 
31 8 0.19 236 1.78 7.26 0.50 
52 46 0.07 355 1.77 7.31 0.49 
46 49 0.04 352 1.77 7.36 0.48 
108 31 0.06 376 1.77 7.37 0.48 
17 10 0.21 299 1.77 7.16 0.51 
23 10 0.25 140 1.76 7.15 0.51 
50 26 0.13 263 1.75 7.26 0.50 
124 4 0.22 94 1.74 7.43 0.47 
35 24 0.10 446 1.74 7.22 0.50 
86 49 0.14 50 1.74 7.44 0.47 
68 3 0.13 258 1.74 7.48 0.46 
34 16 0.12 396 1.71 7.17 0.51 
44 2 0.06 441 1.71 7.43 0.47 
127 28 0.05 146 1.69 7.21 0.50 
60 24 0.11 54 1.67 7.21 0.50 
127 1 0.27 153 1.57 8.31 0.34 

 
 
 


