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Abstract

DNA methylation is a chemical process that regulates gene transcription and is
known to interact with development and differentiation of the DNA. It affects
almost exclusively CpG sites, and with the Illumina HumanMethylation450k
BeadChip we are able to measure the methylation level for more than 450000
CpG sites in the human DNA. The locations of these CpG sites have been
accurately measured to a base pair resolution, making it possible to look into
spatial dependencies.

In this paper, we investigate differences in mean between two groups of people
by taking the spatial dependency into account. The investigations and analysis
is done on a data set containing methylation data from 62 persons classified
as having Schizophrenia and 33 Healthy persons. An exploratory analysis
have been done, to investigate which assumptions that should be made when
analyzing methylation data. Through auto correlation analysis, correlation
estimates and regression evaluations, we have seen that the data is influenced
by spatial dependencies. With Bayesian regression with Integrated Nested
Laplace Approximations(INLA), we have investigated different models to be
able to quantify the spatial dependency structure, and in general the underly-
ing structure of the methylation data at a part of chromosome 6. The model
that obtained the best fit included spatial dependency and an independently,
identically distributed random effect in the linear predictor. The model was
optimized using a likelihood that assumed a location independent precision
parameter φ.

Through simulations, we have seen that a test for differently methylated po-
sitions that builds on a model which utilizes the spatial dependency, might
lead to better results than a T-test. Still, further studies are required. Some of
the results obtained by the simulations deviates from those obtained by the
case study, which might indicate the presence of an underlying structure in the
methylation data that is not yet quantified.
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Sammendrag

DNA metylering er en kjemisk prosess som regulerer gentranskripsjon, og er
kjent for å påvirke utviklingen og differensieringen av DNAet. Selve metyle-
ringsprosessen påvirker CpG posisjoner, og med Illumina HumanMethylation-
450k BeadChipen har vi mulighet til å måle metyleringsverdien til mer enn
450000 CpG posisjoner i menneskets DNA. Lokasjonen til disse CpG posisjo-
nene i DNAet har blitt målt ned til et basepar nivå, noe som gjør det mulig å
undersøke romlige avhengigheter i metyleringsdataen.

I denne artikkelen har vi undersøkt forskjeller i forventningsverdi mellom
to grupper i et datasett, ved å ta hensyn til romlige avhengigheter. Undersø-
kelsene og analysene er utført på et eksempelstudie som inneholder metyle-
ringsdata fra 62 personer karakterisert som schizofrene, og 33 friske. Gjennom
en utforskende analyse har vi funnet ut hvilke antagelser vi må gjøre når vi
skal modellere metyleringsdataen. Ved å estimere korrelasjoner og analysere
regresjoner, har vi sett at metyleringsdataen vi har undersøkt er påvirket av
romlige avhengigheter. I et kvalitetsstudie av en del av metyleringsdataen fra
kromosom 6, har vi utført Bayesiansk regresjon med Integrerte Nøstede Laplace
Approksimasjoner(INLA). Vi har undersøkt flere forskjellige modeller for den
lineære prediktoren, for å kvantifisere den romlige avhengighets-strukturen og
for å finne den modellen som passer dataene best. Modellen for den lineære
prediktoren som passet best inneholdt romlige avhengigheter, samt en uav-
hengig, identisk distribuert tilfeldig effekt. Modellen ble optimalisert med en
likelihood funksjon som antok en lokasjonsuavhengig presisjonsparameter φ.

Ved hjelp av simuleringer, har vi sett at en test som bygger på en model som
tar hensyn til romlige avhengigheter, kan lede til bedre resultater for å finne
forskjellige metylerte posisjoner enn en T-test. Flere simuleringer og videre
studier er nødvendig. Noen av resultatene fra simuleringene avviker fra resul-
tatene fra kvalitetsstudiet, noe som kan medføre at metyleringsdataen har en
underliggende struktur som ikke enda er kvantifisert.
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1 Introduction

1 Introduction
DNA methylation(Section 2.12.1) is a chemical modification of the DNA that plays a
key role in regulating gene expression(Mirella Gonzalez-Zulueta and Nguyen

19951995). It involves the addition of a methyl group to a cytosine(C) base, which can
occur when this base is directly followed by a guanine(G) base along one of the
strands in a DNA molecule. This is visualized in Figure 2.22.2. Places where a C is
directly followed by a G are called CpG sites, which tends to cluster in regions
to form CpG islands(Gardiner-Garden and Frommer 19871987). These islands are
strongly connected to gene promoters, which control the activation or inactivation
of a gene. Alterations in the DNA methylation at these islands are thought to play
an important role in suppression or expression of the associated gene, which is
essential in normal development and in development of different diseases(Feinberg
20072007).

As a result of DNA methylation’s role in development of diseases, it is of great
interest to measure the DNA methylation at a comprehensive genomic scale. With
the Illumina HumanMethylation450k BeadChip(Bibikova et al. 20112011), we are able
to measure the methylation level of more than 450000 CpG sites in the human
DNA. This method is one of the most used technologies for obtaining methylation
data(Aryee et al. 20142014), and several projects such as The Cancer Genome Atlas
and Marmal-aid have made data publicly available through online data bases. This
makes it easy for researchers to obtain data from different experiments, and creates
the foundation for rapid advances in methylation research.

The methylation values are in the range of (0,1), denoting averages of methylation
at the CpG sites for a given person. A common assumption is that the methylation
values for different persons are beta distributed around a CpG site-specific mean,
which is equal for persons of the same class. A class denotes people with the same
qualities, such as sex, age and disease type. This is further described in Section 2.52.5.

Several papers have studied the impact of different qualities on the methylation
data. An example is a study of Inflammatory Bowel Disease(McDermott et al. 20152015)
where an algorithm called dmpFinder11(Hansen and Aryee 20152015) is used to find
differently methylated CpG sites between a group of people with the disease and a
healthy control group. The algorithm is based on a Fisher test, and treats each CpG
site individually and independent(Hansen and Aryee 20152015).

In this paper, we look into the possibility that the methylation values are affected
by spatial dependency. The sequence of base pairs in the human DNA have been

1differently methylated positions Finder
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very accurately determined by the Human Genome Project(Human Genome Se-

quencing Consortium 20042004), enabling the possibility of locating each of the CpG
sites in the DNA along a specific chromosome. This makes it possible to look into
the spatial dependency between CpG sites located along a chromosome, which
might influence which sites that are differently methylated. We focus on a data set
containing methylation values of people classified as having Schizophrenia or being
Healthy, and through Bayesian regression we explore the spatial dependency and its
effect.

To clarify the assumption of spatial dependency, we consider two different groups of
people which we have divide by an illness; one group has Schizophrenia, the other
is Healthy. The true mean methylation value at CpG site i for each of these groups
are then defined as µ1,i and µ2,i . If the data from each person are considered as
independent of the location i, differences can be easily found by an algorithm such
as the dmpFinder or a Student T-test, as described in Section 3.23.2. However, if each
location is not independent, but rather affected by some underlying dependency
structure, we have access to a new source of information which is not utilized by
these tests. Therefore, we want to investigate the assumption of spatial dependency,
and examine the effect of taking it into account with regression.

The main focus when taking the spatial dependency into account, is a randomly
chosen part of chromosome 6 of the Schizophrenia data set, described in Section
2.22.2. By using Bayesian regression with the Integrated Nested Laplace Approxi-
mations(INLA)(Rue, Martino, and Chopin 20092009), we model the mean of the data
through a latent Gaussian model(Rue, Martino, and Chopin 20092009) of the linear
predictor. To take the spatial dependency into account, we use a Stochastic Partial
Differential Equation(SPDE)(Lindgren, Rue, and Lindström 20112011) approach to
include a spatially dependent effect in the latent Gaussian model. This is further
described in Chapter 44. We then look into how this changes the estimates of the
differences between the groups, and the fit to the data.

INLA is a deterministic algorithm for Bayesian inference(George E. P. Box 19921992),
and an alternative to the simulation based Markov Chain Monte Carlo(MCMC)
algorithms. It is especially designed for latent Gaussian models, and it provides
accurate results in shorter computational time, compared to the MCMC. With the
SPDE extension in INLA, we are able to approximate continuous dependency struc-
tures(Gaussian Random Fields)(Cressie 19931993) by using a discretely indexed spatial
random process(Gaussian Markov Random Fields)(Rue and Held 2005a2005a), and hence
computational efficient inference is available.

This paper is organized as follows. In Chapter 22, we give background material
concerning methylation and data accessibility, as well as presentation of the data
used and basic notations. We also review common assumptions when evaluating
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methylation data, and the most used statistical models. In Chapter 33, we do an
exploratory analysis to find out which features to use when modeling the methy-
lation data. Here we also develop a test for finding differently methylated CpG
sites. In Chapter 44, we provide background material relevant for developing models
with spatial dependency, as well as a summarized explanation of Bayesian inference
and INLA. In Chapter 55, we specify the models we are investigating and relevant
information concerning prior specifications. The results obtained by evaluating
the models on the Schizophrenia data set are given in Chapter 66. In Chapter 77, a
simulation study is provided to explore the results obtained from the case study.
Lastly, a discussion and conclusion is given in Chapter 88.
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2 Background;Methylation and presentation of data
andmodels
In this Chapter, we give results and explanations from other sources that are central
to the paper. Some of these explanations are developed in the specific case of
methylation data, while others are more general.

2.1 DNAmethylation
The DNA carries most of the genetic information concerning development, function-
ing and reproduction of all known living organisms. The DNA molecule consists
of two biopolymer strands coiled around each other to form a double helix. These
strands consist of repetitive nucleotides, containing a phosphate group, a five-carbon
sugar and a nitrogen-containing base. The phosphate group and the sugars create

Figure 2.1: DNA; two biopolymer strands coiled around each other to form a double
helix. Four unique bases; Adenine (A), Thymine (T), Cytosine (C) and Guanine (G).
Picture downloaded from www.astrochem.org.

the backbone of each strand of the DNA double helix. These strands are linked
together by the nitrogen-containing bases. There are four types of nitrogen bases
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associated with nucleotides in the DNA; cytosine (C), guanine (G), adenine (A), and
thymine (T). For each of the bases along one of the strands, there is only one possible
complementary base on the other. This results in four distinct combinations; CG,
GC, AT and TA. Figure 2.12.1 shows a visual interpretation of the DNA structure.

Figure 2.2: CpG, 5′-Cytosine-phosphate-Guanine-3′ site on one DNA strand read
by the directionality 5′→ 3′(left in picture). Complementary C-G base pairing on
two DNA strands(right). Picture downloaded from Wikimedia Commons.

Within the DNA, a process called DNA methylation can occur. This is a process that
typically occurs at CpG sites, which are regions in the DNA sequence along one of
the strands where a cytosine(C) base is directly followed by a guanine(G) base. CpG
stands for 5′-Cytosine-phosphate-Guanine-3′, where phosphate binds any two bases
together along a DNA strand, while 5′ → 3′ stands for the end-to-end chemical
orientation of the single strand of bases. This is a way of denoting the directionality
of the way the DNA molecule is read, meaning the process of chemically measure
the sequence of bases in the DNA. Figure 2.22.2 shows a visualization of a CpG site.

The chemical process of DNA methylation involves a methyl group to be added to a
cytosine base, at a CpG site, to form 5-methylcytosine. The change of the molecule
cytosine can be seen in Figure 2.32.3. This change can have an effect on the process-
ing of DNA, and is known to play a central role in various biological processes,
such as stem cell differentiation(Meissner 20102010), genomic imprinting(Barlow 20112011)
and inflammation(Martin and Herceg 20122012). DNA methylation is probably best
understood in the context of cancer biology(Baylin and Jones 20112011), where it is
clear that aberrant gains and losses of methylation, at tumor suppressor genes11 and
oncogenes22 respectively, almost always accompany the initiation and progression of
tumors(Feinberg and Tycko 20042004). This can be related to the fact that high methyla-
tion values in promoters can result in silencing(Mirella Gonzalez-Zulueta and
Nguyen 19951995) of the tumor suppressor genes, which can inhibit the suppression of
tumor growth, resulting in tumor progression. The opposite is true for low methy-
lation values, which can result in overexpression of oncogenes that can be related
to tumor growth. Characteristic changes in the DNA methylation have also been
reported to interact with the development of other diseases(Feinberg 20072007), such
as Schizophrenia(Rukova et al. 20142014). The last mentioned is what we investigate

1genes associated with prevention of tumor growth
2genes associated with tumor growth
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Figure 2.3: Unmethylated(left) and methylated(right) cytosine molecule. Picture
downloaded from www.cincinnatichildrens.org.

further, although the main focus is not on finding CpG sites throughout the genome
for which the methylation value seems to be different, but on how the differently
methylated sites are found.

2.2 Presentation of data
This paper uses measurements from the Illumina Infinum HumanMethylation450k
BeadChip. By using bisulfite-converted DNA, two signals of interest are record by
interrogating the methylation status of 485512 CpG sites. One signal measures the
amount of methylated DNA(Meth), while the other signal measures the amount of
unmethylated DNA(Unmeth). In principal, the proportion Meth/(Meth + Unmeth)
is the reported methylation value in the population of cells from which the DNA
are extracted. This is referred to as a beta value, and is in the range of (0,1). A
more extensive description is given in (Bibikova et al. 20112011). Illumina Infinum is
currently one of the most used technologies for obtaining methylation data(Aryee
et al. 20142014).

We study methylation data loaded from the online database Marmalaid, which
is described in more detail in Section 2.32.3. The sequence of the data are reorganized,
such that we can investigate the abilities of methylation data at subsequent locations
along chromosomes. When organized in such a way, the data will be denoted as
time series. The locations si are measured at a base pair resolution, where the
RnBeads(Assenov et al. 20142014) package(in R) is used to map CpG sites to their as-
sociated location on a given chromosome. The chromosomes that are studied are
chromosome 1− 22, where some are studied more than others.

Throughout the paper, the iterator i is used for different CpG sites, where si is
the base pair location of CpG site i. The iterator j is used for different persons.
The main focus is on a data set containing methylation data from N = 95 differ-
ent persons, where N1 = 62 of these have been diagnosed with Schizophrenia and
N2 = 33 have been classified as Healthy. n is used to denote the number of CpG sites
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considered. We are going to use both location and position to denote the different
CpG sites, where location points to the base pair number si and position to the index
i.

To make the notation clear, an example is given. If we consider chromosome
6, we have n = 36614 CpG sites where the methylation value is measured for each
person j. The location of each of these sites along chromosome 6 are then loaded
from the RnBeads package, giving the location vector s = (s1, ..., s36614). This makes
us able to know the distance between each of the CpG sites(in base pairs), which we
later use to define models for taking spatial dependency into account. In this paper,
we model and evaluate data from the different chromosomes independently.

2.3 TheMARMAL-AID database
Marmal-aid is a combined database and R package that allows for investigation of
the methylation state of regions of interest across the genome. The database is a
collection of the majority of the publicly available Illumina HumanMethylation450
data, which has been reorganized such that it follows the same setup. This makes it
easy to download and use data from different experiments, which previously could
be difficult due to inconsistent annotation.

Marmal-aid provides processed data that has undergone a normalization procedure
as an attempt to decrease the variability across experiments. Missing values have
also been imputed based on a nearest neighbor algorithm. In addition to the pro-
cessed data, the developers are currently working on providing raw, unrefined data.
More information concerning Marmal-aid and the normalization procedure they
use, are found in (Lowe and Rakyan 20132013).

Because of the variability across experiments, small methylation differences should
not be weighted heavily when evaluating data from different experiments. In this
paper, we therefore focus on data from the same experiment.

2.4 CpG islands
Along the chromosomes, there are regions with higher density of CpG sites than
others. These regions are called CpG islands, but the definition of such an island
has some variations. The usual formal definition(Takai and Jones 20022002) is a region
consisting of at least 200 base pairs, a GC percentage greater than 50% and with an
observed-to-expected CpG ratio that is greater than 60%. To clarify this definition,
the following example is given.

Let us consider a region of 300 bp, which contains 80 G bases, 80 C bases, 70
A bases and 70 T bases. The GC percentage of this region is then calculated as
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follows:
G+C

G+C +A+ T
· 100 = 53.33%. (2.1)

Since the GC percentage is higher than 50%, this region is a possible CpG island.
For the next step, we need to calculate the observed-to-expected CpG ratio, which
is defined as the number of observed CpG sites divide by the expected number of
CpG sites. The expected number is usually calculated as the number of Cs times the
number of Gs, divided by the length of the sequence. If we were to observe 17 CpG
sites in this interval, our observed-to-expected CpG ratio would be

17
80·80
300

= 0.797, (2.2)

such that our region would be classified as an CpG island. The RnBeads package
(Assenov et al. 20142014), which uses the definition given, has been used to extract
which CpG sites that is part of a CpG island.

Many genes in the human genome have CpG islands associated with the start
of the gene, called promoters. In most instances, the CpG sites in the CpG islands
of promoters are unmethylated if the genes are expressed. This observation has
led to beliefs that methylation of these regions might lead to silencing(Mirella

Gonzalez-Zulueta and Nguyen 19951995) of the following genes. To try to find only
those CpG islands that are associated with promoter regions, (Takai and Jones 20022002)
developed a slightly different definition; sequence length at least 500 base pairs, GC
percentage at least 55% and observed-to-expect ratio of 0.65. In this paper, the CpG
island association is not of specific interest, such that which definition we use is not
of great importance.

2.5 Common assumptions, and alternative parametrization of
the Beta-distribution

Common assumptions for the methylation data, when evaluating differences be-
tween groups of people, are that the observations yij for each person are indepen-
dently beta distributed between the locations. Here y stands for the methylation
value, i is the iterator deciding which CpG site that is evaluated and j stands for per-
son j. People belonging to the same group are expected to have the same expectation
value at a CpG site, such that the distribution can be seen as

yij ∼ Beta(µi ,φi). (2.3)

µi = Ej [Yi] stands for the expectation at CpG site i for the persons j = 1, ...,N of the
same group and φi is the precision parameter in the distribution which determines
the spread around the mean. φ is denoted with an i, since it can change for the
different locations, or be held constant such that φi = φ for all i. What assumptions
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to be made for the methylation data studied in this paper are evaluated in the
exploratory analysis in Chapter 33. Here we have used an alternative parametrization
of the beta distribution, which is defined as follows.

For a random variable Y , the Beta(a,b)-distribution has the following density

π(y) =
1

B(a,b)
ya−1(1− y)b−1, 0 < y < 1, a > 0 b > 0, (2.4)

where B(a,b) is the Beta-function

B(a,b) =
Γ (a)Γ (b)
Γ (a+ b)

, (2.5)

and Γ (y) is the Gamma-function. An alternative parametrization for the Beta-
distribution is given by Beta(µ,φ), where µ is the expected value and φ is the
precision parameter. In terms of a and b, they are defined as

µ =
a

a+ b
0 < µ < 1

φ = a+ b φ > 0.
(2.6)

The expected value and the variance in terms of µ and φ are then

E[Y ] = µ and Var[Y ] =
µ(1−µ)

1 +φ
. (2.7)

φ is known as the precision parameter since for fixed µ, larger φ results in smaller
variance of Y . The INLA package uses this parametrization for the beta distribution.

To clarify the term group or class, which we use extensively, we mean a gather-
ing of people with the same qualities. If we want to look into the effect methylation
has on the mental illness Schizophrenia, this would be the quality which divides
our group in two. Since age has shown to be a significant factor for differences in
the methylation mean for many CpG sites(Horvath 20132013), this should be taken into
account when evaluating group differences. However, since the patients in the data
set evaluated, both the Healthy and the Schizophrenia, have a high variation of age,
this should not have a great impact on the differences. The mean age of the persons
with Schizophrenia is 32, while it is 29 for the Healthy ones.

2.6 Generalized linear models; Beta regression
Generalized linear models(Hilbe 19941994) are generalizations of ordinary linear regres-
sion that allows the response variable to have a distribution other than the normal
distribution. The mean of the data is through a link function defined on a normal
scale, such that regular linear regression can be applied. This is what the interest is
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in this paper, to find relationships for the mean of the data. The procedure will be
described in more detail for the case with methylation data, i.e. beta regression.

With a beta distribution defined as in Section 2.52.5, it implies that

yij ∼ Beta(µij ,φi). (2.8)

For a response that is beta distributed, the variables are restricted to values between
0 and 1. Because of these restrictions, the response variables can be seen as prob-
abilities. To define linear relationships on the mean µij based on some covariates
directly, might lead to regression coefficients which for some covariate values give
expectation values that does not fall in the range of (0,1). Therefore, we would
either need restrictions on the regression coefficients, or we could transform the
response variable to a normal scale(−∞,∞) such that linear relationships can be
found between the transformed mean and the covariates. The last approach is
known as generalized linear models, which allows the mean of a response variable
with an arbitrary distribution to vary linearly with some covariates through a link
function.

For a beta distribution, the logit link function is commonly used. This means
that if we are interested in doing inference on the mean µij , we model the linear
predictor ηij , defined as

ηij = logit(µij ) = log(
µij

1−µij
). (2.9)

As an example, we consider a specific model evaluated in this paper for finding
differences in mean between people that are classified as having Schizophrenia
against Healthy ones,

ηij = −1 +αi + βikj . (2.10)

Here kj is a factor 0 or 1 deciding if person j is Healthy or has Schizophrenia, αi
is the mean of the persons that are classified as healthy at CpG site i, and βi is the
added effect in mean at this site of having Schizophrenia. −1 removes the intercept,
which would be an effect calculated based on all the observations, which is not of
interest for this evaluation. Regular linear regression tools can be applied to find
the regression coefficients α,β, where the resulting relationship between the mean
µij and the coefficients is

µij = logit−1(ηij ) =
exp(αi + βikj )

exp(αi + βikj ) + 1
. (2.11)

The interpretation of the regression coefficients are that a unit increase affects the
log odds of the mean in the beta distribution linearly. This is the approach we use
in this paper, where the regression is done through the Bayesian framework(George
E. P. Box 19921992) with the INLA(Rue, Martino, and Chopin 20092009) algorithm.
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3 Exploratory analysis and T-test
In this Chapter, we explore the distribution of the methylation data. This includes
exploration of the variation in the mean and the precision parameter of the distribu-
tion. Further, we explore the correlations along the chromosomes, and the strength
of these correlations. Lastly, we perform a T-test to evaluate differences in mean
between people having Schizophrenia and being Healthy.

3.1 Exploratory analysis of the Schizophrenia data set
Figure 3.13.1 displays the methylation data as time series dependent on the locations
si along chromosome 1 at 250 subsequent locations. The mean for the different
locations seem to be highly non-stationary, such that each location seem to have its
own mean.

Figure 3.1: Matrix plot of methylation data at 250 subsequent locations at chromo-
some 1, for 40 randomly chosen people from the Schizophrenia data set.

In Figure 3.23.2, the empirical mean of each location is removed from the data set, and
both the data and the mean are plotted against the CpG position i(identical distance
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Figure 3.2: Discrepancy plot of methylation data at 250 subsequent locations at
chromosome 1, for 40 randomly chosen people from the Schizophrenia data set.
A function of the sample mean is plotted underneath, with axis(right hand side)
chosen such that both plots are readable.

vector). The discrepancy data are therefore

yD,i = yi −
1
N

N∑
j=1

yj,i = yi − µ̂i , (3.1)

where yi is a vector of methylation values of length N with one value for each
person j and µ̂i is the empirical mean at location i. This is done, such that the
discrepancy(how much the data varies) of the data can be easily evaluated at each
location. The variation seems to be changing along the chromosome, and it seems to
be largest in regions where the mean is around 0.5. This can be seen by the function
of the sample mean, µ̂(1− µ̂), being above 0.2 for most of the regions where the data
varies a lot. The beta distribution has these properties, which can be seen from
Equation (2.72.7) in Section 2.52.5. The Equation (2.72.7) indicates that the variance alters
with the mean of the location, where it is largest at µ = 0.5. Since the amount of
variation at locations with similar mean seem to vary, the assumption of a constant
φ does not seem to be likely. Note that the analysis is done over a larger region then
the one displayed in Figure 3.23.2.
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To further investigate the claim that the data are beta distributed, we investigate the
relationship between the sample mean and the sample variance of the data against
these estimates of simulated beta distributed variables. This is done by calculating
the sample mean and variance from the data and transforming these estimates to ai
and bi estimates by formula

âi = −
µ̂i(µ̂

2
i − µ̂i + σ̂2

i )

σ̂2
i

b̂i =
−(µ̂i − 1)âi

µ̂i
,

(3.2)

where

µ̂i =
1
N

N∑
j=1

yij

σ̂2
i =

1
N − 1

N∑
j=1

(yij − µ̂i)2.

(3.3)

Then we simulate N beta distributed variables from the empirical distribution
Beta(âi , b̂i), and calculate the sample mean and variance of the simulated variables.
This is done to capture the natural variation of N beta distributed variables at each
position i.

In Figure 3.33.3, the standard deviation is plotted against the sample mean of the
methylation data and the beta distributed variables. This is done for 5000 subse-
quent locations from four different chromosomes. They seem to follow the same
pattern, which reinforces the assumption that the methylation data are beta dis-
tributed.

The precision parameter for the beta observations does not seem to be constant
along the chromosomes. In Figure 3.43.4, we have displayed the sample mean and
the estimated standard deviation of methylation data from chromosome 1 against
the sample mean and estimated standard deviation of beta distributed values with
constant φ equal to 20,50,100 and 200. The spread in the methylation data is not
well accounted for by the different beta distributed values, which suggests that the
precision parameter varies for the different locations in such a way that it can not be
described by a constant φ.

As has been mentioned earlier, we check the assumption of correlation in the data
along the chromosomes. This is done through the sample auto-correlation function
taken over the different chromosomes for each person. We need to evaluate the
discrepancy data set, such that the time series can be seen as having stationary mean
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(a) 5000 subsequent locations at chromosome
1.

(b) 5000 subsequent locations at chromosome
2.

(c) 5000 subsequent locations at chromosome
5.

(d) 5000 subsequent locations at chromosome
11.

Figure 3.3: Empirical standard deviation against sample mean of methylation data
from four different chromosomes and beta distributed samples.

for each location along the chromosomes. The sample auto-correlation is defined as

ρ̂k =
γ̂k
γ̂0

=
∑n−k
i=1 (yi − ỹ)(yi+k − ỹ)∑n

i=1(yi − ỹ)2 , (3.4)

where ρ̂k is the average lag k correlation, γ̂k is the average lag k covariance which
for k = 0 is the variance, ỹ is the average methylation along the chromosome and
i = 1, ...,n are the subsequent positions under study. For time series without cor-
relation, the auto-correlation is equal to 0 for k ≥ 1. For large n, ρ̂k is approxi-
mately normally distributed(Wei 20062006) with mean ρk and variance approximated
by Bartlett(Bartlett 19461946)

Var(ρ̂k) u
1
n

(1 + 2ρ̂2
1 + 2ρ̂2

2 + · · ·+ 2ρ̂2
m), (3.5)

where m is the number of consecutive lag k correlations that are not equal to zero,
ρ̂k , 0 for k = 1, ...,m. This means that to test if we have a white noise process,
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(a) 5000 subsequent locations at chromosome
1. The beta distributed values are simulated
with constant φ = 20.

(b) 5000 subsequent locations at chromosome
1. The beta distributed values are simulated
with constant φ = 50.

(c) 5000 subsequent locations at chromosome
1. The beta distributed values are simulated
with constant φ = 100.

(d) 5000 subsequent locations at chromosome
1. The beta distributed values are simulated
with constant φ = 200.

Figure 3.4: Empirical standard deviation against sample mean of methylation data
from chromosome 1, with four different beta distributed samples with constant φ.

which is a process without correlations, we test each correlation of lag k against the

hypothesis that ρk = 0 with standard error equal to Sρk =
√

1
n .

In Figure 3.53.5, we have displayed the sample auto-correlation function of the three
first lags for the 95 different people in the Schizophrenia data set, estimated by
using the data from chromosome 1, where n = 46866. The plot indicates that there
are correlations along the chromosome, and the hypothesis of a white noise process
is rejected. The correlation also seems to vary in strength for the different persons.
In the appendix A.1A.1, these differences are shown through box-plots and compared
to simulation of Gaussian random fields(GRFs)(Section 4.34.3). The conclusion is that
the amount of correlation along a chromosome for different people seem to vary
more than it would if the discrepancy data were realizations of a GRF with the same
parameters.
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Figure 3.5: Auto-correlation of the three first lags for the 95 people in the Schizophre-
nia data set. The auto-correlation is calculated with data from chromosome 1.

With the explanatory analysis given, we have seen that the assumption of beta
distributed data with non-stationary mean µi and precision parameter φi , seems
to fit the data. From the acf plots, we have seen that there are some significant
correlation along the chromosome, which might influence the evaluation of dif-
ferently methylated regions and sites among persons classified as Healthy against
Schizophrenia. Since the acf varies much between the different persons, the strength
of the dependency structure might be different for each person.

3.2 Differently methylated regions; T-test
To get an overview of differences in mean µ between two groups of people, we specify
a T-test. The test is thoroughly explained for the case study of the Schizophrenia
data set, where each CpG cite i is tested independently. The two groups of people
we are testing the differences in mean between, are:

y1,si
: People classified with Schizophrenia

y2,si
: People classified as Healthy

, (3.6)
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where si is the location evaluated and y1,si
and y2,si

are vectors of methylation values
for location si , with length N1 = 62 and N2 = 33 being the number of people in
group 1 and 2. The hypothesis to be tested is then stated as follows:

H0 : µ1 = µ2 at location si ∈HumanMethylation450k

H1 : µ1 , µ2 at location si ∈HumanMethylation450k.
(3.7)

The null hypothesis is now tested with a two sided T-test, where the test variable is
defined as

Tsi =
(ȳ2,si − ȳ1,si )− (µ2 −µ1)

SE
, (3.8)

which under H0 is equal to Tsi =
ȳ2,si
−ȳ1,si

SE and has a student t-distribution with
(N2 − 1) + (N1 − 1) = 93 degrees of freedom. The test variable is compared to the
critical value for the t distribution with 93 degrees of freedom and significance level
α = 0.05, which is equal to 1.986(two sided). If |Tsi | exceeds 1.986, where | · | denotes
the absolute value, we reject the null hypothesis for location si .

The standard error SE is calculated by formula

SE = Sp

√
N2 +N1

N2N1
, (3.9)

where Sp is the pooled standard deviation, given by

Sp =

√
S2

2 (N2 − 1) + S2
1 (N1 − 1)

(N2 − 1) + (N1 − 1)
. (3.10)

The pooled standard deviation works as a weighted average of the standard devi-
ations to the two samples, since if one sample is much larger than the other, has
more degrees of freedom, it should count for more of the variation. It is build on
the assumption that the true standard deviation for each group is the same. By com-
paring the estimated standard deviation of each group with the standard deviation
of simulated data samples of size N1 and N2 from two identical beta distributions,
this assumption seems to be reasonable. To test the hypothesis for location si , we
therefore need to estimate four quantities of the samples:

ȳ2,si =
1
N2

N2∑
j=1

yj,2,si , ȳ1,si =
1
N1

N1∑
k=1

yk,1,si

S2
2 =

1
(N2 − 1)

N2∑
j=1

(yj,2,si − ȳ2,si )
2, S2

1 =
1

(N1 − 1)

N1∑
k=1

(yk,1,si − ȳ1,si )
2.

(3.11)
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(a) Histogram of the Ti parameter with corre-
sponding H0 distribution.

(b) Histogram of Ti(test set) with correspond-
ing H0 distribution.

Figure 3.6

In Figure 3.63.6, we have displayed a histogram of all test variables created from
applying the test to all 46866 locations at chromosome 1. The same is displayed for
a test data set of same dimensions, containing beta distributed variables based on
estimates of the mean and precision parameter of both samples(Schizophrenia and
Healthy) seen as one. These variables are then divided into groups of size N1 and
N2, and the same test as above is applied. This is done to see how the test performs
for beta distributed variables from the same distribution.

Figure 3.63.6 shows that both histograms fit the H0 distribution quite well, although
the histogram of the methylation data seems to be a bit skewed. This might point
towards some trend, that the methylation mean of the Schizophrenia group is a
bit lower than the healthy group for most sites on chromosome 1. It might also be
caused by some small deviations between the data and the assumed beta distribu-
tion.

In Table 3.13.1, the amount of significant test variables Ti are given from doing the
test on all the chromosomes, individually. As we can see, each of the chromo-
somes have a significantly different mean at less locations than what we would
expect from the type I error. This is further discussed in Chapter 88, and might point
towards some underlying structure in the methylation data that is not yet quantified.

If we use the well used differently methylated positions finder algorithm dmpFinder()
(Hansen and Aryee 20152015), we get the exact same CpG sites defined as differently
methylated, meaning that their p-value is below 0.05. This is shown in Figure 3.73.7,
where the test is done on a small part of chromosome 6, which is studied in the next
chapters.
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Figure 3.7: The points show which positions on 400 subsequent locations at chro-
mosome six that are classified as differently methylated based on the T-test and the
dmpFinder. DMP stands for differently methylated positions.
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Table 3.1: Table over amount of significant test variables Ti at chromosome 1− 22,
compared with the amount from the test data.

Chromosome Amount outside, meth. data Amount outside, test data
1 0.043 0.049
2 0.042 0.051
3 0.042 0.051
4 0.039 0.050
5 0.042 0.050
6 0.041 0.050
7 0.042 0.049
8 0.041 0.050
9 0.048 0.046
10 0.041 0.051
11 0.041 0.048
12 0.040 0.051
13 0.045 0.049
14 0.044 0.052
15 0.043 0.046
16 0.043 0.049
17 0.043 0.049
18 0.041 0.046
19 0.045 0.049
20 0.043 0.048
21 0.043 0.051
22 0.048 0.051
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4 Background; Latent Gaussianmodels, Bayesian
inference and INLA
Because of the estimated correlations along the chromosomes, we want to investigate
the possibility of spatial dependency in the data. In this and the following Chapters,
we therefore introduce models with spatial dependency and some new background
material. We also give a description of the methodology and algorithm used to do
the inference.

4.1 Bayesianmodeling and inference
Bayesian inference is a method of statistical inference in which Bayes theorem is
used to update prior beliefs on some latent variable θ based on observable data y.
Consider having an assumed probability distribution for the observable variables
dependent on the latent variable θ, defining the likelihood function

π(y|θ). (4.1)

The parameter θ is an unknown quantity modeled through a suitable prior proba-
bility distribution π(θ), before observing any realizations y which can alter these
beliefs. As mentioned earlier in the paper, we are interested in doing inference on
the mean of the data, such that θ is in our case the mean, µ. The prior distribution
can be informative or non-informative, reflecting the amount of information we have
on the parameter prior to the observations. In the presence of a hierarchical struc-
ture or spatial (or temporal) dependence between the parameters, it would be more
common to express the knowledge of θ through hyperparameters ψ11, such that the
distribution becomes π(θ|ψ). This becomes clearer in the next section, describing
the process of Bayesian inference with INLA. To find the posterior distribution of
the parameter θ, Bayes theorem is used:

π(θ|y) =
π(y|θ)×π(θ)

π(y)
. (4.2)

The posterior distribution π(θ|y) represents the uncertainty about the parameter of
interest, θ, after having observed the data y, which has some assumed relationship
to θ through the likelihood function. Note that the marginal distribution of y in the
denominator is considered as a normalizing constant since it is not dependent on θ,
such that Bayes theorem is often reported as

π(θ|y) ∝ π(y|θ)×π(θ). (4.3)

1A hyperparameter is a parameter of a prior distribution; they are not parameters of the model for
the underlying system under analysis.
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The aim of Bayesian inference is therefore to obtain the marginal posterior distri-
bution of each parameter in θ(only one in the example above), and the marginal
posterior distribution of the hyperparameters ψ if any.

It is worth noticing that the interpretation of the parameters of interest in the
Bayesian framework and the frequentist(classical) framework is different. In the
Bayesian framework, the θis are characterized by a probability distribution. In
the frequentist approach, θi is considered as a fixed unknown quantity and only
its estimator θ̂i , which is a function of the data, is a random variable(Blangiardo
and Cameletti 20152015). This gives rise to two different parameter estimation inter-
vals; credibility regions and confidence intervals. The credibility region is used
for Bayesian inference, and means that given the data, there is a 0.95 probabil-
ity(for significance level α = 0.05) that the true value θi falls within the region. The
confidence interval, used for the frequentist approach, means that there is a 0.95
probability that the interval estimated contains the true value θi .

4.2 Latent Gaussianmodels and Bayesian inference with INLA
The following introduction is based on (Blangiardo and Cameletti 20152015) and the
same notation is used. Latent Gaussian models(Rue, Martino, and Chopin 20092009)
can be represented by a hierarchical structure containing three stages. The first
stage is to define the conditionally independent likelihood function based on the
assumed distribution for the observed data y. A very general approach is to specify
a distribution for yi in terms of the mean µi , defined as a function of an additive
linear predictor ηi through a link function g(·), such that g(µi) = ηi . This is a result
of generalized linear models, which is described in more detail for the case of beta
regression in Section 2.62.6. The additive linear predictor is defined as

ηi = β0 +
M∑
m=1

βmkmi +
L∑
l=1

fl(zli), (4.4)

where β0 is s scalar representing the intercept, β = (β1, ...,βM) quantify the linear
effect of some covariates k on the response and f = (f1(·), ..., fL(·)) is a collection
of functions defined over a set of covariates z = (z1, ..., zL). These functions can
assume different forms, such as nonlinear effects of covariates, time trends and
seasonal effects or temporal or spatial random effects. By denoting all the latent
(nonobservable) components of interest for the inference as θ = {β0,β,f }, and all
hyperparameters as ψ, the likelihood function can be specified as

π(y|θ,ψ) =
N∏
i=1

π(yi |θi ,ψ). (4.5)
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The next step is to assume a multivariate normal prior distribution on the inference
parameters θ with mean 0 and precision matrix dependent on the hyperparameters
ψ, Q(ψ). This gives the density function

π(θ|ψ) = (2π)−
n
2 |Q(ψ)|

1
2 exp(−1

2
θ′Q(ψ)θ), (4.6)

where | · | denotes the matrix determinant and ’ is the transpose operation. The
components of the Gaussian field θ are assumed conditionally independent, which
makes the precision matrix Q(ψ) very sparse. This specification is known as Gaus-
sian Markov random fields (Rue and Held 2005a2005a), and gives rise to computational
benefits by being able to use numerical methods especially developed for sparse
matrices.

The last stage is to define prior distributions on the hyperparameters ψ, π(ψ).
With this being specified, we can find the joint posterior distribution of θ and ψ
with Bayes formula, giving

π(θ,ψ|y) ∝ π(ψ)×π(θ|ψ)×π(y|θ,ψ)

∝ π(ψ)×π(θ|ψ)×
N∏
i=1

π(yi |θi ,ψ)

∝ π(ψ)× |Q(ψ)|
1
2 exp(−1

2
θ′Q(ψ)θ +

n∑
i=1

log(π(yi |θi ,ψ))).

(4.7)

The objective with Bayesian inference is to obtain the marginal posterior distribu-
tions for each element in θ and in ψ,

π(θi |y) =
∫
π(θi ,ψ|y)dψ =

∫
π(θi |ψ,y)π(ψ|y)dψ (4.8)

and

π(ψk |y) =
∫
π(ψ|y)dψ−k . (4.9)

We therefore need to compute π(ψ|y), from which all the relevant marginals π(ψk |y)
can be obtained, and π(θi |ψ,y), which is needed to obtain the parameter marginals
posteriors π(θi |y).

The INLA approach uses the assumptions of the model to produce numerical ap-
proximations to the posteriors of interest based on a Laplace approximation method.
This method is explained thoroughly with examples in (Blangiardo and Cameletti

20152015) and (Rue, Martino, and Chopin 20092009), and will only be given briefly in the
following paragraphs.

Consider the integral ∫
f (x)dx =

∫
exp(logf (x))dx, (4.10)
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where f (x) is the density function of a random variable X. By representing log(f (x))
by means of a Taylor expansion evaluated at x = x∗, where x∗ is set equal to the mode
x∗ =argmaxx log(f (x)), we can approximate the integral with the following Taylor
expansion substitution:

log(f (x)) ≈ log(f (x∗)) +
(x − x∗)2

2
δ2 log(f (x))

δx2

∣∣∣∣∣
x=x∗

. (4.11)

Here we have used the fact that δ log(f (x))
δx

∣∣∣
x=x∗

= 0, since the density f (x) is evaluated
at the mode x∗. The integral of interest is then equal to∫

f (x)dx ≈ exp(log(f (x∗)))
∫

exp
(

(x − x∗)2

2
δ2 log(f (x))

δx2

∣∣∣∣∣
x=x∗

)
dx, (4.12)

where the integrand can be associated with the density of a Normal distribution.

This can be seen by replacing −1
/
δ2 log(f (x))

δx2

∣∣∣
x=x∗

with σ2∗ , resulting in∫
f (x)dx ≈ exp(log(f (x∗)))

∫
exp

(
− (x − x∗)2

2σ2∗

)
dx, (4.13)

where the integrand can be seen as the kernel of a Normal distribution with mean
equal to x∗ and variance equal to σ2∗ . The integral evaluated at the interval (a,b) can
therefore be approximated by∫ b

a
f (x)dx ≈ f (x∗)

√
2πσ2∗(Φ(b)−Φ(a)), (4.14)

where Φ(·) denotes the cumulative density function of the Normal(x∗,σ2∗) distribu-
tion.

With the approximation method given, we can compute the posterior of the hyper-
parameters as

π(ψ|y) =
π(θ,ψ|y)
π(θ|ψ,y)

=
π(y|θ,ψ)π(θ,ψ)

π(y)
1

π(θ|ψ,y)

∝
π(y|θ,ψ)π(θ|ψ)π(ψ)

π(θ|ψ,y)

≈
π(y|θ,ψ)π(θ|ψ)π(ψ)

π̃(θ|ψ,y)

∣∣∣∣∣
θ=θ∗(ψ)

=: π̃(ψ|y),

(4.15)

where π̃(θ|ψ,y) is the Gaussian approximation of π(θ|ψ,y) and θ∗(ψ) is the mode for
a given ψ. The Gaussian approximation of π(θ|ψ,y) turns out to be accurate, since
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the true probability density appears to be almost Gaussian as it is prior distributed
as a GMRF, y is generally not informative and the observation distribution is usually
well-behaved(Blangiardo and Cameletti 20152015, p. 110).

To compute π(θi |ψ,y) is slightly more complex, since there are usually more el-
ements in θ than in ψ such that the computation is more expensive. Several meth-
ods for approximating π(θi |ψ,y) are developed and explained in (Blangiardo and
Cameletti 20152015, pp. 109–112) and (Rue, Martino, and Chopin 20092009). They consist
of rewriting the vector of parameters as θ = (θi ,θ−i) and use Laplace approximation
to obtain

π(θi |ψ,y) =
π((θi ,θ−i)|ψ,y)
π(θ−i |θi ,ψ,y)

∝
π(θ,ψ|y)

π(θ−i |θi ,ψ,y)

≈
π(θ,ψ|y)

π̃(θ−i |θi ,ψ,y)

∣∣∣∣∣
θ−i=θ

∗
−i (θi ,ψ)

=: π̃(θi |ψ,y),

(4.16)

where π̃(θ−i |θi ,ψ,y) is the Laplace Gaussian approximation of π(θ−i |θi ,ψ,y) and
θ∗−i(θi ,ψ) is its mode.

Once we have π̃(θi |ψ,y) and π̃(ψ|y), the marginal posterior distributions π(θi |y)
(4.84.8) are then approximated by

π̃(θi |y) ≈
∫
π̃(θi |ψ,y)π̃(ψ|ydψ, (4.17)

where the integral can be solved numerically through a finite weighted sum:

π̃(θi |y) ≈
∑
j

π̃(θi |ψ(j),y)π̃(ψ(j)|y∆j (4.18)

for some relevant integration points {ψ(j)} with corresponding set of weights {∆j}.
As mentioned earlier, a more comprehensive explanation can be found in (Rue,
Martino, and Chopin 20092009) and (Blangiardo and Cameletti 20152015).

4.3 Gaussian random fields
For many phenomenons, data seems to have some sort of dependence in space. This
could be the distribution of a disease, the distribution of trees in the forest, weather
phenomenons such as precipitation or as in this paper, the DNA methylation level
along a chromosome. What these data sets have in common is that they are all col-
lected from known locations in a domain, and can then be modeled as a realization
from a stochastic process indexed by this domain.
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One of the ways to model such a process is by using Gaussian Random Fields
(GRF). These fields are used to model spatial processes that are continuous in space,
and have the property that observations close to each other have more in common
than observations far from each other. As shown in the explanatory analysis, the
data seems to have correlation between the locations. A GRF might therefore be suit-
able for modeling the methylation data. To describe the Gaussian Random Fields,
we base the explanation on one dimensional locations, since this is the relevant case
for the methylation data.

If {ξ(s) : s ∈D ⊂ R1} defines a GRF, it follows that

(ξ(s1), ...,ξ(sn)) ∼Nn(µ,Σ),

where Nn is the n-variate normal distribution, µ is the expectation vector and Σ

is the covariance matrix, where Σij = Cov(ξ(si),ξ(sj)) is the covariance between
the GRF at location si and sj in the one dimensional domain D. If the mean and
the variance of the field are not depending on the location, and if the correlation
between two points only depends on the distance between them, the GRF is said to
be second-order stationary. This can be written as:

E[ξ(s)] = E[ξ(s+ t)] = µ

Var[ξ(s)] = Var[ξ(s+ t)] = σ2

Corr[ξ(si),ξ(sj )] = Corr[ξ(si + t),ξ(sj + t)] = ρ(sj − si).
(4.19)

In addition, if the correlation is only dependent on the absolute distance between
the locations, ρ(|sj − si |), the field is said to be isotropic(Cressie 19931993).

The covariance matrix Σ can be constructed from several different covariance func-
tions, such as the exponential, the Gaussian and the Matérn covariance function. The
different versions of covariance functions affect the properties of the spatial depen-
dence, such that the right choice is important. We focus on the Matérn covariance
function, given as

Cov(ξ(si),ξ(sj )) = Cov(ξi ,ξj ) =
σ2

Γ (λ)2λ−1
(κ||si − sj ||)λKλ(κ||si − sj ||), (4.20)

since this is the most general of the three listed(exponential: λ = 0.5, Gaussian
: λ→∞). Here Kλ is the modified Bessel function of the second kind and order
λ > 0, which measures the degree of smoothness of the process and is usually kept
fixed due to poor identifiability (Blangiardo and Cameletti 20152015, p. 194). ||si − sj ||
denotes the Euclidean distance between the two locations and σ2 is the variance in
the white noise processω(s), identified in the Stochastic Partial Differential Equation
(4.44.4). κ > 0 is a scale parameter, which has a more natural interpretation through
the range parameter r, which is defined as the Euclidean distance between ξ(si)
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and ξ(sj) for which the correlation is approximately 0.1. The link between these
parameters is

r =
√

8λ/κ, (4.21)

which is empirically derived(Lindgren, Rue, and Lindström 20112011) for λ ≥ 0.5.

Figure 4.1: Correlation function with σ2 = 2, range parameter r = 10 and λ equal to
the values 0.5,1.0,1.5,100.

In Figure 4.14.1, we have displayed the correlation function for range r equal to 10 and
different values for λ. The case with λ = 100 is essentially the Gaussian correlation
function. For the different λs, the shape of the correlation function changes. For
each of the correlation functions, a realization of the associated Gaussian field is
given in Figure 4.24.2. From the Figures, we see that λ works as an extra smoothing
parameter, which for higher values give smoother realizations of the GRF. The other
smoothing parameter is the range, which for higher values will result in smoother
realizations for fixed λs.

The reason for investigating the impact of λ is that we need to choose a value
for this parameter when fitting a SPDE to the methylation data. Since λ can be
seen as an extra smoothing parameter, it would seem that it is possible to obtain
approximately equal correlation functions by altering the range parameter. This
means that the choice of λ might not highly affect the approach. However, for
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(a) A realization of a Gaussian random field
with µ = 0 and correlation function given in
4.14.1.

(b) A realization of a Gaussian random field
with µ = 0 and correlation function given in
4.14.1.

(c) A realization of a Gaussian random field
with µ = 0 and correlation function given in
4.14.1.

(d) A realization of a Gaussian random field
with µ = 0 and correlation function given in
4.14.1.

Figure 4.2: Realizations of Gaussian random fields with µ = 0 and associated corre-
lation function given by colors in Figure 4.14.1.

different values of λ, the relationship between the SPDE parameters κ, τ , σ2 and the
range r is affected. This might cause some deviation between the posterior estimates
and the true values.

4.4 Stationary dependency structure with INLA - SPDE
With a latent Gaussian model defined as in (4.44.4) where we assume a spatial depen-
dency in the linear predictor η(as given in (5.15.1)), we need some sort of tool to be able
to model the dependency structure. To do this, Lindgren et al. (Lindgren, Rue, and
Lindström 20112011) proposed the Stochastic Partial Differential Equation(SPDE) ap-
proach, which consists in representing a continuous spatial process (i.e. a Gaussian
Field(GF)) using a discretely indexed spatial random process (i.e. Gaussian Markov
Random Field(GMRF(Rue and Held 2005b2005b))). The starting point is the stochastic
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partial differential equation

(κ2 −∆)
α
2 (τξ(s)) = ω(s), (4.22)

where s ∈ Rd is the locations, ∆ is the Laplacian operator(
∑d
i=1

∂2

∂x2
i
), α controls the

smoothness, κ > 0 is the scale parameter, τ controls the variance and ω(s) is a
Gaussian white noise process. In our case, s is one dimensional and represents the
locations along the DNA where observations of methylation have been done.

The exact and stationary solution to the equation (4.224.22) is the stationary GRF ξ(s),
which describes a smoothed version of the Gaussian white noise process on the right
hand side. The solution has a Matérn covariance function given by Equation 4.204.20.
The continuous solution ξ(s) is approximated using a discrete representation in the
form of a Markov structure, obtained by the finite element method through a basis
representation defined on a triangulation of the domain:

ξ(s) =
G∑
g=1

φg(s)ξ̃g . (4.23)

G is the total number of nodes of the triangulation, {φg (s)} is the set of basis functions
and {ξ̃g } are zero mean Gaussian distributed weights with precision matrix Q(κ,τ).
The weights are chosen to approximate the solution in the mesh nodes, and with
the basis functions we can transform the approximation of the field from the mesh
nodes to a location si of interest by Equation (4.234.23). The precision matrix for the
weights ξ̃g is defined as

Q(κ,τ) = τ2(κ4D + 2κ2C +CD−1C), (4.24)

where D is a diagonal matrix with entries Dii =
∫
φi(s)ds and C a sparse matrix

with elements Cij =
∫
∇φi(s)∇φj(s)ds(∇ denotes the gradient) for i = 1, ...,G and

j = 1, ...,G. To obtain the resulting precision matrix, Neumann boundary conditions
have been used(Lindgren, Rue, and Lindström 20112011). For the one dimensional
problem considered in this paper, the number of nodes are equal to the number
of locations considered, such that the dimension of Q is not reduced by the basis
representation.

With the sparse precision matrix Q(κ,τ) and Equation (4.234.23), we get an approxima-
tion to the solution of the SPDE 4.224.22 in the form of a Gaussian Markov Random
Field(GMRF)(Rue and Held 2005b2005b). This means that instead of having a dense
covariance matrix Σ =Q−1 which is needed to represent a GRF, a sparse precision
matrix is approximated. This results in reduced computational cost for matrix
operations(Lindgren and Rue 20132013).
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4.5 The deviance information criterion
The deviance information criterion(DIC), proposed by Spiegelhalter et al. (Spiegel-
halter et al. 20022002), is the most commonly used measure of model fit based on the
deviance for Bayesian models. It is a generalization of the Akaike information crite-
rion(AIC), developed especially for Bayesian model comparison. The DIC is based
on two components, one for quantifying the model fit and the other for evaluating
the complexity of the model. The first component is measured through the posterior
expectation of the deviance D(θ) = −2log(p(y|θ)), where p(y|θ) is the likelihood
function. The second component is measured through the effective number of
parameters, which is defined as:

pD = Eθ|y(D(θ))−D(Eθ|y(θ)) = D̄ −D(θ̄). (4.25)

The effective number of parameters is therefore defined as the posterior mean of the
deviance minus the deviance of the posterior mean of the parameters. Meng and
Rubin (MENG and RUBIN 19921992) shows that such a difference is the key quantity in
estimating the degrees of freedom of a test, and is a good measure for the complexity
of a model. The DIC is

DIC = D̄ + pD , (4.26)

where, as with the AIC, models with smaller DIC are better supported by the data.
D̄ measures how well the model fits the data, while pD penalizes the complexity of
the model. Note that INLA, instead of evaluating the deviance at the posterior mean
of all parameters, uses the posterior mode of the hyperparameters ψ. The reason
is that the posterior marginals for some hyperparameters(especially the precision)
might be skewed, such that the posterior mean might not be a good representation
of the distribution’s expectation (Blangiardo and Cameletti 20152015), such that the
mode is preferred.
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5 Models and necessary SPDE parameter estimations
The latent Gaussian models for the linear predictor ηij we consider in this paper, are

1. ηij = αi + βikj
2. ηij = αi + βikj + ξj(si)

3. ηij = αi + βikj + εij
4. ηij = αi + βikj + ξj(si) + εij .

(5.1)

αi is the mean of the group of healthy people, βi is an added effect for the group
of people with Schizophrenia, kj is a factor indicating if person j is in group 1 or
2, ξj(si) is a SPDE realization explaining the spatial dependency between locations
and εij is an independent, identically distributed random effect. For each of these
predictors, we try two different likelihood functions:

π(y|µ,φ) =
n,N∏

i=1,j=1

π(yij |µij ,φi) =
n,N∏

i=1,j=1

Beta(µij ,φi),

with 1. φi = ti exp(θ), (ti equal φ̂i , and θ fixed as 0)

2. φi = φ(equal for all locations).

(5.2)

With these linear predictors and likelihoods, we want to investigate which specifica-
tions that give the best fit to the data. We also want to look into how utilizing the
spatial dependency changes the results concerning differently methylated CpG sites.
In Chapter 66, the different models are fitted to the case study of the Schizophrenia
data set, while we in Chapter 77 evaluate some simulations.

Within the Bayesian framework we need to specify prior distributions for the four
latent Gaussian models considered. For αi and βi , we choose non-informative priors
equal to Normal(0,106). This is the default prior for the regression parameters
in INLA, and such a vague prior distribution is typically chosen in the absence
of information prior to the investigation. For the linear predictor 1, this results
in a multivariate Normal distribution with mean 0 and precision matrix Q with
elements only at the diagonal.

For the linear predictor 2, we need to specify priors for ξj(si) and the SPDE pa-
rameters κ and τ . As explained in the Section 4.44.4, ξj(s) is a Gaussian Markov
random field with mean 0 and precision matrix specified by the parameters κ and
τ , Q(κ,τ). In this case, Q do not only have elements at the diagonal, such that
interactions between sites can be taken into account. Prior specifications for κ and
τ are found by doing some exploratory analysis, explained in Section 5.15.1. With
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this analysis we choose starting values for the fitting process, τ0 and κ0, and in
agreement with the notation used in INLA, we specify a prior distribution on the log
transform of the parameters. This results in (log(τ), log(κ)) ∼

(
Normal(log(τ0),0.1),

Normal(log(κ0),0.1)
)
, where the precision is set to 0.1. 0.1 is used as the precision

to ensure a wide search area for the most fitting values, and to lower the influence
of the prior selection.

For the linear predictor 3, we have added an independent, identically distributed
random effect. For this effect, we assume a prior distribution equal to Normal(0,σ2),
where we are interested in the precision parameter 1

σ2 as well. The prior distribution
for the hyperparameter 1

σ2 , is Gamma(1,0.00005). This means that we consider εij
as a random variable from the same distribution for all locations and persons.

In the fourth linear predictor, we have all the terms combined. This is the most
complex model we evaluate, and we use the same priors as described above.

For the likelihood function, we consider two different approaches for the preci-
sion parameter φ. This is done to investigate what assumptions that seem to fit the
data the best. As described in the exploratory analysis, the precision parameter φ
seems to be varying for each position i. To consider the possibility of a different
φ for each location, a new property for the beta family in INLA is used. Instead
of assuming a prior on φ, we assume a prior on θ, where φ = ti exp(θ). With the
scales ti we scale the distribution, and by considering θ as fixed, we can look into
the assumption of a non-stationary, known φ. By specifying θ = 0, and the scales ti
equal to the estimated φis,

φ̂i =
µ̂i(1− µ̂i)− σ̂2

i

σ̂2
i

, (5.3)

we treat the precision at each location as known.

In the second likelihood model, we treat the precision parameter φ as a random
variable that is equal for each location. This is done, since it is possible to achieve
a data set where the empirical φi estimates are varying in a way that seems to be
best described by a non-stationary φ, with a stationary φ. As shown in the Figure
7.17.1, we see that the data set created with a constant φ and errors in the mean of
the data created by a SPDE effect and an independently, identically distributed
random effect, does seem to have a location dependent precision. We therefore want
to investigate the possibility of describing the methylation data set with a constant,
stationary φ.

A likelihood specified by scales ti equal to φ̂i and treating θ as a random vari-
able to be estimated, has also been investigated. However, a problem occurs when
evaluating the different linear predictors. Since the SPDE effect and the iid random
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effect seem to change the behavior of the spread of the data differently at different
positions i, the scales for the distribution of φ did not seem to be fitting for all the
linear predictors, and problems with the fitting process occurred. Therefore, we
chose to only consider the two likelihoods specified in 5.25.2.

Even though the acf plot in Appendix A.1A.1 indicates that each person might have
a dependency structure with different parameters τ and κ, we choose to look into
models where the realizations ξj(s) come from the same SPDE. This is done to
simplify the models and simulations considered. We also choose λ = 1, and use this
as the extra smoothing parameter. Throughout the rest of the paper, we denote σ2

0
as the variance of the white noise process ω(s), which is a SPDE parameter found in
Equation (4.224.22). This is to avoid confusion with the variance in the independently,
identically random effect distribution, Normal(0,σ2). We also denote the linear
predictor 1 as the simple model, the linear predictor 2 as the SPDE model, the linear
predictor 3 as the iid error model, and the linear predictor 4 as the SPDE and iid
error model. Note that this is only a naming convention to improve the readability.

5.1 Estimation of SPDE parameters
As explained in the previous Section, we need some prior specifications for the
SPDE hyperparameters τ and κ. We therefore do some more exploratory analysis on
the Schizophrenia data set, to obtain estimates for τ0 and κ0. Since these parameters
have complicated definitions, we estimate the range parameter r, which is defined
as the distance at which the correlation is approximately 0.1. The link between r
and κ is found in Equation (4.214.21). When κ0 is chosen, we vary τ0, which controls
the variance, until our samples are reasonable compared to the methylation data.
As described in (Blangiardo and Cameletti 20152015), the SPDE approach is prior
sensitive, such that the prior specifications might affect the posterior results. In
Chapter 77, we have tested the prior sensitivity for some simulations.

To estimate r, we focus on the lag 1 correlation in the data set. Since we have
a lot of locations with different distance to the nearest neighbor, this should be
enough correlations to be able to obtain an acceptable estimate of the range. We
therefore calculate the mean correlation lag 1 between all CpG sites, based on all the
people. As mentioned earlier, we look into models with ξj(s) with the same SPDE
parameters, such that we use the mean correlation to find an estimate of the center
of the prior distributions for τ and κ. By having a large but reasonable precision
parameter for the prior distributions, the posterior distributions of the parameters
are able to vary towards the more fitting values based on the data.

In Figure 5.15.1, the mean correlation lag 1 between CpG sites on chromosome 1
that have a distance between them less than or equal to the Distance, are displayed.
As we can see from the blue numbers, at least the first half has a lot of correlations
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to take an average over. The first time the correlation is close to 0.1(0.0985) are for
Distance r = 650. In Table 5.15.1, the r estimate based on data from each chromosome
are given. The average estimate is equal to r̄ = 15200

22 ≈ 700, which we use as an
estimate for the priors. The range estimate varies a bit between the chromosomes,
but 700 seems as an estimate we could use for all chromosomes. Since we are
estimating by using the range at which the correlation drops below 0.1, some of
the variation in the table can be accounted for by the fact that the correlation is not
equal for each of the estimates, but approximately equal to 0.1. Although this is
the case, we have no way of knowing if the range estimate should be equal at each
chromosome.

Figure 5.1: Mean correlation lag 1 of methylation data from chromosome 1. The
blue numbers are the amount of correlations the average is taken over, between
CpG sites with a distance between them less than the distance displayed, and bigger
than the previous distance. The distance vector increases with 50 base pairs for each
point.
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Table 5.1: Table of estimated range parameter r with data from the different chro-
mosomes.

Chromosome Range estimate r
1 650
2 700
3 600
4 750
5 750
6 700
7 650
8 750
9 650
10 700
11 800
12 650
13 650
14 800
15 550
16 700
17 750
18 600
19 700
20 700
21 700
22 700
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6 Results; case study

In this Chapter, we provide the results obtained using Bayesian regression with
INLA on the Schizophrenia data set, for models and specifications described in
Chapter 55.

Because of the computational cost of fitting a model with spatial dependency, we
focus on a randomly chosen area of subsequent locations at chromosome 6, from
CpG site 201 to 600. This results in n = 400 sites, and with N = 95 persons there are
38000 locations to be considered. In Figure 6.16.1, we have plotted the methylation
data and the CpG islands found in this region.

Figure 6.1: Matrix plot of the methylation data for all the 95 persons from chromo-
some 6. The black dots are sites that are part of a CpG island.
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Table 6.1: Table of the linear predictors considered and the resulting deviance
information criterion with likelihood function 1.

Lin. Pred. ηij = αi + βikj ηij = αi + βikj + ξj(si) ηij = αi + βikj + εij ηij = αi + βikj + ξj(si) + εij
DIC −181911.0 −183501.0 −181910.0 −183475.0

Table 6.2: Table of credibility intervals for the hyperparameters τ , κ, σ0, r and 1
σ2 ,

considered with likelihood function 1.

ηij = αi + βikj ηij = αi + βikj + ξj(si) ηij = αi + βikj + εij ηij = αi + βikj + ξj(si) + εij
τ [20598,33419] [15083,20164]
κ [0.000272,0.000413] [0.000365,0.000473]
σ0 [0.038,0.095] [0.056,0.096]
r [6841,10418] [5982,7742]
1
σ2 [4377,82747] [14357,118960]

6.1 Schizophrenia data set
The first likelihood we consider is

n,N∏
i=1,j=1

Beta(µij ,φi), (6.1)

with φi = ti exp(θ), with scales ti = φ̂i and θ = 0. We therefore treat the precision
parameter as location dependent and known. In Table 6.16.1, we have displayed the
deviance information criterion obtained by considering the four different models of
the latent Gaussian field, found in (5.15.1).

The linear predictor that results in the best fit is ηij = αi + βikj + ξj(si), with a
DIC equal to −183501. Even though the DIC has a tendency of favoring more com-
plex models(Spiegelhalter et al. 20142014), a decrease of approximately 1600 should
be enough to indicate a better fit. By adding the random effect εij to the linear
predictor, we see that the resulting DIC indicates worse fit compared to those linear
predictors without this term.

In Table 6.26.2, we have given the estimated credibility intervals of the hyperpa-
rameters obtained with the different linear predictors. If we consider the precision
parameter for the iid random effect εij , we see that it has a very wide credibility
region in both of the models the term is included. This, together with the DIC,
indicates that these models fit the data poorly, because of the uncertainty in the
hyperparameters and the worse DIC. When looking at the credibility region for the
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range parameter in the SPDE model, we see that it is much higher than the range
estimated from Section 5.15.1. This might indicate that a non stationary approach
for the SPDE could be reasonable, especially if we evaluate a larger area of the
chromosome. This is discussed in more detail in Chapter 88.

Figure 6.2: Differently methylated positions between Schizophrenia and Healthy
patients found with the simple model and the SPDE model with likelihood function
1, and the T-test. Dots that are not equal to 0 indicate differently methylated
positions.

In Figure 6.26.2, we have displayed the significantly different methylated positions
found by considering the simple model and the SPDE model with likelihood func-
tion 1, and the ones obtained from the T-test. The significant effects βi is defined as
those effects that do not include 0 in the 95% credibility interval around its mean.
With the simple model, we get almost the same positions defined as differently
methylated as with the T-test. The differences can be explained by the fact that
in the simple model, the beta distribution is taken into consideration and used to
optimize the βi values and the standard deviation estimates. This is not considered
in the T-test.

When comparing the SPDE model with the simple model, we get fewer positions
categorized as differently methylated, especially in the CpG island around position
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(a) The estimated added effect βi for each po-
sition that is classified as differently methy-
lated for the simple model.

(b) The standard deviation of βi at positions
that are classified as differently methylated
for the simple model.

Figure 6.3

320, which is the largest island displayed in Figure 6.16.1. As displayed in 6.36.3, this

Figure 6.4: Standard deviation for the βi effect from evaluating the simple model
and the SPDE model with likelihood function 1.

seems be caused by the standard deviation of the βi estimates which increases when
the spatial dependency is taken into account and the precision φi is fixed. With the
SPDE model, which are to describe some of the variation with spatially dependent
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errors, the fixating of the precision parameter φ results in an over estimation of
the uncertainty to the estimated effects βi . We see that the estimated βi values
are slightly different, but the standard deviation is very different and consistently
higher than for the simple model. This means that by fixating the precision and
modeling with a SPDE structure, the amount of differently methylated positions
will be reduced, because of the increase in uncertainty for the other estimates in the
latent Gaussian model. This might lead to rejection of positions that are differently
methylated, since the standard deviation is consistently over estimated, as shown in
Figure 6.46.4. This lead to a lower type I error than specified, with only 6 out of 400
positions being classified as differently methylated on a 0.05 significance test.

In Figure 6.56.5, we have displayed the fitted ξj(si) realizations around the CpG island
found around position i = 320. We can see that the differently methylated sites
within the island seem to be highly dependent on one person. It is therefore likely
that the these sites should not be classified as differently methylated, and the SPDE
model has made reductions of differently methylated sites in this area. But since the
reason for this reduction is that the estimated standard deviation of each βi estimate
is raised, the conclusion might be drawn on wrong assumptions.

Figure 6.5: SPDE fitted errors. Area around the CpG island where the two significant
locations are dropped.
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Table 6.3: Table of the linear predictors considered and the resulting deviance
information criterion with likelihood function 2.

Lin. Pred. ηij = αi + βikj ηij = αi + βikj + ξj(si) ηij = αi + βikj + εij ηij = αi + βikj + ξj(si) + εij
DIC −160120.0 −172089.3 −181496.6 −212238.0

The second likelihood function we consider, is

n,N∏
i=1,j=1

Beta(µij ,φ), (6.2)

with φ being a location independent, random variable. In Table 6.36.3, we have dis-
played the deviance information criterion obtained by evaluating the four different
linear predictors.

When considering likelihood function 2, we do not get a good result for the DIC
of the simple model ηij = αi + βikj , compared to the one obtained with likelihood
function 1. With likelihood function 2 it is equal to −160120, and with likelihood
function 1 it is −181911. This is caused by the fact that a location dependent varia-
tion in the spread of the data fits better than the assumption of a constant spread,
such that a model which do not change the behavior of the variation benefits from a
likelihood that does. With the SPDE model, we get a much better fit with a reduction
in the DIC of 12000. Here we have taken the spatial dependency into account, and
some of the variation is described by spatially dependent effects. Compared to the
DIC value obtained by the SPDE model evaluated with likelihood 1, we see that it is
much higher, indicating a worse fit. This is most likely caused by the fact that the
location dependent variation is not yet well accounted for in the SPDE model with
likelihood function 2.

With the iid error model, we get an interesting result concerning the DIC value.
Compared to the simple model, we get a decrease of approximately 21000. This is
almost equal to what we get when we evaluate the iid error model with likelihood
function 1. This is caused by the fact that describing some of the variation with iid
random effects in the linear predictor, results in describing some of the variation
that is dependent on the mean, or in other words, the location. This is further
described in the Chapter 77, and results in a much better fit than linear predictor 1
and 2, with likelihood function 2.

The last linear predictor under consideration is the most complex one, namely
ηij = αi + βikj + ξj(si) + εij . With this SPDE and iid error model, we see that the
resulting DIC indicates a much better fit than for all the other predictors considered,
for both likelihoods. This model assumes that some of the variation is described by
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Table 6.4: Table of credibility intervals for the hyperparameters φ, τ , κ, σ0, r and 1
σ2 ,

considered with likelihood function 2.

ηij = αi + βikj ηij = αi + βikj + ξj(si) ηij = αi + βikj + εij ηij = αi + βikj + ξj(si) + εij
φ [113.7,117.0] [191.9,200.2] [339.1,344.9] [965.1,1065.3]
τ [5041,5744] [6544,8184]
κ [0.000465,0.000520] [0.000461,0.000564]
σ0 [0.178,0.227] [0.115,0.176]
r [5438,6084] [5019,6139]
1
σ2 [34.56,35.52] [21.68,22.56]

spatially dependent errors, some is described by the iid random effects in the linear
predictor and the rest by a constant precision parameter φ. Note that some of the
variation in the data is also described by estimating a different mean to the different
groups.

In Table 6.46.4, we have given the credibility intervals for the hyperparameters of
the different latent Gaussian models with likelihood function 2. From the simple
model to the SPDE model, we see that some of the variation is explained by the
spatially dependent effects, and the result is that the estimated credibility interval
for the precision parameter φ is shifted to [191.9,200.2] from [113.7,117.0]. This
is caused by the precision parameter φ being able to change, such that some of
the variation can be absorbed by the spatially dependent process instead of only
influence the other parameter estimations. The SPDE realizations also explain some
of the location dependent variation, which fits the data better than a constant φ.

If we compare the resulting credibility interval for the range parameter r and
σ0 achieved with the SPDE model considered with likelihood 1 and 2, we see that
the range estimate is considerably lower and the standard deviation σ0 larger with
likelihood 2. For σ0, this can be intuitively explained by the fact that the fitting
process for likelihood function 1 has a restriction on the precision parameter φ for
each location, such that the amount of variation in the SPDE model that fits the data
the best, is reduced. Because none of the variation can be absorbed by the spatially
dependent errors, the resulting σ0 estimate is lower than for considering a likelihood
where the precision parameter has the possibility to change. However, the SPDE
model with likelihood function 1 has a considerably lower DIC value than the one
obtained with likelihood function 2. This is caused by the location dependent varia-
tion of the data being better described by the SPDE model and likelihood function 1.

With the iid error model, the variability caused by the precision parameter φ in the
beta distribution is greatly reduced, and the credibility interval is shifted upwards
to [339.1,344.9]. The estimated credibility interval for the precision parameter 1

σ2
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Figure 6.6: Differently methylated positions between Schizophrenia and Healthy
patients found with the different linear predictors and likelihood function 2. Dots
that are not equal to 0 indicate differently methylated position.

of the Normal error distribution is [34.56,35.52], indicating a standard deviation
estimate of [0.168,0.170]. When considering the SPDE and iid error model, we
see that the credibility interval for 1

σ2 is lowered to [21.68,22.56], resulting in a
standard deviation estimate [0.211,0.215]. This means that more of the variation is
being explained by the independently, identically distributed random effects when
a spatial structure is considered as well. For the spatial dependent process, the
credibility interval for the standard deviation σ0 estimate is reduced to [0.115,0.176]
and the credibility interval for the range is wider than when considered without
the iid random effects. This is caused by the fact that having more parameters to
be estimated that can interact with each other usually increases the uncertainty of
the estimates. With the SPDE and iid error model, the credibility interval for the
precision parameter φ is increased in both uncertainty and value to [965.1,1065.3],
which is as expected when adding two random effects to the linear predictor that
can explain some of the underlying variation in the data.

In Figure 6.66.6, we have displayed the differently methylated positions found with
the linear predictors and likelihood function 2. Some of the positions found are
equal to those in Figure 6.26.2, but most of them are different. This is mainly caused
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(a) Standard deviation of the βi effects in the
simple model.

(b) Standard deviation of the βi effects in the
SPDE model.

(c) Standard deviation of the βi effects in the
iid error model.

(d) Standard deviation of the βi effects in the
SPDE and iid error model.

Figure 6.7: The standard deviation of βi in the different models considered for
likelihood function 2.

by the fact that the likelihood function is changed. If we compare the number of
significant positions obtained by the iid error model and the ones obtained with
the SPDE and iid error model, we see that there is a reduction in differently methy-
lated locations, and that this occurs usually around places where there are many
differently methylated positions found by the iid error model. To explain this, we
consider the following example.

If we have a data set without spatially dependent errors, the differently methy-
lated positions found would be independent of the neighboring positions. However,
for a data set containing spatial dependency such as this, we see from Figure 6.56.5
that a significantly different methylated position affects and is affected by neighbor-
ing positions as well, such that they often come in clusters. By taking the spatial
dependency into account, we can utilize the information that lies in the correlated
data to obtain a better fit and be able to reduce the amount of such clusters found.
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The reason for mainly considering the last two models is that for likelihood function
2, these models fit the data best. With the iid random effect we describe some of
the location dependent variation, while with the last model, we include the spatial
dependency as well. It is worth noticing that none of the models considered here
treats the locations inside the island around point 320 as differently methylated,
which from Figure 6.56.5 seems to be a wrong conclusion.

In Figure 6.76.7, we have displayed the standard deviation of the βi estimates with the
linear predictors and likelihood function 2. By considering the SPDE model against
the simple model, we see that the variation in the standard deviation is less varying
for the SPDE model. Here we have taken the spatial dependency into account and
some of the location dependent variation. The same is true by considering the iid
random effect model against the simple model, where we account for even more
of the location dependent variation. By looking at the most complex model, the
combination of the SPDE and iid random effect model, we see that it produces the
least varying standard deviation of the βi estimates. We see that by accounting
for the spatial dependency and some of the location dependent variation, we have
quantified most of the site specific variation caused by these quantities, such that
smoother standard deviation estimate of the βi estimates can be found. The different
models influences the βi estimates as well, as displayed in Figure 6.86.8.

Figure 6.8: βi estimate from the different models.
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7 Simulation study
7.1 Motivation and Creation
To further explore the statistical methodology related to the results obtained in the
previous Chapter, we consider some simulations. With these simulations, we want
to look into:

1. What happens if we fit a latent Gaussian model with a spatial dependency
effect to a data set without spatial dependency?

2. How do the credibility intervals obtained for the hyperparameteres look like
when fitted to a data set created with a SPDE structure based on the same
parameters τ and κ?

3. How does prior specifications for the hyperparameters of the resulting model
obtained in the previous chapter, ηij = αi + βikj + ξj(si) + εij with likelihood
function 2, affect the posterior estimates of these parameters?

4. How does utilizing the spatial dependency in a data set affect the βi parameter
estimations and the differently methylated positions found?

For question 1 and 2, we are only considering one simulated data set for each, and
for question 3 and 4, we are considering four data sets. These limitation of the
simulation study is caused by the computational cost of the fitting process.

With the first simulated data set, we want to look into question 1. Therefore,
this data set is simulated by having no spatial dependency. Here we only consider
one of the likelihoods, namely the first one where we treat φi as known. We also only
consider model one and two for the latent Gaussian field, since we are interested in
the effect of fitting a SPDE structure to a data set without spatial dependency. To
simulate the data, we use the estimated mean µ̂i from each location in the real data
set we are evaluating, such that it is closely related to the real methylation data. For
each person at each location, we then calculate ai and bi with formula

ai = µiφi
bi = φi −φiµi ,

(7.1)

where ai and bi are the parameters to be used to draw a random beta distributed
variable yij for each person j at location i. φi is here drawn from a gamma(2,0.007)
distribution, which results in φis on the same scale as the ones in the real data set.
The results of the simulation is evaluated in 7.2.17.2.1.
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With the second simulated data set, we look into question 2. To simulate the
data, we use the following procedure:

ηij = logit(µ̂i) + ξj(si)

µij = logit−1(ηij )

aij = µijφi
bij = φi −φiµij
yij = rbeta(aij ,bij ),

(7.2)

where ξj(si) is a realization of a SPDE with parameters τ = 10730 and κ = 0.0007(r =
4000 and σ0 = 0.07), and φi is randomly chosen by a uniform(min = 200,max = 400)
distribution. The resulting data set with yij as the methylation value for person j
at location i, has a variation that is caused by both φi and the SPDE realizations.
For this simulated data set, we fit the latent Gaussian model ηij = αi + βikj + ξj(si)
with likelihood function 1, with a slightly different approach. Instead of using
the estimated φis as the scales ti , we use the true φis, and we let θ be a random
variable to be estimated with prior distribution logGamma(1,0.1). This means that
the distribution of θ is scaled with the real weights, and we expect the posterior
estimate of θ to be around 0. This is an approach that is not possible to do for the
Schizophrenia data set, since we do not know the real scaling of the distribution of
φ. However, by looking into this model and simulation, we get an idea of how the
credibility regions for the posterior estimates of the hyperparameters varies when
the simulations are done by considering realizations of a SPDE model based on the
same κ and τ parameters.

With the last four simulated data sets, we look into question 3 and 4. Here, we want
to further investigate the parameter estimations and prior specifications for the best
fitting model, ηij = αi +βikj +ξj(si)+εij with likelihood function 2. We also compare
the differently methylated positions found by the SPDE and iid error model with
the T-test. The simulation of the data is done by a similar procedure as above:

ηij = logit(µ̂i) + ξj(si) + εij

µij = logit−1(ηij )

aij = µijφ

bij = φ−φµij
yij = rbeta(aij ,bij ),

(7.3)

where εij ∼Normal(0,σ2) and the precision parameter φ is equal for each location.
The four simulations we consider are based on the parameters r = 5700, σ0 = 0.15,
1
σ2 = 22 and φ = 1000. These are all values inside the credibility regions of the
estimated hyperparameters from the Schizophrenia data set considered in Chapter
66.
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For the first of these four simulated data sets, we run the fitting process with
default priors for φ and 1

σ2 , being Gamma(shape = 1, rate = 0.1) and Gamma(shape =
1, rate = 5 · 10−5). For the SPDE parameters τ and κ we use the priors specified by
log(τ) ∼logNormal(log(τ0),1) and log(κ) ∼logNormal(log(κ0),1) where τ0 and κ0 are
the correct values 7135 and 0.0005. For the second simulated data set, we change
the prior specification on 1

σ2 to Gamma(shape = 1, rate = 0.1), which varies closer to
the real value 22. For the third simulated data set, we check the impact of chang-
ing the priors of the SPDE parameters to log(τ) ∼logNormal(log(1878),0.1) and
log(κ) ∼logNormal(log(0.004),0.1). Here we have used the same prior specification
for 1

σ2 as in the second simulation. For the fourth simulated data set, we have used
the same specification as for simulation 2, but with an initialization of the precision
parameter φ equal to 1000.

The dimension of all the simulated data sets are equal to the Schizophrenia data
set, which results in n = 400 locations and N = 95 people, with N1 = 62 classified as
having Schizophrenia and N2 = 33 being Healthy. We have added some small values
to the mean of the Schizophrenia group at three locations, such that the groups have
a differently methylated site at position i = 100,250,300. The values that are added
are on logit scale equal to (−0.10,0.3,0.5).

7.2 Results
7.2.1 No spatial dependency
As we can see from table 7.17.1, the resulting DIC value does not indicate a better
fit with the more complicated model containing the spatial dependency, although
the values are close to equal. But as we can see from the posterior hyperparameter
credibility intervals for τ and κ, given in Table 7.27.2, they are very wide. This means
that there is a high uncertainty in the estimates that are used in the resulting fit.
Based on the worse DIC value and the wide credibility regions, we would prefer the
simpler model over the SPDE model.

Table 7.1: Table of the linear predictors considered and the resulting deviance
information criterion.

Lin. Pred. ηij = αi + βikj ηij = αi + βikj + ξj(si)
DIC −200072.1 −200072.3

With both the likelihood functions we consider for the real data set, we get a
lower DIC when taking the spatial dependency into account in the latent Gaussian
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Table 7.2: Table of credibility intervals for the hyperparameters τ and κ.

ηij = αi + βikj + ξj(si)
τ [1237,305466]
κ [0.000601,0.128125]

model. The credibility regions for the posterior hyperparameter estimates are also
much narrower, which indicates less uncertain estimates than for a data set without
spatial dependency. This indicates a better fit to the data, and the assumption of
spatial dependency in the Schizophrenia data set are strengthened.

7.2.2 Spatial dependency and non stationaryφ
In Table 7.37.3, we have displayed the resulting credibility intervals of the hyperparam-
eters exp(θ), τ , κ, r and σ0. The true parameters for the data set are θ = 0, τ = 10730,
κ = 0.0007 r = 4000 and σ0 = 0.07, such that all the true parameters are within the
95% credibility regions.

Table 7.3: Table of credibility intervals for the hyperparameters exp(θ), τ , κ, r and
σ0.

ηij = αi + βikj + ξj(si)
exp(θ) [0.990,1.017]
τ [9368,10844]
κ [0.000667,0.000758]
r [3731,4241]
σ0 [0.065,0.085]

The credibility intervals of the hyperparameters for the simulation considered
are narrower than the ones obtained for the Schizophrenia data set. This indicates
that the Schizophrenia data set might be better described by a latent Gaussian model
which allows the SPDE parameters for each person to be different. This is further
discussed in Chapter 88.
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7.2.3 Simulations of the complexmodel
The last simulations we want to look into are of ηij = αi + βikj + ξj(si) + εij with a
constant precision parameter φ. Here we want to investigate how not accounting
for the spatial dependency and the location dependent variation influences the βi
estimates and their standard deviation. As described in Chapter 77, we have added
some values to the mean at three locations for the group of simulated Schizophrenia
patients. These are found at position 100,250,300, and the values added are on logit
scale equal to (−0.10,0.3,0.5). With the different linear predictors, we want to look
into how the prior specifications alters the posterior parameter estimations, and we
want to compare the amount of differently methylated positions for the SPDE and
iid error model and the T-test.

Figure 7.1: φ̂i calculated from the first simulated data set.

In Figure 7.17.1, we have displayed the resulting estimated φi , φ̂i , for each location i
for simulation 1. The precision parameters seem to be location dependent, caused
by the realizations of ξj(si) and εij . The realizations of the SPDE model over the
irregular grid, results in different amount of variation dependent on the density of
positions. For the εij which are random effects of the same distribution, the constant
spread variable σ2 does not imply a constant spread for the beta distribution. Since
the variance in the beta distribution is dependent on the mean, a constant spread in
the linear predictor ηij will result in a variation in spread for the data dependent on
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the mean, or in other words, the locations.

Table 7.4: Table of the linear predictors considered and the resulting deviance
information criterion with likelihood function 1, for the simulated data sets 1, 2, 3
and 4.

Lin. Pred. ηij = αi + βikj ηij = αi + βikj + ξj(si) ηij = αi + βikj + εij ηij = αi + βikj + ξj(si) + εij
DIC 1 −156585.4 −166504.9 −201831.1 −205118.8
DIC 2 −157095.5 −166843.9 −200851.4 −207353.1
DIC 3 −157440.5 −166726.6 −203934.3 −204909.9
DIC 4 −156642.9 −166444.1 −202240.6 −204996.3

As we can see from Table 7.47.4, the DIC decreases from the linear predictor 1 to
the linear predictor 4 for all simulations. This is as expected from the creation
of the data and follows the same pattern as for the Schizophrenia data. From the
simple model to the SPDE model, we get a decrease around 10000 for each of the
simulations, which is slightly lower than for the real data. This might point towards
a slightly larger dependency in the Schizophrenia data than the one used for the
simulations. The decrease from the simple model to iid error model is much higher
than for the Schizophrenia data. The decrease is around 45000, which is more than
twice the decrease obtained in the Schizophrenia data. With the SPDE and iid error
model, we get a decrease around 48000 − 50000 compared to the simple model,
which is slightly lower than the decrease in the Schizophrenia data(52000).

In Table 7.67.6, we have given the credibility intervals of the hyperparameters for
all the simulations. In simulation 1, 2 and 4, we see that the credibility intervals
for τ and κ with model 4 contains the true parameters, except for τ in simulation 4,
which is slightly underestimated. These simulations had prior distribution centered
around the correct values. For simulation 3, we see that the new prior specification
does seem to have a influence on the resulting fit, where the credibility interval for
τ and r are slightly lower than the correct values, and the credibility interval for κ
is slightly larger. With the different prior specification on 1

σ2 and the initialization
of φ, clear differences can not be spotted for the simulations considered.

A clear difference between the case study and the simulations is the fitting of
the linear predictor 3. In the simulations, we see that the iid random effect process
absorbs much more of the variation than for the Schizophrenia data. This results in
a more uncertain precision parameter estimate, but a much higher DIC value. The
estimated credibility region for the precision parameter 1

σ2 is below the true value,
indicating that more of the variation is described by the independently, identically
distributed random effect than what the simulations where created with. Therefore,
the different hyperparameters seem to be interfering with each other, such that the
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(a) Standard deviation of the βi effects in the
simple model.

(b) Standard deviation of the βi effects in the
SPDE model.

(c) Standard deviation of the βi effects in the
iid error model.

(d) Standard deviation of the βi effects in the
SPDE and iid error model.

Figure 7.2: The standard deviation of βi with the different models considered on
simulation 4. The other simulations give similar results.

identifiability of the parameters is reduced. With the linear predictor 4, we see that
most of the hyperparameters for the SPDE model is inside the 95% credibility inter-
val, but the precision parameters φ and 1

σ2 are slightly under and over estimated,
respectively.

In Figure 7.27.2, we see the estimated standard deviation of the βi estimates for sim-
ulation 2. The other simulations resulted in approximately equal figures, with
only some small variations. The Figure is very similar to the one displayed for
the results of the Schizophrenia data, 6.76.7, except for the linear predictor 3. The
difference is caused by the under estimation of the precision parameter 1

σ2 , resulting
in a smoother estimation of βi ’s standard deviation. With the most complex model,
ηij = αi + βikj + ξj(si) + εij , the figures are almost identical.

In Figure 7.37.3, we have displayed the significantly different positions found with
the SPDE and iid error model and the T-test. With three positions having different
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Figure 7.3: Significantly differently methylated positions found in the simulated
data set 1, 2, 3 and 4, with the SPDE and iid error model and the T-test. Dots that
are not equal to 0 indicate differently methylated positions.

Table 7.5: Amount of differently methylated positions found with the two methods.

Simulation 1 Simulation 2 Simulation 3 Simulation 4
SPDE and iid error model 25 23 26 21
Amount 0.0625 0.0575 0.065 0.0525
Correct DMP found 3 3 2 3
T-test 28 20 29 19
Amount 0.07 0.05 0.0725 0.0475
Correct DMP found 2 3 2 2

mean, we would expect 3 + 0.05 · 397 ≈ 23 positions to be differently methylated on
a significance level 0.05, if the different tests were to find these three positions. This
results in an amount equal to 0.0575.

In Table 7.57.5, we have displayed the amount of differently methylated positions
found with the SPDE and iid error model and the T-test, evaluated on the simulated
data. They are all reasonable amounts of differently methylated positions, when 400
locations are considered(see appendix A.2A.2), and 3 positions are set to be different.
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With the SPDE and iid random effect model, we find all three positions that were set
to be differently methylated, except for position 100 in simulation 3. With the T-test,
we only find the position 100 as differently methylated in simulation 2. Therefore,
to utilize the spatial dependency seems to be able to find small differences better. Al-
though the latent Gaussian model which takes the spatial dependency into account
performs better than the T-test, four simulations are to few to draw any conclusion.

Table 7.6: Table of credibility intervals for the hyperparameters φ, τ , κ, σ0, r and 1
σ2 ,

for each of the simulations 1, 2, 3 and 4, respectively.

ηij = αi + βikj ηij = αi + βikj + ξj(si) ηij = αi + βikj + εij ηij = αi + βikj + ξj(si) + εij
φ [105.0,108.0] [162.5,168.7] [762.8,991.2] [708.1,833.0]
τ [4118,6190] [6624,7610]
κ [0.000502,0.000664] [0.000463,0.000527]
σ0 [0.129,0.257] [0.133,0.173]
r [4258,5638] [5370,6100]
1
σ2 [15.12,15.98] [22.21,23.50]

ηij = αi + βikj ηij = αi + βikj + ξj(si) ηij = αi + βikj + εij ηij = αi + βikj + ξj(si) + εij
φ [106.3,109.3] [162.2,167.9] [739.2,1449.6] [799.8,934.0]
τ [4740,5809] [5936,7178]
κ [0.000545,0.000647] [0.000489,0.000577]
σ0 [0.141,0.206] [0.128,0.183]
r [4375,5190] [4898,5787]
1
σ2 [14.36,16.18] [22.36,23.78]

ηij = αi + βikj ηij = αi + βikj + ξj(si) ηij = αi + βikj + εij ηij = αi + βikj + ξj(si) + εij
φ [107.4,110.5] [162.5,168.3] [671.4,809.5] [712.8,830.7]
τ [5405,6160] [6145,6951]
κ [0.000515,0.000577] [0.000515,0.000575]
σ0 [0.149,0.191] [0.133,0.168]
r [4898,5496] [4916,5492]
1
σ2 [15.72,16.61] [23.92,25.44]

ηij = αi + βikj ηij = αi + βikj + ξj(si) ηij = αi + βikj + εij ηij = αi + βikj + ξj(si) + εij
φ [105.0,108.0] [163.1,168.1] [676.2,777.6] [734.5,864.7]
τ [4969,5657] [5863,6948]
κ [0.000554,0.000622] [0.000484,0.000562]
σ0 [0.151,0.193] [0.136,0.187]
r [4550,5105] [5033,5841]
1
σ2 [15.68,16.42] [23.50,24.90]
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8 Discussion/Conclusion

In this paper, we have investigated DNA methylation data, where the main focus has
been on a data set containing 62 persons classified as having Schizophrenia, and 33
Healthy ones. Through an exploratory analysis of chromosome 1 to 22, we have seen
that the data is likely to be beta distributed, with a location dependent mean and
varying precision parameter φ. With further analysis of correlations and sample
auto-correlations, we have seen that the methylation data seems to be influenced by
spatial dependency.

To investigate the spatial dependency in the data, several models and likelihoods
have been studied in this paper. The main focus has been on finding differences
in mean between groups of people and to try to quantify the spatial dependency
structure. As we have seen in Chapter 66, models which accounts for spatial depen-
dency result in a lower DIC value. This indicates a better fit to the data. With the
simulation studied in 7.2.17.2.1, we have seen that a data set without spatial dependency
does not take advantage concerning the DIC value by including spatial dependency
effects in the latent Gaussian model. The resulting credibility intervals for the
hyperparameters τ and κ are very wide, which also indicates that such a model does
not fit the data well. For the real data set, the DIC indicates a better fit for both
likelihood functions and all models considered, where the spatial dependency has
been taken into account. The credibility regions obtained from the different models
are also much shorter than the ones obtained by the simulation without dependency.
Although only one simulation of this case is done, the results obtained, especially
for the hyperparameters, do not fit the results obtained by studying the Schizophre-
nia data set. This is a further evidence of spatial dependency in the methylation data.

With the first likelihood function considered, we see that the SPDE model de-
creases the DIC value, which indicates a better fit. This means that having fitted
realizations ξj(si) of a SPDE build on parameters τ and κ in the mean, improves
the log likelihood despite of the increase of effective parameters that need to be
estimated. However, by treating the precision parameter φ as fixed, the spatial
dependency process is not able to absorb any of the variation in the data, resulting
in an overestimation of the variance of the other estimated parameters, such as
βi . This results in conditionally fewer positions treated as differently methylated.
This also seem to result in an underestimation of the σ0 hyperparameter and a
overestimation of the range r, compared to the more fitting model, which is the
linear predictor 4 with likelihood function 2.

The distribution of the test variables in the T-test is a bit skewed compared to
the Student t-distribution with degrees of freedom equal to 93. This seems to
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be a pattern that repeats for different chromosomes. The amount of significantly
different methylated positions, displayed in Table 3.13.1, are also consistently lower
than 0.05 for all the chromosomes, which indicates that the amount is lower than
what we expect for the type I error. When considering scales such as chromosome
1(n = 46866), we would expect that the amount of differently methylated cites would
be approximately 0.05, even with spatial dependency along the chromosome. For
the simulated data sets studied in 7.2.37.2.3, the amount of differently methylated posi-
tions varies within natural boundaries for the n = 400 positions considered, but for
the Schizophrenia data set, the obtained amount is lower. This might point towards
some bias in the T-test for the methylation data, or some underlying structure in the
data that is not yet quantified.

As seen from the results of the Schizophrenia data and the simulations, there
is possible that the data can be described by a latent Gaussian model such as
ηij = αi + βikj + ξj(si) + εij , and a location independent precision parameter φ. How-
ever, there are some differences between the simulated and the Schizophrenia data
set. For the simulations, the amount of differently methylated positions found with
both the T-test and the linear predictor 4 varies within natural boundaries, but for
the Schizophrenia data set, it is lower for both tests. The fit of linear predictor 3 also
gives different results between the simulations and the Schizophrenia data set. This
might again point towards some underlying structure in the Schizophrenia data,
that the models tested are not able to quantify. A study of other regions would be
necessary to obtain more knowledge of this possible underlying structure.

With INLA and the SPDE approach, we are able to model the spatial dependency
for subsequent parts of the human genome. Because of the interactions between
effects considered in the latent Gaussian model, the process of fitting is complex
and expensive. We are therefore not able to look into much larger regions, such
as whole chromosomes. However, as seen for the simulations considered, we see
that by utilizing the spatial dependency in the data, we obtain better estimates of
differently methylated positions than with the T-test. Therefore, to find differently
methylated positions, we could use a hierarchical approach. By first investigating
the data with an algorithm such as the dmpFinder or a T-test, we could find regions
that seem promising of containing differently methylated sites. By then using an
approach such as the one considered in this paper, we could investigate the region
by taking advantage of the spatial dependency.

As seen from the simulations considered in 7.2.37.2.3, the resulting fit seem to be de-
pendent on the prior specifications. Especially the centralization of the distribution
seems to affect the result, as seen for the SPDE model. We have also seen that
the hyperparameters in the simulation seem to interfere with each other, reducing
the identifiability of the parameters in the simulations. To get more knowledge of
how prior specifications influences the parameters of the model considered, further
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studies are required.

By investigation of the sample auto-correlation for the different people, it would
seem that their spatial dependency is different and therefore might be best described
by independent τ and κ parameters. If we compare the resulting credibility regions
for the hyperparameters in the simulation studied in 7.2.27.2.2 and the credibility regions
obtained by the SPDE and iid error model with likelihood function 2 found in Table
6.46.4, we see that the credibility regions for the simulation is narrower, especially for
σ0 and the range r. Although different likelihood functions were considered for the
simulated data set and the Schizophrenia data, and the prior specifications for the
SPDE model parameters were different, it would be interesting to look into a model
with specifications of individual SPDE structures. This can be justified by looking
at the credibility interval in the simulations done in 7.2.37.2.3 as well, which also are a
bit narrower on average then the ones obtained for the Schizophrenia data set. If
this would be investigated, we might need to increase the number of sites since the
amount of hyperparameters to be estimated would increase drastically, to reduce
the effect of the Neumann boundary conditions on the hyperparameters.

The estimations might be affected by the fact that the methylation data is pro-
cessed(Lowe and Rakyan 20132013). This means that in addition to some normalizing
procedure, missing values are imputed. This might affect the data, and since the
INLA algorithm, and in general the Bayesian framework, is able to deal with missing
data(Blangiardo and Cameletti 20152015), raw data might be better to use. We could
also use the fact that the data are spatially dependent to help with the imputation
of missing values. This could be an interesting approach for further research.

For further research, it would be interesting to look into a non stationary approach
for the SPDE model. We have seen that the estimated range parameter over the
different chromosomes was approximately equal to 700, but the one obtained with
the model that gave the best fit, had a credibility interval ranging from [5019,6139].
This indicates that the range parameter might be changing for different regions.
For a region of 400 CpG sites, it is possible that a stationary approach is the one
that obtains the best fit, but it would be interesting to look into the possibility of a
non-stationary approach as well. To optimize with a likelihood function defined
as having a precision parameter φ for each location, that are to be estimated, could
also be interesting. This would result in many hyperparameters to be estimated,
such that it is possible that the amount of data(more people) would need to be larger
to produce certain estimates.

Since the DNA lies in clusters coiled around each other, there is a possibility that
the distance between some locations in 3D are closer than the distance measured
in 1D. This means that the methylation process might affect "spaces" in the cells,
such that correlations in a three dimensional space around each location should be
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measured. The SPDE approach allows for this kind of dependency, such that this
might also be an interesting approach for further research.



63 Appendix

A Appendix
A.1 Auto-correlation comparison betweenmethylation data

and simulated data
As we can see in Figure A.1A.1, the auto-correlation lag 1 seems to vary a lot among the
people at the different chromosomes. As an example, the correlation varies from
0.12 to 0.28 at chromosome 1. This auto-correlation is calculated from n = 46866
distinct locations, such that the spread is probably caused by being realizations of
different GRFs. To comparison, we have displayed the same plot for simulated data
based on the same locations from chromosome 2−22(chromosome 1 was to large to
simulated data using inla.qsample()) in Figure A.2A.2. The data are simulated using
κ = 0.004, τ = 1877.814 and λ = 1. This is equivalent to a range parameter r = 700
and σ = 0.07.

Figure A.1: Boxplot of the auto-correlation function at lag 1 at different chromo-
somes for different people. Evaluated for the Schizophrenia data set, with N = 95
people.

Figure A.1A.1 and A.2A.2 shows that the spread in auto correlation lag 1 for the Schizophre-
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nia data set is larger than for the simulated data. This suggests that the differences
between the people might be best described by having realizations from different
Gaussian processes. The auto-correlation is on an average scale larger for the sim-
ulated data set than for the Schizophrenia data set. On chromosome 6, we see
that the simulation data and the Schizophrenia data have a larger correlation than
for the other chromosomes. This indicates that the CpG sites are denser on this
chromosome than the other, such that the relevance of spatial dependencies are
stronger at this chromosome. Other values for the simulations have been tested as
well, giving the same results concerning the spread of the auto-correlation at each
chromosome.

Figure A.2: Boxplot of the auto-correlation function at lag 1 at different chromo-
somes for different people. Evaluated for a simulated data set, with N = 95 people
and κ = 0.012 and τ = 1343.212.

A.2 Natural variation in the Type I error(n = 400)
When we are considering differently methylated positions in a data set based on 400
locations, we can calculate the natural variation in the type I error by the following
procedure.

The probability of obtaining a false positive is equal to 0.05, when considering
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a test with significance level α = 0.05. To obtain the natural variation, we consider
the Bernoulli distribution with probability p = 0.05. The standard deviation for this
distribution is then equal to

√
p(1− p), and we can find a 95% prediction interval

for the type I error by the following formula:

0.05± 1.96

√
1
n

0.05(1− 0.05)

= [0.0286,0.0714].
(A.1)
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