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Abstract

Policy-based management is an approach to the management of sys-
tems with respect to issues such as security, access control and trust
by the enforcement of policy rules. This paper addresses the problem
of integrating the requirements imposed by a policy with the system
development process. In order to take a policy specification into ac-
count in the development of a system specification, the notion of policy
adherence is formalized as a relation between policy specifications and
system specifications. Adherence of a system specification to a policy
specification means that the former satisfies the latter. The integrated
development process is supported by refinement, where both the policy
specification and the system specification may be developed under any
number of refinement steps. This paper characterizes the conditions
under which adherence is preserved under refinement and identifies de-
velopment rules that guarantee adherence preservation. By results of
transitivity and compositionality the integrated development process
and the analysis tasks can be conducted in a stepwise and modular
way, thereby facilitating development.

Key words: Policy adherence, policy refinement, adherence preserva-
tion, UML sequence diagrams.
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1 Introduction

Policy-based management of information systems is an approach to admin-
ister and control distributed systems with respect to issues such as security,
access control, service level and trust by means of the enforcement of policy
rules. A policy is commonly defined as a set of rules governing the choices
in the behavior of a system [33], and a key feature of policies is that they
“define choices in behavior in terms of the conditions under which predefined
operations or actions can be invoked rather than changing the functionality
of the actual operations themselves” [34]. By separating the policy from the
system implementation, the behavior of the system can then be modified
in order to meet new or changing requirements in a flexible and dynamic
manner by modifying the policy only.

Several frameworks for the specification, development, analysis and en-
forcement of policies have been proposed [5, 34], but although recognized as
an important research issue from the very initial research on policy-based
management [23], policy refinement still remains poorly explored in the lit-
erature [2, 26]. Policy refinement is in [23] referred to as the process of
transforming a high-level, abstract policy specification into a low-level, con-
crete one. At the initial, abstract level, policies may be derived from business
goals, service level agreements, risk analyses, security requirements, etc., and
policy refinement should ensure that the enforcement of the final, concrete
policy implies the enforcement of the initial, abstract one.

In [35] we presented Deontic STAIRS, a policy specification language
based on the STAIRS [12, 30] approach to formal system development with
UML 2.1 sequence diagrams [24]. Deontic STAIRS facilitates abstraction,
and is supported by a formal notion of policy refinement precisely capturing
what it means that a concrete policy specification correctly represents an
abstract policy specification. Abstraction involves the perspective or pur-
pose of the viewer, and different purposes result in different abstractions
[28]. During the initial activity of policy capturing, details about system
entities, architecture and functionality that are irrelevant or unimportant
from a given viewpoint can therefore be ignored. Abstraction is desirable
also because detection and correction of errors, as well as policy analysis,
are cheaper and easier at an abstract and high level [37].

In addition to refinement and abstraction, decomposition has been rec-
ognized as one of the most important features of system design and devel-
opment [37]. Decomposition allows individual parts of a specification to be
developed separately, thus breaking the analysis and development problems
down into manageable pieces. In [35] we showed that the proposed policy
refinement relation is transitive and compositional. Transitivity means that
the result of any number of refinement steps is a valid refinement of the
initial policy specification. Compositionality means that a policy specifica-
tion can be refined by refining individual parts separately. We furthermore
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showed that the policy refinement relation ensures that the correct enforce-
ment of the final, concrete policy specification implies the enforcement of all
the previous, more abstract policy specifications.

For analysis of abstract specifications to be meaningful, the results of the
proofs or verifications conducted at the abstract level must be preserved un-
der refinement and by the eventual implementation. Otherwise the analysis
must be conducted from scratch after every refinement step [21]. This paper
addresses the problem of preservation of policy adherence under refinement.
Adherence of a system to a policy specification means that the system sat-
isfies the policy specification. In [35] policy adherence is formalized as a
relation between policy specifications and system implementations. In [31]
we addressed the relation between policy specifications and STAIRS system
specifications, and formally captured what it means that a system specifi-
cation adheres to a policy specification. In the latter paper we furthermore
showed that for a fixed policy specification, policy adherence is preserved
under refinement of system specifications. This means that in a process of
system development using STAIRS, analysis of the system specification with
respect to policy adherence can safely be conducted at abstract levels.

In this paper we address the problem of preservation of policy adher-
ence in a setting in which both the policy specification and the system
specification may undergo refinement. Since the requirements imposed by
a policy specification are strengthened under refinement, adherence is not
preserved in the general case. The challenge is therefore to identify the re-
quirements for which adherence has been verified at the abstract level, and
the conditions under which adherence to these requirements is preserved.
We furthermore identify development rules the application of which ensures
adherence preservation.

Preservation of properties under refinement is an important feature of
system development as it allows these properties to be taken into account
throughout the whole development process. Deontic STAIRS is a generic
approach to policy-based management in the sense that it supports the
specification of various types of policies, such as security, trust and access
control. Preservation of policy adherence under refinement therefore means
that the types of requirements that may be specified as policies using Deontic
STAIRS can be an integrated part of system development.

In Section 2 we give a more detailed presentation of the challenge ad-
dressed in this paper and motivate the work by describing possible devel-
opment cases in the setting of policy-based management. In Section 3 we
present a formal semantics for policy specifications that characterizes the
requirements imposed by a given policy specification. The semantics of De-
ontic STAIRS specifications presented in [31, 35] is given by describing the
semantics of individual rules of the policy specification separately. The se-
mantics presented in this paper combines the semantics of several rules into
one representation, thus describing the requirements imposed by all the rules
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of a policy specification simultaneously. In Section 4 we define the notion
of policy adherence as a relation between policy specifications and system
specifications. The formalization of the adherence relation is based on the
semantics of policy specifications proposed in Section 3, and we prove that
this notion of adherence is equivalent to the notion of adherence formalized
in [31]. The notion of policy refinement is in Section 5 formalized as a rela-
tion between policy specifications. In [35] refinement of policy specifications
is formalized by defining refinement of individual policy rules. Based on the
combined semantics of policy specifications proposed in this paper, the pol-
icy refinement relation defined in Section 5 formalizes what it means that the
combined rules of one policy specification is a refinement of the combined
rules of another policy specification. We prove that under a given assump-
tion the proposed policy refinement relation is a generalization of the policy
refinement relation in [35], and we motivate and explain the generalization.
Section 6 addresses the problem of preservation of policy adherence under
refinement. The section gives a general characterization of the conditions
under which policy adherence is preserved. We furthermore present rules for
refinement of system specifications that can be derived from steps of policy
refinement, and show that the rules ensure preservation of adherence under
the combined refinement of the policy specification and system specification.
In Section 7 we present related work before we conclude in Section 8. Formal
definitions and detailed proofs of the results are given in the appendix.

2 Problem Characterization

With support for specification of policies and systems at various levels of
abstraction, where the abstraction levels are related by notions of refinement,
we are interested in identifying conditions under which analysis results from
an abstract level are preserved under refinement. In this paper we address
the issue of preservation of adherence of system specifications S to policy
specifications P under refinement of either S or P . When such conditions
are fulfilled, adherence is guaranteed at the concrete level for the adherence
results that were verified at the abstract level, and need not be checked again
after refinement.

Policy refinement is not well addressed in the research on policy-based
management, which means that the problem of preservation of policy adher-
ence under refinement is also scarcely addressed. The problem of integrating
policy requirements with the requirements to system design and functional-
ity and the preservation of these under the development process is, however,
recognized and well addressed. This is particularly the case for security
requirements.

In [21] it is argued that security requirements should be taken into ac-
count during the system development process. The reason is that enforcing
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security only at the end of the development process “by preventing certain
behaviors. . .may result in a so useless system that the complete development
effort would be wasted” [21]. A further argument stated in [17] is that “it
would be desirable to consider security aspects already in the design phase,
before a system is actually implemented, since removing security flaws in
the design phase saves cost and time”.

The approach to security preservation under refinement addressed in
e.g. [16, 21] assumes that the security properties to be enforced are given
already at the beginning of the system development process. The challenge
is therefore to ensure that these properties are preserved under refinement.
The capturing and specification of the desired security requirements is in
this case held separate from the system development in which these require-
ments are integrated. In the context of policy-based management this would
correspond to a development case in which the policy is captured and de-
veloped before the system to which the policy applies is developed while
ensuring that the system adheres to the policy.

The approach proposed in [4], on the other hand, is an integration of the
security model with the system model in a combined development process.
The system model specifies the system design and functionality, whereas the
security model specifies the access control policy for the system. A similar
approach is proposed in [17, 18] for providing support for various security
aspects to be taken into account during the overall system development.

Fig. 1 illustrates the two development cases for a policy P that applies
to a system S. In both cases the initial, most abstract specification of the
policy is denoted by P1, and the initial, most abstract specification of the
system is correspondingly denoted by S1. By P1  P2 we denote that
the policy specification P2 is a refinement of the policy specification P1,
and similarly by S1  S2 for system specifications. Since both the policy
refinement relation and the system refinement relation are transitive, the
final, most concrete specifications Pn and Sm are refinements of P1 and S1

respectively.
Case (a) in Fig. 1 illustrates a separate development of the policy P and

the system S. The abstract policy specification P1 may, for example, have
been derived from a risk analysis and a set of security requirements and then
further developed and refined into the low-level and detailed policy specifi-
cation Pn that is to be enforced. Subsequently the system S to which the
policy P applies is developed. In order to ensure that the security require-
ments are satisfied by S, the system development may be conducted in such
a way that policy adherence is maintained during the development process.
By Pn →a S1 of case (a) in Fig. 1 we denote that the system specification
S1 adheres to the policy specification Pn. During the development of S the
policy specification Pn is fixed, so in case adherence is preserved under re-
finement of system specifications adherence of the final system specification
Sm to Pn is guaranteed. This property is denoted by the dashed arrow from
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Figure 1: Development cases

Pn →a S1 to Pn →a Sm. As mentioned in the introduction, this property
of the STAIRS refinement relation was shown in [31] and expressed by the
following theorem.

Theorem 1. P →a S1 ∧ S1  S2 ⇒ P →a S2

Case (b) in Fig. 1 illustrates a combined development of the policy spec-
ification and the system specification. A policy specification Pi is taken into
account in the system specification Sk in order to ensure adherence. As
in the previous case, Sk may be further developed into a specification Sl,
but the difference is that the development process should allow the policy
specification to be strengthened into a refined policy specification Pj . Since
both refinement relations are reflexive the case addresses situations of refine-
ment of one or both of the policy specification and the system specification.
The property of adherence preservation under such combined refinement is
illustrated by the dashed arrow from P1 →a S1 to Pn →a Sm in Fig. 1.

Generally, refinement of policy specifications involves a strengthening
of the requirements imposed by the policy. This means that adherence
of a system specification S is not preserved under refinement of a policy
specification P in the general case. However, if a policy refinement step
involves a strengthening by imposing additional policy rules, analysis with
respect to adherence to these have not been conduced at the abstract level.
Instead, these rules yield proof obligations that must be resolved at the
refined level. The challenge is therefore to identify conditions under which
the analysis results from the abstract level is preserved under refinement.
For a condition C the desired property can be formulated as follows.

C

P1 →a S1 ∧ P1  P2 ∧ S1  S2 ⇒ P2 →a S2
(1)
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For cases in which P1 →a S1 has been established, the strategy for preser-
vation of policy adherence results under refinement of P1 and S1 proposed in
this paper is to identify differences between the policy specification P1 and
the refined policy specification P2. These differences represent the strength-
ening of the requirements imposed by the policy when moving from P1 to
P2. By defining rules for refinement of the system specification S1 based on
the identified policy strengthening, we obtain a refined system specification
S2 in which the adherence results establishing P1 →a S1 are preserved.

In the proposed strategy we utilize properties of modularity and tran-
sitivity for the purpose of breaking the larger problem down into smaller
sub-problems that can be addressed separately.

3 Semantics of Policy Specifications

A policy specification P is in Deontic STAIRS given as a set of policy
rule specifications (dm, dt, db), where dm ∈ {pe, ob, pr} denotes the deontic
modality of a permission, obligation or prohibition, dt specifies the trigger
and db specifies the rule body. The trigger dt of a policy rule is a sequence
diagram that specifies the conditions under which the policy rule applies,
whereas the rule body db is a sequence diagram that specifies the behavior
that is constrained by the rule. The semantics of the diagrams dt and db is
given by the function [[]] that yields the set of traces [[dt]], [[db]] ⊆ H that is
specified by the diagrams. The set H denotes the set of all traces and the
set R denotes the set of all policy rule specifications. The reader is referred
to [35] for a more detailed presentation.

Given a trace h describing a possible run of a system for which a policy
rule (dm, dt, db) applies, h triggers the rule if h fulfills the triggering scenario
dt. Since dt is described by a set of traces, each describing a valid interpre-
tation of the diagram, it suffices that h fulfills at least one trace h′ ∈ [[dt]]
to trigger the rule. For h to fulfill h′, h must be a super-trace of h′ which
we denote h′

2 h. Equivalently, we say that h′ is a sub-trace of h. We have,
for example, that 〈a, b, c〉 2 〈e, a, f, g, b, c, d〉. For a trace set H ⊆ H, H 2 h
denotes ∃h′ ∈ H : h′

2 h. See Appendix A for the formal definition of the
sub-trace relation 2 and the complementary relation 2/ .

If [[dt]] 2 h holds for a policy rule (dm, dt, db), i.e. h triggers the rule, the
rule imposes a constraint on the possible continuations of the execution of
h after the rule has been triggered. A permission requires that the behav-
ior described by the rule body db must be offered as a potential choice, i.e.
there must exist a continuation of h that fulfills the rule body. An obliga-
tion requires that all possible continuations fulfill the rule body, whereas a
prohibition requires that none of the possible continuations fulfills the rule
body.
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In this section we define the semantics of policy specifications as a func-
tion that takes a policy specification P ∈ P(R) and a trace h ∈ H and yields
a tuple (a, u,C) that describes the requirements imposed by the rules in P
given the execution of the trace h, where a, u ⊆ H and C is a set of trace sets
H ⊆ H. The interpretation of the tuple (a, u,C) is that the set a represents
the acceptable traces as specified by the obligation rules of P that are trig-
gered by h; the set u represents the unacceptable traces as specified by the
prohibition rules of P that are triggered by h; each set H ∈ C represents the
traces that must be offered as potential choices as specified by a permission
rule in P that is triggered by h.

Formally, the semantics of a policy specification is defined by the follow-
ing function.

[[ ]] ∈ P(R) ×H → P(H) × P(H) × P(P(H))

We first define the function for singleton sets of policy rules P and then
define the composition of policy specifications P1 and P2.

The operator % takes two trace sets as operands and yields their sequen-
tial composition, capturing the formalization of the seq operator of sequence
diagrams. For sequence diagrams d1 and d2, the semantics of d1 seq d2 is
given by [[d1]] % [[d2]]. For a trace set H, H2 denotes the set of all super-
traces of elements in H. The reader is referred to the appendix for the
formal definitions.

Definition 1. Semantics of policy rules.

[[{(pe, dt, db)}]](h)
def
=

{

(H, ∅, {([[dt]] % [[db]])2}) if [[dt]] 2 h

(H, ∅, ∅) if [[dt]] 2/ h

[[{(ob, dt, db)}]](h)
def
=

{

(([[dt]] % [[db]])2, ∅, ∅) if [[dt]] 2 h

(H, ∅, ∅) if [[dt]] 2/ h

[[{(pr, dt, db)}]](h)
def
=

{

(H, ([[dt]] % [[db]])2, ∅) if [[dt]] 2 h

(H, ∅, ∅) if [[dt]] 2/ h

We refer to [[P ]](h) = (a, u,C) as “the denotation of the policy spec-
ification P with respect to the trace h”, or “the policy denotation” as a
brevity.

Definition 2. Composition of policy denotations.

(a1, u1, C1) ⊗ (a2, u2, C2)
def
= (a1 ∩ a2, u1 ∪ u2, C1 ∪ C2)

Given the policy denotations (a1, u1, C1) and (a2, u2, C2), the sets a1 and
a2 represent the obliged behavior. The composition of the policy denota-
tions means that both a1 and a2 are obliged, which explains the composition
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of these sets using intersection. Since the sets u1 and u2 represent prohib-
ited behavior, the composition using union ensures that both sets remain
prohibited after composition. The sets C1 and C2 each represents the vari-
ous behaviors that must be offered as potential alternatives as specified by
permission rules. The union operator ensures that all the alternatives are
still represented after the composition.

It follows immediately from the properties of associativity and commu-
tativity of ∩ and ∪ that also the composition operator ⊗ is associative and
commutative.

Composition of policy specifications is defined by the union operator
since policy specifications are given by sets of policy rule specifications. The
following defines the semantics of composed policy specifications.

Definition 3. Semantics of composed policy specifications.

[[P1 ∪ P2]](h)
def
= [[P1]](h) ⊗ [[P2]](h)

For the special case in which the policy specification is empty, i.e. P = ∅,
there are no requirements. The semantic representation of the empty policy
specification is defined as follows.

Definition 4. Semantics of empty policy specifications.

∀h ∈ H : [[∅]](h)
def
= (H, ∅, ∅)

In [35] the semantics of Deontic STAIRS specifications P were defined by
defining the semantics of individual policy rule specifications such that [[P ]] =
{[[r]] | r ∈ P}. An advantage of the composed semantics of policy specifi-
cations proposed in this paper is that policy specifications that impose the
same requirements on systems are also semantically equivalent. The seman-
tics of the singleton rule set {(ob, dt, db1 par db2)}, for example, equals the
semantics of the rule set {(ob, dt, db1), (ob, dt, db2)}. Similarly, the semantics
of {(pr, dt, db1 alt db2)} equals the semantics of {(pr, dt, db1), (pr, dt, db2)}.

4 Policy Adherence

In this section we define the adherence relation that precisely characterizes
what it means that a system specification S satisfies a policy specification
P , denoted P →a S.

The system is specified using the STAIRS approach to system devel-
opment with UML sequence diagrams. In STAIRS, the semantics [[d]] of a
sequence diagram d is a non-empty set of so-called interaction obligations
(p, n), where p, n ⊆ H. Each element (p, n) ∈ [[d]] represents an obligation
in the sense that the behavior described by the trace sets must be offered
as a potential system behavior. The set p is the set of positive traces, i.e.
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the traces each of which represents a valid execution of the interaction obli-
gation. The set n is the set of negative traces, i.e. the traces representing
invalid executions of the interaction obligation. The reader is referred to [31]
for a detailed presentation of the STAIRS syntax and semantics of UML se-
quence diagrams.

We now define adherence of a system specification S to a policy spec-
ification P with respect to the semantics [[P ]](h) presented in the previous
section.

Definition 5. Adherence of system specifications S to policy specifications
P .

P →a S
def
= ∀(p, n) ∈ [[S]] :

∀h ∈ (p \ n) :

h ∈ a ∧

h /∈ u ∧

∀H ∈ C : ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ H

where [[P ]](h) = (a, u,C)

The first and second conjuncts ensure that the trace h adheres to the
obligation rules and prohibition rules, respectively, of P . The third conjunct
ensures adherence to the permission rules of P by requiring that the behavior
specified by the these rules are offered as potential choices by S.

Based on the semantics of policy specifications presented in [35], pol-
icy adherence of system specifications S to policy specifications P , denoted
P →′

a S,1 is in [31] defined ∀r ∈ P : r →′
a S.2 The next theorem relates

the definition of adherence of this paper to the adherence relation defined
in [31].

Theorem 2. P →a S ⇔ P →′
a S

Policy adherence is modular in the sense that a system adheres to a set
of policy specifications if and only if the system adheres to the composition
of the policy specifications. This is expressed by the following theorem, and
implies that the problem of verification of adherence can be broken down
into sub-problems.

Theorem 3. P1 →a S ∧ P2 →a S ⇔ (P1 ∪ P2) →a S

The lowest level of granularity for a modular verification of adherence of
a system specification S to a policy specification P is to address subsets of
P that are singleton, i.e. to address individual policy rules. The following
theorem follows immediately from Def. 1 and Def. 5 and expresses what it
means that a system specification adheres to a policy rule.

1We denote the adherence relation of [31] by →′

a
to distinguish it from the adherence

relation →a defined in this paper.
2See Def. 15 and Def. 16 in the appendix.
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Theorem 4. Adherence to policy rules.

{(pe, dt, db)} →a S ⇔ ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) : (h ∈ [[dt]]2 ⇒

∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ ([[dt]] % [[db]])2)

{(ob, dt, db)} →a S ⇔ ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) : (h ∈ [[dt]]2 ⇒

h ∈ ([[dt]] % [[db]])2)

{(pr, dt, db)} →a S ⇔ ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) : (h ∈ [[dt]]2 ⇒

h /∈ ([[dt]] % [[db]])2)

This modularity property of policy adherence is utilized in Section 6 in
the identification of refinement rules that guarantees preservation of adher-
ence results.

5 Policy Refinement

In this section we formally define the notion of policy refinement as a rela-
tion between policy specifications, where P1  P2 denotes that the policy
specification P2 is a refinement of the policy specification P1. For policy
denotations (a, u,C), refinement is defined as follows.

Definition 6. Refinement of policy denotations.

(a1, u1, C1) (a2, u2, C2)
def
= a2 ⊆ a1 ∧

u1 ⊆ u2 ∧

∀H1 ∈ C1 : ∃H2 ∈ C2 : H2 ⊆ H1 ∧

∀H2 ∈ C2 : ∃H1 ∈ C1 : H2 ⊆ H1

Refinement of a policy specification P1 to a policy specification P2 then
means that for all traces h ∈ H, the denotation of P2 with respect to h is
a refinement of the denotation of P1 with respect to h, formally defined as
follows.

Definition 7. Refinement of policy specifications.

P1  P2
def
= ∀h ∈ H : [[P1]](h) [[P2]](h)

The first and second conjuncts of Def. 6 mean that the requirements
imposed by the obligation rules and prohibition rules of the policy specifi-
cations are strengthened under policy refinement. The strengthening may
stem from reduction of underspecification in existing rules, or from the ad-
dition of new policy rules. The third and fourth conjuncts of Def. 6 mean
that all behaviors that are required to be offered potentially by permission
rules of P1 are also required by permission rules of P2 and vice versa. The
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behavior described by the rule body of the permission rules may also be
subject to reduction of underspecification.

Under this notion of policy refinement, the variation over potential choices
of behavior that is required by the policy is fixed under refinement. The re-
duction of underspecification, however, means that traces that are admissible
at the abstract level may be inadmissible at the refined level.

It follows immediately from Def. 6 and Def. 7 that the policy refinement
relation is reflexive and transitive.

A modularity property of the policy refinement relation is that a pol-
icy specification P can be refined by refining subsets of P separately, as
expressed by the following theorem.

Theorem 5. P1  P ′
1 ∧ P2  P ′

2 ⇒ (P1 ∪ P2) (P ′
1 ∪ P ′

2)

Since refinement of policy specifications is a strengthening of the re-
quirements imposed by the policy specification, the requirements from the
abstract levels are preserved under refinement. This means that the en-
forcement of a concrete policy specification implies the enforcement of the
previous, more abstract specifications. This property is expressed in the next
theorem stating that adherence to a concrete policy specification guarantees
adherence to an abstract policy specification.

Theorem 6. P1  P2 ∧ P2 →a S ⇒ P1 →a S

The modularity properties expressed in Theorem 3 and Theorem 5 to-
gether with Theorem 6 mean that a policy specification can safely be split
up into partial policy specifications that are further developed and even-
tually enforced separately. This is relevant for organizations in which an
overall organizational policy is customized for and implemented separately
by individual departments, and for policy-based management of distributed
systems where policies are developed and enforced in a distributed manner.

The notion of policy refinement presented in [35] is based on the defi-
nition of refinement of individual policy rules; a policy specification P2 is a
refinement of a policy specification P1 if every rule in P2 is a refinement of
a rule in P1.

3 This means that policy rules may be added under refinement.
The notion of policy refinement studied in this paper is more restrictive in
the sense that it does not allow requirements to new potential choices of be-
havior to be introduced under refinement; this is allowed under the notion
of policy refinement in [35], however, by the addition of permission rules.

Under the condition that requirements to new potential choices of be-
havior are not added by moving from the abstract specification P1 to the
refined specification P2, we may compare the policy refinement relation of
Def. 7 in this paper with the policy refinement relation in [35]. The condition
is formalized with the relation 1 between policy denotations as follows.

3See Def. 17 and Def. 18 in the appendix.
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Definition 8.

(a1, u1, C1) 1 (a2, u2, C2)
def
= ∀H2 ∈ C2 : ∃H1 ∈ C1 : H2 ⊆ H1

For policy specifications P1 and P2 the relation 1 is then defined as
follows.

Definition 9. P1 1 P2
def
= ∀h ∈ H : [[P1]](h) 1 [[P2]](h)

As expressed in the next theorem, under the condition that P1 1 P2

holds, the notion of policy refinement proposed in this paper is a general-
ization of the notion of policy refinement presented in [35].4

Theorem 7. P1  
′ P2 ∧ P1 1 P2 ⇒ P1  P2

A number of modularity properties for refinement of policy specifications
were shown in [35], demonstrating that the sequence diagrams specifying pol-
icy rules can be refined by refining their individual parts separately. These
modularity properties hold irrespective of whether rules are added under
the refinement P1  

′ P2. The next theorem states that under a refinement
P1  

′ P2 in which every rule at the refined level is a refinement of a rule at
the abstract level, the relation P1 1 P2 holds.

Theorem 8. P1  
′ P2 ∧ ∀r2 ∈ P2 : ∃r1 ∈ P1 : r1  

′ r2 ⇒ P1 1 P2

By Theorem 7 and Theorem 8, the modularity properties of the policy
refinement relation formalized in [35] carry over to the policy refinement
relation proposed in this paper. This means, for example, that a sequence
diagram db specifying a rule body can be refined by refining individual parts
of db separately.

A clear advantage of the policy refinement relation proposed in this paper
over the policy refinement relation in [35] is that it is based on the composed
semantics of the policy rules, rather than the collection of the separate
semantics of the individual rules. Theorem 6 reflecting the property that
policy refinement is a strengthening of the requirements imposed by the
policy specification also holds for the policy refinement relation presented in
[35]. By Theorem 7, however, there exist policy specifications P1 and P2 such
that P2 →a S ⇒ P1 →a S for all system specifications S, while P1  P2

and ¬(P1  
′ P2). Theorem 6 and Theorem 7 therefore demonstrate that

the refinements that are valid under the relation  presented in this paper
while invalid under the relation ′ of [35] are sound in a policy development
process in the sense that they involve a strengthening of the policy.

In Section 3 we explained that under the semantics of policy specifica-
tions presented in [35] there are policy specifications that are equivalent with

4We denote the policy refinement relation of [35] by ′ to distinguish it from the policy
refinement relation  defined in this paper.
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respect to the requirements they impose, yet semantically non-equivalent.
Since these are semantically equivalent under the semantics proposed in this
paper, they also refine each other. For example, since the policy specification
{(ob, dt, db1 par db2)} is semantically equivalent to {(ob, dt, db1), (ob, dt, db2)},
the two refine each other. Furthermore, all valid refinements of one pol-
icy specification are also valid refinements of semantically equivalent policy
specifications.

The policy refinement relation of [35] allows refinement of permission
rules and obligation rules by reducing the set of traces that are specified by
the rule body, and refinement of prohibition rules by increasing this trace
set. This is generalized by the policy refinement relation proposed in this
paper by considering the set of super-traces of the specifications instead.
This means, for example, that while {(ob, dt, db1)}  {(ob, dt, db1 par db2)}
is valid, it is not so for the policy refinement relation  ′.

6 Adherence Preserving Refinement

In this section we first give a general characterization of conditions under
which adherence is preserved in the case of the combined refinement of
policy specifications and system specifications. Subsequently we identify
refinement rules that fulfill these conditions, such that the application of
the rules in the development process guarantees preservation of adherence.

6.1 A Characterization of Adherence Preserving Refinements

A policy specification characterizes certain behavior as admissible and cer-
tain behavior as inadmissible by the obligation rules and the prohibition
rules. Additionally a policy specification requires certain behavior to be
offered as potential choices by the permission rules. The expressiveness of
STAIRS system specifications to capture inherent non-determinism by a set
of interaction obligations and preserve this form of non-determinism under
refinement are the properties that ensure preservation of adherence to per-
mission rules under refinement. Underspecification is captured by the vari-
ation over positive traces in each interaction obligation. The set of positive
traces represents the admissible behavior of the system under development.
If these traces adhere to the obligation rules and prohibition rules at an
abstract level, adherence is preserved under refinement of system specifica-
tions since refinement of interaction obligations is defined by reduction of
underspecification. The property of preservation of adherence to a fixed pol-
icy specification under refinement of system specifications as expressed by
Theorem 1 is therefore ensured by the fact that all the potential alternatives
are preserved, while the admissible behavior within each of the alternatives
may only be reduced.
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Because policy refinement implies only a reduction of the admissible be-
havior as specified by the policy, adherence of a system specification is pre-
served under refinement by reducing the admissible behavior of the system
specification accordingly. In other words, if P1 →a S1 has been established
at the abstract level and the policy refinement P1  P2 is conducted, a
system specification S2 can be derived from S1 based on the reduction of
admissible behavior when shifting from P1 to P2 such that S1  S2 and
P2 →a S2.

Policy adherence is obviously preserved if the requirements imposed by
the refined policy specification is equivalent to the requirements imposed
by the abstract specification. Under this condition, preservation of adher-
ence under refinement can be formulated by the following instantiation of
expression (1) in Section 2.

∀h ∈ H : [[P1]](h) = [[P2]](h)

P1 →a S1 ∧ S1  S2 ⇒ P2 →a S2
(2)

Notice that we have omitted the conjunct P1  P2 of expression (1) in
Section 2 since it is implied by the condition in expression (2) and therefore
redundant.

Under the condition in (2), there is no reduction of admissible behavior,
and adherence is preserved by Theorem 1. The modularity properties of pol-
icy adherence and policy refinement captured by Theorem 3 and Theorem 5,
respectively, can be utilized by identifying parts of the refined policy specifi-
cation that is semantically equivalent to the abstract policy specification or a
subset of the abstract policy specification. If, for example, P1∪P2  P ′

1∪P ′
2

and ∀h ∈ H : [[P1]](h) = [[P ′
1]](h), policy adherence of a system specification

S need only be checked with respect to P ′
2 if P1∪P2 →a S has been verified.

For policy refinements P1  P2 in which the semantics of the policy
specifications are not equivalent, and P1 →a S has been verified, we need
to identify the traces h of the system specification S that are admissible
under P1 and inadmissible under P2. A refinement S  S′ of the system
specification by eliminating these traces h from S then ensures adherence
at the refined level, i.e. P2 →a S′. We define the function

∆( , , ) ∈ P(R) × P(R) ×D → P(H)

that takes the policy specifications P1 and P2 and the system specification
S as operands and yields the set H of admissible traces from S that are
admissible under P1 and inadmissible under P2. D denotes the set of all
STAIRS sequence diagram specifications. Formally, the function ∆ is defined
as follows.

Definition 10. For policy specifications P1 and P2 and system specifications
S such that P1  P2 and P1 →a S:
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∆(P1, P2, S)
def
= {h ∈ H | (∃(p, n) ∈ [[S]] : h ∈ (p \ n))∧

(h ∈ (a1 \ a2)∨
h ∈ (u2 \ u1)∨
∃H1 ∈ C1 : ∃H2 ∈ C2 : H2 ⊆ H1 ∧ h ∈ (H1 \ H2))}

where [[P1]](h) = (a1, u1, C1) and [[P2]](h) = (a2, u2, C2)

Semantically, a sequence diagram is represented by a set O of interaction
obligations (p, n). The singleton set {(∅,∆(P1, P2, S))} of interaction obliga-
tions is then the semantic representation of a sequence diagram that specifies
as negative the behavior that should be inadmissible after the refinement of
the system specification. We denote this representation by [[S]]∆(P1,P2,S),
abbreviated by [[S]]∆ when the given policy specifications are irrelevant or
clear from the context.

For a system specification S such that P1 →a S and P1  P2 hold, the
following represents a refined system specification in which the inadmissible
behavior [[S]]∆ has been specified as negative behavior: [[S]]∆ ⊎ [[S]].

The operator ⊎ takes two sets of interaction obligations as operands and
yields their inner union, formally defined as follows.

O1 ⊎ O2
def
= {(p1 ∪ p2, n1 ∪ n2) | (p1, n1) ∈ O1 ∧ (p2, n2) ∈ O2}

Since [[S]]∆ is a singleton set of interaction obligations, the result of
[[S]]∆⊎[[S]] is equal to the result of adding the set ∆(P1, P2, S) to the negative
traces of each interaction obligation of [[S]]. More formally,

[[S]]∆ ⊎ [[S]] = {(p, n ∪ ∆(P1, P2, S)) | (p, n) ∈ [[S]]}

The result of this composition with inner union is furthermore a refine-
ment of [[S]] as expressed by the following theorem which follows immediately
from the definition of refinement of sets of interaction obligations [31].

Theorem 9. For all interaction obligations (∅, n) and all sets of interaction
obligations O:

O  {(∅, n)} ⊎ O

The refinement [[S]]∆⊎[[S]] of [[S]] then characterizes a system specification
where the adherence P1 →a S is preserved when the policy refinement P1  

P2 has been conducted. The result is expressed by the following theorem.

Theorem 10. P1 →a S ∧ P1  P2 ⇒ P2 →a ([[S]]∆ ⊎ [[S]])

Notice that adherence as formalized in Def. 5 is a relation between a
policy specification and a system specification, whereas ([[S]]∆⊎ [[S]]) in The-
orem 10 denotes a set of interaction obligations. The formulation of Theo-
rem 10 is for sake of brevity and readability.
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The result of adherence preservation under the condition that the ab-
stract system specification is S is refined by the composition with [[S]]∆ can
then be formulated by the following instantiation of (1).

[[S2]] = [[S1]]
∆ ⊎ [[S1]]

P1 →a S1 ∧ P1  P2 ⇒ P2 →a S2
(3)

Notice that since [[S1]] [[S1]]
∆ ⊎ [[S1]] holds by Theorem 9, the conjunct

S1  S2 of the antecedent of expression (1) in Section 2 is implied. Since
the conjunct is redundant it is omitted in (3).

So far we have only given a general characterization of the refined system
specification for which adherence is preserved by describing its semantics. In
a practical setting the development process should, however, be supported
by syntactical rules that ensure the desired refinements.

The trace set ∆(P1, P2, S) which is derived as expressed in Def. 10
characterizes precisely the traces in S that are inadmissible after the pol-
icy refinement P1  P2. By identifying a sequence diagram d where ex-
actly these inadmissible traces are negative, the diagram d can be syn-
tactically composed with S to yield the desired result. More precisely, if
[[d]] = {(∅,∆(P1, P2, S))} = [[S]]∆ we have the following.

[[d alt S]] = [[S]]∆ ⊎ [[S]]

The semantics of the sequence diagram operator alt is defined by inner
union ⊎ [31], so given the system specification S and the identified sequence
diagram d, the specification d alt S denotes the desired refinement of the
system specification.

Theorem 10 therefore means that in principle, the desired system refine-
ment can be conducted. The challenge, however, is to identify the desired
sequence diagram d. For certain cases of policy refinements P1  P2 where
P1 →a S holds, the sequence diagram may not exist since there exist valid
semantic representations for which there are no matching representations in
the syntax.

In the next subsection we describe strategies for identifying such dia-
grams d, and we identify specific rules for refinement of system specifications
that guarantee adherence preservation.

6.2 Adherence Preserving Refinement Rules

Our strategy is to utilize the modularity properties of policy adherence and
policy refinement as expressed by Theorem 3 and Theorem 5, respectively.
These properties allow the problem of preservation of adherence under policy
refinement to be addressed as a problem of preservation of adherence under
policy rule refinement.
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Given a refinement of a policy rule r to a policy rule r′, the challenge
is to identify a sequence diagram d that characterizes the strengthening
of the policy rule under the refinement step. There are two requirements
that should be fulfilled by this approach. Firstly, the strengthening of the
system specification S should be applicable without any knowledge about
S other than that it adheres to the abstract policy specification P . This
ensures the generality of the approach. Solely by comparing the policy rule
specification r and its refinement r′, the sequence diagram d representing the
strengthening should be derived. Subsequently, a composition of d and S
using syntactic sequence diagram operators should yield the desired result
in the form of a system specification S′. Secondly, the resulting system
specification S′ should be a refinement of the original system specification
S. This ensures that S′ is a valid representation of S.

Ideally, the identified sequence diagram d should capture exactly the
set of traces that characterizes the strengthening of the policy rule. In
a practical setting it may, however, be infeasible to identify the precise
sequence diagram. In some cases, this sequence diagram may not even exist.
The sequence diagram d is in the sequel therefore required to characterize at
least the strengthening of the policy rule, i.e. [[d]] must be a superset of the
desired trace set. Since the removal of traces from the system specification
never introduces a policy breach, this requirement is sufficient for the results
of adherence preservation.

The formula for strengthening a system specification S into a system
specification S′ with respect to an identified sequence diagram d is the fol-
lowing.

S′ = refuse(d par any) alt S

The refuse construct is a STAIRS operator for specifying negative be-
havior [29]. For a sequence diagram d such that [[d]] = {(p, n)}, the se-

mantics is defined by [[refuse d]]
def
= {(∅, p ∪ n)}. The sequence diagram any

denotes the maximal sequence diagram the semantics of which is defined by
[[any]] = {(H, ∅)}.5 The reason for the parallel composition of the sequence
diagram d and the maximal sequence diagram any in the formula is that
it yields all the super-traces of traces in [[d]], i.e. the traces that fulfill the
behavior specified by d. This is reflected by the following statement the
proof of which is given in Lemma 2 in the appendix.

∀H ⊆ H : H2 = (H ‖ H)

The semantics of the par operator is defined by ‖ which yields the inter-
leavings of its operands [13]. The reader is referred to the appendix for the
formal definition.

The fulfillment of the requirement that refuse(d par any) alt S is a refine-
ment of S is shown by the following theorem.

5The name any is adopted from [20] where it denotes the maximal MSC [15].
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Theorem 11. For all sequence diagrams d and d′ such that [[d′]] is singleton:

d (refuse(d′) alt d)

The theorem follows immediately from the definition of the sequence
diagram operators and the definition of refinement of sequence diagrams
[31].

We now turn to the approach for adherence preserving refinement of each
type of policy rule.

A permission rule (pe, dt, db) is refined by a permission rule (pe, dt, d
′
b)

if [[d′b]] ⊆ [[db]]. By identifying sequence diagrams db1 and db2 such that
[[db]] = [[db1 alt db2]] and d′b = db1, the sequence diagram db2 represents the
reduction of the admissible behavior after the refinement. By refining a
system specification S for which adherence to (pe, dt, db) has been verified
by characterizing traces fulfilling dt seq db2 as negative, the adherence result
that was established at the abstract level is preserved. This is expressed by
the following theorem.

Theorem 12. Preservation of adherence under refinement of permission
rules.

{(pe, dt, db1 alt db2)} →a S ⇒

{(pe, dt, db1)} →a refuse((dt seq db2) par any) alt S

Notice that for the sequence diagram db2 to characterize the exact strength-
ening of the permission rule, the requirement [[db1]] ∩ [[db2]] = ∅ must be ful-
filled, where [[db1]]∪ [[db2]] equals the semantics of the body db of the abstract
permission rule and [[db1]] equals the semantics of the body d′b of the refined
permission rule. The theorem is still valid if this requirement is not fulfilled,
but implies that the removal of traces under the refinement of the system
specification is wider than required for adherence to be ensured.

With reference to expression (1) in Section 2 the policy specification
P1 is instantiated by {(pe, dt, db1 alt db2)}, whereas P2 is instantiated by
{(pe, dt, db1)}. The system specification S instantiates S1 and the system
specification S2 is derived from P1, P2 and S1. Since in this case we have
P1  P2 by definition, and S1  S2 by Theorem 11, these conjuncts of
the antecedent of (1) are redundant. The result of adherence preservation
captured by Theorem 12 can then be formulated as follows.

S2 = refuse((dt seq db2) par any) alt S1

{(pe, dt, db1 alt db2)} →a S1 ⇒ {(pe, dt, db1)} →a S2
(4)

The same approach is applicable to obligation rules. An obligation rule
(ob, dt, db) is refined by an obligation rule (ob, dt, d

′
b) if [[d′b]] ⊆ [[db]]. Again,

we can identify sequence diagrams db1 and db2 such that [[db]] = [[db1 alt db2]]
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and d′b = db1, where the sequence diagram db2 represents the reduction of the
admissible behavior. In case {(ob, dt, db)} →a S has been verified, adherence
is preserved by refining S with respect to the specification dt seq db2. This
is expressed by the following theorem.

Theorem 13. Preservation of adherence under refinement of obligation
rules.

{(ob, dt, db1 alt db2)} →a S ⇒

{(ob, dt, db1)} →a refuse((dt seq db2) par any) alt S

As for the result of preservation of adherence to permission rules, the
identification of a sequence diagram characterizing the exact strengthening
requires that [[db1]] ∩ [[db2]] = ∅. The validity of Theorem 13 does, however,
not depend on this requirement. The formulation of the result following the
pattern of expression (1) with redundancy omitted is as follows.

S2 = refuse((dt seq db2) par any) alt S1

{(ob, dt, db1 alt db2)} →a S1 ⇒ {(ob, dt, db1)} →a S2
(5)

A prohibition rule may be refined by increasing the set of traces that
represents the prohibited behavior as specified by the rule body, i.e. a
prohibition rule (pr, dt, db) is refined by a prohibition rule (ob, dt, d

′
b) if [[d′b]] ⊇

[[db]]. By identifying sequence diagrams db1 and db2 such that db = db1 and
[[d′b]] = [[db1 alt db2]], the sequence diagram db2 represents the reduction of the
admissible behavior after the refinement. By refining a system specification
S for which adherence to (pr, dt, db) has been verified by characterizing traces
fulfilling dt seq db2 as negative, the adherence result that was established at
the abstract level is preserved. This is expressed by the following theorem.

Theorem 14. Preservation of adherence under refinement of prohibition
rules.

{(pr, dt, db1)} →a S ⇒

{(pr, dt, db1 alt db2)} →a refuse((dt seq db2) par any) alt S

As for the rules for preservation of adherence under refinement of per-
missions and obligations, the identification of the sequence diagram that
characterizes the exact strengthening requires that [[db1]] ∩ [[db2]] = ∅ holds.
However, since db1 is already characterized as inadmissible by S since adher-
ence to {(pr, dt, db1)} has been verified, the strengthening of S by removing
the traces that fulfill (dt seq db2) yields precisely the desired refinement of
S. The formulation of Theorem 14 following the pattern of expression (1)
with redundancy omitted is as follows.

S2 = refuse((dt seq db2) par any) alt S1

{(pr, dt, db1)} →a S1 ⇒ {(pr, dt, db1 alt db2)} →a S2
(6)
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By properties of modularity the approaches for adherence preserving re-
finement of policy rules stated in expression (4), (5) and (6) can be combined
into an approach for adherence preserving refinement of policies. Assume,
for example, that P1 →a S1 has been verified at an abstract level and that
P1 = {r1, . . . , rm} is refined following the above described patterns. For each
rule ri ∈ P1, let di denote the sequence diagram characterizing the strength-
ening of ri. The desired strengthening of S1 into S2 such that P2 →a S2 can
then be obtained by the following formula.

S2 = refuse(d1 par any) alt . . . alt refuse(dm par any) alt S1 (7)

The modularity properties also allow the approach to be applied to a
subset of the policy specification. For a policy specification P1 ∪ P such
that P1 ∪ P →a S1, we have P1 →a S1 and P →a S1 by Theorem 3. By
refining the rules of P1 into P2 following the above pattern, the resulting
policy specification P2 ∪ P is a refinement of P1 ∪ P by Theorem 5. Since
S1  S2 holds for the derived system specification S2, and P →a S1, we get
P →a S2 by Theorem 1. By Theorem 3 we finally have P2 ∪ P →a S2.

As an alternative to utilizing the modularity properties as described
above, the preservation of adherence under refinement of a set of policy rules
can be broken down into a series of refinement steps. Since refinement of
both policy specifications and system specifications are transitive, the result
of any number of adherence preserving refinement steps of the specifications
represents the desired result.

In Section 6.1 we gave with expression (3) a characterization of preser-
vation of policy adherence under refinement by deriving the semantics [[S2]]
of the refined system specification from the policy specifications P1 and P2

and the system specification S1. The formula (7) above describes how the
properties of modularity can be utilized to obtain the refined system specifi-
cation using syntactic sequence diagram operators. Since the instantiations
of (7) depend only on the policy specifications P1 and P2, as well as the sys-
tem specification S1, we can introduce the construct op as syntactic sugar
to define the following abbreviation.

op(P1, P2, S1)
def
= refuse(d1 par any) alt . . . alt refuse(dm par any)

S2 = op(P1, P2, S1) alt S1 is then a syntactic characterization of the con-
dition for adherence preserving refinement that were given by the semantic
characterization [[S2]] = [[S1]]

∆(P1,P2,S1)⊎[[S1]] in expression (3) of Section 6.1.
The instantiation of expression (1) of Section 2 given the strategies described
by expression (4), (5) and (6) above can then be given as follows.

S2 = op(P1, P2, S1) alt S1

P1 →a S1 ∧ P1  P2 ⇒ P2 →a S2
(8)
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Since S1  op(P1, P2, S1) alt S1 holds by definition, the instantiation of
S1  S2 of expression (1) is redundant and omitted in (8).

The above strategies for preservation of adherence under refinement of
policy rules assume that the policy triggers are fixed under refinement. This
is crucial for adherence preservation since it means that the abstract sys-
tem specification has been checked for adherence with respect to these trig-
gers, and the result can be preserved under refinement. For policy rules
(dm, dt, db) that are added under policy refinement such that the trigger dt

did not occur in the abstract policy specification, adherence of a system
specification S to (dm, dt, db) is guaranteed by eliminating all the traces in
S that fulfill traces in dt. This is because a rule that is not triggered by
a system specification is trivially adhered to, as captured by the following
theorem.

Theorem 15. {(dm, dt, db)} →a refuse(dt par any) alt S

During the development of a system specification S, such a removal of
behavior to which a rule (dm, dt, db) applies may be adequate if it is de-
cided that the particular behavior described by the diagram dt is unimpor-
tant, irrelevant or dispensable for the desired functionality of the system
under development. If the removal of the behavior is unacceptable, the rule
(dm, dt, db) yields a proof obligation that must be solved at the refined level
since adherence to this rule has not been checked at the abstract level. In
case a policy breach is identified, then either the system traces fulfilling dt

must be removed, or the system development must undergo backtracking
and redesign in order to establish adherence.

7 Related Work

Model Driven Architecture (MDA) [9, 22] is an approach to system devel-
opment based on specifying high-level, platform independent models of the
systems using languages such as the UML that are automatically trans-
formed into a resulting system architecture. In [4], the authors observe that
model building is also applied in security modeling and policy specification,
but claim that the integration of security models into the overall model-
based system development process is problematic. This is partly, they claim,
because security models and system models are typically disjoint, their inte-
gration is poorly understood, and their integration is inadequately supported
by methods and tools. Partly this is also because security typically is inte-
grated into systems in a post hoc manner. To remedy this, a specialization
of MDA called Model Driven Security is presented in [4] in which security
properties of the target system is specified as part of the system model, and
later transformed into security mechanisms of the system. A UML-based
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language called SecureUML is presented that supports the specification of
access control requirements in the setting of Role-Based Access Control [8].
These security models may then be combined with system design models in
languages such as UML class diagrams and UML state charts where elements
of the design models are identified as resources that should be protected ac-
cording to the SecureUML specification. The paper addresses only access
control in the form of permission rules that specify authorizations, however,
and the specification of other security aspects is pointed out as a direction
for future work. Refinement is also not addressed, but the authors state
that by considering diagrams such as UML sequence diagrams and UML
use case diagrams, the modeling of the system from different views and at
different abstraction levels would be supported.

In [31] we explained that permission rules, and therefore policies, specify
trace-set properties that must be satisfied by systems to which the policy
specification applies. A trace-set property can only be falsified on sets of
traces, unlike trace properties that can be falsified on single traces. Trace-
set properties rely on non-determinism, which is captured by a set of system
traces each of which represents a valid system execution. This form of non-
determinism is often referred to as underspecification. The standard notion
of refinement is defined as reduction of underspecification. Unlike trace
properties such as safety and liveness which are preserved under refinement
[1], trace-set properties are generally not. The latter was shown in [16] for
certain security properties.

The results of preservation of policy adherence under refinement of sys-
tem specifications using STAIRS that we showed in [31] rely on the expres-
siveness of STAIRS to distinguish between two types of non-determinism,
namely underspecification and inherent non-determinism. The latter is a
form of non-determinism that the system is required to possess, e.g. to sat-
isfy permission rules, and is preserved under refinement in STAIRS. The
development case addressed in this paper in which both the policy specifica-
tion and the system specification may undergo refinement also rely on this
distinction. In the following we discuss related work with particular focus on
the expressiveness to capture trace-set properties and preserve these under
refinement.

Message sequence charts (MSCs) [15] is an ITU recommendation which
to a large extent has been adopted and extended by the UML sequence
diagram notation. The distinction between underspecification and inherent
non-determinism is, however, beyond the standard MSC language and its
semantics [14]. MSCs are furthermore not supported by a well-defined notion
of refinement, which means that there is no support for capturing trace-set
properties and preserving these under the development process.

In [20], a variant of MSCs is given a formal semantics and provided
a formal notion of refinement. Four different interpretations of MSCs are
proposed, namely existential, universal, exact, and negative. The existential
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interpretation requires the fulfillment of the MSC in question by at least one
system execution; the universal interpretation requires the fulfillment of the
MSC in all executions; the exact interpretation is a strengthening of the uni-
versal interpretation by explicitly prohibiting behaviors other than the ones
specified by the MSC in question; the negative interpretation requires that
no execution is allowed to fulfill the MSC. The interesting interpretation in
our context is the existential scenario as it may capture trace-set properties
and permissions. As shown in [20], a system that fulfills an MSC speci-
fication under the universal, exact, or negative interpretation also fulfills
specifications that are refinements of the initial specification where refine-
ment is defined as reduction of underspecification. This is, however, not the
case for the existential interpretation, which means that trace-set properties
are not preserved under refinement.

The trace semantics for UML 2.0 interactions presented in [36] repre-
sents a sequence diagram by a pair of a set of positive traces and a set of
negative traces. The approach provides no support for distinguishing be-
tween underspecification and inherent non-determinism. Rather, positive
traces are interpreted as necessary, i.e. must be possible in an implemen-
tation, whereas negative traces are interpreted as forbidden, i.e. must not
be possible in an implementation. A notion of refinement is introduced in
which previously inconclusive traces may be redefined as positive or nega-
tive. With this approach, there is no guarantee that adherence to trace-set
properties is preserved under refinement.

Live sequence charts (LSCs) [6, 11] extend MSCs and are particularly di-
rected towards specifying liveness properties. LSCs support the specification
of two types of diagrams, namely existential and universal. An existential
diagram describes an example scenario that must be satisfied by at least one
system run, whereas a universal diagram describes a scenario that must be
satisfied by all system runs. Universal charts can furthermore be specified as
conditional scenarios by the specification of a prechart that, if successfully
executed by a system run, requires the fulfillment of the scenario described
in the chart body. LSCs moreover have the expressiveness to specify forbid-
den scenarios. LSCs seem to have the expressiveness to capture trace-set
properties by the use of existential diagrams; obviously, falsification of sys-
tem satisfaction of requirements expressed by an existential diagram cannot
be done on a single trace. However, a system development in LSCs is in-
tended to undergo a shift from an existential view in the initial phases to
a universal view in later stages as knowledge of the system evolves. Such a
development process with LSCs will generally not preserve trace-set proper-
ties. Moving from an existential view to a universal view can be understood
as a form of refinement, but LSCs are not supported by a well-defined notion
of refinement.

Modal sequence diagrams (MSDs) [10] are defined as a UML 2.0 profile.
The notation is an extension of UML sequence diagrams, and is based on
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the universal/existential distinction of LSCs. The semantics for MSDs is
basically the same as for LSCs, and so is the problem of capturing trace-set
properties and preserving these under refinement.

Triggered message sequence charts (TMSCs) [32] allow the specification
of conditional scenarios and are supported by a formal notion of refinement.
In addition to composition operators such as sequential composition, paral-
lel composition and recursion, TMSCs are supported by two different choice
operators, namely delayed choice and internal choice. Internal choice is sim-
ilar to underspecification in the sense that an implementation that offers
only at least one of the choices correctly fulfills the specification. For de-
layed choice, however, the implementation must offer all choices as potential
behavior. It is observed in [32] that the trace semantics of MSCs does not
have the expressiveness to distinguish between such optional and required
behavior, which means that a heterogeneous mix of these in the specifica-
tion is not supported. The semantics of TMSCs makes this distinction, and
it is also preserved under refinement. The paper stresses the importance
of preserving properties such as safety and liveness under refinement, but
the problem of capturing trace-set properties and preserving these under
refinement is not discussed. A further shortcoming is that support for the
specification of negative or prohibited behavior is not provided.

As mentioned in the introduction, the problem of policy refinement is
poorly explored in the research on policy-based management. The inves-
tigation of policy refinement has gained interest only recently [5], and the
literature on the issue is still scarce.

One aspect of policy refinement as proposed in [23] is that of goal refine-
ment, where the set of low-level goals derived from a high-level goal intends
to fulfill the latter. Goal refinement has been further elaborated within
the area of requirements engineering and has served as basis for more re-
cent approaches to policy refinement. The KAOS method [7] is based on
identifying refinement patterns, where each pattern represents a possible de-
composition of a high-level goal into a set of low level-goals. The fulfillment
of the low-level goals of a pattern ensures the fulfillment of the high-level
goal.

Goal refinement and the KAOS method have been adopted by several
approaches to policy refinement [2, 3, 25, 26, 27]. The approach presented
in [2, 3] identifies the policy refinement problem as composed of two parts.
The first part is the refinement of high-level goals into operations supported
by the concrete objects/devices, such that when performed will achieve the
high-level goal. The proposed solution to this problem is to combine the
KAOS goal elaboration method with techniques for deriving mechanisms by
which a given system can achieve a particular goal. The second part is the
refinement of abstract entities into concrete objects/devices. The proposed
solution to this problem is a formal representation of object relationships
based on domain hierarchies with rules for deducing concrete objects/devices
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for abstract ones. The formalism of the approach is implemented in event
calculus [19] which is held as suitable as it allows formal reasoning and fits
the event-driven nature of the systems that are addressed by the approach.

The policy refinement framework presented in [27] also uses the KAOS
method for goal elaboration to derive low-level goals from high-level ones.
The strategy for identifying the system execution traces that fulfill the low-
level goals is, however, based on linear temporal logic and model checking.
The work in [26] extends [27] by introducing a mechanism for abstracting
policies from system trace executions in a systematic manner.

These approaches to policy refinement based on goal refinement focus
on the problem of deriving low-level policies the enforcement of which en-
sures the fulfillment of the initial high-level goals. Policy adherence there-
fore guarantees adherence to the abstract specifications, but the problem of
preservation of adherence under refinement is not discussed. The problem
of integrating requirements from policy specifications with system specifica-
tions, or understanding the relation between policy specifications and system
specifications where both may be represented at various abstraction levels,
is also not addressed.

8 Conclusion

In this paper we have addressed the problem of preservation of properties
under refinement in a setting of policy-based management. In particular
we have addressed the problem of adherence preservation under refinement
for development cases in which both a policy specification and a system
specification to which the policy applies may undergo refinement.

The policies are specified using Deontic STAIRS, and the systems are
specified using STAIRS. Both approaches allow specifications at various lev-
els of abstraction and are supported by refinement relations that are tran-
sitive and modular. Abstraction and refinement are desirable development
features since they allow details that are irrelevant or unimportant at a
certain development stage and from a certain viewpoint to be ignored. Ab-
straction is desirable also because analysis of specifications generally is easier
and cheaper at abstract levels, as are detection and correction of errors. For
analysis to be meaningful at abstract levels, however, the analysis results
must be preserved under refinement.

The work presented in [31] demonstrates that adherence of STAIRS sys-
tem specifications is preserved under refinement of system specifications
when the policy specification is fixed. Adherence is generally not preserved
under refinement of policy specifications, but in this paper we have pre-
sented strategies for identifying system refinements on the basis of policy
refinements such that adherence is guaranteed in the result.

The strategies utilize properties of modularity of both policy adherence
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and policy refinement, as well as the property of transitivity of refinement of
policy specifications and system specifications. This means that the problem
of preservation of analysis results under refinement can be broken down into
manageable sub-problems, and that the strategies are applicable also if only
a subset of the policy specification is refined.

In development case (a) depicted to the left in Fig. 1 of Section 2, the
property of preservation of adherence under refinement of system specifi-
cations is ensured by the fact that underspecification is reduced while the
required potential choices of behavior are preserved under refinement. This
means that behavior that represents a policy breach cannot be introduced
to the system specification under refinement. In this development case, the
requirements imposed by the policy specification are taken into account from
the very beginning of and throughout the system development process. If
the policy were taken into account only at later development phases or dur-
ing implementation, this could in the worst case result in a system that do
not have the desired functionality, thus wasting the development efforts [21].

The potential pitfall of having to backtrack and repeat parts of the sys-
tem development process is, however, present in the combined development
process depicted as case (b) in Fig. 1. The results of preservation of adher-
ence are based on removing traces from the system specification that have
become inadmissible after a step of policy refinement. Since some the re-
quirements imposed by the refined policy specification were not taken into
account by the abstract system specification, it may be that the refinement
of the system specification requires removal of traces that are critical for the
desired system functionality. The results of this paper are nevertheless a step
towards establishing methods for an integrated process of policy and system
development that are supported by modeling languages, precise notions of
refinement, and results of adherence preservation. A mature method should
be supported by pragmatic development guidelines and tools to assist de-
velopers. Strategies for how to avoid backtracking and redesign should also
be developed. The development of such guidelines, strategies and tools are
directions for future work.

A further topic for future work is to investigate our approach to adher-
ence preserving refinement with respect to completeness. A policy specifi-
cation can be refined in various ways, and in this paper we have focused
on refinement of individual policy rules by reduction of underspecification.
Completeness of a method for adherence preserving refinement means that
the method offers development rules that ensure preservation of adherence
for all valid refinements.

Understanding and formalizing the relation between policy specifications
and system specifications are important and beneficial as it allows the re-
quirements imposed by the policy to be taken into account from the very
initial phases of the development process. Since Deontic STAIRS is a generic
approach to policy-based management, requirements with respect to vari-
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ous issues such as security, trust, service level and access control can be
integrated with the system development process.
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A Formal Definitions

The functions ⌢, S© and T© are for concatenation of sequences, filtering of
sequences and filtering of pairs of sequences, respectively. Concatenation is
to glue sequences together, so h1 ⌢ h2 is the sequence that equals h1 if h1

is infinite. Otherwise it denotes the sequence that has h1 as prefix and h2

as suffix, where the length equals the sum of the length of h1 and h2. By
E S©h we denote the sequence obtained from the sequence h by removing
all elements from h that are not in the set of elements E. For example,
{1, 3} S© 〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉. The filtering function T© is described as
follows. For any set of pairs of elements F and pair of sequences t, by F T©t
we denote the pair of sequences obtained from t by truncating the longest
sequence in t at the length of the shortest sequence in t if the two sequences
are of unequal length; for each j ∈ {1, . . . , k}, where k is the length of the
shortest sequence in t, selecting or deleting the two elements at index j in the
two sequences, depending on whether the pair of these elements is in the set
F . For example, we have that {(1, f), (1, g)} T© (〈1, 1, 2, 1, 2〉, 〈f, f, f, g, g〉) =
(〈1, 1, 1〉, 〈f, f, g〉). See [31] for the formal definitions.

Definition 11. Parallel composition.

H1 ‖ H2
def
= {h ∈ H | ∃s ∈ {1, 2}∞ : π2(({1} × E) T© (s, h)) ∈ H1 ∧

π2(({2} × E) T© (s, h)) ∈ H2}

Definition 12. Sequential composition.

H1 % H2
def
= {h ∈ H | ∃h1 ∈ H1, h2 ∈ H2 : ∀l ∈ L : e.l S©h = e.l S©h1 ⌢ e.l S©h2}

{1, 2}∞ is the set of all infinite sequences over the set {1, 2}, and π2 is
a projection operator returning the second element of a pair. The infinite
sequence s in the definition can be understood as an oracle that determines
which of the events in h that are filtered away. E denotes the set of all
events, and the expression e.l denotes the set of events that may take place
on the lifeline l, where L denotes the set of all lifelines. The formal definition
is as follows.

e.l
def
= {e ∈ E | (k.e = ! ∧ tr.e = l) ∨ (k.e = ? ∧ re.e = l)}

An event e is a pair (k,m) of a kind k ∈ {!, ?} and a message m, where !
denotes a send event and ? denotes a receive event. A message m is a tuple
(s, tr, re) of a signal s, a transmitter tr and a receiver re. Both tr and re
are lifelines. The functions

k. ∈ E → {!, ?} tr. ∈ E → L re. ∈ E → L

yield the kind, transmitter and receiver, respectively, of an event.
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Definition 13. Sub-trace relation.

h1 2 h2
def
= ∃s ∈ {1, 2}∞ : π2(({1} × E) T© (s, h2)) = h1

Definition 14. For a trace set H and traces h and h′ we define the following.

H 2 h
def
= ∃h′ ∈ H : h′

2 h

h′
2/ h

def
= ¬(h′

2 h)

H 2/ h
def
= ¬∃h′ ∈ H : h′

2 h

H2
def
= {h ∈ H | ∃h′ ∈ H : h′

2 h}

Definition 15. Adherence of system specifications S to policy rules r as
defined in [31].

(pe, dt, db) →
′
a S

def
= ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) : ([[dt]] 2 h ⇒

∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : ([[dt]] % [[db]]) 2 h′)

(ob, dt, db) →
′
a S

def
= ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) : [[dt]] 2 h ⇒ ([[dt]] % [[db]]) 2 h

(pr, dt, db) →
′
a S

def
= ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) : [[dt]] 2 h ⇒ ([[dt]] % [[db]]) 2/ h

Definition 16. Adherence of system specification S to policy specification
P as defined in [31].

P →′
a S

def
= ∀r ∈ P : r →′

a S

Definition 17. Refinement of policy rules.

(pe, dt, db) 
′ (pe, dt, d

′
b)

def
= [[d′b]] ⊆ [[db]]

(ob, dt, db) 
′ (ob, dt, d

′
b)

def
= [[d′b]] ⊆ [[db]]

(pr, dt, db) 
′ (pr, dt, d

′
b)

def
= [[d′b]] ⊇ [[db]]

Definition 18. Refinement of policy specifications.

P1  
′ P2

def
= ∀r1 ∈ P1 : ∃r2 ∈ P2 : r1  

′ r2

Notice that by Def. 18, policy rules are allowed to be added under policy
refinement. Refinement of a policy rule (dm, dt, db) by weakening the trigger
can then be achieved by adding a rule (dm, d′t, db).
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B Proofs

Theorem 2. P →a S ⇔ P →′
a S

Proof. Each direction of the biconditional is proved separately below.

Assume: P →a S
Prove: P →′

a S
〈1〉1. Case: P = ∅

Proof: Immediately from Def. 16
〈1〉2. Case: P 6= ∅

〈2〉1. Choose arbitrary (dm, dt, db) ∈ P , dm ∈ {pe, ob, pr}
Proof: The rule exists by case assumption

〈2〉2. (dm, dt, db) →
′
a S

〈3〉1. Case: dm = pe
〈4〉1. Case: ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) : [[dt]] 2/ h

Proof: Immediate from Def. 15
〈4〉2. Case: ∃(p, n) ∈ [[S]] : ∃h ∈ (p \ n) : [[dt]] 2 h

〈5〉1. Choose arbitrary (p, n) ∈ [[S]] and h ∈ (p\n) such that [[dt]]2h
Proof: The interaction obligation and trace exist by case as-
sumption

〈5〉2. Let: [[P ]](h) = (a, u,C)
〈5〉3. ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : ([[dt]] % [[db]]) 2 h′

〈6〉1. ([[dt]] % [[db]])2 ∈ C
Proof: 〈2〉1, 〈3〉1, 〈5〉1, Def. 1 and Def. 3

〈6〉2. ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ ([[dt]] % [[db]])2
Proof: 〈6〉1, proof assumption and Def. 5

〈6〉3. Q.E.D.
Proof: 〈6〉2 and Def. 14

〈5〉4. Q.E.D.
Proof: 〈5〉1, 〈5〉3 and Def. 15

〈4〉3. Q.E.D.
Proof: The cases are exhaustive

〈3〉2. Case: dm = ob
〈4〉1. Case: ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) : [[dt]] 2/ h

Proof: Immediate from Def. 15
〈4〉2. Case: ∃(p, n) ∈ [[S]] : ∃h ∈ (p \ n) : [[dt]] 2 h

〈5〉1. Choose arbitrary (p, n) ∈ [[S]] and h ∈ (p\n) such that [[dt]]2h
Proof: The interaction obligation and trace exist by case as-
sumption

〈5〉2. Let: [[P ]](h) = (a, u,C)
〈5〉3. ([[dt]] % [[db]]) 2 h
〈6〉1. a ⊆ ([[dt]] % [[db]])2

Proof: 〈2〉1, 〈3〉2, 〈5〉1, Def. 1 and Def. 3
〈6〉2. h ∈ a

37



Proof: 〈6〉1, proof assumption and Def. 5
〈6〉3. Q.E.D.

Proof: 〈6〉1, 〈6〉2 and Def. 14
〈5〉4. Q.E.D.

Proof: 〈5〉1, 〈5〉3 and Def. 15
〈4〉3. Q.E.D.

Proof: The cases are exhaustive
〈3〉3. Case: dm = pr

〈4〉1. Case: ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) : [[dt]] 2/ h
Proof: Immediate from Def. 15

〈4〉2. Case: ∃(p, n) ∈ [[S]] : ∃h ∈ (p \ n) : [[dt]] 2 h
〈5〉1. Choose arbitrary (p, n) ∈ [[S]] and h ∈ (p\n) such that [[dt]]2h

Proof: The interaction obligation and trace exist by case as-
sumption

〈5〉2. Let: [[P ]](h) = (a, u,C)
〈5〉3. ([[dt]] 2 [[db]]) 2/ h
〈6〉1. ([[dt]] % [[db]])2 ⊆ u

Proof: 〈2〉1, 〈3〉3, 〈5〉1, Def. 1 and Def. 3
〈6〉2. h /∈ u

Proof: 〈6〉1, proof assumption and Def. 5
〈6〉3. Q.E.D.

Proof: 〈6〉1, 〈6〉2 and Def. 14
〈5〉4. Q.E.D.

Proof: 〈5〉1, 〈5〉3 and Def. 15
〈4〉3. Q.E.D.

Proof: The cases are exhaustive
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and Def. 16
〈1〉3. Q.E.D.

Proof: The cases are exhaustive
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Assume: P →′
a S

Prove: P →a S
〈1〉1. Case: P = ∅

Proof: Immediately from Def. 5 since ∀h ∈ H : [[P ]](h) = (H, ∅, ∅)
〈1〉2. Case: P 6= ∅

〈2〉1. Choose arbitrary (p, n) ∈ [[S]]
Proof: The semantics of any sequence diagram is non-empty

〈2〉2. ∀h ∈ (p \ n) :
h ∈ a ∧ h /∈ u ∧ ∀H ∈ C : ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ H
where [[P ]](h) = (a, u,C)

〈3〉1. Case: (p \ n) = ∅
Proof: Trivial

〈3〉2. Case: (p \ n) 6= ∅
〈4〉1. Choose arbitrary h ∈ (p \ n)

Proof: The trace exists by case assumption
〈4〉2. Let: [[P ]](h) = (a, u,C)
〈4〉3. h ∈ a∧h /∈ u∧∀H ∈ C : ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \n′) : h′ ∈ H

〈5〉1. h ∈ a
〈6〉1. Case: a = H

Proof: Trivial
〈6〉2. Case: a 6= H

〈7〉1. a =
⋂

{([[dt]] % [[db]])2 | (ob, dt, db) ∈ P ∧ [[dt]] 2 h}
Proof: Case assumption, Def. 1 and Def. 3

〈7〉2. ∀(ob, dt, db) ∈ P : [[dt]] 2 h ⇒ h ∈ ([[dt]] % [[db]])2
Proof: Proof assumption, and Def. 16, Def. 15 and Def, 14

〈7〉3. Q.E.D.
Proof: 〈7〉1 and 〈7〉2

〈6〉3. Q.E.D.
Proof: The cases are exhaustive

〈5〉2. h /∈ u
〈6〉1. Case: u = ∅

Proof: Trivial
〈6〉2. Case: u 6= ∅

〈7〉1. u =
⋃

{([[dt]] % [[db]])2 | (pr, dt, db) ∈ P ∧ [[dt]] 2 h}
Proof: Case assumption, Def. 1 and Def. 3

〈7〉2. ∀(pr, dt, db) ∈ P : [[dt]] 2 h ⇒ h /∈ ([[dt]] % [[db]])2
Proof: Proof assumption, and Def. 16, Def. 15 and Def. 14

〈7〉3. Q.E.D.
Proof: 〈7〉1 and 〈7〉2

〈6〉3. Q.E.D.
Proof: The cases are exhaustive

〈5〉3. ∀H ∈ C : ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ H
〈6〉1. Case: C = ∅

Proof: Trivial
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〈6〉2. Case: C 6= ∅
〈7〉1. Choose arbitrary H ∈ C

Proof: The set exists by case assumption
〈7〉2. ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ H

〈8〉1. ∃(pe, dt, db) ∈ P such that [[dt]] 2 h and
H = ([[dt]] % [[db]])2

Proof: Case assumption, Def. 1 and Def. 3
〈8〉2. Q.E.D.

Proof: 〈8〉1, proof assumption, and Def. 16 and Def. 15
〈7〉3. Q.E.D.

Proof: 〈7〉1 and 〈7〉2
〈6〉3. Q.E.D.

Proof: The cases are exhaustive
〈5〉4. Q.E.D.

Proof: 〈5〉1, 〈5〉2 and 〈5〉3
〈4〉4. Q.E.D.

Proof: 〈4〉1 and 〈4〉3
〈3〉3. Q.E.D.

Proof: The cases are exhaustive
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and Def. 5
〈1〉3. Q.E.D.

Proof: The cases are exhaustive

Theorem 3. P1 →a S ∧ P2 →a S ⇔ (P1 ∪ P2) →a S

Proof.

Prove: P1 →a S ∧ P2 →a S ⇔ (P1 ∪ P2) →a S
〈1〉1. P1 →′

a S ∧ P2 →′
a S ⇔ (P1 ∪ P2) →

′
a S

Proof: Immediate from Def. 16
〈1〉2. Q.E.D.

Proof: 〈1〉1 and Theorem 2
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Theorem 5. P1  P ′
1 ∧ P2  P ′

2 ⇒ (P1 ∪ P2) (P ′
1 ∪ P ′

2)

Proof.

Assume: 1. P1  P ′
1

2. P2  P ′
2

Prove: (P1 ∪ P2) (P ′
1 ∪ P ′

2)
〈1〉1. Choose arbitrary h ∈ H

Proof: H is non-empty
〈1〉2. Let: [[P1]](h) = (a1, u1, C1)

[[P ′
1]](h) = (a′1, u

′
1, C

′
1)

[[P2]](h) = (a2, u2, C2)
[[P ′

2]](h) = (a′2, u
′
2, C

′
2)

[[P1 ∪ P2]](h) = (a, u,C)
[[P ′

1 ∪ P ′
2]](h) = (a′, u′, C ′)

〈1〉3. a′ ⊆ a ∧
u ⊆ u′ ∧
∀H ∈ C : ∃H ′ ∈ C ′ : H ′ ⊆ H∧
∀H ′ ∈ C ′ : ∃H ∈ C : H ′ ⊆ H

〈2〉1. a′ ⊆ a
〈3〉1. a′1 ⊆ a1

Proof: Assumption 1 and Def. 7
〈3〉2. a′2 ⊆ a2

Proof: Assumption 2 and Def. 7
〈3〉3. a = a1 ∩ a2

Proof: Def. 3
〈3〉4. a′ = a′1 ∩ a′2

Proof: Def. 3
〈3〉5. Q.E.D.

Proof: 〈3〉1, 〈3〉2, 〈3〉3 and 〈3〉4
〈2〉2. u ⊆ u′

〈3〉1. u1 ⊆ u′
1

Proof: Assumption 1 and Def. 7
〈3〉2. u2 ⊆ u′

2

Proof: Assumption 2 and Def. 7
〈3〉3. u = u1 ∪ u2

Proof: Def. 3
〈3〉4. u′ = u′

1 ∪ u′
2

Proof: Def. 3
〈3〉5. Q.E.D.

Proof: 〈3〉1, 〈3〉2, 〈3〉3 and 〈3〉4
〈2〉3. ∀H ∈ C : ∃H ′ ∈ C ′ : H ′ ⊆ H

〈3〉1. Case: C = ∅
Proof: Trivial

〈3〉2. Case: C 6= ∅
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〈4〉1. Choose arbitrary H ∈ C
Proof: The trace set exists by case assumption

〈4〉2. ∃H ′ ∈ C ′ : H ′ ⊆ H
〈5〉1. H ∈ C1 ∪ C2

Proof: Def. 3
〈5〉2. Case: H ∈ C1

〈6〉1. ∃H ′ ∈ C ′
1 : H ′ ⊆ H

Proof: Assumption 1 and Def. 7
〈6〉2. C ′

1 ⊆ C ′

Proof: Def. 3
〈6〉3. Q.E.D.

Proof: 〈6〉1 and 〈6〉2
〈5〉3. Case: H ∈ C2

Proof: Symmetric to 〈5〉2
〈5〉4. Q.E.D.

Proof: 〈5〉1, 〈5〉2 and 〈5〉3
〈4〉3. Q.E.D.

Proof: 〈4〉1 and 〈4〉2
〈3〉3. Q.E.D.

Proof: The cases are exhaustive
〈2〉4. ∀H ′ ∈ C ′ : ∃H ∈ C : H ′ ⊆ H

〈3〉1. Case: C ′ = ∅
Proof: Trivial

〈3〉2. Case: C ′ 6= ∅
〈4〉1. Choose arbitrary H ′ ∈ C ′

Proof: The trace set exists by case assumption
〈4〉2. ∃H ∈ C : H ′ ⊆ H

〈5〉1. H ′ ∈ C ′
1 ∪ C ′

2

Proof: Def. 3
〈5〉2. Case: H ′ ∈ C ′

1

〈6〉1. ∃H ∈ C1 : H ′ ⊆ H
Proof: Assumption 1 and Def. 7

〈6〉2. C1 ⊆ C
Proof: Def. 3

〈6〉3. Q.E.D.
Proof: 〈6〉1 and 〈6〉2

〈5〉3. Case: H ′ ∈ C ′
2

Proof: Symmetric to 〈5〉2
〈5〉4. Q.E.D.

Proof: 〈5〉1, 〈5〉2 and 〈5〉3
〈4〉3. Q.E.D.

Proof: 〈4〉1 and 〈4〉2
〈3〉3. Q.E.D.

Proof: The cases are exhaustive
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〈2〉5. Q.E.D.
Proof: 〈2〉1, 〈2〉2, 〈2〉3 and 〈2〉4

〈1〉4. Q.E.D.
Proof: 〈1〉1, 〈1〉2, 〈1〉3 and Def. 7
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Theorem 6. P1  P2 ∧ P2 →a S ⇒ P1 →a S

Proof.

Assume: 1. P1  P2

2. P2 →a S
Prove: P1 →a S
〈1〉1. Case: P1 = ∅

Proof: Immediately from Def. 5 since ∀h ∈ H : [[P1]](h) = (H, ∅, ∅)
〈1〉2. Case: P1 6= ∅

〈2〉1. Choose arbitrary (p, n) ∈ [[S]]
Proof: The semantics of any sequence diagram is non-empty

〈2〉2. ∀h ∈ (p \ n) :
h ∈ a1∧h /∈ u1∧∀H1 ∈ C1 : ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \n′) : h′ ∈ H1

where [[P1]](h) = (a1, u1, C1)
〈3〉1. Case: (p \ n) = ∅

Proof: Trivial
〈3〉2. Case: (p \ n) 6= ∅

〈4〉1. Choose arbitrary h ∈ (p \ n)
Proof: The trace exists by case assumption

〈4〉2. Let: [[P1]](h) = (a1, u1, C1)
[[P2]](h) = (a2, u2, C2)

〈4〉3. h ∈ a1∧
h /∈ u1∧
∀H1 ∈ C1 : ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ H1

〈5〉1. h ∈ a1

〈6〉1. a2 ⊆ a1

Assumption 1 and Def. 7
〈6〉2. h ∈ a2

Proof: Assumption 2 and Def. 5
〈6〉3. Q.E.D.

Proof: 〈6〉1 and 〈6〉2
〈5〉2. h /∈ u1

〈6〉1. u1 ⊆ u2

Assumption 1 and Def. 7
〈6〉2. h /∈ u2

Proof: Assumption 2 and Def. 5
〈6〉3. Q.E.D.

Proof: 〈6〉1 and 〈6〉2
〈5〉3. ∀H1 ∈ C1 : ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ H1

〈6〉1. Case: C1 = ∅
Proof: Trivial

〈6〉2. Case: C1 6= ∅
〈7〉1. Choose arbitrary H1 ∈ C1

Proof: The trace set exists by case assumption
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〈7〉2. ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ H1

〈8〉1. Choose H2 ∈ C2 such that H2 ⊆ H1

Proof: Assumption 1 and Def. 7
〈8〉2. ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ H2

Proof: 〈8〉1 and assumption 2
〈8〉3. Q.E.D.

Proof: 〈8〉1 and 〈8〉2
〈7〉3. Q.E.D.

Proof: 〈7〉1 and 〈7〉2
〈6〉3. Q.E.D.

Proof: The cases are exhaustive
〈5〉4. Q.E.D.

Proof: 〈5〉1, 〈5〉2 and 〈5〉3
〈4〉4. Q.E.D.

Proof: 〈4〉1, 〈4〉2 and 〈4〉3
〈3〉3. Q.E.D.

Proof: The cases are exhaustive
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and Def. 5
〈1〉3. Q.E.D.

Proof: The cases are exhaustive
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Theorem 7. P1  
′ P2 ∧ P1 1 P2 ⇒ P1  P2

Proof.

Assume: 1. P1  
′ P2

2. P1 1 P2

Prove: P1  P2

〈1〉1. Choose arbitrary h ∈ H
Proof: H is non-empty

〈1〉2. Let: [[P1]](h) = (a1, u1, C1)
[[P2]](h) = (a2, u2, C2)

〈1〉3. a2 ⊆ a1 ∧
u1 ⊆ u2 ∧
∀H1 ∈ C1 : ∃H2 ∈ C2 : H2 ⊆ H1 ∧
∀H2 ∈ C2 : ∃H1 ∈ C1 : H2 ⊆ H1

〈2〉1. a2 ⊆ a1

〈3〉1. Case: a1 = H
Proof: Trivial

〈3〉2. Case: a1 6= H
〈4〉1. a1 =

⋂

{([[dt]] % [[db]])2 | (ob, dt, db) ∈ P1 ∧ [[dt]] 2 h}
Proof: Case assumption, Def. 1 and Def. 3

〈4〉2. a2 =
⋂

{([[dt]] % [[db]])2 | (ob, dt, db) ∈ P2 ∧ [[dt]] 2 h}
〈5〉1. ∃(ob, dt, db) ∈ P2 : [[dt]] 2 h

Proof: Case assumption, assumption 1, Def. 18 and Def. 17
〈5〉2. Q.E.D.

Proof: 〈5〉1, Def. 1 and Def. 3
〈4〉3. ∀(ob, dt, db1) ∈ P1 : ∃(ob, dt, db2) ∈ P2 : [[db2]] ⊆ [[db1]]

Proof: Assumption 1, Def. 18 and Def. 17
〈4〉4. ∀(ob, dt, db1) ∈ P1 : ∃(ob, dt, db2) ∈ P2 :

([[dt]] % [[db2]]) ⊆ ([[dt]] % [[db1]])
Proof: 〈4〉3 and Lemma 27 in [13] of monotonicity of ⊆ with
respect to %

〈4〉5. Q.E.D.
Proof: 〈4〉1, 〈4〉2, 〈4〉4 and Lemma 1

〈3〉3. Q.E.D.
Proof: The cases are exhaustive

〈2〉2. u1 ⊆ u2

〈3〉1. Case: u1 = ∅
Proof: Trivial

〈3〉2. Case: u1 6= ∅
〈4〉1. u1 =

⋃

{([[dt]] % [[db]])2 | (pr, dt, db) ∈ P1 ∧ [[dt]] 2 h}
Proof: Case assumption, Def. 1 and Def. 3

〈4〉2. u2 =
⋃

{([[dt]] % [[db]])2 | (pr, dt, db) ∈ P2 ∧ [[dt]] 2 h}
〈5〉1. ∃(pr, dt, db) ∈ P2 : [[dt]] 2 h

Proof: Case assumption, assumption 1, Def. 18 and Def. 17
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〈5〉2. Q.E.D.
Proof: 〈5〉1, Def. 1 and Def. 3

〈4〉3. ∀(pr, dt, db1) ∈ P1 : ∃(pr, dt, db2) ∈ P2 : [[db1]] ⊆ [[db2]]
Proof: Assumption 1, Def. 18 and Def. 17

〈4〉4. ∀(pr, dt, db1) ∈ P1 : ∃(pr, dt, db2) ∈ P2 :
([[dt]] % [[db1]]) ⊆ ([[dt]] % [[db2]])

Proof: 〈4〉3 and Lemma 27 in [13] of monotonicity of ⊆ with
respect to %

〈4〉5. Q.E.D.
Proof: 〈4〉1, 〈4〉2, 〈4〉4 and Lemma 1

〈3〉3. Q.E.D.
Proof: The cases are exhaustive

〈2〉3. ∀H1 ∈ C1 : ∃H2 ∈ C2 : H2 ⊆ H1

〈3〉1. Case: C1 = ∅
Proof: Trivial

〈3〉2. Case: C1 6= ∅
〈4〉1. Choose arbitrary H1 ∈ C1

Proof: The trace set exists by case assumption
〈4〉2. ∃H2 ∈ C2 : H2 ⊆ H1

〈5〉1. Choose (pe, dt, db1) ∈ P1 such that H1 = ([[dt]] % [[db1]])2
Proof: The permission rule exists by case assumption, Def. 1
and Def. 3

〈5〉2. Choose (pe, dt, db2) ∈ P2 such that [[db2]] ⊆ [[db1]]
Proof: The permission rule exists by 〈5〉1, assumption 1, Def. 18
and Def. 17

〈5〉3. ([[dt]] % [[db2]])2 ∈ C2

Proof: 〈5〉2, Def. 1 and Def. 3
〈5〉4. ([[dt]] % [[db2]]) ⊆ ([[dt]] % [[db1]])

Proof: 〈5〉2 and Lemma 27 in [13] of monotonicity of ⊆ with
respect to %

〈5〉5. Q.E.D.
Proof: 〈5〉3, 〈5〉4 and Lemma 1

〈4〉3. Q.E.D.
Proof: 〈4〉1 and 〈4〉2

〈3〉3. Q.E.D.
Proof: The cases are exhaustive

〈2〉4. ∀H2 ∈ C2 : ∃H1 ∈ C1 : H2 ⊆ H1

Proof: Assumption 2 and Def. 9
〈2〉5. Q.E.D.

Proof: 〈2〉1, 〈2〉2, 〈2〉3 and 〈2〉4
〈1〉4. Q.E.D.

Proof: 〈1〉1, 〈1〉2, 〈1〉3 and Def. 7
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Lemma 1. H1 ⊆ H2 ⇒ H12 ⊆ H22

Proof.

Assume: H1 ⊆ H2

Prove: H12 ⊆ H22

〈1〉1. Case: H1 = ∅
Proof: Trivial since H12 = ∅ by case assumption and Def 14

〈1〉2. Case: H1 6= ∅
〈2〉1. Choose arbitrary h ∈ H12

Proof: The trace exists by case assumption and Def. 14
〈2〉2. h ∈ H22

〈3〉1. Choose h′ ∈ H1 such that h′
2 h

Proof: The trace exists by 〈2〉1 and Def. 14
〈3〉2. h′ ∈ H2

Proof: 〈3〉1 and assumption
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2 and Def. 14
〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2
〈1〉3. Q.E.D.

Proof: The cases are exhaustive
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Theorem 8. P1  
′ P2 ∧ ∀r2 ∈ P2 : ∃r1 ∈ P1 : r1  

′ r2 ⇒ P1 1 P2

Proof.

Assume: 1. P1  
′ P2

2. ∀r2 ∈ P2 : ∃r1 ∈ P1 : r1  
′ r2

Prove: P1 1 P2

〈1〉1. Choose arbitrary h ∈ H
Proof: H is non-empty

〈1〉2. Let: [[P1]](h) = (a1, u1, C1)
[[P2]](h) = (a2, u2, C2)

〈1〉3. ∀H2 ∈ C2 : ∃H1 ∈ C1 : H2 ⊆ H1

〈2〉1. Case: C2 = ∅
Proof: Trivial

〈2〉2. Case: C2 6= ∅
〈3〉1. Choose arbitrary H2 ∈ C2

Proof: The trace set exists by case assumption
〈3〉2. ∃H1 ∈ C1 : H2 ⊆ H1

〈4〉1. Choose arbitrary (pe, dt, db2) ∈ P2 such that
H2 = ([[dt]] % [[db2]])2

Proof: The permission rule exists by case assumption, Def. 1 and
Def. 3

〈4〉2. Choose (pe, dt, db1) ∈ P1 such that [[db2]] ⊆ [[db1]]
Proof: The permission rule exists by assumption 2 and Def. 17

〈4〉3. ([[dt]] % [[db1]])2 ∈ C1

Proof: 〈4〉2, Def. 1 and Def. 3
〈4〉4. ([[dt]] % [[db2]]) ⊆ ([[dt]] % [[db1]])

Proof: 〈4〉2 and Lemma 27 in [13] of monotonicity of ⊆ with
respect to %

〈4〉5. Q.E.D.
Proof: 〈4〉3, 〈4〉4 and Lemma 1

〈3〉3. Q.E.D.
Proof: 〈3〉1 and 〈3〉2

〈2〉3. Q.E.D.
Proof: The cases are exhaustive

〈1〉4. Q.E.D.
Proof: 〈1〉1, 〈1〉2, 〈1〉3 and Def. 9
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Theorem 10. P1 →a S ∧ P1  P2 ⇒ P2 →a ([[S]]∆ ⊎ [[S]])

Proof.

Assume: 1. P1 →a S
2. P1  P2

Prove: P2 →a ([[S]]∆ ⊎ [[S]])
〈1〉1. Case: P2 = ∅

Proof: Immediately from Def. 5 since ∀h ∈ H : [[P2]](h) = (H, ∅, ∅)
〈1〉2. Case: P2 6= ∅

〈2〉1. Choose arbitrary (p, n) ∈ ([[S]]∆ ⊎ [[S]])
Proof: The semantics of any sequence diagram is non-empty

〈2〉2. ∀h ∈ (p \ n) :
h ∈ a2 ∧
h /∈ u2 ∧
∀H2 ∈ C2 : ∃(p′, n′) ∈ ([[S]]∆ ⊎ [[S]]) : ∀h′ ∈ (p′ \ n′) : h′ ∈ H2

where [[P2]](h) = (a2, u2, C2)
〈3〉1. Case: (p \ n) = ∅

Proof: Trivial
〈3〉2. Case: (p \ n) 6= ∅

〈4〉1. Choose arbitrary h ∈ (p \ n)
Proof: The trace exists by case assumption

〈4〉2. Let: [[P1]](h) = (a1, u1, C1)
[[P2]](h) = (a2, u2, C2)

〈4〉3. h ∈ a2 ∧
h /∈ u2 ∧
∀H2 ∈ C2 : ∃(p′, n′) ∈ ([[S]]∆ ⊎ [[S]]) : ∀h′ ∈ (p′ \ n′) : h′ ∈ H2

〈5〉1. h ∈ a2

〈6〉1. h ∈ a1

〈7〉1. ∃(p†, n†) ∈ [[S]] : (p \ n) ⊆ (p† \ n†)
Proof: Theorem 9 and Def. 3 in [31] of refinement of sets
of interaction obligations

〈7〉2. ∃(p†, n†) ∈ [[S]] : h ∈ (p† \ n†)
Proof: 〈4〉1 and 〈7〉1

〈7〉3. Q.E.D.
Proof: 〈7〉2, assumption 1 and Def. 5

〈6〉2. a2 ⊆ a1

Proof: Assumption 2 and Def. 7
〈6〉3. (a1 \ a2) ∩ (p \ n) = ∅

Proof: Def. 10, construction of [[S]]∆ and definition of ⊎
〈6〉4. Q.E.D.

Proof: 〈4〉1, 〈6〉1, 〈6〉2 and 〈6〉3
〈5〉2. h /∈ u2

〈6〉1. h /∈ u1

〈7〉1. ∃(p†, n†) ∈ [[S]] : (p \ n) ⊆ (p† \ n†)
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Proof: Theorem 9 and Def. 3 in [31] of refinement of sets
of interaction obligations

〈7〉2. ∃(p†, n†) ∈ [[S]] : h ∈ (p† \ n†)
Proof: 〈4〉1 and 〈7〉1

〈7〉3. Q.E.D.
Proof: 〈7〉2, assumption 1 and Def. 5

〈6〉2. u1 ⊆ u2

Proof: Assumption 2 and Def. 7
〈6〉3. (u2 \ u1) ∩ (p \ n) = ∅

Proof: Def. 10, construction of [[S]]∆ and definition of ⊎
〈6〉4. Q.E.D.

Proof: 〈4〉1, 〈6〉1, 〈6〉2 and 〈6〉3
〈5〉3. ∀H2 ∈ C2 : ∃(p′, n′) ∈ ([[S]]∆ ⊎ [[S]]) : ∀h′ ∈ (p′ \ n′) : h′ ∈ H2

〈6〉1. Case: C2 = ∅
Proof: Trivial

〈6〉2. Case: C2 6= ∅
〈7〉1. Choose arbitrary H2 ∈ C2

Proof: The trace set exists by case assumption
〈7〉2. ∃(p′, n′) ∈ ([[S]]∆ ⊎ [[S]]) : ∀h′ ∈ (p′ \ n′) : h′ ∈ H2

〈8〉1. Choose H1 ∈ C1 such that H2 ⊆ H1

Proof: The trace set exists by 〈7〉1, assumption 2 and
Def. 7

〈8〉2. Choose (p†, n†) ∈ [[S]] such that (p \ n) ⊆ (p† \ n†)
Proof: The interaction obligation exists by Theorem 9
and Def. 3 in [31] of refinement of sets of interaction obli-
gations

〈8〉3. h ∈ (p† \ n†)
Proof: 〈4〉1 and 〈8〉2

〈8〉4. Choose (p⋆, n⋆) ∈ [[S]] such that
∀h′ ∈ (p⋆ \ n⋆) : h′ ∈ H1

Proof: 〈8〉1, 〈8〉2, 〈8〉3, assumption 1 and Def. 5
〈8〉5. Choose (p′, n′) ∈ ([[S]]∆ ⊎ [[S]]) such that

(p′ \ n′) ⊆ (p⋆ \ n⋆)
Proof: The interaction obligation exists by Theorem 9
and Def. 3 in [31] of refinement of sets of interaction obli-
gations

〈8〉6. ∀h′ ∈ (p′ \ n′) : h′ ∈ H1

Proof: 〈8〉4 and 〈8〉5
〈8〉7. (H1 \ H2) ∩ (p′ \ n′) = ∅

Proof: 〈8〉1, Def. 10, construction of [[S]]∆ and definition
of ⊎

〈8〉8. ∀h′ ∈ (p′ \ n′) : h′ ∈ H2

Proof: 〈8〉1, 〈8〉6 and 〈8〉7
〈8〉9. Q.E.D.
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Proof: 〈8〉5 and 〈8〉8
〈7〉3. Q.E.D.

Proof: 〈7〉1 and 〈7〉2
〈6〉3. Q.E.D.

Proof: The cases are exhaustive
〈5〉4. Q.E.D.

Proof: 〈5〉1, 〈5〉2 and 〈5〉3
〈4〉4. Q.E.D.

Proof: 〈4〉1, 〈4〉2 and 〈4〉3
〈3〉3. Q.E.D.

Proof: The cases are exhaustive
〈2〉3. Q.E.D.

Proof: 〈2〉1, 〈2〉2 and Def. 5
〈1〉3. Q.E.D.

Proof: The cases are exhaustive
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Theorem 12.

{(pe, dt, db1 alt db2)} →a S ⇒

{(pe, dt, db1)} →a refuse((dt seq db2) par any) alt S

Proof.

Assume: {(pe, dt, db1 alt db2)} →a S
Prove: {(pe, dt, db1)} →a refuse((dt seq db2) par any) alt S
Let: S′ = refuse((dt seq db2) par any) alt S
〈1〉1. Case: ∀(p′i, n

′
i) ∈ [[S′]] : ∀h ∈ (p′i \ n′

i) : h /∈ [[dt]]2
Proof: Immediately from Theorem 4

〈1〉2. Case: ∃(p′i, n
′
i) ∈ [[S′]] : ∃h ∈ (p′i \ n′

i) : h ∈ [[dt]]2
〈2〉1. Choose arbitrary (p′i, n

′
i) ∈ [[S′]] and h ∈ (p′i\n′

i) such that h ∈ [[dt]]2
Proof: The interaction obligation and trace exist by case assumption

〈2〉2. ∃(p′j, n
′
j) ∈ [[S′]] : ∀h′ ∈ (p′j \ n′

j) : h′ ∈ ([[dt]] % [[db1]])2
〈3〉1. S  S′

Proof: By Theorem 11 since the set [[(dt seq db2) par any]] is single-
ton

〈3〉2. Choose (pi, ni) ∈ [[S]] such that h ∈ (pi \ ni)
Proof: The interaction obligation exists by 〈3〉1 and Def. 3 in [31]
of refinement of sequence diagrams

〈3〉3. Choose (pj , nj) ∈ [[S]] such that
∀h′ ∈ (pj \ nj) : h′ ∈ ([[dt]] % ([[db1]] ∪ [[db2]]))2

Proof: The interaction obligation exists by case assumption, proof
assumption and Theorem 4

〈3〉4. Choose (p′j , n
′
j) ∈ [[S′]] such that (p′j \ n′

j) ⊆ (pj \ nj)
Proof: The interaction obligation exists by 〈3〉1 and Def. 3 in [31]
of refinement of sequence diagrams

〈3〉5. ∀h′ ∈ (p′j \ n′
j) : h′ ∈ ([[dt]] % ([[db1]] ∪ [[db2]]))2

Proof: 〈3〉3 and 〈3〉4
〈3〉6. ∀h′ ∈ (p′j \ n′

j) : h′ ∈ (([[dt]] % [[db1]]) 2 ∪([[dt]] % [[db2]])2)
Proof: 〈3〉5, Def. 14 and Lemma 14 in [13] of left distributivity of
% over ∪

〈3〉7. ∀h′ ∈ (p′j \ n′
j) : h′ /∈ (([[dt]] % [[db2]]) ‖ H)

Proof: By construction of S′

〈3〉8. ([[dt]] % [[db2]])2 = (([[dt]] % [[db2]]) ‖ H)
Proof: Lemma 2

〈3〉9. Q.E.D.
Proof: 〈3〉4, 〈3〉6, 〈3〉7 and 〈3〉8

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and Theorem 4

〈1〉3. Q.E.D.
Proof: The cases are exhaustive
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Theorem 13.

{(ob, dt, db1 alt db2)} →a S ⇒

{(ob, dt, db1)} →a refuse((dt seq db2) par any) alt S

Proof.

Assume: {(ob, dt, db1 alt db2)} →a S
Prove: {(ob, dt, db1)} →a refuse((dt seq db2) par any) alt S
Let: S′ = refuse((dt seq db2) par any) alt S
〈1〉1. Case: ∀(p′, n′) ∈ [[S′]] : ∀h ∈ (p′ \ n′) : h /∈ [[dt]]2

Proof: Immediately from Theorem 4
〈1〉2. Case: ∃(p′, n′) ∈ [[S′]] : ∃h ∈ (p′ \ n′) : h ∈ [[dt]]2

〈2〉1. Choose arbitrary (p′, n′) ∈ [[S′]] and h ∈ (p′ \n′) such that h ∈ [[dt]]2
Proof: The interaction obligation and trace exist by case assumption

〈2〉2. h ∈ ([[dt]] % [[db1]])2
〈3〉1. S  S′

Proof: By Theorem 11 since the set [[(dt seq db2) par any]] is single-
ton

〈3〉2. Choose (p, n) ∈ [[S]] such that h ∈ (p \ n)
Proof: The interaction obligation exists by 〈3〉1 and Def. 3 in [31]
of refinement of sequence diagrams

〈3〉3. h ∈ ([[dt]] % ([[db1]] ∪ [[db2]]))2
Proof: Case assumption, proof assumption and Theorem 4

〈3〉4. h ∈ ([[dt]] % [[db1]])2 or h ∈ ([[dt]] % [[db2]])2
Proof: 〈3〉3, Def. 14 and Lemma 14 in [13] of left distributivity of
% over ∪

〈3〉5. h /∈ (([[dt]] % [[db2]]) ‖ H)
Proof: By construction of S′

〈3〉6. ([[dt]] % [[db2]])2 = (([[dt]] % [[db2]]) ‖ H)
Proof: Lemma 2

〈3〉7. Q.E.D.
Proof: 〈3〉4, 〈3〉5 and 〈3〉6

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and Theorem 4

〈1〉3. Q.E.D.
Proof: The cases are exhaustive
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Theorem 14.

{(pr, dt, db1)} →a S ⇒

{(pr, dt, db1 alt db2)} →a refuse((dt seq db2) par any) alt S

Proof.

Assume: {(pr, dt, db1)} →a S
Prove: {(pr, dt, db1 alt db2)} →a refuse((dt seq db2) par any) alt S
Let: S′ = refuse((dt seq db2) par any) alt S
〈1〉1. Case: ∀(p′, n′) ∈ [[S′]] : ∀h ∈ (p′ \ n′) : h /∈ [[dt]]2

Proof: Immediately from Theorem 4
〈1〉2. Case: ∃(p′, n′) ∈ [[S′]] : ∃h ∈ (p′ \ n′) : h ∈ [[dt]]2

〈2〉1. Choose arbitrary (p′, n′) ∈ [[S′]] and h ∈ (p′ \n′) such that h ∈ [[dt]]2
Proof: The interaction obligation and trace exist by case assumption

〈2〉2. h /∈ ([[dt]] % ([[db1]] ∪ [[db2]]))2
〈3〉1. S  S′

Proof: By Theorem 11 since the set [[(dt seq db2) par any]] is single-
ton

〈3〉2. Choose (p, n) ∈ [[S]] such that h ∈ (p \ n)
Proof: The interaction obligation exists by 〈3〉1 and Def. 3 in [31]
of refinement of sequence diagrams

〈3〉3. h /∈ ([[dt]] % [[db1]])2
Proof: Case assumption, proof assumption and Theorem 4

〈3〉4. h /∈ (([[dt]] % [[db2]]) ‖ H)
Proof: By construction of S′

〈3〉5. ([[dt]] % [[db2]])2 = (([[dt]] % [[db2]]) ‖ H)
Proof: Lemma 2

〈3〉6. h /∈ (([[dt]] % [[db1]]) 2 ∪([[dt]] % [[db2]])2)
Proof: 〈3〉3, 〈3〉4 and 〈3〉5

〈3〉7. Q.E.D.
Proof: 〈3〉6, Def. 14 and Lemma 14 in [13] of left distributivity of
% over ∪

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2 and Theorem 4

〈1〉3. Q.E.D.
Proof: The cases are exhaustive
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Theorem 15. {(dm, dt, db)} →a refuse(dt par any) alt S

Proof.

Prove: {(dm, dt, db)} →a refuse(dt par any) alt S
Let: S′ = refuse(dt par any) alt S
〈1〉1. ∀(p, n) ∈ [[S′]] : ∀h ∈ (p \ n) : h /∈ [[dt]]2

〈2〉1. Choose arbitrary (p, n) ∈ S′

Proof: The semantics of any sequence diagram is non-empty
〈2〉2. ∀h ∈ (p \ n) : h /∈ [[dt]]2

〈3〉1. ([[dt]] ‖ H) ⊆ n
Proof: By construction of S′

〈3〉2. [[dt]]2 = ([[dt]] ‖ H)
Proof: Lemma 2

〈3〉3. Q.E.D.
Proof: 〈3〉1 and 〈3〉2

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2

〈1〉2. Q.E.D.
Proof: 〈1〉1 and Theorem 4
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Lemma 2. ∀H ⊆ H : H2 = (H ‖ H)

Proof.

Prove: H2 = (H ‖ H)
〈1〉1. Case: H = ∅

〈2〉1. H2 = ∅
Proof: Def. 14

〈2〉2. (H ‖ H) = ∅
Proof: Def. 11

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2

〈1〉2. Case: H 6= ∅
〈2〉1. H2 ⊆ (H ‖ H)

〈3〉1. Choose arbitrary h ∈ H2

Proof: The trace exists by case assumption and Def. 14
〈3〉2. h ∈ (H ‖ H)

〈4〉1. Choose s ∈ {1, 2}∞ such that π2(({1} × E) T© (s, h)) ∈ H
Proof: 〈3〉1, Def. 14 and Def. 13

〈4〉2. π2(({2} × E) T© (s, h)) ∈ H
Proof: Trivial

〈4〉3. Q.E.D.
Proof: 〈4〉1, 〈4〉2 and Def. 11

〈3〉3. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and definition of ⊆

〈2〉2. (H ‖ H) ⊆ H2

〈3〉1. Choose arbitrary h ∈ (H ‖ H)
Proof: The trace exists by case assumption and Def. 11

〈3〉2. h ∈ H2

〈4〉1. Choose s ∈ {1, 2}∞ and h′ ∈ H such that
h′ = π2(({1} × E) T© (s, h))

Proof: The sequence s and trace h′ exist by Def. 11 and 〈3〉1
〈4〉2. h′

2 h
Proof: 〈4〉1 and Def. 13

〈4〉3. Q.E.D.
Proof: 〈4〉1, 〈4〉2 and Def. 14

〈3〉3. Q.E.D.
Proof: 〈3〉1, 〈3〉2 and definition of ⊆

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2

〈1〉3. Q.E.D.
Proof: The cases are exhaustive
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