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Abstract The dynamics of rhythmic movement has both
deterministic and stochastic features. We advocate a recently
established analysis method that allows for an unbiased iden-
tification of both types of system components. The determin-
istic components are revealed in terms of drift coefficients and
vector fields, while the stochastic components are assessed in
terms of diffusion coefficients and ellipse fields. The general
principles of the procedure and its application are explained
and illustrated using simulated data from known dynamical
systems. Subsequently, we exemplify the method’s merits
in extracting deterministic and stochastic aspects of various
instances of rhythmic movement, including tapping, wrist
cycling and forearm oscillations. In particular, it is shown
how the extracted numerical forms can be analysed to gain
insight into the dependence of dynamical properties on exper-
imental conditions.

1 Introduction

The quest for an adequate mathematical framework for
describing motor behaviour has a long and checkered tra-
dition in human movement science. Most efforts to date have
focussed on recurrent, deterministic features of behaviour al-
though studies accentuating variable or stochastic aspects of
human movement are on the rise. In spite of this development
the deterministic and stochastic features of human movement
are seldom assessed in conjunction. In the present paper, we
describe a recently established analysis method that allows
for the unbiased specification of deterministic and stochastic
system components. After a brief general summary of this
method, we explore its expediency in analyzing kinematic
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data that were collected during different instances of rhyth-
mic movement. The ultimate goal of this analysis is to find
mathematical descriptions that exhibit the main dynamic fea-
tures of the system under study. In order to illustrate which
features need to be covered and the merits of the advocated
approach, we shall first discuss the limitations of the methods
that have been used in recent years in the context of modelling
rhythmic movements in terms of self-sustaining oscillations
or limit cycles, either with or without noise. Invariably, these
more conventional methods are based on a priori assumptions
regarding the analytical form of the dynamics and incorpo-
ration of the system’s stochasticity.

The use of dynamical systems to account for the
qualitative features of end-effector trajectories of limb
oscillations gained momentum in the last two decades. In this
approach salient characteristics of human movement typi-
cally served as guidelines for model development. For
instance, trajectories of limb cycling describe a bounded area
in the position-velocity or phase plane may be interpreted as
indicative of a limit cycle attractor, at least when modell-
ing efforts are restricted to identifying deterministic forms,
thereby disregarding variability.

Using averaging methods from the theory of nonlinear
oscillators, such as the slowly-varying amplitude approx-
imation and harmonic balance analysis, Kay et al. (1987,
1991) derived second-order nonlinear differential equations
that mimicked experimentally observed amplitude-frequency
relation and the phase response characteristics of rhythmic
finger and wrist movements. In particular, these self-
sustaining oscillators included weak dissipative nonlinear-
ities that stabilized the limit cycle and caused a drop of
amplitude (accounted for by a Rayleigh term) and an in-
crease in peak velocity (accounted for by a van der Pol term)
with increasing movement tempo (i.e., frequency). Building
on normal form theory but aiming at a broader applicability,
Beek and Beek (1988) devised a generic method for determin-
ing, from any given oscillatory trajectory, the (minimal) non-
linear components and accompanying coefficients required
for reproducing that trajectory. Beek and Beek (1988) as-
sumed that rhythmic limb movements could be formulated
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as second-order dynamics based on an ideal mass-spring
system with additional nonlinear (polynomial) components
(dissipative or damping and conservative or stiffness terms),
summarized as the so-called W-function. They showed how
parameter values reflecting the strength of their correspond-
ing terms could be estimated graphically by plotting mea-
sured time series against conveniently chosen functional
forms to test the presence of particular polynomial terms.
A more rigorous way to compute parameter values is to
regress all state variables (e.g., position and velocity) onto
the analytical form of the W-function. Apart from the afore-
mentioned combination of Rayleigh and van der Pol oscilla-
tors, this regression yielded Duffing-like cubic stiffness for
swinging a hand-held pendulum at a given frequency and
amplitude (Beek et al. 1995). In a similar fashion but cir-
cumventing collinearity problems in the proposed regression
technique, Bootsma et al. (1998) and Mottet and Bootsma
(1999) studied the dynamics of goal-directed rhythmic aim-
ing movements in the context of a cyclical Fitts’ task. Us-
ing Beek and Beek’s (1988) graphical analysis, they iden-
tified and then incorporated Duffing and Rayleigh compo-
nents, although under specific task constraints the introduc-
tion of additional dynamical components proved necessary.
Preserving system symmetry, Mottet and Bootsma (1999)
suggested the presence of a quintic stiffness term to account
for possible overshoots and a cubic van der Pol term to sta-
bilize the oscillations for tasks with a low index of difficulty,
i.e., relatively easy tasks. Eisenhammer et al. (1991) intro-
duced an approach for extracting ordinary differential equa-
tions from experimental time series similar to that proposed
by Beek and Beek (1988), except that in their method the
experimental data are represented in a state space and the
corresponding flow vectors are approximated by polynomi-
als of the state vector components. Using this method, they
obtained, for a single oscillating limb, excellent agreement
between the limit cycle displayed by the experimental system
and the reconstructed model, in spite of the noisiness of the
data (see also Perona et al. 2000, for review). For systems of
two coupled limit cycle oscillators, however, reconstruction
was only successful for data with a sufficiently long tran-
sient trajectory and a relatively low noise level. The cycli-
cal movements studied in the aforementioned studies were
rather similar and so were the identified models. Note, how-
ever, that the limited spectrum of polynomial forms of all the
listed models reflects a crucial a priori assumption: number
and form of the polynomial coefficients are chosen by the
modeler. The fair diversity of model parameters, however,
already demonstrates that appropriate mathematical descrip-
tions of rhythmic motor behaviour may be at variance. Put
differently, all of the the summarized approaches consider
certain analytical forms of the to-be-determined dynamics.
Hence, the model output (i.e., simulated movement trajecto-
ries) can be prescribed by choosing certain parameter com-
binations that are obtained through optimal matches between
model and data, relying on the assumption that differences in
parameters reflect differences in tasks or task constraints. The
approaches further have in common that they focus on pre-

dictable (deterministic) elements of human movement. The
stochastic properties of limb oscillations, although explic-
itly acknowledged by at least some authors in this context
(e.g., Eisenhammer et al. 1991; Kay 1988), are usually con-
sidered noise that obscures the deterministic dynamics and
thus should be eliminated by means of filtering or averaging.

Recently, there has been an upsurge of studies focussing
on stochasticity as a hallmark property of human movement
that not only needs to be addressed, but also possesses func-
tional qualities (e.g., Harris and Wolpert 1998; Körding and
Wolpert 2004; Riley and Turvey, 2002; Schöner et al. 1986;
Schöner 2002). For instance, variability in endpoint trajec-
tory has been associated with task difficulty (Todorov and
Jordan 2002): variability is reduced in more difficult tasks to
comply with accuracy constraints, whereas in easier tasks the
variability is allowed to increase to enhance system flexibil-
ity. Another example of the usefulness of motor variability
can be found in studies of interlimb coordination conducted
from a dynamical systems perspective. In this context, var-
iability has been incorporated as random fluctuations to ac-
count for phenomena like critical fluctuations and critical
slowing down in the vicinity of phase transitions, that is,
situations in which a system switches between stable states
or attractors, e.g., switches from antiphase to in-phase coor-
dination (Haken et al. 1985; Kelso 1984; Post et al. 2000;
Schöner et al. 1986). In relation to the attractor strength,
the amount of random fluctuations competes with stability
and, thus, determines the flexibility of the system. That is,
strong fluctuations reflect less stable states between which
the system may readily switch, whereas weaker fluctuations
indicate more stable states that can be steadily maintained.
Formally, variability may be accounted for by incorporating
either additive or multiplicative random fluctuations yielding
stochastic differential equations. Schöner et al. (1986) and
Schöner (1990) formulated stochastic models for single- and
multi-limb movements similar to the abovementioned ‘deter-
ministic’ limit cycle models (comprising van der Pol, Duff-
ing and quintic stiffness terms) under the impact of stochastic
forces (Gaussian white noise). Schöner (1990) also suggested
similar accounts of discrete movement and postural sway, al-
beit without providing any empirical support. In recent years,
a plenitude of experimental studies has appeared concern-
ing the variable nature of human movement and posture (for
a recent review see, e.g., Riley and Turvey 2002). Most of
these studies are attempts to uncover the essence of noise by
purely statistical means, although more recently suggestions
have been made to incorporate variability within the descrip-
tion of movement via dynamical systems (e.g., Frank et al.
2001). From these examples it is evident that, analogous to the
search for adequate analytical forms in the case of determin-
istic structures, no consensus has yet been reached regard-
ing the precise mathematical implementation of variability or
stochasticity.

The extraction procedure presented here allows for a
direct assessment and evaluation of the deterministic and
stochastic parts of an experimental system of interest as
represented by empirical data. Thus, the method may render
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an objective analysis tool that is, in principle, independent of a
priori assumptions regarding the analytical form of the under-
lying dynamics. Possible changes of the dynamic structure
due to altered experimental circumstances can be pinpointed
by analyzing the extracted dynamics in its corresponding
phase space. In the present study, this procedure will be
explained in more detail and illustrated using both numeri-
cally simulated time series and experimentally obtained
human movement data (finger tapping, wrist and forearm
cycling).

2 Extraction procedure

Since its introduction (Friedrich and Peinke 1997), the extrac-
tion procedure has found application in physics (e.g.,
Friedrich and Peinke 1997; Waechter et al. 2003), engineer-
ing (Gradisek et al. 2000, 2002b), economics (Friedrich et
al. 1997), sociology (Kriso et al. 2002) and meteorology
(Sura 2003). The method has been successfully tested by
analyzing simulated data from known dynamical systems
such as nonlinear oscillators and chaotic systems (see, e.g.,
Gradisek et al. 2000; 2002a, 2002b; Siegert et al. 1998).
Friedrich et al. (2000) introduced the method in the biological
domain by investigating different types of tremor, while
Kuusela et al. (2003) presented analyses of heart-rate fluc-
tuations in humans suggesting new diagnostic tools. Before
discussing its application in the study of human movement,
we outline the method’s fundamental principles, discuss its
mathematical details and provide an analytical example.

2.1 General principles

Stochastic behaviour can be considered as the time evolu-
tion of a process under the impact of random fluctuations.
By definition, the future states of a stochastic process can-
not be predicted unambiguously from its present state. Any
prediction is conditional upon the probability that a certain
future state will occur, that is, to find the system’s state at
a certain instant in time in a specific area in state space.
A collection of such probabilities indicating the likelihood
of the occurrence of specific states is called a probability dis-
tribution function. The distribution function can be charac-
terized by various statistical quantities such as its moments or
cumulants. In combination, these properties provide a com-
pact description of the stochastic process of interest. The
first cumulant is the mean, the second the variance, the third
the skewness of the distribution (or the process), and so on.
For example, a normal, or Gaussian, distribution describes
the probability of finding a single system in a specific state
and is solely specified by its mean and standard deviation
(i.e., square root of the variance). For the general mathemati-
cal framework considered here, however, probability depends
on state space location as well as on time so that, in order to
describe both the probability distribution and its cumulants
a (virtual) ensemble of systems is required, implying that,

e.g., mean and variance are computed over an ensemble of
systems rather than over the evolution of a single system. Put
differently, the probability distribution is given via a distri-
bution of a (virtual) collection of identical systems that inter-
mingle as the result of their spontaneous evolution influenced
by random fluctuations. If the process is diffusive, then the
first two cumulants determine the dynamics of the probability
distribution while higher cumulants are irrelevant (i.e., there
are no jumps in the evolution of the probability distribution,
see, e.g., Honerkamp 1998, chapter 5.6). Also human move-
ment may be characterized as (the result of) a diffusion pro-
cess, because it can often be captured in the form of common
stochastic differential equations, that is, a dynamical sys-
tem (or differential forms) comprising both deterministic and
stochastic components. The unique link between these deter-
ministic and stochastic components and the first two cum-
ulants of the corresponding probability distribution is well
documented (Gardiner 2004; Kramers 1940; Moyal 1949;
Risken 1989; Stratonovich 1963) and has provided a theo-
retical framework for understanding the interaction between
deterministic and random features (Haken 1983).

2.2 Notation and forms

The extraction of the deterministic and stochastic compo-
nents is based on the calculation of probability distributions.
Since we view human movement as a deterministic system
with noise that obeys (a system of) stochastic differential
equation(s), the time evolution of the corresponding proba-
bility distribution can be described by an equation of motion,
which in general may be written in the form:

d

dt
P(x, t) = LFP P(x, t), (1)

where P(x, t) denotes the probability distribution, i.e.,∫ x+dx
x P

(
x ′, t

)
dx ′ is the probability of finding the system’s

state at time t in the interval [x, x + dx], and LFP refers to
an arbitrary form (operator) that may also depend on space
and time. Suppose we have a diffusion process that can be
expressed in the form of the so-called generalized Langevin
equation:

ξ̇ = f (ξ) + g(ξ)�[t], (2)

ξ = ξ (t) denotes some arbitrary function describing the
system’s present state, with the dot-notation ξ̇ indicating
differentiation with respect to time. 1 The functions f and
g represent the deterministic and stochastic components of
the system, respectively. That is, f combines all deterministic
forces acting on ξ , and g represents possible state dependent

1 In accounting for (bio)mechanical features of human movement,
typically second-order deterministic dynamical systems that include
inertia are exploited (that may yield nonlinear oscillators like the ones
discussed in, e.g., Beek et al. 1996; Haken et al. 1985; Kay et al. 1987;
Mottet and Bootsma 1999; Schöner et al. 1986). For the sake of sim-
plicity, however, we will explain the basic mathematical features in one
dimension and refer to Appendix A for further details on multidimen-
sional systems.
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Fig. 1 ε>0, Left Time series of variable x as generated with Eq. (8) for different initial conditions. Middle deterministic component of (8). Right
potential function V; the stable states are indicated by the black ‘balls’ at the bottom of the ‘wells’, the unstable state is represented by the white
‘ball’ on top of the ‘hill’

forms that modulate random fluctuations � [ t] before being
incorporated into the system’s dynamics. 2 The numerical
representations of the functions f and g are the central quan-
tities of the method discussed here as they represent the val-
ues to be extracted. For the moment we restrict the extraction
to autonomous systems for which f and g depend explicitly
on the state variable but not on time, that is, we consider
time-invariant deterministic and stochastic components. For
a Langevin Eq. (2) the form LFP in Eq. (1) readily becomes:

LFP = − ∂

∂x

{

D(1)(x) − ∂

∂x
D(2)(x)

}

(3)

This yields a diffusion equation, the so-called Fokker–Planck
equation:

∂

∂t
P(x, t) = − ∂

∂x

{

D(1)(x) − ∂

∂x
D(2)(x)

}

P(x, t), (4)

D(1)(x) and D(2)(x) are identified as drift and diffusion coeffi-
cients, respectively. Specifically, the deterministic and sto-
chastic parts f and g of the Langevin equation (2) are related
to the drift and diffusion coefficients D(1)(x) and D(2)(x) in
the Fokker–Planck equation (4) by means of:

f (x) = D(1)(x) and g(x) =
√

2D(2)(x). (5)

Hence, the original Langevin equation can be rewritten as:

d

dt
ξ = D(1)(ξ) +

√
2D(2)(ξ)�[t] (6)

and the drift coefficient corresponds to the deterministic part
of the dynamical equations, whereas the diffusion coefficient
is related to the noise. The drift and diffusion coefficients are
identical to the first- and second-order cumulants or the first
two Kramers–Moyal coefficients of the conditional probabil-
ity distribution. A cumulant of an arbitrary order n (or the nth
order Kramers–Moyal coefficients) can be computed as:

D(n)(x) = lim
τ→0

1

τ

∫ [
x ′ − x

]n

n! P
(
x ′, t + τ |x, t

)
dx ′, (7)

where τ represents an infinitesimal time step as the limit ap-
proaches zero. The conditional probability distribution
P(x ′, t ′|x, t) represents the probability of the system to be

2 �i [ t] denote independent Gaussian white noise sources with van-
ishing mean, that is, < �i [t] >= 0, < �i [t]�i [t ′] >= δi j δ(t − t ′).

found in state x ′ at time t +τ , given a previous state x at time
t. Once this probability is computed on the basis of experi-
mental data, Eq. (7) can be used to determine the drift and
diffusion coefficients.

Importantly, before applying this extraction procedure,
the general description in terms of stochastic dynamics given
by Eq. (2) needs to be validated. To this end, one has to verify
whether the system under study can be described as a Markov
process, that is, as a system whose future probability density
depends only on its present value and not on its history (see
Appendix B for a more detailed account). To exploit Eq. (7),
the data have to be binned, that is, the range of values of each
variable has to be subdivided into equally spaced parts or
bins. Every bin is represented by the coordinate(s) specifying
its centre. Subsequently, the conditional probability density
distribution P(x ′, t ′|x, t) can be determined by computing
the probability to find a sample at time t ′ in a bin with centre
x ′ assuming that at time t the previous sample was found in a
bin with centre x (note that t ′ > t). This computation has to
be carried out for all neighbouring pairs of samples and all
combinations of bins. According to (7), the resulting values
of the conditional probability density distribution are multi-
plied by their corresponding differences (raised to the power
n) so that integration over the bins of the ‘next’ sample and
scaling by the time step yields drift and diffusion coefficients.

2.3 An analytical example

To demonstrate the outlined mathematical procedure in prac-
tice we consider a dynamical system with a cubic nonlinear-
ity. In its deterministic form, the dynamics reads:3

ẋ = εx − x3 = −dV

dx
with V (x) = −ε

2
x2 + 1

4
x4, (8)

V = V(x) represents the potential function. For ε > 0, this sys-
tem has three stationary states, i.e., x = x0 = 0 as unstable
fixed point and x1,2 = ±√

ε as stable ones (see Fig. 1).
By adding white noise, system (8) becomes a stochastic

dynamics of the form:

x → ξ : ξ̇ = εξ − ξ3 + √
2Q�t . (9)

3 The system allows for a supercritical pitchfork bifurcation with
bifurcation parameter ε.
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Fig. 2 Sketch of the probability distribution Pst , and the potential func-
tion V

In view of (4) the corresponding Fokker–Planck equation can
be written as:
∂ P

∂t
= − ∂

∂x

(

εx − x3 − Q
∂

∂x

)

P. (10)

Importantly, one can explicitly compute the stationary solu-
tion of (10) by substituting P = Pst = Pst(x) or ∂ Pst

/
∂t = 0

yielding Pst ∝ e−(V/Q). Given stationarity, Pst represents the
distribution of the probability to find the system in an interval
[x, x + dx] (Fig. 2).

To illustrate the corresponding extraction of drift and
diffusion coefficients, we simulated a time series via the
numerical form of Eq. (9) yielding 106 data samples (see
Fig. 3, left panel). Figure 3 (middle and right panel) shows the
numerical values for both the extracted deterministic compo-
nent and its potential function. As can be appreciated from
these figures, the extracted dynamics match the original ana-
lytical function very well.

2.4 Short data and averaging

The quality of the extracted dynamics critically depends on
the quality of the computed transition probabilities. As is
commonly the case in statistical approaches, the number of
available data points is a vital factor because it determines
the quality of the estimates. As we need to determine transi-
tion probabilities, data points should be collected in a single
recording as this may guarantee that transition rates are con-
stant (stationary case). In studies of phenomena such as tur-
bulence (for which the approach was originally formulated),
collecting large numbers of data is, in principle, only limited
by external factors like computer capacity and the experi-
menter’s patience. In biology, in contrast, the system itself
readily provides boundaries to data collection just by virtue
of its finite life span. Besides such theoretical issues, more
practical concerns arise when studying human movement.
For instance, a participant can only perform so many vol-
untary finger oscillations before fatigue sets in. Whenever

this is the case, the dynamical process under study may no
longer be stationary and another time scale may become rel-
evant. The most common way to avoid such effects is to col-
late data recorded during multiple trials. Accordingly, when
estimating transition probabilities we apply the following
averaging procedure: (a) compute the transition probability
P(x ′, t ′|x, t) per individual trial;4 (b) average these transition
probabilities to obtain a representative transition probability
for the entire experimental set; (c) use the mean probability
in Eq. (7); in doing so we assume statistical independence of
trials and time invariance of the underlying dynamics across
recordings. The numerical estimates turn out to be rather
robust against different ways of data collection (single long
recording versus multiple short recordings) while the accu-
racy of the estimate is related to the total number of data
points (see van Mourik et al. 2005, in press).

3 Application to human movement

While the analytical example in the previous section served
to illustrate the essence of the extraction procedure, we have
yet to demonstrate the merits of the approach in studying
human movement. With this aim, we apply the procedure to
experimentally obtained kinematic data. Three types of uni-
manual cyclic movement data will be used for this purpose:
forearm oscillations (van den Berg et al. 2000), wrist cycling
and finger tapping (Beek et al. 2002). The unique qualities of
each of these instances of rhythmic movement will allow us
to highlight several aspects of the method’s potential in ana-
lyzing human movement. As the data sets in question have
already been published, we can keep the description of the
respective experimental procedures to a minimum and show
extensively how to apply the extraction method and interpret
its results. In addition to visualization techniques for drift
and diffusion coefficients, methods for direct comparison and
obtaining analytical forms will be discussed.

3.1 Experimental settings: data collection
and pre-processing

The forearm cycling data were collected in an experiment
involving 16 healthy subjects. In addition to an unpaced
condition, there were paced conditions in which the move-
ments were paced with an auditory metronome at six different
frequencies (0.5–3.0 Hz in steps of 0.5 Hz). Each condition
was repeated four times and every trial comprised 30 cycles.
The sample frequency was 500 Hz – see van den Berg et al.
(2000) for further details regarding the experimental set-up.
The wrist cycling and tapping data were collected in another
experiment in which eight healthy subjects participated. A
pacing signal was imposed for the first 25 cycles, after which
the participants had to continue oscillating at the same rate
for 35 more cycles. There were seven different pacing con-
ditions (1.5–3.0 Hz in steps of 0.25 Hz) and each condition

4 Bins must match across trials.
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Fig. 3 Left panel Part of the time series simulated via Eq. (9) with Q = 1 and time step of 0.01. Middle panel: Circles Deterministic component
of Eq. (9) obtained from the simulated time series via the extraction procedure. Line Original analytical function. Right panel: Circles Potential
function (9) obtained from the simulated time series via the extraction procedure and subsequent integration. Line Original analytical potential
function

was repeated six times. Sampling frequencies were 333 and
313 Hz for wrist cycling and finger tapping, respectively – see
van Beers et al. (2002) for more details. The synchronization
and continuation parts of the data were analysed separately.

In contrast to the analytical example we here account
for the periodicity of the movements by assuming that the
dynamical system underlying the data sets is two-dimen-
sional: position and velocity are chosen as the relevant state
variables.5 Unless stated otherwise, time series of both
components were shifted in order to eliminate possible
dc-components and, subsequently, individually rescaled to
unit variance – note that rescaling eliminates conceivable
changes in peak velocity, e.g., due to movement tempo. Fur-
thermore, to avoid possible influences of trial length we
re-sampled the data, thus guaranteeing equal numbers of sam-
ples in all conditions (equivalent to the number of samples in
the longest trial). Prior to extracting drift and diffusion coeffi-
cients, we verified that the data exhibited Markov properties
using the Chapman–Kolmogorov equation (see Appendix B).

3.2 Vector fields

The three data sets were analysed and individual results were
averaged over repetitions per experimental condition. The
extracted deterministic component consisted of two matrices,
containing the numerical values of one of the two dynamical
equations as a function of the location in phase space (i.e., in
this case, the position-velocity or phase plane) each. These
values might be interpreted as the components of vectors in
phase space. As such, they were used to reconstruct a vector
field to signify the data, i.e., creating a detailed phase space
representation of the deterministic component. In Fig. 4 vec-
tor fields are depicted using the rescaled position but non-
rescaled velocity data of forearm cycling at different pacing
frequencies. General features of self-sustaining limit cycles,
like a steady amplitude that decreases with increasing fre-
quency can be observed (note that the amplitude is fixed here
so that, in relative terms, velocity increases).

5 We numerically estimated velocity after smoothing the position
data via a polynomial filter (fifth-order Savitzky-Golay, frame size 35;
Press et al. 1994)

3.3 Direct comparison: difference fields

Rescaling both variables to unit variance allows for a di-
rect comparison of vector fields that are extracted from data
obtained under different experimental conditions. Figure 5
shows detailed differences between limit cycle attractors of
forearm cycling at different movement tempos and between
paced and unpaced movements. For the latter the uniformity
of the difference field indicates that the underlying attractors
only differ in strength while slow and fast forearm cycling
display local discrepancies, in particular during the acceler-
ation and deceleration phase of the movement.

Besides changes in trajectories as a function of task con-
ditions, different movement types can be analysed by look-
ing at the corresponding difference fields (see Fig. 5b). For
instance, when comparing tapping to wrist cycling, large
differences are observed in the deceleration phase of the

Fig. 4 Forearm cycling vector fields at different pacing frequencies.
The increase of (peak) velocity with increasing movement frequency
is clearly visible because velocity was not rescaled to unit variance. In
general, a dynamics can only be reconstructed in phase space regions
where data are actually present. This explains the limited regions in
which the vector fields are displayed. The total number of samples in
the time series bounds the (spatial) resolution of the estimates, i.e.,
the number of bins in the figure. As a consequence, the vector field
resolution decreases with increasing movement frequency due to the
accompanying increase of the vector field range and the fixed number
of bins
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Fig. 5 a Difference fields for comparing slow (0.5 Hz) and fast (3.0 Hz) movements (Left) and unpaced versus paced (1 Hz) movements (Right).
The upper and lower fields represent the to-be-compared conditions, while the centre field depicts the difference between these two vector field
representations. The darkness of the grey shading corresponds to the length of the difference vectors and can be used to assess the size distribution
of the difference field. These graphs contain forearm cycling data from a single participant. b Difference fields for comparing tapping and wrist
cycling movements (1.5 Hz, left panel) and arm versus wrist cycling movements (1.5 Hz, right panel)

flexion movement. Although this observation may seem
somewhat trivial from a mechanical point of view, because it
can easily be explained by the fact that in tapping, in contrast
to wrist cycling, a surface is hit, thereby clearly altering that
phase of the movement, it is important to keep in mind that the
analyses described in this section are meant as illustrations.
Looking at arm cycling versus wrist cycling, the correspond-
ing vector fields differ primarily in the vicinity of extreme
positions (mainly in flexion): in wrist cycling anchor points
are present that are less pronounced (or even absent) in the
arm movements.

3.4 Phase portraits

The numerical forms of the dynamical equations (first
Kramers–Moyal coefficient) can be utilised to generate time
series. In combination with the reconstructed vector field the
resulting phase portrait can provide a good impression of
the system’s dynamics in the absence of noise. Figure 6a
depicts the reconstructed deterministic dynamics for fore-
arm cycling, wrist cycling and tapping, respectively. At the
left-hand side the vector field is broader for all three move-
ments because the underlying (recorded) trajectories were
more variable in these regions. The maximum velocity also
appears to be higher for flexion than extension movements.

Comparing the three graphs, the data are clearly governed
by limit cycle attractors of different shapes. Further, anchor-
ing is most pronounced in tapping: the different sizes of the
vectors indicate a difference in the flow through the vector
field, thereby visualizing a tendency to linger at the extreme
positions.

3.5 Analytical estimates

So far, we have abstained from specifying the analytical form
of the extracted dynamical equations because even without
such a specification the analysis proposed here allows for
qualitative interpretation of the system’s dynamics. In order
to compare our results with the models in the literature we
now investigate possible analytical forms of generating self-
sustaining oscillators. Note that we determine the dynam-
ics’ functional form after the previously explained extraction.
That is, in principle, there are no restrictions to the explicit
analytical form of the dynamics but in view of the models
referred to in the introduction and the objective to account for
the aforementioned more qualitative results, we here discuss
polynomials up to the third order. For the sake of simplic-
ity we initially limit the polynomials to odd nonlinearities:
Eq. (9) was fitted to the three types of data shown in Fig. 6a;
here, x refers to the recorded position and y to the correspond-
ing velocity
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Fig. 6 a Reconstructed vector fields and phase portraits for tapping (left panel), wrist cycling (middle panel) and forearm cycling (right panel).
The pacing frequency is 1.5 Hz in all three cases. Note that for tapping both the upper and lower halves (i.e., flexion vs. extension) and their right
and left halves (i.e., acceleration vs. deceleration) are markedly different from each other. b Phase portraits generated by fitted function (Eq. 9)
of forearm cycling (left panel), wrist cycling (middle panel) and tapping (right panel)

ẋ = a01 y and ẏ = bi j xi y j with i + j ∈ [1, 3]. (11)

Figure 6b shows that this model fitting yields phase portraits

that are very similar to the reconstructed ones in the case
of forearm and wrist cycling (left and middle panels), sup-
porting earlier studies of Kay et al. (1987, 1991) and Beek
et al. (1996). For the tapping data, however, the results turn
out to be quite poor because we ignored most prominent fea-
tures like asymmetry and anchoring in constructing the model
according to Eq. (9).

To account for these features, we repeated the model
fit after including additional even terms in Eq. (9), that is,
we formally substituted i + j ∈ [0,1,2,3] on the right-hand
side. The resemblance between the resulting phase portrait
(Fig. 7, left panel) and the numerically reconstructed phase
portrait clearly improved. However, not only is the phase por-
trait still much smoother compared to the extracted dynam-
ics, the vector field that corresponds to the fitted function
(Fig. 7, right panel) does not display all anchoring effects
that are present in the data. These rather local discrepancies
hint at polynomial components of fairly high order because
polynomials are known to converge quite slowly. The proper
choice of functional forms covering all the features remains
difficult. This problem illustrates how certain features of the
movement may get lost in an inappropriate fit so that a direct
comparison as shown above might be more appropriate.

3.6 Interpretation of the stochastic component

For a two-dimensional system, the extracted stochastic com-
ponent contains four numerical values at every point in phase
space (i.e., at points at which an estimation was possible,
see above). Hence, contrasting the analysis of the determin-
istic component, an immediate display by means of vector
fields is no longer feasible. Gradisek et al. (2002a) combined
the four extracted diffusion coefficients into individual 2×2
matrices and displayed them as geometrical objects located in
the two-dimensional phase space lattice. This display allows
for a local investigation of fluctuation strengths that we illus-
trate for the case of forearm cycling in Fig. 8. As geomet-
rical objects we used ellipses whose diameters are given by
the eigenvalues of the diffusion coefficient (2×2 matrix) and
their inclination by the corresponding eigenvectors (note that
Gradisek et al. 2002a, used parallelograms instead of ellip-
ses). Since ellipses change shape when comparing peak posi-
tions and velocities with intermediate movement parts, we
find that the noise strength depends on the cycling region. Put
more formally, the fluctuations are signal dependent, which,
in general, may be incorporated as multiplicative noise in
the underlying dynamics. Interestingly, in this case the noise
had little effects on zero and maximal velocity parts of the
movement compared to other parts of the movement cycle.

To further analyse this signal dependent noise, we
individually depicted the three different components of the
diffusion coefficients (see Fig. 9). Recall that we computed
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Fig. 7 Left Phase portrait (dark grey) generated by fitted function (Eq. 9 with j ∈[0,1,2,3]) in addition to reconstructed phase portraits (light grey)
and vector fields of tapping. Right Vector field generated by fitted function

four components; however, due to symmetry two of them turn
out to be identical. Indeed these symmetric coefficients, the
cross-terms D(2)

xy , are rather weak when compared to the other
components, suggesting that there is effectively no transfer of
noise between variables. Because D(2)

xx and D(2)
yy are equally

strong we suggest that the dynamic noise affects both posi-
tion and velocity. As already discussed in Fig. 8, the noise
strength depends on the location within the movement cycle.
There, the noise strength appeared to have local minima at
extreme positions and velocities, i.e., at four distinct regions
in phase space. Figure 9, however, shows that D(2)

xx is ‘respon-
sible’ for the minimal noise at the extreme positions whereas
D(2)

yy ‘causes’ the minimal noise at the extreme velocities.

4 Discussion

In the present contribution we described a recently devel-
oped analysis approach for dynamical systems subject to both
deterministic and stochastic influences. Building on its suc-
cessful use in the treatment of problems in physics and related

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Position/σ

V
el

oc
ity

/σ

Fig. 8 Visualization of extracted noise coefficients from forearm
cycling (movement tempo was 1.5 Hz); see text for explanation

fields, we explored its expedience in studying instances of
rhythmic movement. Before speculating on the prospects of
the analysis of deterministic and stochastic data components
in general, we first recapitulate the illustrated merits of the
approach in the study of human movement.

4.1 Analysis of human movement data

The dynamical system that is assumed to underlie recorded
time series can be depicted by means of its corresponding
vector field. In Figs. 5 and 6 we showed how extracted vector
fields might be compared in terms of difference fields. This
technique uncovers relative differences between the deter-
ministic dynamics of, for instance, two movement conditions.
Areas in phase space where marked differences occurred
could be identified and interpreted in terms of their respective
experimental constraints (e.g., flexion/extension differences,
‘discontinuities’ like in tapping and anchoring phenomena).
Notice that the interpretations of the vector fields suggested
here are by no means exhaustive; they merely served as easily
accessible examples of the kind of information one might be
able to glean from the extracted deterministic dynamics. Of
course, this also applies to the interpretation of the stochastic
component as illustrated in the context of the ellipse fields
(as opposed to vector fields). In combination with the study
of local effects of deterministic forms this may provide in-
sight into the dynamical structure and the structure of noise
as functions of location in phase space, also in relation to
experimental conditions. Indeed, these functions are not pre-
scribed, i.e., no additional assumptions regarding an appro-
priate analytical form are required. If desired, however, ana-
lytical functions can be mapped onto the extracted dynamics,
e.g., to quantitatively compare findings with earlier studies.
Then, vector fields like the ones depicted here can provide
means to constrain the modeler’s intuition in choosing rele-
vant analytical terms when seeking to reconstruct a particu-
lar dynamics. In particular, in the present analysis, particular
dissipative terms (e.g., Rayleigh and van der Pol) were read-
ily identified as deterministic components of a limit cycle
description of smooth rhythmic movements in which iner-
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Fig. 9 Extracted diffusion coefficient, components depicted separately; see text for explanation

tia and impact forces played a marginal role, whereas higher
order terms and more dimensions turned out to be indispens-
able in reconstructing the dynamical equations of motion for
tapping. Difference fields between extracted and modeled
dynamics may be of help in evaluating the quality of the
derived models (e.g., tapping trajectories cannot be recov-
ered by use of self-sustaining limit cycle oscillators with odd
nonlinearities). In sum, the approach presented in this paper
provides a solid, unbiased analysis tool for multidimensional
dynamical systems consisting of deterministic and stochas-
tic components. Unlike earlier approaches to extract ordinary
differential equations for rhythmic movement like those of
Beek and Beek (1988) and Eisenhammer et al. (1991), it
does not require any a priori assumptions like finite poly-
nomials, either for the drift or for the diffusion coefficient;
furthermore, unlike those previously applied approaches, it
is capable of extracting stochastic components.

4.2 Future prospects for analysis of deterministic structures
in human movement

As explained above, the region in phase space where the
dynamics can be extracted is confined to the area where
data are present. In case of limit cycle behaviour like that of
limb cycling movements, this region is typically restricted to
the immediate vicinity of the (hypothetical) limit cycle. The
‘width of the vicinity’ is determined by the noise strength
relative to the attractor strength and one may opt to increase
noise in order to be able to cover a larger portion of the
phase space in the analysis. However, considering that the
structured manipulation of the noise strength can be diffi-
cult (e.g., Breeden et al. 1990), we suggest exploiting the
transient behaviour of a dynamics rather than trying to add
random perturbations. For instance, imposing distinct initial
conditions from where the system starts relaxing towards its
stable regime may allow for scanning dynamical properties at
locations that will never be visited in steady-state behaviour.
The trial-for-trial variation of initial transients in combina-
tion with the averaging of extracted transition probabilities
is thus a means to scan the dynamics throughout the phase
space.

4.3 Future prospects for analysis of stochasticity in human
movement

van Beers et al. (2004) discerned three processes in which
noise arises that may contribute to movement variability:
target localization, movement planning and movement exe-
cution. These three stages may be subdivided into substages.
For example, movement execution may be investigated at
various levels, including neural signals, muscle activation,
kinematic profiles and task performance. At all these levels
variability is present to some degree. Contrary to the assump-
tion of van Beers et al. (2002) that the central nervous system
organizes movements in order to minimize the ‘detrimental
effects’ of all these noise sources, it appears that the variabil-
ity has functional qualities (see introduction). In the study
of human movement, numerous efforts have been made to
identify the origin and form of variability at all these levels.
Because of the diversity of levels of investigation, interpreta-
tions of variability and (single) quantitative measures used,
the chances of such studies amalgamating are slim at best.
With the extraction procedure presented here, the stochastic
element of human movement can be extracted and analysed
in an unbiased way. The fact that it produces not a single
but a phase space-dependent measure allows for much more
detailed investigations of variability. Moreover, the effects of
noise contribution in, for example, target localization versus
movement planning versus movement execution could be dis-
cerned by tuning experimental conditions in such a way that
these effects can be separated (van Beers et al. 2004) and their
relative contributions compared by means of the extracted
stochastic component. Likewise, the effects of measurement
noise (i.e., noise due to experimental measurement devices)
versus dynamical noise (i.e., noise inherent to the system un-
der study) could be addressed as suggested by Siefert et al.
(2003) and Frank et al. (2004).

5 Conclusion

The main advantage of the analysis explained here over con-
ventional approaches is that the separation of the dynamics
into Kramers–Moyal coefficients allows for detailed studies
of deterministic and stochastic parts in dynamical systems
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with noise. The method does not require any assumptions
regarding possible analytical forms of the underlying, gener-
ating dynamics and can thus be viewed as an entirely unbiased
tool. Furthermore, not only the steady-state but also tran-
sient behavior can be invoked which may actually improve
numerical estimates by increasing the phase space area that
is accessible for analysis.

Appendix

A Multidimensional forms

We reformulate the earlier introduced mathematical forms by
means of n-dimensional dynamical systems (boldface char-
acters represent vectors, matrices or tensors). For an
n-dimensional system the Fokker–Planck operator in Eq. (1)
has the form

LFP = −∇x

{
D(1)(x) − ∇x D(2)(x)

}
,

where ∇x denotes the gradient operator with respect to state
variables x. Accordingly, the Fokker–Planck equation
becomes:
∂

∂t
P(x, t) = −∇x

{
D(1)(x) − ∇x D(2)(x)

}
P(x, t)

with Kramers–Moyal coefficients:

D(n)(x) = lim
τ→0

1

τ

∫ [
x ′ − x

]n

n! P
(
x ′, t + τ |x, t

)
dx ′.

In view of the Pawula theorem, i.e., if D(n=4)(x) = 0 holds
and, thus, all cumulants of order three and higher vanish, the
corresponding dynamical system describes a Gauss diffusion
process by means of the (Stratonovich-)Langevin equation:

d

dt
ξ = D(1)(ξ) +

[
2D(2)(ξ)

]1/2 · �[t].

B Markov properties and the Chapman–Kolmogorov test

The sketched approach requires the system to be a Markov
process. We denote the system’s state variables by x and
P(x′, t ′|x, t) is the probability density to find the system at
time t ′ at state x′ presuming the previous state x at time
t (t ′′ ≥ t ′ ≥ t). Then we can test for Markov properties by
verifying the integral Chapman–Kolmogorov equation:

P
(
x ′′, t ′′|x, t

) =
∫

P
(
x ′′, t ′′|x ′, t ′

)
P

(
x ′, t ′|x, t

)
dx ′

︸ ︷︷ ︸
=P̃(x ′′,t ′′|x,t)

.

That is, we calculate conditional probabilities for the time
differences t ′′ − t , t ′′ − t ′, etc., and compare the resulting
two distributions in terms of, for instance, a conventional
χ2 -statistics (Press et al. 1994, chapter 14.3, page 622):

χ2 =
∫ ∫

[
P

(
x ′′, t ′′|x, t

) − P̃
(
x ′′, t ′′|x, t

)]2

P(x ′′, t ′′|x, t) + P̃(x ′′, t ′′|x, t)
dx ′′dx .
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