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Problem Description

A particular challenge in microcontroller system is designing the logic in-
volved in the startup sequence, i.e. when power is initially applied to the sys-
tem. Advanced microcontrollers rely on a complicated interaction between
several digital and analog modules, often outside of the regular operating
range of the system.

Analog modules are inherently asynchronous and using asynchronous logic
to control them could have several advantages:

• No oscillator or clock system required

• Operation in near-threshold/sub-threshold region is possible, while tra-
ditional synchronous operation breaks down

• Direct integration with analog cells that support built-in handshaking
capability (enable/ready signals)

The student should:

• Implement a synchronous Verilog RTL model of the startup logic to be
used as a reference for further work

• Study literature and available tools (e.g. Teak/Balsa) and propose an
equivalent implementation using asynchronous techniques, such as 4-
phase dual-rail.

• Propose a protocol for analog cell interfaces to make the cells usable in
an asynchronous design

• Synthesize both the synchronous and asynchronous implementations
and simulate them with Verilog and Spice simulators

A secondary objective is to extend the startup logic with ultra-low power
features, such as real-time clock, voltage monitoring, or external event de-
tection.
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Abstract

Digital circuits designed today are almost exclusively clocked. As designs
grow in size it becomes harder to effectively distribute the various clock
signals over the circuit. The clock is also a big contribution to the power
consumption of a circuit. Some work is being done to provide alternatives to
standard synchronous design. One of these alternatives is the Balsa system.

Several versions of an asynchronous module for controlling the startup pro-
cess of a microcontroller was made in Balsa and compared to a standard
synchronous implementation. Area estimates for the best asynchronous im-
plementation gives a number that is a factor of over four larger than for the
synchronous implementation. The asynchronous implementation has other
advantages though. It has no dynamic power consumption when it is in a
stable state. Additionally it can operate closer to the sub-threshold area.

The asynchronous implementations have been tested and found working in
active HDL. Balsa generated verilog netlists in a 350 nm library from the
balsa language description. Design Compiler from Synopsys was used to get
the area estimates. The asynchronous implementations shows potential, es-
pecially with regards to reduced power consumption.
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Chapter 1

Introduction

In this thesis the design and implementation of clock-less, or asynchronous,
digital circuits is explored. More specifically, the circuit being made is a
module controlling the startup process of a microcontroller. The unit con-
trols several analog cell used in the startup process to provide a correct power
up sequence for the microcontroller. The asynchronous startup logic is com-
pared to a synchronous version to better see the benefits and drawbacks of
the asynchronous implementation. To design the circuit the Balsa system
is used, since ordinary hardware descriptive languages are geared towards
synchronous design.

Chapter 2 goes through the basics of asynchronous circuits to give a better
understanding of some of the concepts presented later in the thesis. This
includes differences between asynchronous and synchronous systems, advan-
tages and disadvantages, protocols and signaling schemes and some special
cells. It also gives an overview of power consumption and metastability.

The balsa system and hardware descriptive language (HDL) is presented in
chapter 3, to provide the base knowledge necessary to understand the balsa
code presented later in this thesis.

Chapter 4 presents the specifications given for the startup system. This in-
cludes specifications for the various analog cells and behavioral specifications
given for the startup logic controller.

The design process for the startup logic controller is described in chapter 5.
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A synchronous design is first presented, and then the various asynchronous
implementations. The interfaces used to enable communication between the
asynchronous implementations and the analog cells, are presented last.

In chapter 6 the test and synthesis process is presented and the results are
discussed. Comparison is made between the synchronous implementation and
the asynchronous ones.

Chapter 7 presents the conclusions drawn from the work in this thesis.

The balsa code description of the startup circuit is included in the appendix A
and the verilog code for the synchronous startup logic is included in appendix
B. The generated verilog code has not been included as it is implemented
with a Atmel technology, and therefor not testable without the technology
package.
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Chapter 2

Theory

2.1 Introduction to Asynchronous

Almost all digital circuits made today are almost without exception syn-
chronous circuits. This is mainly because of the many tools which make
design, simulation, verification and testing of large and complex circuits a
relatively easy task. Additionally, the fact that all signals are binary and
that all components share a common clock which defines a discrete time
when all signals should be valid [1]. The discrete time lets designers focus
their attention on functionality in stead of timing. Asynchronous circuits
also require binary signals, but the components do not share a common and
discrete time. Instead they use handshaking to sequence operations, commu-
nicate and synchronize events. This makes timing a bigger issue, but also
gives asynchronous circuits other potential benefits.

Figure 2.1 illustrates the difference between asynchronous and synchronous
circuits. In the synchronous version the clock drives the communication, and
in the asynchronous version the communication is controlled by handshakes
between components. The CTL blocks in 2.1b signify control logic blocks
that communicate with each other through handshake signals. The control
signals have to be delayed to make sure that the data passing through the
combinational logic, CL, is valid before being stored in the registers. In the
synchronous pipeline, the clock switches at a frequency that guarantees that
data through the combinational logic is valid before it is stored in the regis-
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(a) Synchronous pipeline

(b) Asynchronous pipeline

Figure 2.1: Comparison between synchronous and asynchronous pipelines

ters.

2.1.1 Potential drawbacks and gain

Asynchronous circuits have certain benefits that make them attractive, like
lower power consumption and robustness to variations in power supply and
temperature, but they are also associated with certain problems. These prob-
lems include area overhead due to handshaking circuitry and the lack of
electronic design automation (EDA) tools. A selected set of drawbacks are
discussed below:

Lack of tools:
There are few EDA tools available for a designer who wishes to design asyn-
chronous circuits, and many of the successful circuits which have been de-
signed so far have more or less been designed manually. The few tools that
are available lack the maturity needed to make designers confident about
using them and their use widespread.

Unfamiliarity:
Few electronic engineers are offered courses in asynchronous design, and are
for the most part only familiar with synchronous design. Companies are as
a result less willing to start asynchronous projects since it involves extra
training for the designers involved.
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Area overhead:
Because of the extra handshaking circuitry involved in asynchronous cir-
cuits, there may in some cases be a significant area overhead compared to
a synchronous version. Every circuit component needs circuitry to control
request and acknowledge signals, and this overhead increases not only the
area, but can also lead to extra switching. This can result in reduced speed
and increased power consumption compared.

Complex designs:
The overhead does not only decrease quality compared to the ideal case; it
could also lead to more complex designs. The added complexity, in addition to
the lack of mature tools can make asynchronous design even harder compared
to synchronous design.

Testing and debugging:
Scannable flip-flops and automated test-pattern generation has made testing
of synchronous circuits efficient and reliable. Many asynchronous design styles
introduce loops which make observability, controllability and test-pattern
generation challenging. Debugging failures can also be difficult because of the
lack of a clock. Asynchronous circuits operate at maximum possible speed at
all times, and the clock frequency can not be lowered to potentially reveal
the location of errors.

Event though there are many problems associated with asynchronous circuits
there are some potential benefits. For some applications these benefits may
outweigh the drawbacks, making an asynchronous implementation beneficial.
The potential benefits of asynchronous design are presented below.

Lower power consumption:
The activity of the global clock in a synchronous circuit makes the circuit
consume power even when it is not processing data. Some synchronous de-
signs reduce this problem with clock gating, but the clock driver still has to
constantly provide a powerful clock to always be able to reach all parts of
the circuit. In asynchronous circuits, the switching activity is local and parts
of the circuit not involved in the current operation are inactive.

Less electromagnetic noise:
A global clock makes sure that most transitions in the circuit are triggered
by the positive edge of the clock and come in intervals determined by the
clock frequency. This results in peak currents that are much higher than
the average power, causing electromagnetic noise. In asynchronous systems,
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the transitions are spread out more evenly over time, mostly consuming an
average amount of power. This greatly reduces the noise.

No clock skew:
Clock skew refers to the clock arriving at different times to different parts
of the circuit. Because of clock skew, the clock speed sometimes has to be
reduced to ensure correct operation. Because of the local handshaking, this
is not an issue in asynchronous design.

Robustness:
Asynchronous systems have no timing constraints, and can in theory wait
for a logic value to settle before continuing with the operation, thus avoiding
metastability. Asynchronous systems, in addition, are robust against physical
variations like temperature, supply voltage and fabrication parameters. This
is because the critical paths can use as long as they have to before completing,
without causing trouble for the rest of the circuit. If temperature or supply
voltage variations increase delays in the circuit, the operation will be slower,
but it will not halt.

Speed:
The critical path in synchronous designs determines the clock speed of the
entire circuit, and thus limiting the circuits overall performance by reducing
the speed of all paths. Because there is no clock limiting potential speed,
asynchronous systems will over time operate at average-case performance.

For more in depth information about the drawbacks and benefits of asyn-
chronous design [1] and [2] is recomended.

2.1.2 Protocols

Communication between different components in an asynchronous system
happens over a channel in the form of handshakes. These handshakes consists
of some sort of request and acknowledge signals in addition to eventual data
being transfered. The handshake has an active part which issues the request
and a passive part which responds with an acknowledge. If data is being
transfered the active side may either send or request data, also known as
PUSHing and PULLing. A channel where data is being actively sent is called
a PUSH channel, while a channel where the data is requested by the active
side is called a PULL channel. It is called PUSHing because the active side
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can be described as “pushing” data to the passive side. Similarly, The other
kind of transaction would be a PULL, as the data could be seen as “pulled”
from the passive side to the active side. Dataless channels also exist and is
mostly used for synchronization between different parts of the circuit. These
channels are known as sync channels.

The way components communicate with each other in an asynchronous cir-
cuit is defined in a protocol. Several different protocols for asynchronous
communication have been proposed and developed. The two most common
signaling schemes, single-rail and dual-rail, with their variations of 2- and
4-phase protocols are discussed here in some detail, while other protocols are
briefly mentioned at the end. The different protocols have benefits compared
to the others for different types of circuits.

Single-rail protocols

In single-rail protocols, each bit of data is transferred over a single line, with
the request and acknowledge signals on separate lines. The single-rail proto-
cols are often called bundled-data protocols, as the request and acknowledge
signals are bundled together with the data signal(s). The single-rail scheme
can be in the form of a 2-phase or 4-phase protocol, which differs in how
many transition events are needed to complete a data transfer.

Figure 2.2: Single-rail scheme

In figure 2.2, the black dot represents the active side of the transaction. A
request, along with the guarantee of valid data, is issued from the active to
the passive side of the channel. An acknowledgment from the passive side
means that the data is received. This transaction is a PUSH. If the data
lines had been reversed, the request would have been a request for data from
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the right. The acknowledgment would then mean that the data is valid and
ready. This other kind of transaction would be a PULL.

Single-rail control circuits are said to be speed-independent, while the data
path circuits are self-timed. These concepts are explained later. Data rep-
resentation is not affected by what single-rail protocol (2-phase or 4-phase)
is used since it is separated from the controlling wires, as opposed to the
dual-rail protocols discussed later on.

4-phase single-rail (4PSR)

As mentioned, 4-phase means that four events, are needed to complete a data
transfer. This can be illustrated as in figure 2.3. The active side of the trans-
action sets request high, followed by the passive side setting acknowledge
high when data either has been received or is ready and valid, depending on
whether the transfer is a PUSH or PULL, respectively. The active part then
responds by setting request low, followed by the passive part setting acknowl-
edge low. The active part can then start a new transaction. This is true for
both push and pull transactions. 4-phase uses twice as many signaling edges
as 2-phase, but the control circuits in 4-phase are often easier to implement.
When driving storage elements, for instance, level-controlled latches can be
driven directly from the signaling lines. The RTZ (return-to-zero) property
of the protocol also means that the control lines maintain the same logical
level after performing a transaction as they were before.

Figure 2.3: 4-phase Single-rail

2-phase single-rail (2PSR)

The 2-phase single-rail protocol interprets all transitions on the controlling
wires as a signaling event. The level of the signal (binary 0 or 1) is not
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important - just the transition - with a rising edge being equivalent to a
falling edge. Figure 2.4 illustrates this. The active side transitions the request
line, followed by the passive side transitioning the acknowledge line when the
data either has been received or is ready and valid, depending on whether the
transfer is a PUSH or PULL, respectively. Then, the active part is cleared
to initiate a new transfer.

Figure 2.4: 2-phase Single-rail

Two transitions would in theory be faster than four transitions, but as men-
tioned, the control circuits for 2-phase protocols tend to be more complex,
resulting in area overhead and possible speed degradation. The choice be-
tween 2-phase and 4-phase will depend on the function or system to be im-
plemented, and one will not be better than the other for all applications.

Dual-rail protocols

Dual-rail signaling uses two wires for each data bit being transferred, where
the request is implicit in the signal wires. It is common to represent the data
bit d with the wires dt and df , where the t and f stands for true and false.
The true wire indicates a logical 1 and the false wire indicates a logical 0.
Only one acknowledge line is needed between components. This is illustrated
in figure 2.5. The dual-rail signaling scheme uses two wires for each bit, along
with one acknowledge line, resulting in 2N + 1 wires for each data channel,
as opposed to the N + 2 wires needed for each data channel in the single-rail
protocol. As for single-rail, dual-rail comes in the form of 2-phase and 4-phase
protocols, pointing to the number of transition events needed to complete a
data transfer.
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Figure 2.5: Dual-rail scheme

4-phase dual-rail (4PDR)

In the 4-phase dual-rail protocol, it is common to use one-hot encoding,
where a valid 1 sets the true wire high, and a valid 0 sets the false wire high.
Setting both wires to logical 0 represents an empty value, which is used as
a spacer. The code words for this type of encoding is shown in table 2.6b,
while a typical transaction is shown in figure 2.6a.

(a) 4-phase dual-rail transaction

Codeword dt dt
Empty spacer 0 0

Valid 0 0 1
Valid 1 1 0
Unused 1 1

(b) Truth table for 4-phase du-
alrail protocol

Figure 2.6: communication over 4-phase dualrail protocol

A data transfer is initiated with the data wires being set to a valid value. The
other party acknowledges this by setting the acknowledge line high. The data
wires are then returned to the empty value, which the other party responds
to by setting the acknowledge line low. After this, a new transaction can be
started. Because the data is inherent in the request and all the data bits need
to be valid before an acknowledge, the protocol is said to be delay-insensitive
[1]. This can make the protocol very attractive for some implementations.
The obvious drawback with this protocol is the number of wires needed,
increasing the area and switching activity.
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2-phase dual-rail (2PDR)

Like the 4PDR protocol, the 2-phase dual-rail protocol also uses two wires
per bit. Though instead of using the levels of the wires, it uses the transitions
to encode information. The 2-phase protocol does not rely on the spacer; in
stead, a new codeword is received when exactly one wire of each bit has made
a transition. This is illustrated for a 2-bit channel in figure 2.7.

Figure 2.7: 2-phase dual-rail transaction

The true and false wires represent whether or not a logical 1 or 0 is being
transmitted and both bits has to have a transaction on exactly one wire
for data to be valid. In the figure, the transaction of the data word 00 is
initiated with a transition on the false wires of both bits, which the receiver
acknowledges by transitioning the acknowledge line. The next transaction is
of the data word 01, which is represented with the false wire of the MSB and
the true wire of the LSB having transitions, which again is acknowledged
by a transition on the acknowledge line, and so on. The 2-phase dual-rail
protocol has the advantage of decreased switching activity over the 4-phase
version, but has the same amount of wires.

Other protocols

One-hot encoding and N-of-M encoding are other types protocols that are
used, and the dual-rail protocols can be seen as subsets of these. One-hot
circuits represent n bits with 2n wires. Each line can then represent n bits
of information. The Null Convention Logic (NCL) uses a 4-phase protocol
where each wire represents either DATA or NULL [3]. In theory, an arbitrary
number of wires can be used (for instance representing 10 possible values
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with 10 wires), but typically only two wires are used, in the same way as for
dual-rail, representing true or false.

N-of-M encoding uses groups of M wires to encode data values, and considers
data to be valid as soon as N wires are activated. 1-of-2 encoding would be the
dual-rail encoding. N-of-M codes are as mentioned for the dual-rail encoding
said to be delay-insensitive [4].

Another delay-insensitive protocol, is the Phased Logic [5] which uses the
Level-Encoded 2-phase Dual-Rail (LEDR) encoding scheme. Without going
into detail, this encoding scheme uses two wires, where one wire transmits
the logical value, and the other transmits phase information.

2.1.3 Special cells

Although comprised of the same basic components, there are some basic
concepts which set synchronous and asynchronous circuits apart even at the
lowest level. Some cells that are rarely seen in synchronous circuits are very
important to asynchronous circuits, and the missing discrete time in asyn-
chronous circuits mean that special timing considerations must be taken.
These aspects are discussed below.

Asynchronous circuits can usually be constructed from the same compo-
nents as synchronous circuits. This means that they can be implemented us-
ing standard cells like AND, NAND, OR and so on from VLSI(Very-Large-
Scale-Integration) libraries and there is no need to design completely new
cells. However, some standard cells are usually essential to the design of
asynchronous circuits. Two of them are presented in the following sub sec-
tions, namely the event synchronizing C-element and the arbitrating Mutex
(mutual exclusion unit).

Muller C-element

The Muller C-element is very common in asynchronous designs, and was
originally defined by David E. Muller as a way of synchronizing events [1].
Figure 2.8 shows a gate level and transistor implementation of a C-element,
in addition to the symbol.

12



Figure 2.8: Muller C-element

There are several ways of implementing the C-element. Designing it from
scratch as a new cell will give the best performance, but it can also be con-
structed from AND and OR gates. Regardless, it has to adhere to the truth
table given in table 2.1. Here we see that the output only transitions if both
inputs have the same value. It behaves like an OR-port when the output is
high and like an AND-port when the output is low. The special behavior of
the C-element makes it well suited for synchronizing signals.

input a input b output y
0 0 0
0 1 previous y value
1 0 previous y value
1 1 1

Table 2.1: Truth table for a Muller C-element

Mutex

A mutex is employed in arbitration between circuit components trying to
access the same resource at approximately the same time. This is crucial
in an asynchronous circuit, because sometimes it is difficult to completely
determine the order in which events happen. Latches and other bi-stable
devices may become metastable if two signals try to change the state of the
device at the same time. A common 4-phase implementation involves cross-
coupled NAND gates, and has the following behavior:

The mutex has two request inputs and two corresponding grant outputs. If
both requests arrive at approximately the same time, grant 1 will be trig-
gered. Grant 2 will not be triggered until request 1 is set low. The Mutex
prevents both outputs becoming active at the same time and prevents a po-
tentially metastable state. If the requests arrive close to one another, the
Mutex may use a long time to decide [6].
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2.2 Power consumption

The power consumption in CMOS technology can be split into three main
components [7]; dynamic, leakage and short-circuit. This is shown in the
following equation:

Ptotal = Pdynamic + Pshort−circuit + Pleakage (2.1)

The first term represents the dynamic component of power, which is deter-
mined by the switching activity in the circuit. The second term is due to
the direct-path short circuit current, Isc, which arises when both the NMOS
and PMOS transistors are simultaneously active, conducting current directly
from supply to ground. The last term is the leakage component, Pleakage,
which is primarily determined by fabrication technology considerations.

2.2.1 Dynamic power dissipation

In a CMOS circuit, each node have an associated capacitance, C, consisting of
a load capacitance and parasitic capacitances. During operation, C is charged
when the node switches value from logical zero to logical one and each time an
amount of power is dissipated. The amount of power dissipated, also known
as the dynamic power component, is given in equation 2.2:

Pdynamic = αCV 2
ddfclk (2.2)

Vdd is the supply voltage, fclk is the clock frequency and α is the average
number of 0 → 1 transitions per clock cycle. Equation 2.2 assumes that a
logical one refers to the voltage Vdd, the power dissipated each transition is
then CV 2

dd. The number of transitions is given as α times fclk.
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2.2.2 Short circuit power dissipation

In static CMOS, when the input to a logic gate changes value, there will be a
short period of time when both the N- and P-network are partially conducting
while the input voltage Vin changes value. This results in short circuit power
dissipation due to the current flowing from Vdd directly to ground. Both N-
and P-networks are (partially) on when Vthn < Vin < (Vdd − |Vthp|) [8]. Here
the voltages Vthn and Vthp are the threshold voltages of the NMOS and PMOS
transistors in the logic gate. [8] states that with careful design, this power
consumption source can be kept to be less than 15 % of the dynamic power.

2.2.3 Leakage power dissipation

Leakage power is power consumption due to unintended leakage currents
flowing though transistors. The leakage current can be split into three main
components [8]: reverse-bias diode leakage on the transistor drains, tunneling
current through gate oxide, and sub-threshold leakage through the channel
of a transistor turned off. The diode leakage occurs when a transistor is
turned off and the drain/source is reverse-biased by another device. The
leakage current through the gate oxide happens if the oxide is sufficiently thin,
though the probability of leakage current drops off exponentially with oxide
thickness. The sub-threshold leakage current occurs due to carrier diffusion
between the source and the drain nodes when the gate-source voltage, Vgs,
has exceeded the weak inversion point, but is still below the threshold voltage
Vth. According to [9] the power consumption due to leakage increases with
shrinking transistor technologies and is set to exceeding total dynamic power
consumption as technology drops below the 65nm feature size.
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2.3 Metastability

Flip-flops have certain constraints with regards to the setup and hold time
of their input. Violations of these constraints make the flip-flop enter a state
where its output is unpredictable, this state is known as metastable state.
When a flip-flop is in a metastable state, its output oscillate between a logic
0 and 1. Metastability typically occurs in these cases:

• When the input signal is an asynchronous signal.

• When the clock skew/slew is too much (rise and fall time are more than
the tolerable values).

• When interfacing two domains operating at two different frequencies
or at the same frequency but with different phase.

• When the combinatorial delay is such that flip-flop data input changes
in the critical window (setup + hold window)

A common way to measure metastability is by the mean time between failure.
A simplified way of calculating the MTBF is shown in equation 2.3 [10].
The formula uses the worst case way of representing the settling time of
the flip-flop. A more accurate formula would contain an exponent on the
form eT where T depends on the settling time of the flip-flop in the case of
metastability and the difference in time between the clock period and the
propagation delay of the flip-flop.

MTBF = 1
fclkfintpd

(2.3)

Where the fclk is the frequency of the clock the flip-slop uses, fin is the
frequency of the input and tpd is the propagation delay through the flip-flop.
A more precise formula is presented in [11].
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Chapter 3

Balsa

3.1 Introduction to balsa

This chapter introduces Balsa and some of its concepts to provide the basis
necessary to understand the asynchronous design and netlist generation done
in this thesis. A more thorough description of the Balsa system and language
is given in the Balsa manual [12]. Balsa is freely distributed on the University
of Manchester’s home page [13].

Balsa is the name of both a framework for synthesizing asynchronous systems
and a hardware descriptive language (HDL) used to describe such systems. It
has been developed over several years by the ATP group (Advanced Processor
Technologies) of the School of Computer Science, University of Manchester,
and is based on the Tangram system made by Philips [12]. Balsa provides
a higher abstraction level than gate level design of asynchronous circuits by
introducing handshake components. More specifically Balsa provides a one-
to-one mapping between the language constructs used to describe a circuit
and the handshake circuit generated. While Balsa will not necessarily give the
solution with the highest performance or smallest area, it makes it easier for
the user to see the architecture of the generated circuit and make predictable
changes to the implementation when changing the code. Balsa is most of
all an attempt at building a tool capable of synthesizing large asynchronous
systems while still keeping the compilation transparent and understandable.
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A circuit described in Balsa is compiled into handshake components con-
nected together by communication channels. Communication between the
components takes place as handshakes defined by a protocol like the ones de-
scribed in subsection 2.1.2. The handshakes may transfer data between the
components or act as a control signal. If an asynchronous handshake circuit
is designed in a common HDL like verilog or VHDL the choice of communica-
tion protocol between handshake modules has to be made at an early stage,
as every component and module in the design have to follow the protocol. A
lot of effort has to be focused on making the implementation fit the protocol
during the design, rather than focusing it on functionality and optimization
of the circuit. An eventual change of protocol at a late stage would necessi-
tate a major rewrite of the circuit, though this is not the case with Balsa.
With Balsa the focus of the design is on functionality and the protocol used
is only determined when the a netlist is generated. This makes it possible to
compare the different protocols in terms of area and performance to get the
most suited implementation.

3.2 Balsa system

The balsa system consists of several tools [12], and some of the most impor-
tant ones are listed below.

• balsa-c: the compiler for the Balsa language. The output of the com-
piler is an intermediate language breeze.

• balsa-netlist: produces a netlist appropriate to the target technolo-
gy/CAD framework from a Breeze description.

• breeze2ps: a tool which produces a postscript file of the handshake
circuit graph.

• breeze-cost: a tool which gives an area cost estimate of the circuit.

• balsa-md: a tool for generating makefiles

• balsa-mgr: a graphical front-end to balsa-md with project manage-
ment facilities.

• balsa-make-test: automatically generates test harness for a Balsa de-
scription.
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• breeze-sim-control: a graphical front-end to the simulation and vi-
sualization environment

Balsa-c interprets code written in the Balsa HDL into a handshake-component
network into the intermediate breeze format. From this format cost estima-
tions, behavioral simulations and network visualizations can be performed to
improve the design. The design can also be compiled into a Verilog netlist
via balsa − netlist, which is usable for other tools. Figure 3.1 provides a
summary of the Balsa design flow.

Figure 3.1: balsa design flow

The current Balsa version supports three different protocols; 4PSR, 4PDR
and a 1-of-4 encoding scheme. Balsa also provides a few technologies for
netlist production as extension packages. Some kind of technology has to
be installed to make netlist production possible. In this design a technology
provided by Atmel used for netlist generation.
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3.3 Balsa language

This is a short introduction to the balsa language to provide the background
necessary to understand the code presented in section 5.2. For a more thor-
ough and in depth description of the balsa HDL, the balsa manual is recom-
mended [12].

As mentioned in section 3.1, the balsa HDL is closely related to the handshake
components making up the circuit implementation.

3.3.1 Language constructs

Table 3.1 present the different commands available in the balsa HDL.

Sync is a dataless handshake. The code initiates a handshake and halts the
circuit until handshake is completed.

The two operators <- and -> are used to assign data to and from channels.
<- is used to assign a value to an output channel, while -> is used to assign
a value from an input channel to either an output channel or a variable. The
:= operator is used to assign the result of an expression to a variable.

The ; operator is used to denote sequentiality between statements. If two
statements are separated by ;, the first statement is performed before the
other. On the other hand the || operator denotes concurrency. Two statements
separated by || are executed at the same time.

continue is effectively a null command. It has no effect, but may be required
for syntactic correctness in some instances. The halt command causes a
process thread to deadlock.

The loop command can cause an infinite repetition of a block of code, or it
can be finite if a while construct is added. The for loop construct is used
for iteratively laying out repetitive structures, not for behavioral description
as many are used to.

Balsa has if and case constructs to achieve conditional execution. While
case statements only have one guard expression, while if statements can
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Command Description
sync dataless handshake for control
<- handshake data transfer from an expression to

an output port
-> handshake data transfer to a variable from an

input port
:= assigns a value to a variable
; sequential operator
|| parallel operator
continue null command
halt causes deadlock
loop . . . end loop forever
loop . . . while . . . then . . . also
. . . end

conditional loop with optional initial com-
mand

for . . . in . . . then . . . end iteration used for repeating structures
if . . . then . . . else . . . end conditional execution, may have multiple

guarded commands
case . . . of . . . end conditional execution based on constant ex-

pressions
select . . . end non-arbitrated choice operator
arbitrate . . . end arbitrated choice operator
-> then . . . end handshake enclosure

Table 3.1: Balsa commands
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have several.

The select statement chooses between the two input channels by waiting
for data on either channel to arrive. The code enclosed between the select
statement and the end is executed. If there is a possibility that the inputs
arrive at the same time, the arbitrate statement must be used instead to
ensure correct operation.

Normally handshakes are points of synchronization for assignments between
channels or assignments between channels and variables. A transfer is re-
quested and when all parties to the transaction are ready, the transfer com-
pletes. After completion of the handshake, the data provider is free to remove
the data. If the data on a channel is required more than once, it must be
stored in a variable. Balsa has two language constructs that allow the hand-
shake on a channel to be held open whilst a sequence of actions completes.
The handshake is said to enclose the other commands. Handshake enclosure
can be achieved by use of the select or arbitrate command or by assigning
channels into a command using the syntax: <channels> -> then <com-
mands> end

Common operators (such as and, or, +, -, =, > and <) that you find in
almost every language are also found in the Balsa language.
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Chapter 4

Startup logic specification

4.1 Startup system

In this project a system for ensuring the correct startup sequence for a mi-
crocontroller is designed. The system is shown in figure 4.1.

Figure 4.1: Startup system with controller and analog cells

The startup system consists of a controller labeled startup logic and several
analog cells which it is meant to interface with. The specifications for the
analog cells was given as follows.
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4.2 Analog Cells

4.2.1 Power-on-Reset (POR) generator

A generator is a microcontroller peripheral that generates an active low reset
signal, porneg, when power is applied to the device. This is to ensure that the
device is powered up in a known state. In this design the POR cell monitors
the voltage from two power supplies. When both voltages are below the given
threshold, its output is a logic zero. When one of the power inputs rises above
the threshold, its output stays zero for a predefined time, Tpor, before it then
goes to a logic one.

Pin name Direction Size Comment
power1 input AVR32 POWER BITS Power supply 1 monitored

by the POR
power2 input AVR32 POWER BITS Power supply 2 monitored

by the POR
porneg output 1 Power-On Reset output - 0

: reset, 1 : not reset

Table 4.1: Pin Description for the POR

Parameter Name Default Value Used for
Threshold 1000 mV POR threshold

Tpor 100 ns minimum duration of reset

Table 4.2: Parameter list for POR

4.2.2 Voltage Monitor

A voltage monitor is a microcontroller peripheral used to monitor a power
supply voltage, and signal whether the voltage is above or below a given
threshold voltage, V Threshold. The vok signal indicates a voltage above the
threshold with a logic one, and a zero if the voltage is below the threshold.
When the cell is enabled it requires a certain amount of time, TReady, to
properly turn itself on, and the signal vok signal is not valid before that. The
voltage monitor uses the ready to indicate whether it has been turned on, a
logic one indicated that it is on. If the supply voltage is changed there is a
given delay, TMeasure, before the vok signal is updated.
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Pin name Direction Size Comment
power input AVR32 POWER BITS Power supply monitored by

the voltage monitor
enable input 1 Enable signal : 1 : enabled,

0 : disabled
ready output 1 Signals that the voltage

monitor is ready (after en-
able 0->1)

vok output 1 output - 0 :
power<threshold, 1 :
power>threshold

Table 4.3: Pin Description for a voltage monitor

Parameter Name Default Value Used for
VThreshold 1000 mV Voltage monitor threshold
TReady 1000 ns enable->ready time
TMeasure 100 ns time needed to update

vmon after a change in
power

Table 4.4: Parameter list for a voltage monitor
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4.2.3 Voltage Regulator

A voltage regulator is a device that is used to automatically maintain a
constant voltage level. This voltage regulator can supply several different
output voltages determined by the logic value of the selvdd input given in
table 4.7. The bandgap input is a reference voltage used to generate the
correct output voltage. When enabled, the voltage reference needs some time
to properly turn itself on. Correct operation is indicated by the ready signal
outputting a logic one. If the selvdd input is changed, the ready signal goes
low until the output voltage has been updated.

Pin name Direction Size Comment
powerin input AVR32 POWER BITS input from power supply
powerout output AVR32 POWER BITS output power
enable input 1 Enable signal : 1 : enabled,

0 : disabled
bandgap input 1 Bandgap reference voltage
selvdd input AVR32 VREG SELVDD

BITS
see next table

ready output 1 Signals that the voltage
monitor is ready (after en-
able 0->1)

Table 4.5: Pin Description for a voltage regulator

Parameter Name Default Value Used for
TStart 20000ns Time needed by the regula-

tor to reach target voltage
after enable 0->1

TChange 1000 ns time needed to update
powerout after a change in
selvdd

Table 4.6: Parameter list for voltage regulator
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Selvdd bandgap powerout(mV)
XXX 0 0
000 1 600
001 1 800
010 1 1000
011 1 1200
100 1 1400
101 1 1600
110 1 1800
111 1 2000

Table 4.7: Selvdd table for a voltage regulator

4.2.4 Voltage Reference

A voltage reference is a device that outputs a constant voltage regardless
of the load on the device, power supply variations, temperature changes,
and the passage of time. This specific voltage reference is modeled after a
bandgap reference voltage and is used to provide a stable voltage to the
voltage regulator. When enabled, the voltage reference needs some time to
properly turn itself on. Correct operation is indicated by the ready signal
outputting a logic one. The bandgap voltage is a voltage, but is modeled in
this project as a logic signal for the sake of simplicity. A logic one indicates
the correct bandgap voltage.

Pin name Direction Size Comment
powerin input AVR32 POWER BITS input from power supply
enable input 1 Enable signal : 1 : enabled,

0 : disabled
bandgap output 1 Bandgap reference voltage
ready output 1 Signals that the voltage

monitor is ready (after en-
able 0->1)

Table 4.8: Pin Description for a voltage reference
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Parameter Name Default Value Used for
TReady 2000 ns enable->ready time

Table 4.9: Parameter list for a voltage reference

4.3 Startup logic Controller

The following specification was given for the startup system

Two power supply inputs V DDIO1 and V DDIO2 may rise from 0v to 3.3V
(for V DDIO1) or 5V (V DDIO2). When V DDIO1 or V DDIO2 rise above
1.0V the POR cell releases its reset, porneg. As long as the reset is active the
startup logic is kept in a RESET state and every analog peripheral should
be disabled. When the reset is released the startup logic will then do the
following operations:

• Turn-on Voltage monitor #1 and check if V DDIO1>1.6V (V DDIO1
is "good").

• Turn-on Voltage monitor #2 and check if V DDIO2>3.3V (V DDIO2
is "good").

• if V DDIO1 is good and V DDIO2 is "bad": Turn-on voltage reference
#1, wait for it to be ready and then turn-on voltage regulator #1
(selvdd = 600mv).

• if V DDIO1 is bad and V DDIO2 is good: Turn-on voltage reference
#2, wait for it to be ready and then turn-on voltage regulator #2
(selvdd = 600mV).

• if V DDIO1 and V DDIO2 are good: Turn-on voltage reference #2,
wait for it to be ready and then turn-on voltage regulator #2 (selvdd
= 600mV).

• if V DDIO1 and V DDIO2 are bad, wait for one of them to be good.

• When one of the voltage regulators has been turned on (with selvdd set
to 600mV initially), the startup logic must increase the output voltage
until the third voltage monitor says "voltage OK" (Threshold = 1.6V).
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4.4 Asynchronous specification

The asynchronous implementation needs to follow the specification given in
section 4.3, other than that only one specification was given; that the 4-phase
dual-rail protocol should be used for communication.
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Chapter 5

Design

5.1 Synchronous implementation

5.1.1 Design Considerations

The synchronous startup logic interacts and controls several analog cells. As
the signals from the analog peripherals are asynchronous there is a definite
chance that the will be metastability problems on the inputs.

By using formula 2.3 in section 2.3 the MTBF can be calculated. The avail-
able clock in the implementation technology was given as 20MHz and the
given propagation delay of the flip-flops was between 0.5 ns and 1 ns de-
pending on load, temperature and other conditions. Looking at the ready
input from one of the voltage regulators where the update time TChange is
1000 ns, this gives a MTBF between 0.5µs and 1µs, which is a clearly an
unacceptable number, and this is without considering the other any other
ports as well.

A simple way of improving the MTBF is by using a slower clock, though
that will impact performance. Which could be somewhat feasible considering
that the startup logic spends a lot of time waiting for inputs from the analog
cells, however since the MTBF is very bad the improvement isn’t likely to be
good enough.
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The most common way of improving the MTBF is by adding successive flip-
flops to improve synchronization on the input [11]. This gives any metasta-
bility problems more time to settle with each successive flip-flop, with the
downside of added latency on the input and added area due to the extra
flip-flops. A two-stage synchronizer is shown below in figure 5.1, though a
three-stage synchronizer was used in the design.

Figure 5.1: Two stage synchronizer

5.1.2 Implementation

The startup logic controller was implemented as a straight forward Mealy
state machine, meaning that the next stage is dependent on both the current
state and by the values of its inputs. The specified behavior of the system is
mostly sequential with the exception when the startup logic increments the
output voltage of one of the system by incrementing the selvdd signal to one
of the voltage regulators. A simplified state diagram is shown in figure 5.2.

The system starts in the RESET state waiting for the reset signal from the
POR cell. None of the analog cells are enabled in this state. When the reset
is released it moves on to the next state MON_ON .

In the MON_ON stage the two voltage monitors monitoring the power
supply inputs are enabled. When both of the monitors have signaled that they
are ready, the startup logic moves on to their next state MON_SELECT .

In theMON_SELECT state the next state is determined by the vok signals
from the two voltage monitors. If the vok signal from monitor 2 is high, the
next state is REF2_ON . If the vok signal from monitor two is low and the
vok signal from monitor 1 is high, the next state is REF1_ON . If both
signals are low the state machine stays in the MON_SELECT state until
one of the signals goes high, and then sets the corresponding next state.
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Figure 5.2: Simplified state Diagram of the Synchronous implementation

Both REF1_ON and REF2_ON are equal in behavior, though they control
different voltage references. In both states the matching voltage reference is
enabled and the state machine loops in that state until the ready signal from
the voltage reference is set high. Then the next state is set to V REG1_ON
or V REG2_ON , depending on which state the state machine is currently
in.

In the V REG states voltage monitor 3 and the appropriate voltage regulator
is enabled and the initial selvdd value set. The state machine loops in the
state until voltage monitor 3 signals that it is ready and then the next state
is set to INC.

The state INC and INC2 controls the incrementation of the output volt-
age V DDCORE by incrementing the selvdd signal to the enabled voltage
regulator, until the vok signal from voltage monitor 3 goes high. Selvdd is
incremented whenever the voltage regulator signals that it is ready, as long
as the vok signal from voltage monitor 3 is low and selvdd haven’t been
incremented too much. By too much it is meant that the counter used to
assign selvdd its value hasn’t reached the binary value 111. Incrementing
further would make the counter over wrap and get the binary value 000.
The state machine loops from the INC state to INC2 and back again. All
the incrementation behavior is done in the INC state, the only purpose of
the INC2 state is to give voltage monitor 3 time to update its vok signal.
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Without the INC2 state the startup logic increments selvdd event though
the output voltage from the voltage regulator was over the defined threshold.
This is because there is a delay between the time when V DDCORE reaches
its threshold value and the time when voltage monitor 3 detects this. When
the vok signal is set high the state machine loops in the INC state, though
nothing is done until the state machine is reset by the reset signal from POR
going low.

Table 5.1 shows which signals and which value they need to have for the state
machine to move from the current state to the next state.

Current state Inputs values changing state Next state
RESET POR reset = 1 MON_ON
MON_ON mon1_ready, mon2_ready = 1 MON_SELECT
MON_SELECT mon2_vok = 1 REF2_ON
MON_SELECT mon2_vok = 0, mon1_ready = 1 REF1_ON
REF2_ON ref2_ready = 1 VREG2_ON
REF1_ON ref1_ready = 1 VREG1_ON
VREG2_ON mon3_ready INC
VREG1_ON mon3_ready INC
INC mon3_vok = 0, mon3_ready,

(vreg1_ready || vreg2_ready) =
1

INC2

INC2 INC

Table 5.1: Signals used to change the state
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5.2 Asynchronous Implementation

5.2.1 Description

For the asynchronous implementation two different kinds of solutions was
made, one modeled as a state machine like the synchronous implementation,
and the other written to make an optimized implementation without regard
for the readability of the code. The analog cells which the startup logic in-
teracts with are the same, with the exception that interfaces has been added
to enable communication in the specified 4-phase dual rail protocol.

Three different versions was made for both the state machine and optimized
implementations. The difference between them is the interface used to con-
nect to voltage monitor 1 and 2, meaning that the majority of the circuit is
still the same between the different versions. The corresponding state ma-
chine and optimized implementations uses the same interfaces, meaning that
state machine implementation 1 uses the same interfaces as the first opti-
mized implementation, and so on.

5.2.2 Design Considerations

Balsa doesn’t support passive pull ports. All data ports are either passive
PUSH, active PUSH or active PULL ports. The recommended replacement
is an active PUSH port enclosed by a sync select. The active PULL port on
the receiving end of the channel functions as usual. An alternative solution
is an active PULL port and an active PUSH port as earlier, but without
the using the sync channel enclosure. In this case balsa generates a so called
passivator between the two ports. A passivator is a “unit” with a passive
PUSH port connected to the active PUSH port, and a passive PULL port
connected to the active PULL port. The passivator functions as memory,
storing the data from the PUSH channel until the PULL channel requests
it, or waiting until the PUSH before acknowledging (sending the data) the
PULL. To make this work properly there need to be a matching number of
PULLs and PUSHes. If not, the procedures(threads) may end up waiting for
a PUSH that never comes, or try PULLing data that won’t be sent. This
will make the threads controlling the port lock, possibly halting the entire
module/procedure.
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5.2.3 State machine implementation

State machine implementation 1 and overall behavior

The setstate procedure consists of balsa case-statements similar to verilog
case-statements. The states themselves are also like the verilog cases used in
the synchronous startup logic, modeling the same behavior for all the states,
except the INC states and RESET state. In addition there is a final state,
DONE, where the stop variable is set to halt the main loop, stopping the
circuit. To illustrate, the code of the first two states is given below.

Listing 5.1: First two states
1 case state_r o f
2 MON_ON then
3 mon1_enable <− 1 | |
4 mon2_enable <− 1 | |
5 s e l e c t mon1_ready then
6 cont inue
7 end | |
8 s e l e c t mon2_ready then
9 cont inue

10 end ;
11 nex t s t a t e := MON_SELECT
12
13 | MON_SELECT then
14 vok1 −> vok1_t | |
15 vok2 −> vok2_t ;
16 i f vok2_t = 1 then
17 nex t s t a t e := REF2_ON
18 | vok1_t = 1 then
19 nex t s t a t e := REF1_ON
20 e l s e
21 nex t s t a t e := MON_SELECT
22 end

As with the synchronous implementation the analog cells are enabled and
the ready and vok signals from the cells are then used to determine the next
state. The big difference here is theMON_ON state where the state machine
doesn’t loop in the state, checking the input signals every iteration, instead
the circuit waits for both the ready signals before moving on to the next state.
The MON_SELECT state loops like in the synchronous implementation,
Pulling the vok signal from the interface to the analog cells every iteration.
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Like the MON_ON stage, the REF1_ON and REF2_ON stages enable
their corresponding voltage reference and wait for a ready response. When the
ready signal arrives the next state is set to V REG1_ON or V REG2_ON
depending on current state. In the V REG states voltage monitor 3 is turned
on, as well as the voltage regulator associated with the state and the initial
binary selvdd value of 000 is sent to the voltage regulator. When the ready
signals from both the voltage monitor and the enabled voltage regulator
arrives, the state machine PULLs the vok value from voltage monitor 3.
After that then next state is set to INC and the current state is saved in a
variable called prevstate. The prevstate variable is used in the INC state.

The INC state models controls the output, V DDCORE, by increment-
ing the selvdd value to the voltage regulator until the voltage is over a
given threshold. In the INC state first test the vok3_t variable which is
used to store the vok value PULLed from the voltage monitor monitoring
V DDCORE. If the vok value stored in the variable is a logic 1 the state
machine sets the nextstate variable to DONE, but if it is 0 the selvdd value
sent to the voltage regulator is incremented. This is done by incrementing a
count variable and PUSHing this value over the selvdd channel. The state
then waits for a ready signal from the voltage regulator specified by the
prevstate variable. Last the vok value is pulled and this value is tested in the
next iteration of the main loop. The state machine stays in this state until
the pulled vok value is 1.

While the the INC2 state is used to give vok3 time to properly update, a
sync channel has been added in the vok-loop for the asynchronous implemen-
tations. The sync channel initiates a handshake with an external delay cell.
When a suitable time has passed the delay cell acknowledges the handshake
and the vok-loop continues.

The additional DONE state is as mentioned used to stop the circuit. It does
this by setting the stop variable controlling the main loop. The main loop is
shown in the code below.

Listing 5.2: Main loop
1 begin
2 state_r := MON_ON;
3 loop whi l e stop = 0 then
4 s e t s t a t e ( ) ;
5 state_r := nex t s t a t e
6 end
7 end
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The final difference to the synchronous version is the lack of a RESET state.
The balsa-generated circuit has an activate_r input used to start the circuit,
which is connected to the power-on-reset signal. When this input is high the
circuit is active, while it is automatically resets when it goes low.

State machine implementation 2

An alternative to the MON_SELECT state was also made to prevent the
startup logic from looping while it waits for one or more of the the pulled vok
signals to be high. This state waits for a response to be sent instead of pulling
it directly. As there is a chance of both signals arriving at the same time the
startup logic has to arbitrate between them. If a variable called vokmutex
is zero a value is written to it depending on which signal is chosen by the
arbitration. If the variable already has been written to nothing happens and
the state continues with the next part of its behavior. The next part is a
check on the vokmutex variable to see which signal was arbitrated and using
this to set the next state. The code for the state is shown in the code below.

Listing 5.3: MON_SELECT state from state machine implementation 2
1 | MON_SELECT then
2 a r b i t r a t e vok2 then
3 i f vokmutex = 0 then
4 vokmutex := 2
5 end
6 | vok1 then
7 i f vokmutex = 0 then
8 vokmutex := 1
9 end

10 end ;
11 i f vokmutex = 1 then
12 nex t s t a t e := REF1_ON
13 | vokmutex = 2 then
14 nex t s t a t e := REF2_ON
15 end

State machine implementation 3

According to [12] the arbitration circuit generated by balsa leads to a signifi-
cant increase in area. To prevent this increase in area another implementation
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was made. Instead of doing the arbitration in the startup logic this imple-
mentation will passively wait for a data signal from the interface with the
arbitrated result. The interface is described in 5.3.5. In this implementation
there is only one channel for the vok signal from the voltage monitors. The
state waits for a handshake on the vok channel and the data sent is used to
determine the next state. The code for the state is shown in listing 5.4

Listing 5.4: MON_SELECT state from state machine implementation 3
1 | MON_SELECT then
2 vok −> then
3 case vok o f
4 1 then
5 nex t s t a t e := REF2_ON
6 | 0 then
7 nex t s t a t e := REF1_ON
8 end
9 end

5.2.4 Optimized implementation

Optimized implementation 1 and overall behavior

This implementation takes advantage of the fact that sequential circuit be-
havior can easily be modeled in balsa. A lot of the code in the state machine
is enabling an analog cell, and then waiting for one and more signals from the
cell. This is easy to model in balsa and it isn’t really necessary to use a state
machine to control this behavior. The parts of the code where data values
are pulled from the analog cells are a bit more complicated to model. Here a
while loop is required to substitute the state machine looping in a particular
state. The code in listing 5.5 models the same behavior as the MON_ON
state and part of the MON_SELECT state in subsection 5.2.3.
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Listing 5.5: code for beginning of optimized implementation 1
1 mon1_enable <− 1 | |
2 mon2_enable <− 1 | |
3 s e l e c t mon1_ready then
4 cont inue
5 end | |
6 s e l e c t mon2_ready then
7 cont inue
8 end ;
9 loop whi l e ( vok1_t or vok2_t ) = 0 then

10 vok1 −> vok1_t | |
11 vok2 −> vok2_t
12 end ;

The part of the code before the while loop is exactly like the MON_ON
state, but instead of setting the nextstate variable for use in the next iteration
of the state machine a single sequential operator is used to indicate that
the while loop is executed afterwards. The loop PULLs the vok signal from
voltage monitor 1 and 2 in each iteration and stores them in the variables
vok1_t and vok2_t. When one or both of the variables are 1 the loop exits
and the startup logic moves on to the code shown in listing 5.6.

Listing 5.6: code for selecting a voltage reference
1 i f vok2_t = 1 then
2 re f2_enable <− 1 | |
3 s e l e c t ref2_ready then
4 cont inue
5 end ;
6 vreg2_enable <− 1
7 | vok1_t = 1 then
8 re f1_enable <− 1 | |
9 s e l e c t ref1_ready then

10 cont inue
11 end ;
12 vreg1_enable <− 1
13 end ;

This part of the code handles the selection of which of the voltage references
and voltage regulators are to be turned on. Depending on the vok1_t and
vok2_t variables either voltage reference 1 is turned on or voltage reference
2 is turned on. When the voltage reference that is turned on signals that it
is ready the corresponding voltage regulator is turned on. After this voltage
monitor 3 is turned turned on, while the other two voltage monitors are
turned off. When voltage monitor 3 signals that it is ready the startup logic
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begins the incrementation part of its behavior. This is shown in listing 5.7.

Listing 5.7: incrementation loop for optimized implementation
1 loop whi l e vok3_t = 0 then
2 inc ( ) ;
3 se lvdd <− count ;
4 i f vok2_t = 1 then
5 s e l e c t vreg2_ready then
6 inc ( )
7 end
8 | vok1_t = 1 then
9 s e l e c t vreg1_ready then

10 inc ( )
11 end
12 end ;
13 −−sync de lay ;
14 vok3 −> vok3_t ;
15 end

Like in the state machine implementation the while-loop controlling the in-
crementation loops as long as the value pulled from voltage monitor 3 isn’t a
logic 1. First a counter is incremented and the value is sent over the selvdd
channel to the interface. The inc-procedure used to increment a counter is
shown in listing 5.8. Then an if-sentence checks whether to wait for a ready
signal from voltage regulator 1 or 2. When the ready signal arrives the vok3
signal is PULLed from voltage monitor 3.

Listing 5.8: procedure for incrementation
1 shared inc i s
2 begin
3 i f count < 7 then
4 count := ( count +1 as 3 b i t s )
5 end
6 end

The inc procedure is used to increment a counter used to assign the next
selvdd value. The procedure has a if-guard to ensure that the counter doesn’t
increment when the current count value is a binary 111, so that the counter
doesn’t over wrap and get a new binary value of 000. When the incremen-
tation is done the next selvdd value is sent to the voltage regulator. When
the loop finishes the startup logic is done and sets its activate acknowledge
output high. As long as the activate request input doesn’t go low the startup
logic stays static.
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Optimized implementation 2

The optimized implementation 2 uses the same interfaces and solution as the
second state machine implementation, for the same reason. Arbitration with
a vokmutex variable is used, but instead of setting the next state, it enables
the selected voltage reference. When the voltage reference signals that it is
ready the corresponding voltage regulator is turned on. This code substitutes
the code in listing 5.6 and the vok-loop in listing 5.5 from optimized imple-
mentation 1, but the rest of the code is the same. The changed code for this
implementation is showed in listing 5.9.

Listing 5.9: Code changed in optimized implementation 2
1 a r b i t r a t e vok2 then
2 i f vokmutex = 0 then
3 vokmutex := 2
4 end
5 | vok1 then
6 i f vokmutex = 0 then
7 vokmutex := 1
8 end
9 end ;

10 i f vokmutex = 1 then
11 re f1_enable <− 1 | |
12 s e l e c t ref1_ready then
13 cont inue
14 end ;
15 vreg1_enable <− 1
16 | vokmutex = 2 then
17 re f2_enable <− 1 | |
18 s e l e c t ref2_ready then
19 cont inue
20 end ;
21 vreg2_enable <− 1
22 end ;

Optimized implementation 3

This implementation is the optimized equivalent of state machine imple-
mentation 3. Compared to the code in optimized implementation 1 it only
substitutes the vok-loop in listing 5.5, leaving the rest of the code unchanged.
The changed code for this implementation is showed in listing 5.10. In state
implementation 3 the nextstate variable is set within the case-statement, but
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in this implementation the one of the temporary variables vok1_t or vok2_t
is set to one. The temporary vok variables are used to select which voltage
reference is turned on in listing 5.6, like in optimized implementation 1.

Listing 5.10: Code changed in optimized implementation 3
1 vok −> then
2 case vok o f
3 1 then
4 vok2_t := 1
5 | 0 then
6 vok1_t := 1
7 end
8 end ;
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5.3 Interface

5.3.1 Choice of interface

To enable communication between the analog cells and the startup logic
there has to be an interface that controls the communication. Several types of
interfaces was considered to enable communication between the asynchronous
startup logic and the analog cells. The analog cells responds as specified
earlier in section 4.2, and all the proposed interfaces follows the specified
4-phase dual rail transfer protocol. The sync interface could be used with
and other protocol as well.

To determine which kinds of interfaces was needed the signals to and from
the analog cells were first considered. The signals could either be considered
a sync signal or a data signal, and they further be either a passive or active
signal. The ready signals from the various analog cells are all treated the same
by the startup logic. After enabling an analog cell, the startup logic waits
for the ready signal from the cell before continuing. This behavior makes
it natural to implement the interface to the ready signals as sync channels
where the ready signal initiates the handshake. This interface is presented in
subsection 5.3.2.

When enabling the various analog cells the startup logic needs to set the the
enable input of a cell high, as long as the cell should be enabled, and low
when it should be off. This makes it natural to implement the interface as
a data channel to ensure full control over the enabling of the cells. As the
startup logic controls the sending of the data, the interface must be made as
the passive end of the channel. The selvdd signal is in principle the same,
but it has a data width of 3 bits instead of 1 bit for the enable signals. The
interface presented in subsection 5.3.3 is used for both the selvdd and enable
signals, with only few modifications between them.

The last signal to consider between the startup logic and the analog cells is
the vok signal from the voltage monitors. In the various asynchronous im-
plementations the only difference with regards to the interfaces are with the
vok signals. When the startup logic loops, incrementing selvdd, it also checks
the vok signal from voltage monitor 3, this process is the same for all the
implementations. Here the startup logic PULLs the vok signal every itera-
tion of the loop. In this case the vok signal has to be a data signal, and the
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interface has to provide it whenever the startup logic requests it. This makes
the interface the passive side of a data channel. The interface is presented in
subsection 5.3.4. In the first optimized and state machine implementations
the vok signal is PULLed in the same way as in the incrementation part of
the code, and the same interface is used.

The second optimized and state machine implementations waits for the vok
signals from voltage monitor 1 and 2. In this case the vok signals have been
implemented as sync channels and therefore uses the same interface as the
ready signals.

In the third version of the optimized and state machine implementations the
startup logic waits for a single data input representing which of the voltage
monitors have been selected. Here the startup logic is the passive side of a
PUSH channel, and the interface is the active side. The interface is presented
in subsection 5.3.5.

5.3.2 Sync interface

The sync interface is designed as the active side of a sync channel. It’s de-
signed to send out a sync request when its input from an analog cell goes high,
and lower the sync request when a sync acknowledge arrives from the startup
logic. This interface has been realized using a c-element, an AND gate, an
inverter and a simple pulse generator. Figure 5.3 shows the interface.

Figure 5.3: Sync interface
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The output of the c-element is used as the sync request signal to the startup
logic. As explained in subsection 2.1.3 the output of the c-element is set to
0 when both its inputs are 0, and 1 when both its inputs are 1. With any
other combination of inputs the c-element will keep its previous output value.
Initially the interface outputs a logic zero to the startup logic, and the sync
acknowledge input it gets back is a logic zero as well. The acknowledge signal
is inverted and connected to one of the inputs c-element. The other input
of the c-element is connected to the pulse generator. The input of the pulse
generator is connected to the input from the analog cell. When the signal
to the pulse generator goes high, the pulse generator send a pulse to the
c-element. This briefly makes both the inputs to the c-element high, setting
its output high. When the startup logic sets the acknowledge signal high the
inverted input of the c-element is set low, making both the inputs low and
setting the output of the c-element low again.

The pulse generator consists of an AND gate where both its inputs comes
from the same source, though one is inverted. Not considering delays, the
output of the AND gate would always be zero. Considering the delay through
the inverter on one of the inputs there will be a short period, every time the
signal to the pulse generator changes, where both the inputs to the AND gate
are equal. This means that when the input signal goes high both the inputs
to the AND will be high making its output high as well. It is important that
the delay through the inverter is sufficiently long to make the pulse good
enough to change the value of the c-element.

The last part of the interface is an AND gate that is used to reset or initialize
the c-element to a known value, 0. One of the inputs to AND gate is connected
to a reset signal, while the other is connected to the inverted acknowledge
input. The output is connected to the input of the c-element. The AND gate
works as an enable for the inverted acknowledge input. Whenever the reset
signal is high the inverted acknowledge input is transported to the input of
the c-element, while if the reset signal is low the signal to c-element is low
as well regardless of the value of inverted acknowledge signal. As the reset
the signal from the POR is used. This is to make sure that the sync request
signal is low whenever the startup logic is reset by POR.
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5.3.3 Passive PUSH Interface

The passive push interface is designed as passive side of a PUSH channel.
When it receives a valid 4-phase dual rail data signal it will respond by setting
its acknowledge output high. When the both the wires of a data input bit is
low the acknowledge signal is low. The output from the interface to an analog
cell is made to keep a constant value depending on the last data input from
the startup logic. For each bit in the of the data being sent there is a latch
and an acknowledge generator. Figure 5.4 shows the interface.

Figure 5.4: Passive PUSH interface

The acknowledge generator consists of two AND gates with their outputs
connected to an XOR gate. The output of the OR gate is the acknowledge
signal sent to the startup logic. The acknowledge generator should only send
a high output when both the input and the output data is valid. By valid it
is meant that one of the data wires of an input bit, df or dt, has to be high,
and the corresponding output on the latch has to be high as well. A data
wire is connected to one of the AND gates together with the corresponding
latch output, while the other data wire and latch output is connected to the
other AND gate.

The S input of the SR latch is connected to the dt wire of a data input bit,
while the df wire is connected to the R input. When S is high and R is low
the Q output of the latch is high, while the Qi input is low. A one bit data
input of 1 (dt, df = 1, 0) gives Q a value of 1, and a data input of 0 (dt, df
= 0, 1) gives Q a value of 0. Because of this Q is used as the output to the
analog cell. When both the data wires are low the output of the latch will
stay unchanged.
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If more than one bit of data is to be sent from the startup logic to the analog
cell there is as mentioned one latch and one acknowledge generator per bit,
but the outputs from all the acknowledge generator has to be ANDed as well.
This means that all the acknowledge generators have to have a high output
before an acknowledge to the startup logic is sent. This also means that all
the inputs and outputs have to be valid before an acknowledge is sent.

5.3.4 Passive PULL Interface

This interface is designed as the passive end of a PULL channel. It is designed
to send out a 4-phase dual rail data signal whenever the request signal from
the startup logic is high. When the request signal is low, both the data wires
are supposed to be zero. There are two proposed implementations, though
they are pretty similar.

Figure 5.5: Passive PULL interface

The simpler of the two implementations consists of two AND gate and an
inverter. The data signal to the interface is split and connected one of the
inputs of each of the two AND gates. One of the split signals are inverted.
The request signal from the startup logic is connected to the other input of
both of the two AND gates, and functions as a enable. When the request is
high the values on the other inputs are propagated as the data to the startup
logic. If the request is low both data lines are low. The inverted data input
is used as the df data signal, while the unchanged data input is used as the
dt data signal. The first proposed interface is shown in figure 5.5.

There is one problem with the simple implementation. If the data input to the
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Figure 5.6: Modified passive PULL interface

interface changes while the request is high the data signal sent to the startup
logic will change and this will not work with the protocol used. The second
implementation fixes this. A gated SR latch is added between the AND gates
and the data input. The data signal is connected to the S port of the latch,
while the inverted data input is connected to the R port of the latch. The Q
output from the latch is connected to the dt AND gate, while the Qi output
is connected to the df AND gate. An inverted request signal is connected to
the enable gate of the latch to make sure that its outputs doesn’t change
while the request signal is high. The modifies interface is shown in figure 5.6

5.3.5 Active PUSH Interface

The active push interface is designed as the active side of a PUSH channel. It
is designed with two inputs from analog cells and a one bit 4-phase dual rail
channel. When one of the inputs from the analog cells goes high the interface
will initiate a PUSH with data indicating which of the input went high. The
interface is initiated with both wires of the output bit being low and when
the acknowledge signal arrives on the channel during a PUSH, the wires are
both set low again.

Since this interface has two inputs from independent analog cells there is a
certain chance of ending up in a metastable state if both inputs goes high
at approximately the same time. The interface has been made with a mutex
unit, as described earlier in section 2.1.3 of the theory, to get around this
potential problem. The inputs from the analog cells have been connected
to request inputs of the mutex, via an AND gate. The grant outputs of the
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mutex are each connected to a modified version of the circuit used in the sync
interface. The only difference between the modified version and the original
sync interface is that the resetting of the two c-elements has been combined.
The interface is shown in figure 5.7

Figure 5.7: Active PUSH interface

The interface has been made to send information only once, when one of
the inputs is set high or when both of the inputs are set high at the same
time. The interface has no direct connection between the startup logic and
the analog cell to acknowledge a selected request, meaning that there is no
way for the startup logic to make the analog cell lower the signal connected
to the request input. This means that the input not selected by the mutex
will not have the chance to initiate a PUSH request.
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Chapter 6

Evaluation and results

6.1 Testing

In this section the testing of both the synchronous and asynchronous im-
plementation is presented. The startup logic is tested as an entire system,
together with the analog cells, to verify correct behavior. This assumes cor-
rect behavior for the analog cells and this has been verified as well, but it is
not presented in this thesis because the work involved is fairly trivial. Sub-
section 6.1.1 presents the test cases specified, while subsection 6.1.2 and 6.1.3
presents the testing of the synchronous ans asynchronous implementations
respectively. All the implementations were found to be working.

6.1.1 Test cases

The test cases specified for the startup logic is quite simple. As the only
signals in and out of the system is the two power inputs and the single power
output, there is a very limited number of scenarios to test for and very few
possible results. The different test scenarios are given below:

• Power supply 1 rises above the threshold specified for voltage monitor
1, and stays above the threshold, while power supply 2 does not rise
above the threshold specified for voltage monitor 2
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• Power supply 2 rises above the threshold specified for voltage monitor
1, and stays above the threshold, while power supply 2 does not rise
above the threshold specified for voltage monitor 1

• Both power supplies rises above the thresholds of their corresponding
voltage monitor and stays above the threshold

For all of the test cases above the power output V DDCORE shall be the
same, while a correct V DDCORE voltage is not guarantied otherwise. If
the selected input power supply drops below corresponding threshold volt-
age V DDCORE might not be able to supply the correct voltage. This de-
pends on which power supply is selected and how far below the corresponding
threshold the voltage drops. If power supply 1 is selected and drops below the
corresponding threshold V DDCORE will supply a too low voltage, limited
by the input voltage. This is because threshold specified for voltage moni-
tor 1 and the voltage monitor used to control V DDCORE is the same. For
power supply 2 this is not necessarily the case. Because the specified voltage
threshold for voltage monitor 2 is higher than threshold for the monitor used
to control V DDCORE, the startup logic might still be able to supply a high
enough voltage.

6.1.2 Testing of the synchronous implementation

The synchronous implementation was tested according to the test cases given
in subsection 6.1.1. A waveform from the test is given in figure 6.1.
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Figure 6.1: Waveform from the test of the synchronous implementation

6.1.3 Testing of the asynchronous implementations

Testing in Balsa

The first implementation written in balsa was also tested in balsa. To test
the startup logic in balsa a test environment mimicking the entire system,
including the analog cells, was made. The interface between the startup logic
and the analog cells was incorporated in the analog cells themselves for the
most part. Testing in balsa system is done mostly through the breeze2ps
and balsa-make-test tools. Breeze2ps provides a graphic presentation of the
generated handshake circuit, while balsa-make-test controls the test harness.
As an example the graphical representation of the balsa version of a voltage
monitor is shown below.

During simulation handshakes are shown on the graphical representation as
color in the channels between the handshake components. In addition to this
there is a text dump of the top level handshakes from the simulation in the
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execution window. If there are deadlocks or other problems during the test
it can be smart to add to add extra outputs for trouble shooting. In figure
6.2 a text dump from the testing of the startup logic is shown.

Figure 6.2: Simulation output in execution window

As mentioned earlier in this subsection, the test environment was made with
separate analog cells. This was to get the correct dependency between the
analog cells. For example, a voltage regulator cell should not output a volt-
age on its powerout without a bandgap signal from the corresponding voltage
reference. This was more time consuming and complex than initially antici-
pated. Because the signals to the analog cells weren’t guaranteed to not occur
at the same time, arbitration between the different input signals had to be
done within each analog cell. As balsa doesn’t support arbitration of more
than two signals without complicating the design by making arbitration trees
(several stages of arbiters, where the arbitrated outputs are sent to the next
stage until one signal is selected), the design of the analog cells for the test
environment became more complicated.

Testing of verilog netlists

When testing the verilog netlists generated by balsa the same test environ-
ment used for testing the synchronous implementation was used, with the
addition of the interfaces between the startup logic and the analog cells.
Active HDL from Aldec was used for testing.
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The interfaces was tested by themselves before the entire system was tested
together. The process of testing the interfaces was fairly trivial, but when the
total system was tested together some problems occurred. Neither the startup
logic nor the interfaces were able to properly instantiate themselves. The
outputs from the startup logic were dependent on their corresponding inputs
to have known values (not binary X) to themselves have known outputs. To
fix this the reset signal from the POR analog cell was used to instantiate the
outputs from the interfaces to the startup logic.

Some of the netlists generated had an extra initialization input used to control
part sequencing in the circuit behavior. These netlist were tested like any
other implementation, without any problems other than having to add an
extra input to the test bench. The figure below shows a waveform from the
testing of one of the final implementations.

Figure 6.3: Waveform from the test of one of the asynchronous implementa-
tions
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6.2 Synthesis

Design Compiler from Synopsys was used for the synthesis of the synchronous
implementation. When synthesizing using Design compiler the design is read
and a generic netlist consisting of generic components is generated. The area
estimate given by Design compiler gives a size relative to a two input NAND-
gate. The technology used for the synthesis was a 350nm library, and the size
given for a NAND-gate in the library is 38.7.

As described in chapter 3 balsa provides its own area estimate and netlist
generation. A technology package was provided by Atmel to be able to gener-
ate the netlist in the same 350nm library as the synchronous implementation.
To get an area estimate to compare to the synchronous Design compiler was
used. The netlist generated by balsa was loaded in Design compiler and syn-
thesis was run without optimization enabled to keep the netlist unchanged.

Some of the netlists generated had an extra initialization input used to control
part of the sequencing in the circuit behavior. In those cases Design compiler
threw warnings because of supposed timing loops and possibly changed the
circuit to prevent errors. The estimated area was unexpectedly large in those
cases, either because of possible changes by Design compiler or because of
genuine problems in the circuit. In those cases the design was rewritten.

The area estimate given by balsa bases its numbers on the handshake compo-
nents used in the generated netlist. Theoretical numbers are given for the size
of the different handshake components based on their relative size compared
to each other. The area cost is only a guideline and has no relation to either
the technology or protocol used in the netlist generation, and as such cannot
be compared directly to area estimate for the synchronous implementation.

The area estimates from balsa and the synthesis is presented in table 6.1. If
an extra sync channel is added to interface with an external delay cell, extra
area of 627 have to be added to the area estimates for the asynchronous
implementations.
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Implementation Area estimate Balsa estimate
Synchronous state machine 9393 –

Asynchronous state machine 1 55764 4239
Asynchronous state machine 2 63970 4593
Asynchronous state machine 3 51790 3823
Asynchronous optimized 1 41055 2800
Asynchronous optimized 2 50164 3223
Asynchronous optimized 3 39520 2480

Table 6.1: Area estimates for startup logic

The interfaces were also synthesized. The area estimates for the interfaces
are presented in table 6.2.

Interface Area estimate
Sync 387

1-bit passive PUSH 252
3-bit passive PUSH 832
simple passive PULL 135
modified passive PULL 348

active PUSH 967

Table 6.2: Area estimates for the interfaces
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6.3 Discussion

Six different asynchronous implementations have been made, though they are
closely related. The first implementation made was state machine implemen-
tation 1. It was closely modeled after the synchronous state machine. The
other state machine implementations were made later after the first had been
thoroughly tested, both in balsa and verilog. The optimized implementations
were made last. Optimized implementation 3 ended being the best of all the
implementations. Both the startup logic and the interfaces used were smaller
than the other implementations.

The first state machine implementation was the only implementation thor-
oughly tested in balsa. A test environment was made to be as close to the
verilog environment as possible. Balsa provides a graphic representation of
the device under test (DUT), where the handshakes are represented as color
coded transitions during simulation. This was really useful during the initial
design phase when errors were causing deadlocks in the behavior, but the
time spent making the test environment was very high. It is possible that it
would have been better to just generate a verilog netlist and do the testing on
the generated code. The later implementations were mostly tested in active
HDL, due to the balsa testing being time consuming.

By comparing the results of the synthesis it is clear that the synchronous
implementation is a lot smaller than all the asynchronous ones. With an
area estimate of 9393 it is smaller by a factor of over 4 than the smallest
asynchronous implementation, and a factor of almost 7 for the largest imple-
mentation. In addition to the area of the startup logic controller comes the
added area of the interfaces. The added area is 6157 for optimized and state
machine implementation 1, 6427 for the second set of implementations and
5846 for the third set of implementations. The smallest asynchronous imple-
mentation had an area of 39520, 45366 including the interface. With the size
of a 2-input NAND gate given as 38.7, the implementation consists of ap-
proximately 1172 gates. Even though this is a lot larger than the synchronous
implementation the size isn’t unreasonably large. A large digital system usu-
ally consists of millions of gates, making the startup logic a comparatively
small part of the system.

C-elements represents a large part of the asynchronous implementations, 64
in optimized implementation 1 and comparable number in the others. The
c-elements used in the synthesis consists of three and gates an a or gate. This
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means that the c-elements have an area cost of about 14860. A simple way of
reducing the size of the synthesized circuit would be by making a c-element
primitive instead of making a gate implementation.

Timing differences between the synchronous and asynchronous implementa-
tions are negligible compared to the time used waiting for the analog cells.
In fact most of the time is spent waiting for ready signals after enabling
the cells. The timing of the synchronous implementation is more predictable
than the asynchronous versions though. This is because it is clocked and its
behavior easily predictable. The asynchronous implementations on the other
hand have their timing determined by gate and line delays. A delay of 1 ns
through all gates was used for testing purposes.

The timing isn’t a problem for the most part, but in the loop controlling
the incrementation of selvdd it has to be considered. When the voltage rises
above the threshold for voltage monitor 3, there is a certain delay before
the vok output is set high. If the vok signal is measured before it has been
updated the startup logic will increment selvdd one extra time, making the
output V DDCORE higher than necessary. The synchronous startup logic
solves this by adding the INC2 state, giving the voltage monitor enough time
to update itself. The asynchronous implementation can’t solve this as easily.
It could either be solved by making sure the vok isn’t measured prematurely
by matching the delay within the startup logic or by having some external
delay. The safest way of handling it is perhaps by having an external cell
which when enabled returns a ready/finish signal after a suitable time. In
the startup logic this could be implemented as a sync handshake where the
request from the startup logic is used to enable the cell. The ready signal
from the cell serves as the acknowledge signal to the startup logic. When
the startup logic receives the acknowledge from the cell the request signal is
lowered and the cell is disabled. This change leads to an area increase of 627.
The voltage provided by the voltage regulator may rise over the threshold
for voltage monitor 3 before it stabilizes. In this case the vok signal can be
updated before the voltage regulator signals that it is ready, and the external
delay cell wouldn’t be needed.

As shown in [14], one of the advantages the asynchronous startup logic has
over the synchronous version is the circuits ability to operate close to the
sub-threshold area. This both lowers the power consumption and enables the
circuit to begin its operation before its supply voltage has risen to its final
level. Since the startup logic is implemented in the delay insensitive 4PDR
protocol it is immune to delay variations because of sub-threshold operating
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conditions and temperature. This is not the case for the synchronous circuit
where the added delay means that the circuit may not meet its deadline
constraints.

Another advantage of the asynchronous implementation is its lower power
consumption. A lot of the time is spent waiting for the analog cells, and in
that case the asynchronous implementations don’t have any switching ac-
tivity. The same is the case when the circuit reaches a stable state after it
finishes incrementing selvdd. When the synchronous implementation is in a
stable state or waiting for the analog cells, the clock still tick and the state
machine loops in what ever state it currently is in. This means that the syn-
chronous implementation constantly have some dynamic power consumption,
while the asynchronous implementations won’t have any dynamic power con-
sumption when it is stable or waiting. The asynchronous implementation will
have a somewhat larger static power consumption because of its high gate
count, but as long as the technology used isn’t very small (below 100 nm),
the static power dissipation will be considerably smaller than dynamic.
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Chapter 7

Conclusion

An asynchronous implementation of a startup logic controller has been de-
signed, implemented for comparison to a synchronous version. The startup
logic controller is part of a larger system where it is meant to interface with
and control various analog cells. The startup logic controller was designed
and tested in balsa, and a verilog netlist was then generated from the balsa
description. Additionally interfaces between the startup logic and the analog
cells were made to enable communication over the 4PDR handshake protocol.
The total system with the generated netlist, analog cells and the interfaces
between them was tested. A total of six asynchronous implementations were
made and is presented in this thesis. With regards to area optimized imple-
mentation 3 is the superior solution.

Compared to the synchronous implementation the smallest asynchronous im-
plementation and connected interfaces, is over 4 times larger, but as part of a
larger design it is still comparatively small. An easy way of reducing the size
of the asynchronous implementation is to make a c-element primitive instead
of making the c-elements from AND and OR gates.

The asynchronous implementation have some advantages over the synchronous
implementation. First of all, it is delay insensitive and therefore robust to-
wards changes in temperature and voltage, which affects circuit delay. Sec-
ondly, it has a lower power consumption. The static power consumption a
higher due to a larger gate count, but this is small compared to the savings
in dynamic power consumption. When the asynchronous circuit is waiting or
static, the dynamic power consumption is zero.
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Further work on the startup logic should perhaps focus on a more accurate
delay modeling and power estimations. Overall the asynchronous implemen-
tation seems to be a solution with good potential.

62



Bibliography

[1] J. Sparsø, “Asynchronous circuit design - a tutorial,” in Chap-
ters 1-8 in ”Principles of asynchronous circuit design - A
systems Perspective”. Boston / Dordrecht / London: Kluwer
Academic Publishers, dec 2001, pp. 1–152. [Online]. Available:
http://www2.imm.dtu.dk/pubdb/p.php?855

[2] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to
Asynchronous VLSI. Edinburgh Building, Cambridge CB2 8RU, UK:
Cambridge university press, feb 2010.

[3] K. M. Fant and S. A. Brandt., “Null convention
logic,” [Online; accessed 16-August-2011]. [Online]. Available:
http://www.theseusresearch.com/NCLPaper01.html

[4] T. Verhoeff, “Encyclopedia of delay-insensitive sys-
tems,” [Online; accessed 16-August-2011]. [Online]. Available:
http://edis.win.tue.nl/edis.html

[5] D. Linder and J. Harden, “Phased logic: supporting the synchronous
design paradigm with delay-insensitive circuitry,” IEEE Transactions
on Computers, vol. 45, no. 9, pp. 1031 – 1044, sept 1996.

[6] C. E. Molnar and I. W. Jones, “Simple circuits that work for complicated
reasons,” Asynchronous Circuits and Systems, International Symposium
on, vol. 0, p. 138, 2000.

[7] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital
design,” Solid-State Circuits, IEEE Journal of, vol. 27, no. 4, pp. 473
–484, apr 1992.

[8] M. Pedram and J. Rabaey, Power Aware Design Methodologies, 2002.

63



[9] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets
static power,” Computer, vol. 36, no. 12, pp. 68 – 75, dec. 2003.

[10] Asic-world, “What is metastability?” 2011, [Online; ac-
cessed 16-August-2011]. [Online]. Available: http://www.asic-
world.com/tidbits/metastablity.html

[11] Altera, “Understanding metastability in fpgas,” 2009. [Online].
Available: http://www.altera.com/literature/wp/wp-01082-quartus-ii-
metastability.pdf

[12] D. Edwards, A. Bardsley, L. Janin, L. Plana, and
W. Toms, Balsa: A Tutorial Guide., 2006. [Online]. Available:
ftp://ftp.cs.man.ac.uk/pub/amulet/balsa/3.5/BalsaManual3.5.pdf

[13] T. U. o. M. APT group of the School Of Computer Science, “The
balsa asynchronous synthesis system homepage.” [Online]. Available:
http://apt.cs.man.ac.uk/projects/tools/balsa/

[14] N. Lotze, M. Ortmanns, and Y. Manoli, “A study on self-timed asyn-
chronous subthreshold logic.”

64



Appendix A

Balsa Code

A.1 State machine implementations

A.1.1 State machine implementation 1

This is the balsa code for state machine implementation 1:
1 import [ d e f i n i t i o n s ]
2
3 procedure s tar tup_state1 (
4 sync mon1_ready ;
5 sync mon2_ready ;
6 sync mon3_ready ;
7 input vok1 : 1 b i t s ;
8 input vok2 : 1 b i t s ;
9 input vok3 : 1 b i t s ;

10 sync ref1_ready ;
11 sync ref2_ready ;
12 sync vreg1_ready ;
13 sync vreg2_ready ;
14 output mon1_enable : 1 b i t s ;
15 output mon2_enable : 1 b i t s ;
16 output mon3_enable : 1 b i t s ;
17 output re f1_enable : 1 b i t s ;
18 output re f2_enable : 1 b i t s ;
19 output vreg1_enable : 1 b i t s ;
20 output vreg2_enable : 1 b i t s ;
21 output se lvdd : 3 b i t s
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22 ) i s
23
24 v a r i a b l e state_r : State
25 v a r i a b l e nex t s t a t e : State
26 v a r i a b l e p r ev s ta t e : State
27 v a r i a b l e count : 3 b i t s
28
29 v a r i a b l e vok1_t : 1 b i t s
30 v a r i a b l e vok2_t : 1 b i t s
31 v a r i a b l e vok3_t : 1 b i t s
32 v a r i a b l e stop : 1 b i t s
33
34 shared mon_off i s
35 begin
36 mon1_enable <− 0 | |
37 mon2_enable <− 0
38 end
39
40
41 shared mon3_on i s
42 begin
43 mon3_enable <− 1 | |
44 s e l e c t mon3_ready then
45 cont inue
46 end ;
47 vok3 −> then
48 vok3_t := vok3
49 end ;
50 p r ev s ta t e := nex t s t a t e ;
51 nex t s t a t e := INC
52 end
53
54 procedure s e t s t a t e i s
55 begin
56 case state_r o f
57
58 MON_ON then
59 mon1_enable <− 1 | |
60 s e l e c t mon1_ready then
61 cont inue
62 end | |
63 mon2_enable <− 1 | |
64 s e l e c t mon2_ready then
65 cont inue
66 end | |
67 nex t s t a t e := MON_SELECT
68
69
70 | MON_SELECT then
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71 vok1 −> vok1_t | |
72 vok2 −> vok2_t ;
73 i f vok2_t = 1 then
74 nex t s t a t e := REF2_ON
75 | vok1_t = 1 then
76 nex t s t a t e := REF1_ON
77 e l s e
78 nex t s t a t e := MON_SELECT
79 end
80
81 | REF1_ON then
82 mon_off ( ) ;
83 re f1_enable <− 1 | |
84 s e l e c t ref1_ready then
85 nex t s t a t e := VREG1_ON
86 end
87
88 | REF2_ON then
89 mon_off ( ) ;
90 re f2_enable <− 1
91 s e l e c t ref2_ready then
92 nex t s t a t e := VREG2_ON
93 end
94
95 | VREG2_ON then
96 vreg2_enable <− 1 | |
97 s e l e c t vreg2_ready then
98 cont inue
99 end | |

100 mon3_on ( )
101
102 | VREG1_ON then
103 vreg1_enable <− 1 | |
104
105 s e l e c t vreg1_ready then
106 cont inue
107 end | |
108 mon3_on ( )
109
110 | INC then
111 i f vok3_t = 0 then
112 count := ( count +1 as 3 b i t s ) ;
113 se lvdd <− count ;
114 i f p r ev s ta t e = VREG1_ON then
115 s e l e c t vreg1_ready then
116 cont inue
117 end
118 | p r ev s ta t e = VREG2_ON then
119 s e l e c t vreg2_ready then
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120 cont inue
121 end
122 end ;
123 vok3 −> vok3_t
124 e l s e
125 nex t s t a t e := DONE
126 end
127
128 | DONE then
129 stop := 1
130
131 e l s e nex t s t a t e := MON_ON−− guard case
132 end
133 end
134
135 begin
136 loop whi l e stop = 0 then
137 s e t s t a t e ( ) ;
138 state_r := nex t s t a t e
139 end
140 end

A.1.2 State machine implementation 2

This is the balsa code for state machine implementation 2:
1 import [ d e f i n i t i o n s ]
2
3 procedure s tar tup_state2 (
4 sync mon1_ready ;
5 sync mon2_ready ;
6 sync mon3_ready ;
7 sync vok1 ;
8 sync vok2 ;
9 input vok3 : 1 b i t s ;

10 sync ref1_ready ;
11 sync ref2_ready ;
12 sync vreg1_ready ;
13 sync vreg2_ready ;
14 output mon1_enable : 1 b i t s ;
15 output mon2_enable : 1 b i t s ;
16 output mon3_enable : 1 b i t s ;
17 output re f1_enable : 1 b i t s ;
18 output re f2_enable : 1 b i t s ;
19 output vreg1_enable : 1 b i t s ;
20 output vreg2_enable : 1 b i t s ;

68



21 output se lvdd : 3 b i t s
22 ) i s
23
24 v a r i a b l e state_r : State
25 v a r i a b l e nex t s t a t e : State
26 v a r i a b l e p r ev s ta t e : State
27 v a r i a b l e count : 3 b i t s
28
29 v a r i a b l e vok1_t : 1 b i t s
30 v a r i a b l e vok2_t : 1 b i t s
31 v a r i a b l e vok3_t : 1 b i t s
32 v a r i a b l e stop : 1 b i t s
33 v a r i a b l e vokmutex : 2 b i t s
34
35 shared mon_off i s
36 begin
37 mon1_enable <− 0 | |
38 mon2_enable <− 0
39 end
40
41 shared mon3_on i s
42 begin
43 s e l e c t mon3_ready then
44 cont inue
45 end ;
46 vok3 −> then
47 vok3_t := vok3
48 end ;
49 p r ev s ta t e := nex t s t a t e ;
50 nex t s t a t e := INC
51 end
52
53 procedure s e t s t a t e i s
54 begin
55 case state_r o f
56
57 MON_ON then
58 mon1_enable <− 1 | |
59 mon2_enable <− 1 | |
60 s e l e c t mon1_ready then
61 cont inue
62 end | |
63 s e l e c t mon2_ready then
64 cont inue
65 end | |
66 nex t s t a t e := MON_SELECT
67
68 | MON_SELECT then
69 a r b i t r a t e vok2 then
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70 i f vokmutex = 0 then
71 vokmutex := 2
72 end
73 | vok1 then
74 i f vokmutex = 0 then
75 vokmutex := 1
76 end
77 end ;
78 i f vokmutex = 1 then
79 nex t s t a t e := REF1_ON
80 | vokmutex = 2 then
81 nex t s t a t e := REF2_ON
82 end
83
84 | REF1_ON then
85 mon_off ( ) ;
86 re f1_enable <− 1 | |
87 s e l e c t ref1_ready then
88 nex t s t a t e := VREG1_ON
89 end
90
91 | REF2_ON then
92 mon_off ( ) ;
93 re f2_enable <− 1 | |
94 s e l e c t ref2_ready then
95 nex t s t a t e := VREG2_ON
96 end
97
98 | VREG2_ON then
99 vreg2_enable <− 1 | |

100 mon3_enable <− 1 | |
101 s e l e c t vreg2_ready then
102 cont inue
103 end | |
104 mon3_on ( )
105
106 | VREG1_ON then
107 vreg1_enable <− 1 | |
108 mon3_enable <− 1 | |
109 s e l e c t vreg1_ready then
110 cont inue
111 end | |
112 mon3_on ( )
113
114 | INC then
115 i f vok3_t = 0 then
116 count := ( count +1 as 3 b i t s ) ;
117 se lvdd <− count ;
118 i f p r ev s ta t e = VREG1_ON then
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119 s e l e c t vreg1_ready then
120 cont inue
121 end
122 | p r ev s ta t e = VREG2_ON then
123 s e l e c t vreg2_ready then
124 cont inue
125 end
126 end ;
127 vok3 −> vok3_t
128 e l s e
129 nex t s t a t e := DONE
130 end
131
132 | DONE then
133 stop := 1
134
135 e l s e nex t s t a t e := MON_ON−− guard case
136 end
137 end
138
139 begin
140 loop whi l e stop = 0 then
141 s e t s t a t e ( ) ;
142 state_r := nex t s t a t e
143 end
144 end

A.1.3 State machine implementation 3

This is the balsa code for state machine implementation 3:
1 import [ d e f i n i t i o n s ]
2
3 procedure s tar tup_state3 (
4 sync mon1_ready ;
5 sync mon2_ready ;
6 sync mon3_ready ;
7 input vok : 1 b i t s ;
8 input vok3 : 1 b i t s ;
9 sync ref1_ready ;

10 sync ref2_ready ;
11 sync vreg1_ready ;
12 sync vreg2_ready ;
13 output mon1_enable : 1 b i t s ;
14 output mon2_enable : 1 b i t s ;
15 output mon3_enable : 1 b i t s ;

71



16 output re f1_enable : 1 b i t s ;
17 output re f2_enable : 1 b i t s ;
18 output vreg1_enable : 1 b i t s ;
19 output vreg2_enable : 1 b i t s ;
20 output se lvdd : 3 b i t s
21 ) i s
22
23 v a r i a b l e state_r : State
24 v a r i a b l e nex t s t a t e : State
25 v a r i a b l e p r ev s ta t e : State
26 v a r i a b l e count : 3 b i t s
27
28 v a r i a b l e vok3_t : 1 b i t s
29 v a r i a b l e stop : 1 b i t s
30
31 shared mon_off i s
32 begin
33 mon1_enable <− 0 | |
34 mon2_enable <− 0
35 end
36
37 shared mon3_on i s
38 begin
39 s e l e c t mon3_ready then
40 cont inue
41 end ;
42 vok3 −> then
43 vok3_t := vok3
44 end ;
45 p r ev s ta t e := nex t s t a t e ;
46 nex t s t a t e := INC
47 end
48
49 procedure s e t s t a t e i s
50 begin
51 case state_r o f
52
53 MON_ON then
54 mon1_enable <− 1 | |
55 mon2_enable <− 1 | |
56 s e l e c t mon1_ready then
57 cont inue
58 end | |
59 s e l e c t mon2_ready then
60 cont inue
61 end | |
62 nex t s t a t e := MON_SELECT
63
64 | MON_SELECT then
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65 vok −> then
66 case vok o f
67 1 then
68 nex t s t a t e := REF2_ON
69 | 0 then
70 nex t s t a t e := REF1_ON
71 end
72 end
73
74 | REF1_ON then
75 mon_off ( ) ;
76 re f1_enable <− 1 | |
77 s e l e c t ref1_ready then
78 nex t s t a t e := VREG1_ON
79 end
80
81 | REF2_ON then
82 mon_off ( ) ;
83 re f2_enable <− 1 | |
84 s e l e c t ref2_ready then
85 nex t s t a t e := VREG2_ON
86 end
87
88 | VREG2_ON then
89 vreg2_enable <− 1 | |
90 mon3_enable <− 1 | |
91 s e l e c t vreg2_ready then
92 cont inue
93 end | |
94 mon3_on ( )
95
96 | VREG1_ON then
97 vreg1_enable <− 1 | |
98 mon3_enable <− 1 | |
99 s e l e c t vreg1_ready then

100 cont inue
101 end | |
102 mon3_on ( )
103
104 | INC then
105 i f vok3_t = 0 then
106 count := ( count +1 as 3 b i t s ) ;
107 se lvdd <− count ;
108 i f p r ev s ta t e = VREG1_ON then
109 s e l e c t vreg1_ready then
110 cont inue
111 end
112 | p r ev s ta t e = VREG2_ON then
113 s e l e c t vreg2_ready then
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114 cont inue
115 end
116 end ;
117 vok3 −> vok3_t ;
118 e l s e
119 nex t s t a t e := DONE
120 end
121
122 | DONE then
123 stop := 1
124
125 e l s e nex t s t a t e := MON_ON−− guard case
126 end
127 end
128
129 begin
130 loop whi l e stop = 0 then
131 s e t s t a t e ( ) ;
132 state_r := nex t s t a t e
133 end
134 end

A.2 Optimized implementations

A.2.1 Optimized implementation 1

This is the balsa code for optimized implementation 1:
1 import [ d e f i n i t i o n s ]
2
3 procedure startup_simple1 (
4 sync mon1_ready ;
5 input vok1 : 1 b i t s ;
6 output mon1_enable : 1 b i t s ;
7 sync mon2_ready ;
8 input vok2 : 1 b i t s ;
9 output mon2_enable : 1 b i t s ;

10 sync mon3_ready ;
11 input vok3 : 1 b i t s ;
12 output mon3_enable : 1 b i t s ;
13 sync ref1_ready ;
14 output re f1_enable : 1 b i t s ;
15 sync ref2_ready ;
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16 output re f2_enable : 1 b i t s ;
17 sync vreg1_ready ;
18 output vreg1_enable : 1 b i t s ;
19 sync vreg2_ready ;
20 output vreg2_enable : 1 b i t s ;
21 output se lvdd : 3 b i t s
22 ) i s
23
24 v a r i a b l e vok1_t : 1 b i t s
25 v a r i a b l e vok2_t : 1 b i t s
26 v a r i a b l e vok3_t : 1 b i t s
27 v a r i a b l e count : 3 b i t s
28
29 shared inc i s
30 begin
31 i f count < 7 then
32 count := ( count +1 as 3 b i t s )
33 end
34 end
35
36 begin
37 mon1_enable <− 1 | |
38 mon2_enable <− 1 | |
39 s e l e c t mon1_ready then
40 cont inue
41 end | |
42 s e l e c t mon2_ready then
43 cont inue
44 end ;
45 loop whi l e ( vok1_t or vok2_t ) = 0 then
46 vok1 −> vok1_t | |
47 vok2 −> vok2_t
48 end ;
49 i f vok2_t = 1 then
50 re f2_enable <− 1 | |
51 s e l e c t ref2_ready then
52 cont inue
53 end ;
54 vreg2_enable <− 1
55 | vok1_t = 1 then
56 re f1_enable <− 1 | |
57 s e l e c t ref1_ready then
58 cont inue
59 end ;
60 vreg1_enable <− 1
61 end ;
62 mon1_enable <− 0 | |
63 mon2_enable <− 0 ;
64 mon3_enable <− 1 | |
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65 s e l e c t mon3_ready then
66 cont inue
67 end ;
68 loop whi l e vok3_t = 0 then
69 inc ( ) ;
70 se lvdd <− count ;
71 i f vok2_t = 1 then
72 s e l e c t vreg2_ready then
73 cont inue
74 end
75 | vok1_t = 1 then
76 s e l e c t vreg1_ready then
77 cont inue
78 end
79 end ;
80 vok3 −> vok3_t
81 end
82 end

A.2.2 Optimized implementation 2

This is the balsa code for optimized implementation 1:
1 import [ d e f i n i t i o n s ]
2
3 procedure startup_simple1 (
4 sync mon1_ready ;
5 −−input vok1 : 1 b i t s ;
6 sync vok1 ;
7 output mon1_enable : 1 b i t s ;
8 sync mon2_ready ;
9 −−input vok2 : 1 b i t s ;

10 sync vok2 ;
11 output mon2_enable : 1 b i t s ;
12 sync mon3_ready ;
13 input vok3 : 1 b i t s ;
14 output mon3_enable : 1 b i t s ;
15 sync ref1_ready ;
16 output re f1_enable : 1 b i t s ;
17 sync ref2_ready ;
18 output re f2_enable : 1 b i t s ;
19 sync vreg1_ready ;
20 output vreg1_enable : 1 b i t s ;
21 sync vreg2_ready ;
22 output vreg2_enable : 1 b i t s ;
23 output se lvdd : 3 b i t s
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24 ) i s
25
26 v a r i a b l e vok3_t : 1 b i t s
27 v a r i a b l e count : 3 b i t s
28 v a r i a b l e vokmutex : 2 b i t s
29
30 shared inc i s
31 begin
32 i f count < 7 then
33 count := ( count +1 as 3 b i t s )
34 end
35 end
36
37 begin
38 mon1_enable <− 1 | |
39 mon2_enable <− 1 | |
40 s e l e c t mon1_ready then
41 cont inue
42 end | |
43 s e l e c t mon2_ready then
44 cont inue
45 end ;
46 a r b i t r a t e vok2 then
47 i f vokmutex = 0 then
48 vokmutex := 2
49 end
50 | vok1 then
51 i f vokmutex = 0 then
52 vokmutex := 1
53 end
54 end ;
55 i f vokmutex = 1 then
56 re f1_enable <− 1 | |
57 s e l e c t ref1_ready then
58 cont inue
59 end ;
60 vreg1_enable <− 1
61 | vokmutex = 2 then
62 re f2_enable <− 1 | |
63 s e l e c t ref2_ready then
64 cont inue
65 end ;
66 vreg2_enable <− 1
67 end ;
68 mon1_enable <− 0 | |
69 mon2_enable <− 0 ;
70 mon3_enable <− 1 | |
71 s e l e c t mon3_ready then
72 cont inue

77



73 end ;
74 loop whi l e vok3_t = 0 then
75 inc ( ) ;
76 se lvdd <− count ;
77 i f vokmutex = 2 then
78 s e l e c t vreg2_ready then
79 cont inue
80
81 end
82 −−se lvdd_inc ( )
83 | vokmutex = 1 then
84 s e l e c t vreg1_ready then
85 cont inue
86 end
87 end ;
88 vok3 −> vok3_t ;
89 end
90 end

A.2.3 Optimized implementation 3

This is the balsa code for optimized implementation 1:
1 import [ d e f i n i t i o n s ]
2
3 procedure startup_simple3 (
4 sync mon1_ready ;
5 input vok : 1 b i t s ;
6 output mon1_enable : 1 b i t s ;
7 sync mon2_ready ;
8 output mon2_enable : 1 b i t s ;
9 sync mon3_ready ;

10 input vok3 : 1 b i t s ;
11 output mon3_enable : 1 b i t s ;
12 sync ref1_ready ;
13 output re f1_enable : 1 b i t s ;
14 sync ref2_ready ;
15 output re f2_enable : 1 b i t s ;
16 sync vreg1_ready ;
17 output vreg1_enable : 1 b i t s ;
18 sync vreg2_ready ;
19 output vreg2_enable : 1 b i t s ;
20 output se lvdd : 3 b i t s
21 ) i s
22
23 v a r i a b l e vok1_t : 1 b i t s
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24 v a r i a b l e vok2_t : 1 b i t s
25 v a r i a b l e vok3_t : 1 b i t s
26 v a r i a b l e count : 3 b i t s
27
28 shared inc i s
29 begin
30 i f count < 7 then
31 count := ( count +1 as 3 b i t s )
32 end
33 end
34
35 begin
36 mon1_enable <− 1 | |
37 mon2_enable <− 1 | |
38 s e l e c t mon1_ready then
39 cont inue
40 end | |
41 s e l e c t mon2_ready then
42 cont inue
43 end ;
44 vok −> then
45 case vok o f
46 1 then
47 vok2_t := 1
48 | 0 then
49 vok1_t := 1
50 end
51 end ;
52 i f vok2_t = 1 then
53 re f2_enable <− 1 | |
54 s e l e c t ref2_ready then
55 cont inue
56 end ;
57 vreg2_enable <− 1
58 | vok1_t = 1 then
59 re f1_enable <− 1 | |
60 s e l e c t ref1_ready then
61 cont inue
62 end ;
63 vreg1_enable <− 1
64 end ;
65 mon1_enable <− 0 | |
66 mon2_enable <− 0 ;
67 mon3_enable <− 1 | |
68 s e l e c t mon3_ready then
69 cont inue
70 end ;
71 loop whi l e vok3_t = 0 then
72 inc ( ) ;
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73 se lvdd <− count ;
74 i f vok2_t = 1 then
75 s e l e c t vreg2_ready then
76 cont inue
77 end
78 −−se lvdd_inc ( )
79 | vok1_t = 1 then
80 s e l e c t vreg1_ready then
81 cont inue
82 end
83 end ;
84 vok3 −> vok3_t ;
85 end
86 end
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Appendix B

Synchronous startup logic

This is the verilog code for the synchronous startup logic.

1 ‘ t ime s ca l e 1ns /1 ps
2
3 module s ta r tup_log i c2 (/∗AUTOARG∗/
4 // Outputs
5 mon1_enable_r , mon2_enable_r , mon3_enable_r , ref1_enable_r ,
6 ref2_enable_r , regul1_enable_r , regul1_selvdd_r ,

regul2_enable_r ,
7 regul2_selvdd_r ,
8 // Inputs
9 c lk , porneg , mon1_vok , mon1_ready , mon2_vok , mon2_ready ,

mon3_vok ,
10 mon3_ready , ref1_ready , ref2_ready , regul1_ready , regul2_ready
11 ) ;
12
13 // parameter VThreshold = 1000 ; //mV
14
15 ‘ i n c lude " startup_parameters . v "
16
17
18 input c l k ; // f o r t e s t i n g purposes , i n t e r n a l o s c i l l a t o r
19
20 input porneg ;// inputs from power on r e s e t
21 input mon1_vok ;// inputs from vo l tage monitor 1
22 input mon1_ready ;
23 input mon2_vok ;// inputs from vo l tage monitor 2
24 input mon2_ready ;
25 input mon3_vok ;// inputs from vo l tage monitor 3
26 input mon3_ready ;
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27 input ref1_ready ;// inputs from vo l tage r e f e r e n c e 1
28 input ref2_ready ; // inputs from vo l tage r e f e r e n c e 2
29 input regul1_ready ; // input from vo l tage r e g u l t a r o r 1
30 input regul2_ready ; // input from vo l tage r e g u l t a r o r 2
31
32 output mon1_enable_r ;// outputs to vo l tage monitor 1
33 output mon2_enable_r ;// outputs to vo l tage monitor 2
34 output mon3_enable_r ; // outputs to vo l tage monitor 3
35 output ref1_enable_r ;// outputs to vo l tage r e f e r e n c e 1
36 output ref2_enable_r ; // outputs to vo l tage r e f e r e n c e 2
37 output regul1_enable_r ;// output to vo l tage r e g u l t a r o r 1
38 output [AVR32_VREG_SELVDD_MSB: 0 ] regul1_selvdd_r ;
39 output regul2_enable_r ;// output to vo l tage

r e g u l t a r o r 2
40 output [AVR32_VREG_SELVDD_MSB: 0 ] regul2_selvdd_r ;
41
42
43 /∗AUTOREG∗/
44
45 /∗AUTOWIRE∗/
46
47 reg mon1_enable_r ;
48 reg mon2_enable_r ;
49 reg mon3_enable_r ;
50 reg ref1_enable_r ;
51 reg ref2_enable_r ;
52 reg regul1_enable_r ;
53 wire [AVR32_VREG_SELVDD_MSB: 0 ] regul1_selvdd_r ;
54 reg regul2_enable_r ;
55 wire [AVR32_VREG_SELVDD_MSB: 0 ] regul2_selvdd_r ;
56
57
58 reg mon1_enable ;
59 reg mon2_enable ;
60 reg mon3_enable ;
61 reg re f1_enable ;
62 reg re f2_enable ;
63 reg regul1_enable ;
64
65 reg regul2_enable ;
66
67
68
69
70 reg mon1_ready_m ;
71 reg mon1_ready_r ;
72 reg mon1_vok_m;
73 reg mon1_vok_r ;
74 reg mon2_ready_m ;
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75 reg mon2_ready_r ;
76 reg mon2_vok_m;
77 reg mon2_vok_r ;
78 reg mon3_ready_m ;
79 reg mon3_ready_r ;
80 reg mon3_vok_m;
81 reg mon3_vok_r ;
82 reg ref1_ready_m ;
83 reg ref1_ready_r ;
84 reg ref2_ready_m ;
85 reg ref2_ready_r ;
86
87 reg regul1_ready_m ;
88 reg regul1_ready_r ;
89 reg regul2_ready_m ;
90 reg regul2_ready_r ;
91
92
93 reg [STARTUP_FSM_MSB: 0 ] s tate_r ;
94 reg [STARTUP_FSM_MSB: 0 ] state_nxt ;
95
96 reg [AVR32_VREG_SELVDD_MSB: 0 ] selvdd_r ;
97 reg [AVR32_VREG_SELVDD_MSB: 0 ] se lvdd ;
98
99

100 // Synchron i s e r s f o r async input s i g n a l s
101 always @( posedge c l k or negedge porneg ) begin
102 i f ( porneg == 1 ’ b0 ) begin
103 /∗AUTORESET∗/
104 // Beginning o f au to r e s e t f o r u n i n i t i a l i z e d f l o p s
105 mon1_ready_m <= 1 ’ h0 ;
106 mon1_ready_r <= 1 ’ h0 ;
107 mon1_vok_m <= 1 ’ h0 ;
108 mon1_vok_r <= 1 ’ h0 ;
109 mon2_ready_m <= 1 ’ h0 ;
110 mon2_ready_r <= 1 ’ h0 ;
111 mon2_vok_m <= 1 ’ h0 ;
112 mon2_vok_r <= 1 ’ h0 ;
113 mon3_ready_m <= 1 ’ h0 ;
114 mon3_ready_r <= 1 ’ h0 ;
115 mon3_vok_m <= 1 ’ h0 ;
116 mon3_vok_r <= 1 ’ h0 ;
117 ref1_ready_m <= 1 ’ h0 ;
118 ref1_ready_r <= 1 ’ h0 ;
119 ref2_ready_m <= 1 ’ h0 ;
120 ref2_ready_r <= 1 ’ h0 ;
121 regul1_ready_m <= 1 ’ h0 ;
122 regul1_ready_r <= 1 ’ h0 ;
123 regul2_ready_m <= 1 ’ h0 ;
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124 regul2_ready_r <= 1 ’ h0 ;
125 // End o f automatics
126 end
127 e l s e begin
128 mon1_vok_m <= mon1_vok ;
129 mon1_vok_r <= mon1_vok_m;
130 mon1_ready_m <= mon1_ready ;
131 mon1_ready_r <= mon1_ready_m ;
132
133 mon2_vok_m <= mon2_vok ;
134 mon2_vok_r <= mon2_vok_m;
135 mon2_ready_m <= mon2_ready ;
136 mon2_ready_r <= mon2_ready_m ;
137
138
139 mon3_vok_m <= mon3_vok ;
140 mon3_vok_r <= mon3_vok_m;
141 mon3_ready_m <= mon3_ready ;
142 mon3_ready_r <= mon3_ready_m ;
143
144 ref1_ready_m <= ref1_ready ;
145 ref1_ready_r <= ref1_ready_m ;
146
147
148 ref2_ready_m <= ref2_ready ;
149 ref2_ready_r <= ref2_ready_m ;
150
151 regul1_ready_m <= regul1_ready ;
152 regul1_ready_r <= regul1_ready_m ;
153
154 regul2_ready_m <= regul2_ready ;
155 regul2_ready_r <= regul2_ready_m ;
156
157
158 end
159 end
160
161 // R e g i s t e r s f o r state_r and analog c o n t r o l s i g n a l s ( to ensure

g l i t c h f r e e c o n t r o l )
162 always @( posedge c l k or negedge porneg ) begin
163 i f ( porneg == 1 ’ b0 ) begin
164 state_r <= RESET;
165 /∗AUTORESET∗/
166 // Beginning o f au to r e s e t f o r u n i n i t i a l i z e d f l o p s
167 mon1_enable_r <= 1 ’ h0 ;
168 mon2_enable_r <= 1 ’ h0 ;
169 mon3_enable_r <= 1 ’ h0 ;
170 ref1_enable_r <= 1 ’ h0 ;
171 ref2_enable_r <= 1 ’ h0 ;
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172 regul1_enable_r <= 1 ’ h0 ;
173 regul2_enable_r <= 1 ’ h0 ;
174 selvdd_r <= {(1+(AVR32_VREG_SELVDD_MSB) ) {1 ’ b0 }} ;
175 // End o f automatics
176 end
177 e l s e begin
178 state_r <= state_nxt ;
179 mon1_enable_r <= mon1_enable ;
180 mon2_enable_r <= mon2_enable ;
181 mon3_enable_r <= mon3_enable ;
182 ref1_enable_r <= ref1_enable ;
183 ref2_enable_r <= ref2_enable ;
184 regul1_enable_r <= regul1_enable ;
185 regul2_enable_r <= regul2_enable ;
186 selvdd_r <= se lvdd ;
187
188 end
189 end
190
191 a s s i gn vddio1_good = mon1_ready_r && mon1_vok_r ;
192 a s s i gn vddio2_good = mon2_ready_r && mon2_vok_r ;
193
194 a s s i gn regul1_selvdd_r = selvdd_r ;
195 a s s i gn regul2_selvdd_r = selvdd_r ;
196
197
198
199 always @∗ begin
200 mon1_enable = 0 ;
201 mon2_enable = 0 ;
202 mon3_enable = 0 ;
203 re f1_enable = 0 ;
204 re f2_enable = 0 ;
205 regul1_enable = 0 ;
206 regul2_enable = 0 ;
207 se lvdd = 0 ;
208 state_nxt = RESET;
209 case ( state_r )
210 RESET: begin
211 state_nxt = MONITOR12_ON;
212 end
213
214 MONITOR12_ON: begin
215 mon1_enable = 1 ;
216 mon2_enable = 1 ;
217 // Wait f o r both monitor to be ready
218 i f ( mon1_ready_r && mon2_ready_r ) begin
219 state_nxt = MONITOR12_SELECT;
220 end
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221 e l s e begin
222 state_nxt = MONITOR12_ON;
223 end
224
225 end
226
227 MONITOR12_SELECT: begin
228 mon1_enable = 1 ;
229 mon2_enable = 1 ;
230 i f ( vddio2_good ) begin
231 state_nxt = REF2_ON;
232 end
233 e l s e i f ( vddio1_good ) begin
234 state_nxt = REF1_ON;
235 end
236 e l s e begin
237 // Stay in t h i s s t a t e
238 state_nxt = MONITOR12_SELECT;
239 end
240 end
241
242 REF1_ON: begin
243 re f1_enable = 1 ;
244 i f ( ref1_ready_r )
245 state_nxt = VREG1_ON;
246 e l s e
247 state_nxt = REF1_ON;
248 end
249
250
251 REF2_ON: begin
252 re f2_enable = 1 ;
253 i f ( ref2_ready_r )
254 state_nxt = VREG2_ON;
255 e l s e
256 state_nxt = REF2_ON;
257 end
258
259
260 VREG1_ON: begin
261 re f1_enable = 1 ;
262 regul1_enable = 1 ;
263 mon3_enable = 1 ;
264 se lvdd = VDD_600;
265 i f ( mon3_ready_r )
266 state_nxt = INC ;
267 e l s e
268 state_nxt = VREG1_ON;
269
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270 end
271
272 VREG2_ON: begin
273 re f2_enable = 1 ;
274 regul2_enable = 1 ;
275 mon3_enable = 1 ;
276 se lvdd = VDD_600;
277 i f ( mon3_ready_r )
278 state_nxt = INC ;
279 e l s e
280 state_nxt = VREG2_ON;
281
282 end
283
284 INC : begin
285 mon3_enable = 1 ;
286 re f1_enable= ref1_enable_r ;
287 re f2_enable= ref2_enable_r ;
288 regul1_enable = regul1_enable_r ;
289 regul2_enable = regul2_enable_r ;
290 // We take a shor t cut here − The two r e g u l a t o r are not

supposed to be ready at the same time
291 i f ( ( regul1_ready_r | | regul2_ready_r ) && mon3_ready_r &&

! mon3_vok_r && ( selvdd_r != VDD_1800) && ( selvdd_r
!= VDD_2000) ) begin

292 se lvdd = selvdd_r + 1 ;
293 state_nxt = INC2 ;
294 end
295 e l s e begin
296 se lvdd = selvdd_r ;
297 state_nxt = INC ;
298 end
299 end // case : INC
300 INC2 : begin
301 // we wait be f o r e
302 mon3_enable = 1 ;
303 re f1_enable= ref1_enable_r ;
304 re f2_enable= ref2_enable_r ;
305 regul1_enable = regul1_enable_r ;
306 regul2_enable = regul2_enable_r ;
307 se lvdd = selvdd_r ;
308 state_nxt = INC ;
309 end
310 d e f a u l t : begin
311
312
313
314
315 end
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316 endcase
317 end
318 endmodule
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