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Abstract—In this paper, we consider the measurement alloca-
tion problem in a spatially correlated sensor field. Our goal is to
determine the probability of each sensor’s being measured based
on its contribution to the estimation reliability; it is desirable
that a sensor improving the estimation reliability is measured
more frequently. We consider a correlation model reflecting
transmission power limit, noise in measurement process and
channel, and channel attenuation. Then the estimation reliability
is defined as the distortion error between the event source in
the sensor field and its estimation at the sink. Motivated by
the correlation nature, we model the measurement allocation
problem into a cooperative game, and then express each sensor’s
contribution using Shapley value - a formal quantification of
individual player’s average marginal contribution. Against the
intractability in the computation of exact Shapley value, we
deploy randomized method that enables to compute approximate
Shapley value within reasonable time. In numerical experiments,
we evaluate approximate Shapley value by comparing it to the
exact one, and illustrate that measurement allocation according
to Shapley value turns to the balance between the estimation
reliability and network lifetime.

I. INTRODUCTION

In wireless sensor networks (WSNs), exploiting the corre-
lation nature of a spatial phenomenon can lead to a signif-
icant performance improvement of communication protocol,
e.g., efficient information aggregation and prolonged network
lifetime. With considering a sensor field wherein phenomena
are spatially correlated, there is a principle that the level of
correlation differs location by location, and which has been
exploited in several different research contexts: i) placement
(or localization) [1]–[3]; ii) selection (or activation) [4]–[10];
iii) density decision [11]–[13]; iv) measurement allocation (or
observation allocation) [14], [15]; v) power or rate allocation
[9], [16]–[19]; vi) considering multi-hop [20], [21].

In this paper, we consider the spatial correlation in an
inaccessible sensor field (e.g., enemy line in a battlefield or
contaminated area by radioactive fallout) wherein all sensors
are cannoned or airdropped randomly. In such a sensor field,
the degree of contribution of each sensor differs according

to the location of the event source and each sensor’s own
location, it is therefore essential to distribute the observation
exactly fairly in proportion to the contribution given by each
sensor. Inspired by [19] and [4], which have dealt with
the problems of maximizing the estimation reliability and
minimizing the number of active sensors in spatially correlated
sensor fields, respectively, our work focuses on quantifying the
contribution of every sensor in terms of the estimation relia-
bility, and allocating the measurements in proportion to the
quantified contributions, namely, fair measurement allocation.
Considering transmission power limit in each sensor, noise in
measurement process and channel, and channel attenuation,
it is clear that better estimation reliability is yielded by
measuring sensors that are less correlated with one another
but highly correlated with the event source [4].

The correlated nature encourages us to model the problem
into a cooperative game, and quantify each sensor’s contribu-
tion using coalition value. For this, we define the characteristic
function as the inverse of the distortion error between an
event source in a sensor field and its estimation at sink. A
characteristic function in a cooperative game corresponds to
the amount of utility achieved by cooperation; it is desirable to
apportion the achieved utility to each player in proportion to its
average marginal contribution in the cooperation. In this paper,
we employ Shapley value [22] to quantify individual sensor’s
average marginal contribution. In the context of cooperative
game theory, a player’s Shapley value gives an indication of
its prospects of playing the game - the higher Shapley value it
has, the better it prospects. Intuitively, mutually less correlated
sensors observe less correlated data (i.e., the correlation coef-
ficient between sensors affects the distortion positively [4]). In
[4], the authors have deployed vector quantization and Voronoi
diagram for selecting mutually less correlated sensors.

Unlike general cooperative games, players (i.e., sensors)
in our games are not self-interested; finding a set of stable
payoff allocations such as core, with which all the players are
satisfied, is not of our interest. That is, we are interested in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HSN Open Archive

https://core.ac.uk/display/154667636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Sensor data correlation model.

payoff allocation through Shapley value, and not interested in
the finding the core since the players (sensors) are not selfish
in our game. Nonetheless we model our problem into a game
since cooperative game theory also investigates fair division
of the resources, and Shapley value serves this purpose [23].

In spite of those desirable properties, Shapley value has one
major drawback: in many cooperative games, even in simple
games, computing exact Shapley value is intractable [24]; it
is proved that finding exact Shapley value is #P-complete
(Sharp-P- complete). However only a few research efforts can
be found where approximations are developed to estimate it.
From among them, we use one of the latest approximation
techniques based on the randomized method [25].

The remainder of this paper is organized as follows. In
Section II, we introduce the sensor correlation model and
necessary preliminaries about the cooperative game theory and
Shapley value. In Section III, we develop the measurement
allocation game within distortion error criterion. In Section IV,
we present the randomized method. In Section V, we present
some numerical evaluation results, and we conclude this paper
in Section VI.

II. PRELIMINARIES

This section begins with the presentation of the sensor data
correlation model used in this paper. Our model describes
the information collection structure of sensors in a spatially
correlated sensor field considering limited transmission power,
measurement and channel noise, and channel attenuation. Then
we give essential background encompassing cooperative game
theory and Shapley value.

A. Data Correlation Model

In pursuit of [19] and [4], the estimation reliability can be
defined in the mean square error (MSE) criterion: the MSE
between an event source in a sensor field and its estimation at
sink node. Fig.1 illustrates the sensor correlation model. Let
U and Û denote an event source and its estimation by sink,
respectively. Then the distortion error between the source and
its estimation is given by

DE = E

[(
U − Û

)2]
. (1)

Wi indicates sensor i’s observation on U , which is assumed
to be spatially correlated with other sensors’ observations, and
is given as joint Gaussian random variables drawn from

E [Wi] = 0 and var [Wi] = σ2
Wi
∀i ∈ N. (2)

Then K (i, j) = E [WiWj ] holds where K (i, j) is a covari-
ance matrix. We consider isotropic covariance matrix [1] that
emphasizes the weak dependencies (i.e. variables that are far
apart are actually often independent). We let γ = α ‖i− j‖.
If γ < 2π for α > 0,

K (i, j) =
(2π − γ) (1 + (cos (γ))/2) + 3

2 sin (γ)

3π
, (3)

and zero otherwise. Zi and ni denote the measurement noise
and channel noise, respectively, and drawn from i.i.d ∼
N (0, σ2

z) and i.i.d ∼ N (0, σ2
n).

Then the received signal by the sink from sensor i is given
by

Ŵi =

√
Pi

σ2
W + σ2

Z

hi (Wi + Zi) + ni, for ∀i ∈ N (4)

where Pi and hi are the allocated transmission power and the
channel attenuation coefficient for sensor i, respectively. We
assume that the channel state is detected at each sensor, and
its result is transmitted to the fusion center, and the detected
channel state doesn’t change until the end of transmission.
Moreover, as done in [19], we premise that the sensors are
measured one by one, which implies non-interfered sensor
transmission. Let Û(S) be the estimate of U when only a
subset of the sensors S ⊆ N send the information, and given
by

Û (S) =
1

|S|
∑
i∈S

Ŵi. (5)

Also (1) is rewritten in terms of a subset S as

DE (S) = E

[(
U − Û (S)

)2]
. (6)

Accordingly, by (2), (4), (5), and (6), the distortion function
DE(S) is yielded as

DE (S) = σ2
W −

2

|S|
√
σ2
W + σ2

Z

∑
i∈S

√
PihiK (U, i)

+
1

|S|2
∑
i∈S

Pih
2
i

+
1

|S|2 (σ2
W + σ2

Z)

∑
i∈S

∑
j∈S;i 6=j

√
PiPjhihjK (i, j)

+
σ2
n

|S|
, (7)

where K (i, j) and K (U, i) is the covariance between sensor
i and j, and the event source and sensor i, respectively.



B. Related Background in Cooperative Game Theory

The game model considered in this paper is a transferable
utility game, shortly TU game, defined as follows: a TU game
is a game in which the payoff of a coalition can be completely
described by a single real number, characteristic function, and
can be explained as the amount of payoff incurred by the
cooperation of the coalition members [26]. Formally defining,

Definition 1: A TU game is a pair (N, v) where N =
{1, 2, 3, ..., n} is a finite set of players, i.e., coalition, and
v(S) is its characteristic function v : 2N → R that satisfies
v(∅) = 0, and represents the total payoff that coalition S can
get in the game (N, v).

In cooperative game theory, core is a representative set-
valued solution concept that brings more clear understanding
of the implication of Shapley value. The core is regarded
as a set of payoff allocations that make no player breaks
away from the grand coalition, i.e., set of all players. That
is, a combination of allocations is in the core if there is no
subcoalition in which its members may gain a higher total
outcome than the combination of allocations of the grand
coalition [27].

Since the core is a set-valued solution concept, if a game has
a non-empty core, the core may contain more than one solu-
tion. However, TU games have no definition of how the payoff
of the grand coalition should be allocated to each player, and
generally, the core is empty in many games. Therefore there
is a requirement of another solution concept that makes the
total payoff distributed to each player in accordance with each
player’s marginal contribution to achieving the total payoff;
Shapley value meets these requirements [23]:

Theorem 2: For every i ∈ N , the Shapley value φ of a
game (N, v) is given by

φi (v) =
∑

∅6=S⊆N\{i}

(N − |S| − 1)! |S|!
N !

×∆iv (S), (8)

where
∆iv (S) = v (S ∪ {i})− v (S) . (9)

In Shapley value, the payoff for any player i depends on
the worth of every possible coalition. It means that Shapley
value premises that all permutation of the players are feasible.

III. MEASUREMENT ALLOCATION GAME

The measurement allocation problem is similar with the typ-
ical sensor selection problems in the sense that both consider
the measurement of some representative sensors. However, the
measurement allocation problem emphasizes on distributing
measurement to the entire sensor set for balanced resource
consumption even though its objective value is worse than
that of the typical sensor selection problem. In addition,
the uniform measurement yields the best balanced resource
consumption, but it does not regard the quality of the objective
value. Accordingly, by the measurement allocation, we can
get in to a compromising point between the quality of the
objective value and the balanced resource consumption (or
network lifetime). Thus it is essential to quantify each sensor’s

contribution and determine the probability of each sensor’s
being measured in proportion to its contribution.

Prior to giving the game model for the measurement alloca-
tion problem, we define the measurement allocation problem
as follows:

Definition 3 (Measurement allocation problem): Allocate
the probability of each sensor’s being measured in proportion
to each sensor’s marginal contribution to the reliable
estimation of an event source in sensor field.

The estimation reliability can be expressed within the dis-
tortion error criterion in (1). Then we cast the measurement
allocation problem into a cooperative game:

Definition 4 (Measurement allocation game): The
measurement allocation game is then a game (N, v)
with the characteristic function for every coalition S ⊆ N :

v (S) = [DE (S)]
−1
. (10)

v(S) expresses the inverse of distortion error when informa-
tion given by sensors in a coalition S is correlated. Definitely,
the measurement allocation game is a cooperative game with
transferable utility since the payoffs of all S ∈ 2N are directly
expressed as v(S). While, in general cooperative games,
payoff itself incurred by a cooperation is distributed to players,
the payoff is the estimation reliability in the measurement
allocation game. Therefore, we assume that the payoff, i.e.,
the estimation reliability, is converted into the measurement
probability, before distributing it.

A. Shapley Value in Measurement Allocation Game

Now the Shapley value of the measurement allocation game
is given by

φi (v) =
∑

∅6=S⊆N\{i}

(|N | − |S| − 1)! |S|!
|N |!

×∆iv (S) (11)

where

∆iv (S) = [DE (S ∪ {i})]−1 − [DE ({i})]−1. (12)

Then the probability of each sensor’s being measured is
given by

Γi(v) =
φi (v)∑

i∈N
φi (v)

. (13)

Due to the carrier and symmetry axioms of Shapley value
[23], it gives a way of distributing a coalition payoff brought
by a cooperation exactly fairly. In the measurement allocation
game, it gives a way of distributing the measurement consid-
ering the correlation.

IV. RANDOMIZED METHOD

A. Algorithm

Although Shapley value has been widely studied from
a theoretical point of view, the problem of its calculation
was proved as a #P-complete (Sharp-P-complete) problem
[24], [25]. There have been lots of approach to compute



exact Shapley value such as multilinear extension (MLE)
(also called diagonal approximation), generating functions
method, decomposition method, etc. However all of them
require exponential time or a large memory space. In order to
overcome this intractability, a few number of approximation
methods were developed, e.g., linear approximation, modified
MLE, and randomized method. However, all the approximation
methods except the randomized method require the exact
statistic information of the characteristic function, and can be
applicable to only simple cooperative games such as weighted
voting game or weighted majority game [27] where a player’s
marginal contribution and payoff of a coalition is a binary
value. Incidentally, the MLE can be applicable to the game
that has additive characteristic function. On that account,
we apply the randomized method [25] in this paper. Refer
[24] and references therein for more detailed explanations of
Shapley value computations. Furthermore, it is known that the
randomized algorithm returns good approximations to many
#P-complete problems with high probability [30].

In the randomized method, sampling and its inference
are used in circumstances where it is infeasible to obtain
information from every member of the original population.
The randomized algorithm begin with deciding the size of
permutation samples qX for each coalition size X . For this,
we make a rough assumption that our characteristic function
follows Gaussian normal distribution. Therefore we decide qX
with guaranteeing that the error in the estimation process is
lower than d with 95% maximum allowable error as follows:

qX =

⌈(
1.96

d
σX

)2
⌉
. (14)

where σX is standard deviation estimated with small pilot
samples. Then, on each coalition size X , it evaluates the
marginal contribution of each sensor i to the sampled coalition
SX of size X; this evaluation repeats qX times with different
SX on each repetition by

∆iv (SX) = v (SX ∪ {i})− v (SX) . (15)

Concludingly, the approximate Shapley value of each sensor
i is given by

ϕ̂i (v) =

Xmax∑
X=1

[
1

qX

qX∑
k=1

∆iv
(
SkX
)]

(16)

where Xmax is the maximal number of sensors to be activated,
and given by the sensor application.

Then the probability of each sensor’s being measured is
determined by normalizing the Shapley value with its summa-
tion:

Γ̂(i) =
φ̂i (v)∑

i∈N
φ̂i (v)

. (17)

B. Approximation Error

Ideally, the approximate Shapley value should be evaluated
by comparing it with the exact one. However this computation
cannot be done due to the intractability in finding the exact

Fig. 2. Comparison of the probability of each sensor’s being measured
determined by the exact Shapley value and the approximate one. Y axis
indicates the amount of error between these two values.

value. In this paper, we exploit that the accuracy of the
randomized algorithm depends on its sampling error since it
depends on the measurements on samples drawn randomly.
Therefore we evaluate approximate Shapley value by mea-
suring the sampling error. The empirical standard deviation
of the approximate Shapley value of sensor i for a random
permutation of coalitions of size X is given by

si (SX , v) =

√√√√ 1

qX

qX∑
k=1

[
Ti −∆iv

(
SkX
)]2

(18)

with yielding an estimator of the sampling error:

ei (SX , v) =
si (SX , v)
√
qX

. (19)

By the standard error propagation rules, the error in the
approximate Shapley value is

e (ϕ̂i (v)) =

Xmax∑
X=1

ei (SX , v). (20)

V. NUMERICAL EVALUATION

In this section, we use numerical results in order to evaluate
our method within three performance criteria: approximation
quality, impact of the coalition structure, and balancedness
between low distortion error and prolonged network life time.
We consider a sensor field where sensors are randomly dis-
tributed in 500× 500m2. We use the covariance model in (3)
with setting α = 0.018. We compute the size of permutation
samples with 95% of maximum allowable error d using 100
sample pilots. Besides, we draw each sensor’s transmission
power randomly in 100mW ∼ 2W. The channel attenuation is
modeled as hi,j = K0 · 10β(i,j)/10 · (di,j)−2 where K0 = 103,
di,j is the distance between i and j, and β(i, j) is random
Gaussian variables with zero mean and standard deviation
equal to 6dB.



(a) In case N = 50 and d = 0.001

(b) In case N = 50 and d = 0.002

(c) In case N = 100 and d = 0.005

(d) In case N = 100 and d = 0.008

Fig. 3. Approximate Shapley values and their standard sampling error
according to 95% maximum allowable error (d) in case n = 50 and N = 100.

A. Approximation Quality

We illustrate the quality of the randomized method by com-
paring its results to the exact value and measuring the standard
sampling error. For this evaluation, we set σ2

z = σ2
w = 1.0.

Fig. 4. Cumulative average of the distortion error according to the
measurement iteration. On each measurement iteration, 20 sensors are chosen
among entire 50 sensors.

On Fig.2, the error between the exact Shapley values and the
approximate ones are compared for the sensor field with 20
sensors. It is observed that the maximum error is measured
about 0.012, and in most case, measured below 0.004. In
addition, as expected usually, we notice that larger allowable
error yields larger sampling error.

We next evaluate the approximate Shapley value with larger
set of sensors, and estimate its accuracy with the standard
sampling error given by (20). The Fig.3 plots the results and
shows that the sampling error is measured as less than 0.1%.

B. Balancedness

The last set of experiments is performed in order to investi-
gate the balancedness of each method - balancedness between
average distortion error and network life time that is defined
as the duration until all the sensor’s energy get depleted.

As done in the previous subsection, we also compare with
the greedy and uniform methods: the least balanced and the
most balanced. We distribute 50 sensors on the sensor field,
and assume that each sensor consumes the energy equal
to its transmission power on each measurement. We also
assume that every sensor can be measured 150 ∼ 200 times
until its energy gets depleted. We iterate the measurement
process with selecting 20 sensors on each iteration according
to those three selection criteria, and measure the cumulative
average distortion error on each iteration1. The results are
shown in Fig.4. On each iteration, the Shapley value-based
measurements select sensors according to their measurement
probabilities.

It is noticed that the average distortion errors of both
the greedy and Shapley value-based methods start increasing
abruptly from iteration 151 and 174 respectively due to the en-
ergy depletions in the highly contributory sensors. In addition,
while the lifetime of the greedy method expires at iteration
352, the lifetime of the uniform method lasts until 427. The
Shapley value-based method lasts until 390. As expected,
the greedy method always shows lower average distortion

1On each iteration k, we plot the average distortion error up to iteration k
from iteration 0.



error than the other methods through entire iteration, and
the uniform method always yields the highest. The Shapley
value-based measurements yield lower average distortion error
than the uniform method and longer lifetime than the greedy
method, and which illustrates the balancedness of our interest.

VI. CONCLUSION

In this paper, we address the measurement allocation prob-
lem in a spatially correlated sensor field. Our main goal is to
reduce the distortion error between the event source and its
estimation. By the correlation nature, we model this problem
into a cooperative game, and then deploy Shapley value for
fair measurement allocation. The inverse of the distortion error
is defined as a payoff, and the measurement probability is
a reward for sensor’s contribution to reducing the distortion
error. To overcome the intractability, we apply the randomized
method. Since the computation of exact Shapley value is
very exhaustive, we deploy the randomized method that can
compute approximate Shapley value within reasonable time.

Through numerical experiments, we evaluate the random-
ized method by comparing the approximate Shapley value to
the exact one and measuring the sampling error. Then, we
evaluate our method in terms of both the network lifetime and
achieved distortion error.

For the future research direction, we can utilize Shapley
value in order to find each sensor’s contribution in two dif-
ferent measurement allocation games since both values satisfy
the linearity axiom. That is, a separate game for achieving
prolonged network lifetime may be considered, and then each
sensor’s contribution to both metrics can be quantified using
the linearity axiom. Moreover, Shapley value can be deployed
to determine the quantization level of the information detected
by each sensor: the higher Shapley value a sensor has, the more
bits it uses for the transmission of event.
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