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Abstract

In today’s embedded systems, the memory hierarchy is rapidly becoming a ma-
jor bottleneck in terms of power, performance and area, due to the very large
amount of (memory related) data need to be transferred and stored (temporar-
ily). This is especially the case for portable multi-media applications systems.
These applications are characterized by deep loop nests and multi-dimensional
arrays at the high level. Due to the dramatically increasing size and complexity
of system-on-a-chip (SoC) designs and stringent time-to-market requirement, the
methodology and tools for chip design must be raised to the system level. Early
analysis tools are particularly critical in enabling SoC designers to take full ad-
vantage of the many architectural options available. For memory optimization,
the early high level techniques aim either to design an optimal memory platform
for a given application or to optimize the application code in order to take advan-
tage of the memory platform features, or even both. Loop transformation is such
an important high level optimization technique. It modifies the execution order
of loops and statements without changing the application functionality. Existing
loop transformation algorithms are all performed based either on reduction of data
access lifetime and on improvement in data locality and regularity to steer selec-
tion of loop transformations. These are, however, very abstract cost functions
which do not represent the exact memory size requirement of the arrays and how
the data will be mapped onto the memory platform later on. Existing algorithms
all result in one final loop transformation solution. As different loop transforma-
tions may result in optimal utilization for different memory platform instances,
ad-hoc decisions at this stage without estimating their impact on the actual hier-
archy utilization can lead to a final sub-optimal solution. An evaluation of later
design stages’ effort is hence required. On the other hand, there usually exist a
huge number of loop transformation possibilities, the estimation is required to be
performed repeatedly and its computation time of the estimation technique also
becomes critical to make it useful during the loop transformation search space
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exploration.
This dissertation proposes a memory footprint estimation methodology. An

intra-array memory footprint estimation is performed first followed by an inter-
array estimation. In order to achieve a fast estimate to make it useful repeatedly
during the early high level search space exploration, several techniques have been
introduced. A fast intra-array memory footprint estimation is performed at the
iteration domain based on the maximal lifetime of data accesses, which is defined
by the maximal dependency vector. Two approaches, an ILP formulation and
vertexes approach, have been introduced for achieving a fast maximal dependency
vector calculation. The fast inter-array estimation has been achieved based on
several Hanoi tower based approaches.

A hierarchical memory size estimation methodology has also been proposed in
this dissertation. It estimates the influence of any given sequence of loop transfor-
mation instances on the mapping of application data onto a hierarchical memory
platform. As the exact memory platform instantiation is often not yet defined
at this high level design stage, a platform independent estimation is introduced
with a Pareto curve output for each loop transformation instance. It can steer the
designer or an automatic steering tool to select all the interesting loop transfor-
mation instances that might later lead to low power data mapping for any of the
many possible memory hierarchy instances. This is useful when the memory plat-
form is not defined yet, or for a given memory hierarchy instance. It also allows
to find the most appropriate low power memory hierarchy instance by performing
an early power estimation of different memory hierarchy instances. Initially the
source code is used as input for estimation, resulting in an initial approach. How-
ever, performing the estimation repeatedly from the source code is too slow for
the large loop transformation search space exploration. An incremental approach,
based on local updating of the previous result, is thus introduced to handle se-
quences of different loop transformations. Several advanced techniques have also
been used on these two approaches in order to perform a fast estimation, such as
bounding box geometrical model based data reuse analysis, platform independent
memory hierarchy layer assignment estimation, fast intra- and inter-array memory
footprint estimation.

The feasibility and usefulness of the methodologies are substantiated using
several representative real-life application demonstrators. It shows for instance
that the fast memory footprint estimation can be two order of magnitude faster
than compared techniques while still achieving fairly accurate estimation result.
For hierarchical memory size estimation methodology, the initial approach is two
order of magnitude faster than the compared technique and the incremental ap-
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proach is another two order of magnitude faster than the initial approach, which
can just take a few milliseconds. The fast computation time of the incremental
approach make it feasible to be used repeatedly during the loop transformation ex-
ploration over a very large number of possibilities. Furthermore, prototype CAD
tools has been developed that includes mast parts of the methodologies.
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Chapter 1

Introduction

1.1 Background and Motivation

Recent multi-media systems such as video compression/decompression, (medi-
cal) image processing, advanced audio and speech coding, 3D gaming, typically
require very large amounts of data to be transferred and stored (temporarily). For
this class of data dominant applications, this memory related data transfer and
storage largely determine the total system cost and performance parameters. This
is especially a problem for portable embedded systems because the needed mem-
ories and bus transfers consume a lot of power. [160] has shown that between 50%
to 80% of the power in embedded multi-media systems is consumed by data trans-
fer and storage, as opposed to the computations which consume much less. This
is the case for both parallel and single-processor systems. Figure 1.1 shows an
example of digital audio broadcast (DAB) ASIC chip in which memory consumes
over 66% of the total power [26]. Higher power consumption also means more
costly packaging and cooling equipment, and lower reliability. Figure 1.2 shows
the energy dissipation for external DRAM access compared to on-chip SRAM and
also compared to selected execution units realized in hardware. If off-chip memo-
ries can be avoided or the access to them can be reduced by having most accesses
on-chip in the hierarchical memory architecture, the average power consumption
per overall access is dramatically reduced.

For these applications, the large amounts of data to be stored obviously re-
quire a large overall memory size (in the order of hundreds of Mbits to Gbits).
Given the need for caching at least part of this huge data, this means that the area
cost (both on-chip and off-chip, on the board) is usually for a large part domi-
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Figure 1.1: Power dissipation for DAB ASIC chip

Figure 1.2: Energy dissipation for hardware realization of selected operations
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Figure 1.3: Performance gap between microprocessors and external DRAM by Moore’s
law

nated by the memories. For future systems-on-chips the memory is predicted to
constitute 94% of the total chip size (in year 2016) [1]. Large memory size also
means more power dissipation per access and longer access time. Consequently,
the memory related data transfer and storage is also a determining factor for over-
all system performance. The exponential growth in processor execution speed
according to Moore’s law, as shown in as Figure 1.3, coupled with a much lower
growth in the access time to main memories, have resulted in an ever growing
processor-memory performance gap [110, 149]. This bottleneck can be alleviated
by hardware controlled caching schemes, or by inserting faster smaller scratch-
pad memories between the processor and the main memory to reduce/tolerate the
memory latency.

It is commonly agreed that low power design requires optimizations at all
levels of the design hierarchy, i.e., technology, device, circuit, logic, architec-
ture, algorithm, and system level [20, 21, 119]. Larger freedom usually exists
at the higher abstract levels so that larger gains can be achieved. Due to the
dramatically increasing size and complexity of system-on-a-chip (SoC) designs,
system-level design becomes crucial for rapidly performing design space explo-
ration without resorting to detailed implementations. System level design can,
with a global view, make proper high-level design decisions such as algorithm se-
lection, hardware-software partition, and trade-off between various optimization
techniques. It can also shorten the design time, thereby reducing the ever impor-
tant time-to-market. Various memory related system level design and optimization
techniques have recently been developed. A review of important work in this field
is given in Chapter 2.
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1.2 Problem Statement and Objective
System designers traditionally begin the design by evaluating different architec-
tural configurations based on their intuition and experience. The performance
and power consumption improvement of the memory subsystem relies mainly on
technological advances. A randomly chosen memory architecture is often far from
optimal and can usually not be evaluated and optimized until the very late design
stage. At the same time, the memory subsystem offers tremendous opportuni-
ties for design optimization. A well-matched memory architecture, which highly
depends on the characteristics of the target application, can improve the system
dramatically.

In multi-media embedded systems, the application is typically described us-
ing languages such as C and C++ at the system level. The code is then dominated
by large multi-dimensional arrays and loop nests. During system level design, a
number of optimization techniques are used that substantially influence data trans-
fer and storage size related issues. One very important example is the global loop
transformations step. It modifies the execution order of loops and statements with-
out changing the application functionality. Loop transformations can change the
execution order so that the data write (production) and the data read (consump-
tion) are moved closer together in time. The result is that the global lifetime of
array elements are reduced and the data locality and regularity of data accesses
are improved. Hence, more data can be saved in smaller on-chip memories, from
where it can be accessed repeatedly. This is vital to the overall system power
consumption, performance and area. Traditionally reductions in data element’s
lifetime or improvement in data locality and regularity are used to steer selection
of loop transformations. These are, however, very abstract cost functions that do
not represent how the data will be mapped onto the memory platform. On the
other hand, there usually exist a huge number of (combined) loop transformation
possibilities for real applications with multiple loop nests (up to dozens). [38] has
proven that even performing loop fusion is an NP-complete problem. The task is
even more complex when various other loop transformation techniques are con-
sidered at the same time, e.g., loop interchange, loop reverse, loop skewing, loop
shifting, etc. Different loop transformations may result in optimal utilization for
different memory platform instances as will be demonstrated on experiments in
this dissertation. Ad-hoc loop transformation decisions without estimating their
impact on the actual hierarchy utilization usually lead to final sub-optimal solu-
tions.

Thus, it is critical to perform an estimation of data mapping onto memory
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platform during the early loop transformation exploration in order to find all inter-
esting (including intermediate) loop transformation instances. The state-of-the-art
loop transformation algorithms all result in a single final loop transformation so-
lution. Their solution may be optimal for certain memory hierarchy instances,
but typically not for all. As mentioned, the data memory platform is typically not
defined at this early design stage. The estimation must hence be platform indepen-
dent. A memory footprint estimation is also required to give an early feedback on
the actual memory size requirement of all arrays as loop transformations change
array’s lifetime and hence size requirement.

At the same time it is not enough simply to estimate the actual size of a given
array and of the given application, since the minimal size may still be too large
to fit on-chip. In addition, if sufficient locality between read accesses is present,
a local copy of part of the array to on-chip memory may already remove most of
the off-chip accesses [157], making the actual size of that array less relevant. To
select all the interesting loop transformation alternatives, it is therefore critical to
identify the frequently accessed data and estimate their mapping on the hierarchi-
cal memory platform. Later, when the details of the memory platform is decided,
the set of transformation solutions can help the designer or a steering tool to find
the optimal version of code while trading off memory size and power (i.e., off-
chip accesses). Such an estimation tool can be of great use to a system designer
or an automatic steering tool by providing accurate and fast feedback for a given
sequence of transformation instances during the huge loop transformation search
space exploration. It is also useful to provide the designers with an early memory
architecture exploration while taking into account the data access characteristics
of the target application during the system level code transformation exploration.
This allows the designer to transform the target application for optimal utilization
either of a given memory architecture or for a customized memory architecture in-
stance. The goal of this dissertation work has been to develop techniques and tools
for the early global loop transformation and memory architecture exploration. The
focus has mainly been on the early global loop transformation design step. But it
can also be used to provide feedback to other early system-level transformations
such as global data-flow transformations [31].

1.3 Application Domain and Targeted Architecture
The target application domain is multi-media applications, which are data access
dominated. The main characteristics of this class of applications are many deep
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loop nests and multi-dimensional data. Due to the rectangular shape of images and
video streams, the loop bounds are often constant, or at least manifest (i.e., only
dependent on the other iterators). Typically the data being written or read during
the execution of a program are grouped into sets of similar variables, which are
called arrays. These arrays are arranged as multi-dimensional structures, in which
each individual variable can be addressed by a unique set of indices. Most of the
conditions and the array index expressions are manifest. They are functions of
the surrounding loop iterators. However, more and more multimedia applications
(e.g. MPEG-4) also contain data dependent conditions and index expressions.

This dissertation focuses on evaluating the later stage memory footprint re-
quirement and data mapping onto the memory hierarchy. This is based on the fact
that memory power consumption depends primarily on the access frequency and
the size of the memory. Power can be saved by accessing heavily used data from
smaller memories instead of from large background memories. Such optimiza-
tions either have to rely on hardware cache controllers which copy relevant data
into the cache based on some local criteria, or they rely on scratch-pad memories
(SPMs). SPM is also called software-controlled memory. For the data domi-
nated applications in our target domains, SPM is normally preferred over cache
due to the stringent low-power and real-time requirements of embedded systems.
Caches incur a significant penalty in area, energy, and to hit latency and real-time
guarantees. SPM does not need any extra hardware or the set-associative cache
matrix. A detailed recent study [128] compares the tradeoffs of a cache as com-
pared to an SPM. Their results show that an SPM has 34% smaller area and 40%
lower power consumption than a cache memory of the same capacity. Further, the
runtime with an SPM using a simple static knapsack-based [128] allocation algo-
rithm, was measured to be 18% better as compared to a cache. Given the power,
cost, performance and real time advantages of SPM, it is not surprising that SPM
is the most common form of SRAM in embedded processors. Many embedded
processors can thus contain normal SPMs and/or caches, some even leaving out
the cache. [100] lists various types of embedded processor families having SPM
(from ARM, Motorola, Analog Devices, Atmel, Philips and Hitachi). The recent
IBM’s CELL processor has, for example, 256KB SPM for each cell and no cache.
Its architecture consists of eight ”Synergistic Processing Elements” (SPE), each a
powerful processor in its own right, together with a powerful 64-bit Dual-threaded
IBM PowerPC core.

Data of an application has to be mapped efficiently on its memory hierarchy.
SPM require source code transformations that exploit on-chip memory layers to
which frequently used data will be stored or copied. Specifically, copies of data
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will be introduced from larger off-chip memories to smaller on-chip memories. As
most of the data access patterns in our application domain are known at compile
time, a global view can be taken during code optimization and data mapping [107,
27]. In this dissertation, we choose to focus on the SPM based memory platform.
This platform consists of one or multiple SPM layers in addition to off-chip main
memory.

1.4 Main Contributions
The main contributions of this dissertation can be summarized as follows:

• A complete fast memory footprint estimation (MFE) methodology for data
intensive applications has been developed. This methodology consists of
intra-array and inter-array memory footprint estimation. It uses a geometri-
cal model (GM) and includes features such as

– A fast intra-array memory footprint estimation on the iteration do-
mains in the GM defined by the maximal lifetime window, which is
constrained by the maximal dependency vector (MDV).

– A ILP formulation for the MDV calculation.

– A vertexes approach for the MDV calculation on the bounding box
GM which is extremely fast making it feasible to perform the intra-
array memory footprint estimation repeatedly during the system level
design exploration.

– A fast inter-array memory footprint estimation by investigating the
largest group of arrays that are simultaneously alive. Fast grouping
algorithms are introduced by solving Hanoi-tower puzzles.

• A complete fast hierarchical memory size estimation (HMSE) methodol-
ogy for steering of loop transformation exploration at the system level has
been developed. It consists of two parts: initial HMSE starting from the
source code, and incremental HMSE for exploration of sequences of loop
transformations. It includes features such as:

– Fast bounding box based data reuse analysis.

– Fast platform independent memory hierarchy layer assignment (MHLA)
estimation with Pareto curve generation. Two heuristics are used: a
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simple greedy MHLA estimation algorithm and an improved MHLA
estimation algorithm.

– The intra-array and inter-array memory footprint estimation are also
included in the HMSE methodology.

– Fast incremental data reuse analysis based on evaluation of matrix op-
erations which correspond to the loop transformations performed. For
sequences of loop transformations this can be extremely fast as most
performed loop transformations usually just have local effects from
the previous performed one.

• Methodology for early low power memory architecture exploration based
on the HMSE Pareto curve (with both memory size and access information)
including power estimation for possible memory architecture instances.

• Prototype tools, MFE and HMSE, have been developed based on major
techniques mentioned above for both the fast memory footprint estimation
methodology and the hierarchical memory size estimation methodology.

• The tools and the methodologies have been evaluated with successful results
for several realistic test vehicles.

1.5 Outline
This dissertation is organized in the following manner:

In Chapter 2, related work will be reviewed. It includes a review of the mem-
ory related system level optimization techniques, particularly the data transfer and
storage exploration (DTSE) methodology. It also presents previous work about
loop transformations and memory footprint requirement estimation.

Chapter 3 gives an overview of the polyhedron GM and the simplified bound-
ing box GM. The principle of incremental loop transformations is also presented.

The fast intra-array memory footprint estimation based on the MDV calcula-
tion and the two approaches on how to perform the MDV calculation are given in
Chapter 4.

Chapter 5 presents the three approaches for fast inter-array memory footprint
estimation: initial Hanoi-tower approach, multiple layer Hanoi tower approach
and improved Hanoi tower approach.

In Chapter 6, the initial HMSE is presented which starts from the source code.
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Chapter 7 presents the incremental HMSE.
In Chapter 8, early power estimation for different memory architectures of

each loop transformation instance is presented that enables a low power memory
architecture exploration among all the interesting versions of code found during
loop transformation exploration.

The estimation methodologies have been applied on a number of real-life ap-
plication vehicles. The results from these experiments are given in Chapter 9.

Finally, in Chapter 10, conclusions are given together with a discussion of
future work.





Chapter 2

Related work

In the recent advanced embedded system design domain, the memory related data
transfer and storage issues has been investigated in order to achieve a cost effec-
tive end-product in terms of power consumption, performance and area. The task
is either to find an optimal customizable memory architecture for the given appli-
cation(s) and/or to optimize the application code in order to maximally utilize the
(given) memory architecture. Efforts have been spent at all levels of the design hi-
erarchy, i.e., technology, device, circuit, logic, architecture, algorithm, and system
level [119, 20]. However, due to the increasing complexity of the system-on-chip
design with integrated applications and strict time-to-market requirements, system
level design is becoming more increasingly important. It is commonly recognized
that larger freedom usually exists at the higher abstract levels so that larger gains
can be achieved.

Many researchers have studied memory related issues of system level design.
Section 2.1 gives an overview of work related to the memory optimization in gen-
eral. Section 2.2 reviews the data transfer and storage exploration methodology
developed at IMEC, Leuven, Belgium. In this section, previous work done by
other researchers have also been included and compared to the IMEC techniques.
After that, previous work of loop transformations, storage requirement estimation
and memory in-place mapping optimization are reviewed, respectively, in Section
2.3, Section 2.4 and Section 2.5.

11
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2.1 System Level Memory Synthesis and Optimiza-
tion

System level memory synthesis and optimization have been studied extensively in
the past two decades by a number of research groups. Studies have been done in
the domains of code compilation/optimization and high level architectural synthe-
sis. Here we will try to highlight some of the important work. This section will
present major groups that have performed research that are in particular relevant
for the work described in this dissertation. This review focuses on the work of the
SPM-based memory subsystem synthesis and optimization.

At IMEC, Leuven, Belgium, Catthoor et al. has developed the data transfer
and storage exploration methodology for exploration of memory organization at
the early system level and it contains different optimization techniques. This will
be reviewed in detail in Section 2.2. At University of California, Irvine, Dutt et
al. have also studied these topics extensively. Panda et al. [108, 106, 105] has
highlighted the importance of this requirement and has presented MeMEplore,
an exploration framework for optimizing an on-chip data memory organizations.
Grun et al. [61] also proposed a memory architecture exploration framework.

At Pennsylvania State University, Kandemir et al. have also studied memory
subsystem design and management extensively in [75, 120, 72, 73, 74]. They
has mostly focused on the compiler-related software solutions for both the SPM-
based or cache-based on-chip memory management. They have investigated in
both compiler-time and dynamical memory management for uni-processor and
multiprocessor cases. Benini et al. [20, 21, 23, 22] at University of Bologna, Italy,
also studied the various system level power optimization techniques including op-
timization of the memory subsystem. In the Inria Compsys project at Institut
National des Sciences Appliquees de Lyon, France, researchers also work on de-
velopment of compilation techniques adapted to the design of embedded systems
[58, 33, 59, 39, 37]. At Maryland University, USA, a number of papers has also
been published about SPM-based memory allocation [136, 100, 137]. Macii et al
at Politecnico di Torino, Italy, has been studied for efficient memory design for
embedded system [94, 109, 124]. Marwedel et al. at Dortmund University, Ger-
many, have also introduced various techniques for low power SPM assignment
and optimization [128, 13, 95]. Featrier et al. at University of Pierre et Marie
Curie, Paris, France, have focused on storage size optimization and management
for parallel programs [51, 87, 88].



2.2. Data Transfer and Storage Exploration Methodology 13

2.2 Data Transfer and Storage Exploration Method-
ology

The data transfer and storage exploration (DTSE) methodology is a systematic
methodology for exploration of memory organizations at early system levels for
embedded multimedia systems design. The motivation is that the initial speci-
fication heavily influences the outcome of architectural exploration and mapping
tools, e.g., for data-path allocation, memory allocation, address generation. There-
fore transforming the specification is one of the most prominent tasks during the
early system-level exploration. The goal of DTSE methodology is to determine
an optimal execution order for the data transfers together with an optimal mem-
ory architecture for storing the data of the given application. The cost functions
are power, performance and area oriented. A detailed description of the com-
plete DTSE methodology can be found in [30, 29]. In order to demonstrate the
usefulness of the work presented in this dissertation within their methodology, a
brief summary of its main steps is given here. Note that this section does not just
contain the work done by IMEC researchers. For some steps which are consid-
ered within this dissertation, the work done by other researchers has also been
reviewed.

The methodology is divided into constrained orthogonal steps with a fixed se-
quence that removes the need for iterative loops (the traditional phase coupling
has been broken). This sequencing where specific constraints are propagated be-
tween the steps, facilitates the designers learning and usage while they also make
the full methodology better automatable.

Figure 2.1 shows the design flow of the DTSE methodology. The flow is
based on the idea of constrained orthogonalization, where in each step a problem
is solved at a certain level of abstraction. The consequences of the decisions are
propagated to the next steps and as such decreases the search space of each of the
next steps. The order of the steps is so that the most important decisions and the
decisions that do no put too many restrictions on the other steps are taken earlier.
It is based on a source-to-source code transformation approach that can be easily
adopted on top of most existing design flows. The starting point is an executable
system specification with accesses to multi-dimensional array elements. The out-
put is a transformed source code specification which is an optimized input for the
software compilation stage in the case of instruction-set processors or is ready for
low power hardware realization.

The first steps are platform independent in the sense that they do not depend on
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Figure 2.1: DTSE methodology for data transfer and storage exploeration: global
overview
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the particular memory organization instance that has been selected ∗. They aim
at removing redundant accesses in the data flow, optimizing the regularity and
locality of data accesses in general, and exploiting the data reuse possibilities ex-
plicitly. The following steps are platform dependent, where physical properties of
the specific target architecture instance are taken into account to map and sched-
ule the data transfers in a cost- and power-efficient way. Note that the platform
dependent steps can be used to explore the search space for an optimized memory
platform or to map data onto a predefined but configurable (knob-enabled) plat-
form in an optimized way. For each of the steps we describe briefly their general
functionality and, when appropriate, their specific relation to this work.

2.2.1 Pruning and Related Preprocessing Step

This step precedes the actual DTSE optimizations; it is intended to isolate the
data-dominant code which is relevant for DTSE, and to present this code in a way
which is optimally suited for transformations [30]. All freedom is exposed explic-
itly, and the complexity of the exploration is reduced by hiding constructs that are
not relevant. [104, 103] have recently presented systematic preprocessing tech-
niques for data dependent constructs, making it possible to include more code for
exploration at the subsequent steps. Also the transformation of the data references
into a dynamic single assignment form [142] belongs to this step.

2.2.2 Global Data Flow Transformation

The original algorithm often contains bottlenecks preventing code restructuring
transformations to be applied. The global data-flow transformations remove these
bottlenecks and are as such enablers for the subsequent steps of the DTSE method-
ology [31]. Another goal of this step is the removal of access redundancy in the
data-flow. Examples of global data flow transformations are advanced signal sub-
stitution avoiding unnecessary copies of data, and shifting of ”delay lines” through
the algorithm to reduce the storage requirement. Details on this step can also be
found in [70, 71].

The memory footprint estimation techniques from this dissertation can be used
to give an early feedback on the transformation effect.

∗Also these steps are still technology and library dependent though as the relative size of spe-
cific cost functions would influence their outcome
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2.2.3 Global Loop Transformations

The loop transformations step within the DTSE methodology aim at globally im-
proving the data access locality and regularity for multi-dimensional array signals.
They are applied globally across the full code, not only on individual loop nests
but also across function scopes because of the selectively inlining applied in the
preprocessing step. An automatic compiler technique is currently being devel-
oped. The original work of [141, 54] has been used as a basis. That technique has
been extended with more refined abstract cost estimators of the subsequent mem-
ory related optimization steps, specifically data reuse and locality reuse [35, 34].
[144, 48] has further presented an algorithm for memory optimization focusing on
loop fusion and loop shifting.

The HMSE technique presented in this dissertation is very useful during global
loop transformation exploration. It forms a significant extension of the early esti-
mators in [35, 34]. A more complete overview of related work on loop transfor-
mation and size/reuse estimation techniques is therefore given in Section 2.3.

2.2.4 Data Reuse Analysis

The data reuse analysis (DRA) step in the DTSE methodology exploits temporal
locality in the data accesses and identifies frequently accessed data. This allows
these data to be be copied to the smaller memories closer to the data path and
accessed multiple times from there. This both reduces the power consumption
and improves performance as accessing smaller memory closer to the processor is
faster and more power efficient than accessing the larger off-chip memory.

A basic systematic data reuse methodology [45, 157] has been developed.
That methodology is however only manually applicable and not directly imple-
mentable in a fully automated tool. Moreover, it has restrictions on the actual data
reuse behavior that can be handled. In [138, 140, 139] some vital cost parame-
ters are introduced to describe a more complete search space. They explore the
relation between these parameters and the cost function for power and memory
size, and propose heuristics to steer the search for a good solution. They proposed
an analytical model for the cost parameters as a function of the index expres-
sion and loop bounds. This leads to a fully automatable design technique for all
loop-dominated applications to find optimal memory hierarchies and generate the
corresponding optimized code. [139] attempts to explore tradeoffs between SPM
size and power, assuming an optimal run-time placement of data in SPM. But no
technique is presented yet for automatic tool implementation.
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Besides the techniques developed at IMEC, there also exist other techniques
[24, 69, 72]. [24] proposes a method to evaluate the lifetime of stencil elements.
This means an exact analysis of reuse factor but it is high complexity for analysis
and for generated code. [69] does the analysis by evaluating the reuse distance of
the same set of data between the current and next iteration of a certain loop level. It
ignores boundary effects and results in simpler generated code. However, all these
methods work on geometrical model which is quite computation expensive. [72]
presents another related work as also reviewed in Section 2.3. They proposes to
have a given memory hierarchy and come up with the best loop transformations,
or to use the current program to design the optimal memory hierarchy. This is
achieved based on an abstract data reuse performed on transformation matrices†

at loop transformation stage but they does not perform a full reuse exploration.
Our memory footprint estimation can be used at this step to find the memory

footprint requirement for each array. The actual memory footprint requirement
for one array may be much smaller than the declared size. This effect should be
taken into account during the data reuse analysis. It is also an important step of
the HMSE methodology presented in this dissertation. A novel data reuse analysis
technique has also been presented in this dissertation. Further comparison among
the different data reuse analysis techniques will be presented later in Chapter 6.

2.2.5 Memory Hierarchy Layer Assignment

Based on the data reuse exploration performed in the previous step, the mem-
ory hierarchy layer assignment (MHLA) step assigns the identified frequently ac-
cessed data (which is usually part of an array), together with the original arrays,
onto the given memory platform instance. This is also the first platform depen-
dent step. Usually it is combined as a sub-step in the subsequent storage cycle
budget distribution step [30]. The mapping is done using cost functions of power
consumption, performance and size requirement. The backtracking algorithm is
introduced which can achieve an near-optimal mapping. This is based on band-
width and high-level memory size estimation. The memory class of each of the
memory layers is always given (e.g. ROM, SRAM or DRAM and other RAM
”flavors”). Further data assignment within each layer, such as memory/bank allo-
cation, is still left to be optimized at a later step. Details on this step can be found
in [27].

There also exist extensive other work on memory assignment. Panda et al.

†What a transformation matrix is will be discussed later in Chapter 3
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present early work for efficient utilization of SPM in [107]. Steinke et al. also
propose their algorithm for data and code assignment to SPM for energy reduction
in [128]. Nguyen et al. in [100] proposes to take advantage of compiler analysis of
data access patterns and make it dynamically portable across SPMs of any size at
run-time. All these work use greedy algorithms and also does not offer trade-offs
between power consumption, performance and size requirement as [27] does.

This is a step where the memory footprint estimation presented in this dis-
sertation can be used to give high level memory footprint requirement feedback.
Because this is also a step at where loop transformations have a significant effect
on the data accesses in the memory hierarchy structure, it is hence essential to
estimate the data mapping in this step during the evaluation of the effect of loop
transformation. This step is hence considered in the HMSE methodology pre-
sented in this dissertation. Two MHLA estimation algorithms are introduced in
this dissertation later in Chapter 6.

2.2.6 Storage Cycle Budget Distribution
Due to the additional power consumption and design cost of multi-port memories
and excessively complex multi-memory architectures, it is necessary to determine
in an optimal way which data is going to be accessible simultaneously. This must
be done within a limited storage cycle budget given by stringent real-time con-
straints. The storage cycle budge distribution step mainly determines the band-
width/latency requirements and the balancing of the available cycle budget over
the different memory accesses. The cycle budget is distributed over different loop
nests through loop transformations such as splitting, merging, and reordering of
loops and loop bodies. Details on this step can be found in [159, 158, 161, 102].

The memory footprint estimation presented in this dissertation can be used at
this step to find the storage requirement changes caused during the storage cycle
budget optimization.

2.2.7 Memory Allocation and Assignment
The goal of the memory allocations and assignment step is to allocate memory
units and ports (including their types) from a memory library and to assign the
data to the best suited memory units, given the cycle budge and other timing con-
straints [12, 126]. It is performed based on the MHLA output. The combination
of the tools for the storage cycle budget distribution step and memory allocation
and assignment step allows to derive Pareto trade-off curves of the background
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memory related cost (e.g., power) versus the cycle budget. Details on this step
can be found in [28].

The assignment of arrays to physical memories should be performed taking
into account in-place mapping opportunities. At this point of the design trajectory,
much of the execution ordering is fixed, so the final in-place optimization step can
be used directly as feedback. Still, the memory footprint estimation technique
presented in this dissertation can be employed for fast feedback during the first
scan of the solution search space, when the number of implementation alternatives
is still large.

2.2.8 Memory Data Layout Optimization
In the above step, signals were assigned to physical memories or to banks within
predefined memories. However, the signals are still represented by multi-dimensional
arrays, while the memory itself knows only addresses. The physical address for
every signal element still has to be determined. This transformation is the data
layout decision. It is also called in-place optimization. This involves several sub-
steps and focuses both on the on-chip memories (cache(s) or the SPM) and the
main memory. One of the main issues involves in-place mapping of arrays and
sub-arrays. In the worst case, all arrays require separate storage locations. When
the lifetimes of arrays or elements in the array are not overlapping, the space re-
served in the memory for these groups can be shared by performing the in-place
mapping. The execution ordering is now fully fixed, but the storage order can still
be optimized to determine the actual layout of arrays in memory. This is done
through two sub-steps. First the intra-array in-place optimization is performed by
fixing individual array storage order and it determines the internal organization of
an array in memory (e.g. row-major or column-major layout). Next, the inter-
array storage order fixes the relative positions of arrays in memory reusing the
same memory locations through inter-array in-place mapping. Details on how to
perform such in-place mapping can be found in [41, 44, 42, 43].

For hardware-controlled caches advanced main memory layout organization
techniques have been developed, which allow for removal of most conflict misses
due to the limited cache associativity [83, 98].

This step performs the in-place mapping that determines the actual storage
requirement so estimation is not needed. To have high accuracy, the estimates
at earlier system level design steps, e.g., during the loop transformation step and
hierarchical memory layer assignment step, should be close to the implementation
results achieved here. It is however even more important that the estimates have
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high fidelity, ensuring that the best solution is selected when alternatives are being
compared [56]. The memory footprint estimation techniques presented in this
dissertation fulfill this requirement, as will be demonstrated in later chapters.

2.3 Loop Transformations
Given the very large body of work performed w.r.t. loop transformations (LT),
this overview cannot be complete. This section will give a brief review and the
reader is referred to [16, 97] for more details.

Loop transformations are an essential part of modern optimizing and paral-
lelizing compilers. They are mainly used to enhance the temporal and spatial
locality for cache performance and to expose the inherent (asynchronous or syn-
chronous) parallelism. A large body of work has been performed for this purpose
for a long time, e.g. [7, 154, 16, 152, 8, 97]. Their main goal is, however, to
reveal and exploit code and data parallelism for improving performance, so that
multiple instantiations of (parts of) a loop nest can be executed simultaneously,
and to improve cache hit ratio and execution time.

Loop transformations have also been studied in the embedded system design
domain where memory size and energy consumption are important factors besides
performance. Loop transformations can reduce the required buffer size and im-
prove access behavior to optimize the embedded application(s). Improved data
access locality in turn can improve the efficiency e.g. in terms of power consump-
tion and memory footprint of applications [37, 127, 53, 144, 72, 73]. This is also
a crucial step within the DTSE methodology as described in the previous section.

Initial research on loop transformations focused on optimizing locality and
parallelism within one (perfectly) nested loop, e.g., [152]. This approach did
not allow optimization of large buffers between loop nests. [39, 52] presented a
generic approach for performing loop transformations by applying a loop trans-
formation on every statement in the loop nest. Their research was mainly focused
on parallelization, though.

Other groups have proposed to perform these transformations across all loop
nests in one procedure or in the entire program [54, 33, 58]. Within the DTSE
framework, researchers propose to divide the loop transformations into several
sub-steps. Van Swaaij et al. [141] work in two phases to limit the complexity and
to improve scalability: a placement step and an ordering step. The placement step
determines particular affine mapping functions for loop transformations to obtain
improved overall locality. The ordering step defines the valid execution ordering.
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Danckaert et al. [35, 34] has split the placement step in a linear transformation step
and a translation step. To steer these two steps, they also provide several heuristics
based on abstract data reuse and size optimization cost functions. Different kind
of linear transformation techniques are taken into account in their linear transfor-
mation step while loop fusion and loop shifting are considered in the translation
step. Different loop transformations will be categorized and illustrated later in
Chapter 3. This split further reduces overall algorithm complexity. Verdoolaege
et al. [48] has further shown that it is possible to avoid the ordering step when
only the memory organization itself is targeted on a platform that is not data-
parallel. They present a greedy algorithm for the translation optimization [144].
Their global loop transformation step can be viewed as a pre-compilation phase,
applied prior to conventional compiler loop transformations. This preprocessing
also enables later memory customization steps such as memory hierarchy assign-
ment, memory organization, and in-place mapping to arrive at the desire reduction
in storage and transfers.

When transformations are to be performed globally across all loop nests, there
exists a huge number, thousands or more, of loop transformation possibilities. It is
hence crucial to perform an automatic loop transformation exploration in order to
find the optimal one(s). [34, 144] and [33, 58] present frameworks that facilitate
automatic search of a sequence of loop transformations for deep parallelism and
memory hierarchies. However, up till now the focus has been on finding one op-
timal solution. For real-life applications, it has been shown that multiple optimal
solutions often exist, depending on the memory platform considered. This is also
demonstrated by experiments in Chapter 9. It is hence essential to find systematic
techniques to identify all of these optimal solutions, especially when the memory
architecture is not given at the early transformation stage. Kandemir et al. [72]
present a method with these two goals. They either assume a given memory hi-
erarchy and find good loop transformations for the current program, or design an
optimized memory hierarchy for the current program, based on an abstract data
reuse analysis performed on data access pattern of the code. Their approach only
performs a limited number of loop transformations.

Most of the research in this field is based on the use of geometrical models
where the set of transformations is limited to affine matrices [32, 39, 52, 76, 47].
The techniques that do not use a geometrical model, e.g. [6, 16, 113], can usually
only apply a limited set of linear transformations. Typically affine transformations
are loop interchange, loop reverse, loop skewing, loop fusion and loop shifting.
Other important loop transformations are, e.g., loop tiling, strip mining and loop
coalescing. How to perform the different loop transformations will be illustrated
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in Chapter 3.

2.4 Memory Size Estimation
Memory size estimation and/or computation has been tackled in the past both in
register-transfer level (RTL) programs at scalar level [86, 135, 111, 57, 101] and
in behavioral specifications at non-scalar level [9, 162, 60, 81, 121, 163]. The
non-scalar level typically refers to multi-dimensional arrays. Different techniques
in these two levels are reviewed below separately.

2.4.1 Scalar-based Estimation
Most work on memory size estimation was originally scalar-based, also called
signals or variables. The register allocation/assignment problem in programs was
initially formulated in the field of software compilers [5], aiming at a high-quality
code generation. The problem of deciding which values in a program should
reside in registers (allocation) and in which register each value should reside (as-
signment) has been solved by a graph coloring approach [25].

In the field of synthesis of digital systems, starting from a behavioral spec-
ification, the register allocation /assignment problem has been solved for non-
repetitive schedules like the left-edge algorithm in polynomial time, when the
life-time of all scalars is fully determined [86]. Techniques such as clique parti-
tioning are also exploited to group variables than can be mapped together [135].

In [101], a lower bound for the register count is found without the fixation
of a schedule, through the use of As-soon-As-Possible (ASAP) and As-late-As-
Possible (ALAP) constraints on the operations. A lower bound on the register
cost can also be found at any stage of the scheduling process using Force-Directed
scheduling [111]. Integer Linear Programming (ILP) techniques are used in [57]
to find the optimal number of memory locations during a simultaneous scheduling
and allocation of functional units, registers and busses. Good overviews of the
techniques can be found in [56].

2.4.2 Array-based Estimation
Common to all scalar-based techniques is that the number of scalars is limited. If
multi-dimensional arrays are treated, the computation time increases dramatically
and these techniques would break down if the arrays are flattened and each array
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element is considered a separate scalar. For high-level algorithmic specifications
characterized by deep loop nests and multidimensional arrays, this problem must
be overcome using array-based storage requirement estimation. Several research
teams have tried to perform array-based storage requirement estimation. [10] has
given an review of most of work.

Typically, the array is considered as an unit or split into suitable units before
estimation is performed. The estimation approaches can be basically split into two
categories: those requiring a fully-fixed execution ordering, and those assuming a
non-procedural specification where the execution ordering is still not (completely)
fixed. The execution ordering decides the order in which statements in the code
are executed, and hence the order in which array elements are written and read.
When it is unfixed, we can assume any ordering as long as no array element is
read before it is written. The techniques falling in the second category will be
addressed first.

Balasa et al. propose to estimate the memory footprint when the execution or-
dering is unfixed [9]. Data dependency analysis is performed and the total memory
footprint is found through a greedy traversal of the relative graph. In order to deal
with multiple read and write statements for the same array, arrays are partitioned
into non-overlapping basic sets. Basic set is described as polytopes using linearly
bounded lattices (LBLs). The basic set sizes, and the sizes of the dependencies,
are found using an efficient lattice point counting technique. The dependency size
is the number of elements from one basic set that is read while producing the de-
pending basic set. This information is used to generate a data-flow graph where
the basic sets are the nodes and the dependencies between them are the branches.
The total storage requirement for the application is found through a traversal of
this graph, where basic sets are selected for production by a greedy algorithm. A
basic set is ready for production when all basic sets it depends on have been pro-
duced and is consumed when the last basic set depending on it has been produced.
The maximal combined size of simultaneously alive basic sets gives the storage
requirement. Basic set partitioning is however time consuming. Since Balasa’s
technique does not take into account the execution ordering, large over-estimation
can occur.

Kjeldsberg et al. propose to estimate the size allowing a partially fixed execu-
tion ordering [81, 82, 79]. Their approach allows to estimate the size requirement
while guiding the fixing of the unfixed execution ordering. They perform the
estimate in two steps. First the storage requirement of individual data dependen-
cies are estimated by taking into account the partially fixed execution ordering
with lower bound and upper bound output. As the execution ordering is gradually
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fixed, the upper and lower bounds on the data dependencies converge. The size
requirement is calculated by counting the number of nodes in the iteration domain
at where an array is written while constrained by the Extreme Dependency Vec-
tor (EDV). The EDV is the maximal projection of all the dependency vectors on
each iteration dimension. This concept will be illustrated later in Chapter 3. The
estimate then continues between different data dependencies by grouping simul-
taneously alive data dependencies together. The group which requires the largest
size requirement defines the memory requirement for the application. By taking
into account the partially fixed execution ordering (based mainly on loop inter-
change), their approach avoids the possible overestimates due to the total order-
ing freedom. Their approach by itself is very fast, assuming the EDV is already
given. However, calculating the EDV is still time consuming with the existing
dependency analysis techniques, using the integer linear programming algorithm
[146, 93, 92] and Fourier-Motzkin variable elimination algorithm [116, 96]. Fur-
ther more, a projection of all dependencies at each loop dimension needs to be
performed. Techniques presented later in this dissertation can help overcome this
problem of calculating the EDV.

All other techniques assume that the execution ordering is already fixed. Ver-
bauwhede et al. propose to build up a production axis for each array to model the
relative production and consumption time of the individual array elements [143].
The difference between these two dates equals the number of array elements pro-
duced between them and the maximum difference defines the size requirement
for the array. The maximum difference is calculated based on an integer linear
programming model using the OMEGA calculator [116], which is an ILP solver
based on the Fourier-Motzkin elimination method. ILP calculation can however
be computational expensive.

Zhao and Malik describes a methodology for so-called exact memory size es-
timation for array computation [162]. It is based on live variable analysis and
integer point counting for intersection/union of mappings of parameterized poly-
topes. In this context, a polytope is the intersection of a finite set of half-spaces
and may be specified as the set of solutions to a system of linear inequalities. It is
shown that it is only necessary to find the number of live variables for one state-
ment in each innermost loop nest to get the minimum memory size estimate. The
live variable analysis is performed for each iteration of the loops however, which
makes it computationally hard for large multi-dimensional loop nests. This count-
ing of live array elements is done by set operations (union, intersection) which are
the whole or parts of the iteration domains. Grun et al. use the data dependency
relations between the array references in the code to find bounds on the number of
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array elements produced or consumed by each assignment [60]. Then, a memory
trace as a function of time is found. The peak memory trace contained within
the bounding rectangles yield the total memory requirement. If the difference of
boundaries for the critical rectangle is too large, the corresponding loop is split
and the estimation is rerun in order to improve the estimation accuracy. In a worst
case, a full loop unrolling is required to achieve a satisfactory estimate, which is
unaffordable.

In [120], Ramanujam et al. propose to use a reference window for each array
in a perfectly nested loop. At any point during execution, the window contains
array elements that have already been referenced and will also be referenced in the
future. These elements are hence stored in local memory. The maximal window
size found gives the memory requirement for the array. If multiple arrays exist,
the maximum reference window size equals the sum of the windows for individual
arrays. Inter-array in-place is consequently not considered. They further present
on how to reduce the size through loop level transformations.

Zhu et al. [163] propose to first decompose the array references into disjoint
linearly bounded lattices. Then the memory size at the boundaries between the
blocks of code is calculated. The maximum memory size inside each block is
further estimated and the maximum found defines the overall memory footprint.
Unfortunately, all the above listed techniques are still too computationally expen-
sive to be performed frequently during system level design exploration. This is
especially non-trivial when the applications become realistic and hence large.

Rydland et al. extends the work of Kjeldsberg et al. and presents a grouping
algorithm for simultaneously alive dependencies considering inter-array size esti-
mation [121]. They assume the execution ordering to be fully fixed. It reuses the
technique of individual data dependency estimate used by Kjeldsberg et al.

At the early steps of the system level design trajectory, the memory footprint
estimation usually needs to be performed repeatedly to give the designer/tool fast
feedback during exploration. The above listed techniques are still too computa-
tionally expensive to be performed frequently during system level design explo-
ration. This is especially non-trivial when the applications are large. On the other
hand, the estimation accuracy varies between the techniques. [162, 60, 163] can
find accurate size requirement but the computation complexity for it is also very
high. On the other hand, it is either very computational expensive or not realis-
tic to achieve their reported size with any existing memory in-place optimization
techniques which is discussed in the following section.
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2.5 Memory In-place Optimization
In the previous section, we have reviewed array-based memory in-place estima-
tion techniques. This estimation is usually required at the early design stages.
In contrast, the actual memory in-place optimization, reusing memory locations
between different data, is usually performed at later design stage. At the later de-
sign stage, the execution ordering is already fixed and other optimizations, such
as data allocation and assignment, have been performed. Memory optimization
has been a research topic [49] for a long time as is the case for storage require-
ment estimation. Most previous work on storage requirement optimization is also
scalar based and used for foreground memory. Many of the techniques described
in Section 2.4.1 are also used for optimization purpose. Additional techniques are
presented in [129, 105]. In this section we will review different array-oriented
memory in-place optimization techniques.

De Greef et al. have presented a technique for background memory require-
ment optimization by taking advantage of storage ordering [41, 44, 42, 43]. Their
techniques focus on one-dimensional linearized address generation for arrays.
This is part of the DTSE methodology as described in Section 2.2. Some more
details are given here since their techniques are focused on optimization through
in-place mapping. It uses a pragmatic two-phase approach to optimize the storage
ordering so as to maximize the possibility of in-place mapping considering lin-
ear address generation in an one-dimensional (denoted by 1-D) window. First the
intra-array storage order determines the internal organization of an array in mem-
ory (e.g. row-major or column-major layout). Next, the inter-array storage order
fixes the relative positions of arrays in memory reusing the same memory loca-
tions through inter-array in-place mapping. Heuristics have also been presented
in order to speed up the storage ordering exploration.

Troncon et al. in [134] propose to compute in the original n-dimensional space
of array indices, an n-dimensional bounding box (i.e. n modula computed sepa-
rately as the maximal index address difference in each dimension, defining an
n-dimensional rectangular window), instead of a one-dimensional window (i.e.,
the modulo b) in the linearized space of addresses.

The same problem of memory reuse analysis using a polyhedral model has
been investigated in the context of the ALPHA language [147, 118]. Wilde et al.
studied the problem of memory reuse for systems of recurrence equations, a com-
putation model used to represent simple algorithms to be compiled into circuits.
The principle for memory reuse is based on projections of multi-dimensional ar-
rays. A tight bound on the number of linearly independent memory projections is
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found, giving rise to an optimal memory reduction.
In [87, 88], Lefebvre and Feautrier are concerned with automatic paralleliza-

tion of static control programs, developed a technique of partial data expansion,
which (even if not the original goal) can also be used for memory reduction. [62]
performed the memory aware compilation through accurate timing extraction.
The memory optimization is just one factor during their compilation process. [78]
proposed to perform an array address translation method for increasing memory
bandwidth and minimizing the number of overhead cycles in video applications.

Darte et al. in [37] have developed a mathematical framework based on crit-
ical lattices in a polyhedral model. They first consider the set of indices that
conflict, i.e., those that can not be mapped to the same memory location. Then,
they construct the set of different modular mappings and the set of conflicting in-
dex differences. The memory required by an optimal modular mapping is equal to
the determinant of the corresponding lattices. Their approach provides alternative
solutions of linearized spaces of addresses or affine spaces of addresses. However,
it does not consider more advanced storage ordering which might further reduce
the size required but with complex index generation. There is actually a trade-
off between index generation complexity and size requirement. [136, 137] have
presented a framework for array allocation for both affine and non-affine code.
They introduced a integrated solution which combines the specialized solution for
affine program allocation with a general framework for other code. The differ-
ence between their allocation technique for an array from the above mentioned
techniques are not clearly addressed.

Besides, the PHIDEO silicon compiler by Lippens et al. also focuses on opti-
mal memory synthesis [90, 91]. It is tuned to fixed rate streaming data applications
and is not intended for a general memory hierarchy. Scheduling is performed be-
fore memory synthesis. The HADES synthesis framework focuses on background
memory management and uses graph matching techniques to determine if arrays
need to be stored in background memory and to investigate in-place mapping op-
portunities [112]. It is used towards process control systems and consider only
one and two dimensional input data. The ASSASYN tool [122] designs memory
systems using array grouping techniques and dimensional transformations. The
declared size of arrays is used and the lifetimes of different arrays are not taken
into account, so neither intra-array nor inter-array in-place mapping are explored.





Chapter 3

Geometrical Model and Loop
Transformations

The geometrical model (denoted by GM) has been widely used to model the data
and control flow for the target class of data intensive applications. It has been
used for performing (automatic) loop transformations [36, 145, 58] and is also
what our work is based on. In this chapter, we first give an intuitive introduc-
tion to the polyhedral geometrical model in Section 3.1. In this model, objects
can be of any convex polytope shape. Following in Section 3.2 a bounding box
geometrical model is introduced. The bounding box geometrical model is a sim-
plification of the general polyhedral geometrical model. Operations on bounding
box objects are much simpler and less computationally expensive. The bounding
box geometrical model is mostly used in this dissertation in order to achieve fast
estimation. In Section 3.3, the different loop transformation techniques are briefly
reviewed. Their representation as matrix operations for the purpose of automatic
loop transformation exploration is also discussed.

3.1 Polyhedral Geometrical Model

For the target class of data intensive applications, data, operations, dependencies,
and the order in which they are handled, are very important. It is therefore vi-
tal to be able to model data and operations and their relationship to each other
accurately. There can be millions of operations and data elements, but it is usu-
ally possible to detect much regularity in how they are handled. This opens for
grouping of elements that are treated the same way. It has been shown that a

29
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polyhedral geometrical modeling of groups of data and groups of operations is a
viable model [141]. The polyhedral geometrical model, also called the polyhe-
dral dependency graph model, is widely used for modeling data and control flow
[41, 36, 145, 148]. It was originally used in systolic array synthesis and has been
applied in diverse optimization techniques, including automatic loop paralleliza-
tion [33, 58] and memory usage optimization [118, 141, 59]).

In such a model, the geometrical objects are typically polyhedra or related
types of sets, since such representations are very compact and can be manipulated
more efficiently than arbitrary sets. Other approaches, e.g., Pressburger formulas
and linear bounded lattice (LBL), have also been used to represent the geometrical
objects. The difference is just a manner of representation. This Section describes
the important concepts in the polyhedral geometrical model. A thorough intro-
duction with more mathematical description can also be found in [41, 145].

f o r ( i =0 ; i <=4; i ++)
f o r ( j =0 ; j <=5; j ++)

f o r ( k =0; k<=2; k ++) {
S1 : A[ i ] [ j ] [ k ] = . . . ;

i f ( i >=1) && ( j >=2)
S2 : . . . = f ( A[ i −1][ j −2][ k ] ) ;

}

Figure 3.1: Code example

3.1.1 Iteration Domain

An iteration domain (denoted by I) of a statement [51, 44, 145, 79] is a geomet-
rical domain in which each node with integral coordinates represents exactly one
execution of the statement. It is also called node space and computation space. Its
description is derived from the constraints corresponding to the boundaries of the
surrounding loops and conditions that restrict the execution of the statement. Each
node within the iteration domain can be identified by its loop iterators (denoted by
~i).~i = [i1, i2, . . . , im] counting from outermost iterator to innermost. The parameter
m is implicit and ig is the gth iterator in the loop nest. In this dissertation, loop
dimension is also used referring to the loop iterator. Each statement has its own
iteration domain, and the set of points in this domain represents all the executions
of this statement.
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Since the iterators are required to have linear constraints, one iteration domain
can always be expressed as rational polyhedron∗, which is a subspace of (Zm)
bounded by a finite number of hyperplanes

I = {[i1, i2, . . . , im] |
m

∑
g=1

CL
g ≤ ig≤CU

g ∧
n̂

d=1

(
m

∑
g=1

Ad
gig+ad = 0)∧[i1, i2, . . . , im]∈Zm}

(3.1)
in which CL

g and CU
g means the constant lower and upper constraint value at the

gth dimension. ∑m
g=1 Ad

gig + ad = 0 refers to the constraints expressed in the if-
condition clauses in which Ad

g refers to the gth loop iterator in the dth constraint
expression. There are always an explicit number of such constraints defined as n.

Figure 3.1 presents a simple code example in which array A has been refer-
enced (both written and read in this case) in two statements, S1 and S2, respec-
tively. The iteration domain for the two statements, denoted as IS1 and IS2, are
represented as†

IS1 = {[i, j,k]|0≤ i≤ 4∧0≤ j ≤ 5∧0≤ k ≤ 2∧ [i, j,k] ∈ Z3}
IS2 = {[i, j,k]|0≤ i≤ 4∧0≤ j ≤ 5∧0≤ k ≤ 2∧ i≥ 1∧ j ≥ 2∧ [i, j,k] ∈ Z3}

= {[i, j,k]|1≤ i≤ 4∧2≤ j ≤ 5∧0≤ k ≤ 2∧ [i, j,k] ∈ Z3}
Figure 3.2 graphically illustrate the iteration domains of the two statements in

this simple code. Each node in the figure corresponds to one iteration of the loops
surrounding the statements at where the statements are executed. The iterator val-
ues are the values over which a dimension iterates. For the i-dimension in Figure
3.1 , the iterator i has the values from 0 to 4. The iteration domain of statement IS1
contains the iteration nodes at where the array A is written. The iteration domain
of statement IS2 contains the iteration nodes at where the array A is read, which
is further constrained by the i f -clause than statement S1. To unify the write and
read accesses, it is said, in this dissertation, that array A is referenced in the two
statements. Since array A is written and read in two statements respectively, the
iteration domains are also represented as array write and read iteration domains
(also symbolled as I and I′ respectively as will be used later on). In this disser-
tation, a specific iteration within the iteration domain is contained by the small
bracket symbols. For example, the first iteration node within the iteration domain
at where the array is written is expressed as (0,0,0).
∗Since all the polyhedra in this text will be rational, we will usually omit this qualification.
†In the example illustration, we will represent the iteration domain in the parametric set instead

as it is more compact representation.
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Figure 3.2: Iteration domains (I) of two statements (S1 and S2)

3.1.2 Data Domain

As we are interested in the memory related issues such as memory accesses and
storage requirements, both the execution of the statements of a program (by means
of iteration domains) and the accesses to the array elements are modeled. This has
lead to the concepts of data domains (denoted by D), which is also called variable
domains [41]. A data domain is a mathematical description of the variables in one
array.

Each point with integer coordinates in this domain corresponds to exactly one
variable in the array. It is not necessary that every statement accesses all array
variables completely during the execution. Typically the executions of a state-
ment only access part of or a few variables of an array. These accessed variables
consist of the data domain for that specific array reference in that statement. The
data domain for one array would therefore be the description of all the variables
accessed for all its references. Data domains have further been distinguished as
definition domains and operand domains, corresponding to array write references
and array read references respectively [41, 79].

The relations between the executions of the statements and the arrays that are
being referenced, are represented by means of mathematical mappings (denoted
by M). Each reference has an associated index expression E which maps the
iterators of the statement to the accessed index. The index expression is required
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to be an affine function of the iterators in our work. They are expressed as

E = {[i1, i2, . . . , im] 7→ [d1,d2, . . . ,dn] |
n̂

h=1

dh =
m

∑
g=1

ch
gig + ch

m+1 (3.2)

∧[i1, i2, . . . , im] ∈ Zm∧ [d1,d2, . . . ,dn] ∈ Zn}

where dh is the hth index expression dimension for the array. ch
g is the index ex-

pression coefficient of the gth loop iterator at the hth index expression dimension,
ch

m+1 means the constant offset at the hth index expression dimension. Note that,
in this dissertation, g is always used as subscript for the the loop dimension or the
iteration domain and h is always used as as subscript for the array dimension or
data domain.

The set of all indices encountered by an array reference over all iterations of
the surrounding loops consists of the data domain for that reference. The number
of dimensions for the index expression defines the number of array dimensions
and hence its data domain. We will use [d1,d2, . . . ,dn] to represent the dimensions
of a data domain, where the parameter n is implicit. The data domain of one array
reference hence is

D = E(I) = {[d1, . . . ,dn] |
n̂

h=1

dh =
m

∑
g=1

ch
gig + ch

m+1 (3.3)

∧[i1, i2, ..., im] ∈ I∧ [d1,d2, ...,dn] ∈ Zn}

where the comparison is applied componentwise.
For the example code, the mapping and the data domain for array A referenced

in statement S2 are

EA,S2 ={[i, j,k] 7→ [d1,d2,d3] | d1 = i−1∧d2 = j−2∧d3 = k

∧ [i, j,k] ∈ IS2∧ [d1,d2,d3] ∈ Z3}
DA,S2 =EA,S2(IA,S2)

={[d1,d2,d3] | d1 = i−1∧d2 = j−2∧d3 = k

∧ [i, j,k] ∈ IS2∧ [d1,d2,d3] ∈ Z3}
={[d1,d2,d3] | 0≤ d1 ≤ 3∧0≤ d2 ≤ 3∧0≤ d3 ≤ 2

∧ [i, j,k] ∈ IS2∧ [d1,d2,d3] ∈ Z3}
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3.1.3 Execution Ordering and Common Iteration Space

In our work, the execution ordering of the program code is assumed to be fixed
already. We need to be able to represent the exact execution ordering of operations
within a given polyhedron and the relative execution order of the whole code. To
order the elements of a given polyhedron, we typically use the lexicographical
order corresponding to the sequential execution order.

Definition (Lexicographic order ≺ Given two m-dimensional loop iterations
i = (i1, i2, . . . , im) and j = ( j1, j2, . . . , jm) satisfy i≺ j iff there exists an integer k,
1 < k < m such that i1 = j1, . . . , ik−1 = jk−1 and ik < jk. Note that this lexico-
graphical order can be expressed using linear constraints.

Within one loop nest, the loop iterators~i already define the order of all the
loop iterators, starting from the outermost dimension. However, there often exist
multiple statements within one loop nest and multiple loop iterators can be located
in parallel at the same level within one loop nest but executed sequentially. The
order of loop iterators can not represent their relative execution ordering. This is,
for example, the case between the two statements for the code in Figure 3.1. The
relative execution ordering of multiple loop nests in the program code also needs
to be identified in the model. In order to uniquely identify the exact execution
ordering of the program code, pseudo time dimensions (denoted by t) are added
to represent their relative execution ordering of both iterators and statements at
a given nest level. The one that is executed first should have a time dimension
value lexicographically smaller than the others. We often use integer values to
represent the relative execution ordering giving the first one the value 0 at its time
dimension, the second one the value 1 and so on.

In this way, a common iteration space is generated for the analyzed program
code. This is also discussed in [131] with the name common node space. A
common iteration space can be regarded as representing one loop nest (or one
iteration domain) surrounding the entire, or a given, specific part of the code. In
such a way, the original code is also converted in the perfectly nested loop format,
which is the prerequisite of performing unimodular transformations as will be
explained in Section 3.3. The common iteration space is similarly required in
[36] in order to allow performing global loop transformations cross multiple loop
nests or procedures. It is also used in [79] for storage size requirement estimation
though the execution ordering of the code can also be unfixed or partially fixed.

One simple way to generate a common iteration space is by adding one pseudo
time dimension before each loop dimension and before each statement. The ones
which are located in parallel at the same nest level but executed sequentially
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should have different values for that added time dimension in order to represent
their lexicographical order. Otherwise, they have identical value for that added
time dimensions. However, when the loop iterator(s) already identify the relative
execution ordering uniquely, the pseudo time dimension(s) becomes redundant
and is not really required. For the example code in Figure 3.1, only one time
dimension is necessary in order to uniquely identify the relative execution order-
ing of the two statements while any other added time dimension are redundant.
Figure 3.3 shows how the code looks when one time dimension is added before
the two statements. The time dimensions should hence be represented also in the
representation of the iteration domain. The loop iterators ~i now should be up-
dated as [i, j,k, t] and the polyhedra representation of the iteration domains for the
two statements should also be modified accordingly. Efficient generation of the
common iteration space including how to represent its statements is related to the
code generation after loop transformations. These issues will not be covered here.
Further information can be found in [7, 77, 19].

f o r ( i =0 ; i <=4; i ++)
f o r ( j =0 ; j <=5; j ++)

f o r ( k =0; k<=2; k ++)
f o r ( t =0 ; t <=1; t ++) {

i f ( t ==0)
S1 : A[ i ] [ j ] [ k ] = . . . ;

i f ( i >=1) && ( j >=2) && ( t ==1)
S2 : . . . = f ( A[ i −1][ j −2][ k ] ) ;

}

Figure 3.3: Example of common iteration space representation

3.1.4 Data Dependencies
The domain and order models presented in the previous sections are sufficient
to be able to perform data flow analysis of the program. An important concept
in data and control flow analysis is that of a data dependency. Data dependency
analysis also needs to be performed to check the transformation validity during
loop transformations.

In general a data dependency denotes precedence constraint between opera-
tions. The basic type of dependency is the value-based flow dependency. A value-
based flow dependency between two operations denotes that the first one produces
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a data value that is being read by the second one, so the first one has to be exe-
cuted before the second one. Other types of dependencies (e.g. memory-based
flow dependencies, anti dependencies, output dependencies, anti-dependencies)
also correspond to precedence constraints, but these are purely storage related,
i.e. they are due to the sharing of storage locations between different data values.
This kind of dependencies is only important for the analysis of procedural non-
single assignment code as explained below. Eventually, the goal of dependency
analysis is to find all the value-based flow dependencies, as they are the only ”real”
dependencies. Given the value-based flow dependencies, it is (in theory) possible
to convert any procedural non-single-assignment code to single assignment (SA)
form [50, 142], where the only precedence constraints left are the value-based
flow-dependencies. More information about different types of data dependen-
cies can be found in [51, 85]. Hereafter, we use the term f low dependency or
dependency to refer to the value-based flow dependency.

3.1.4.1 Dependency

Definition (Dependency) An iteration i∈~i is dependent on iteration j∈~j, denoted
by iδj, iff there exists an element of an array written at i and read at j such that
i≺ j.

i and j can hence belong to the same or different loop iteration domains. If
they belong to the same iterators, a statement depends on itself and it is a self-
dependency. Otherwise, the dependency relation between two statements con-
strains the order in which the statements may be executed. The dependency re-
lation between two statements is the set of all pairs of iterations that exhibit a
dependency.

3.1.4.2 Dependency Relation

Definition (Dependency relation) Given iterations i and j, two references to an
n-dimensional array are to the same element iff the two index expressions for the
two array references at iterations i and j are equal. The dependency problem can
then be stated as follows: do there exist iterations i and j in the two iteration
domains such that

E(I) = E ′(I′) (3.4)

in which Ew means the index expression which maps the data for the array write
reference and Er means the index expression which maps the data for the array
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read reference. The iteration domains of the loop iterators defines the dependency
constraints.

The above problem is NP-complete considering the polyhedron constraints
of the iteration domain and the data mapping from the iteration domain to data
domain. In non-polyhedron related work, dependencies are modeled in the above
format that retains only their existence and not the exact number of dependency
instances which exist. With regard to the computational complexity of deciding
the existence of a dependence, [14, 16, 17] serves as good references of early
development in the area. Recent developments about dependency analysis can be
found in [89, 96, 114, 156]. In the recent work, dependencies are modeled and
there are different ways to represent the dependencies, e.g., dependency distance
vector [114, 115, 99], dependency direction vector [155, 156], and distance vector
polytope/cone [36, 145]. In this dissertation, we will use dependency distance
vectors to describe the dependencies.

3.1.5 Dependency Vector
Definition (Dependency vector) For each pair of iterations i ∈~i and j ∈ ~j such
that iδj, the difference d between i and j, i.e.

d = j− i (3.5)

at each loop dimension, is called the dependency distance vector. We simply call
it dependency vector (DV) hereafter. We can define the DV corresponding to
this dependency as the vector pointing from the iteration node at where an array
element is written to the iteration node at where it is read, i.e. in the direction
of the data flow. In practice, usually multiple dependencies exist between two
statements. The DVs of the dependency relations between two statements at where
array is written and read are represented by

DV = I′− I∀E ′(I′) = E(I) (3.6)

A dependency is called uniform when all the DVs between two statements
have the same length and direction. For example, for the code in Figure 3.1, the
DVs are uniform and equal to [1,2,0] corresponding to the ordered loop iterators.
When the dependencies are not uniform, the dependencies can differ in both dis-
tance and direction. Figure 3.4 shows a code example for which the dependencies
are not uniform as drawn in Figure 3.5 [80]. For readability, the figure is split into
three, one for each value of the k-iterator.
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f o r ( i =0 ; i <=4; i ++)
f o r ( j =0 ; j <=7; j ++)

f o r ( k =0; k<=2; k ++) {
S1 : A[ i ] [ j ] [ k ] = . . . ;

i f ( i>=k ) && ( j>=i−k )
S2 : . . . = f ( A[ i−k ] [ j−i+k ] [ k ] ) ;

}

Figure 3.4: Code example

k 1 2 3 4 5
j

0

i

1

2

3

4

6 7

k=0

0 k 0 1 2 3 4 5
j

0

i

1

2

3

4

6 7

k=1 k=2

k 0 1 2 3 4 5
j

0

i

1

2

3

4

6 7

Figure 3.5: Dependencies for the example code in Figure 3.4

When drawing the actual DVs, we usually draw the same arrow, but translated
to the origin. The end point of this arrow is then equal to the DV value. Figure 3.6
shows the DVs for the above example in this format. As there can be many non-
uniform dependencies, it is not always convenient to mathematically represent all
the dependencies or list all the DVs. An easy way is to express the dependen-
cies as a dependency function [114, 155] or constraints of the dependency vector
polytope/core [36, 145].

Various techniques have been proposed to perform the dependency analysis
and hence to calculate the DVs. They can be classified in two types: integer
programming algorithms [146, 93] and Fourier-Motzkin variable elimination (of
an integer programming problem) techniques [116, 96]. Dependency analysis is
required to be performed during each incremental sequence of loop transformation
in order to check the validation of the transformation.

3.1.6 MDV and EDV

In this dissertation, two specific DVs are particularly interesting: the maximal DV
(MDV) and the extreme DV (EDV).
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Figure 3.6: Dependency vectors for the example code in Figure 3.4

The MDV is the maximal DV among all DVs for the given execution ordering.
The MDV will always be one of the existing DVs. The MDV must be one of the
DVs with the largest dependency distance at the outermost dimension. Among
these candidates, it must be one of the DVs with the largest dependency distance at
the second outermost dimension. This continues until there is just one remaining
DV candidate at one inner dimension. Figure 3.7 shows the MDV for the above
example code, which exists among the DVs. It equals to [2,2,0] corresponding
to the ordered i-, j- and k- loop iterators respectively. We see that the MDV does
not have the maximal dependency distance for dimension j (which is 4). This is
because the DV with length 4 in dimension j has length 0 in the outer i dimension.
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Figure 3.7: The MDV and EDV for the example code in Figure 3.4

The EDV refers to all the DVs in the worst case there is no execution order
given for the dependency relations. It is calculated by projecting all the DVs at
each iteration dimension and taking the maximal distance values. The EDV hence
does not have to be one of the actual DVs. This is the case for the above example
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code as shown in Figure 3.7. Here the EDV equals to [2,4,0].
At the iteration domain, the DVs define the lifetime window of each array el-

ement between its write reference and read reference. The MDV among all DVs
hence defines the maximal lifetime window among all the array elements. Both
the MDV and the EDV are used for the memory footprint requirement estimation
as will be discussed in Chapter 4. The existing approaches to calculate the MDV
first perform a dependency analysis, i.e., with tools like the OMEGA calculator
[116] based on Pressburger formulas and Polylib library [92]. This is then fol-
lowed by a selection of the MDV. For the EDV, extra projection operations of all
DVs need to be performed at each loop dimension.

3.1.7 Dynamic Single Assignment Code
To enable the data dependency analysis, the input code must be written in sin-
gle assignment form [142]. Any signal (scalar or array element) can be written
(produced) only once throughout the code. For code that is not in this form, this
is achievable for most cases by a proper array data flow analysis preprocessing
[50, 51, 142]. Figure 3.8(a) gives an example of code which is not in a single
assignment format. If necessary, it can be rewritten into this format as shown in
Figure 3.8(b) . The rewriting of the code into single assignment in some cases
adds an extra dimension to arrays resulting in an increased storage requirement.
After optimizations, the subsequent in-place mapping will however remove this
as shown in [43, 147]. In single assignment code, only value-based flow depen-
dency exists. As will be discussed in later chapters, our estimation methodology
can work for both single assignment code and non-single assignment code.

A = 1 ;
f o r ( i =0 ; i <=7; i ++)

A = A + in [ i ] ;
( a )

A[ 0 ] = 1
f o r ( i =0 ; i <=8; i ++)

A[ i ] = A[ i −1] + in [ i ] ;
( b )

Figure 3.8: Code examples in (a) non-single assignment, (b) single assignment

3.1.8 Tools and Code Constraints
Many tools exist for converting the implicit representation of a polyhedron to its
explicit representation and back. Example tools include CDD, PORTA, QHull
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and LRS. Some libraries such as PolyLib, polymake, polka and PPL also include
support for performing other operations on these polyhedra, e.g., intersections and
affine transformations. Other kind of libraries, such as Omega are also useful for
dependency analysis. A more complete overview can be found in to [55, 145].

The geometrical model techniques used in this work are mainly restricted to
static control programs with affine manifest indices, loop boundaries and condi-
tions for modeling multi-dimensional data processing programs [141]. Programs
not satisfying these requirement has to be modeled by taking worst-case assump-
tions, if possible. These limitations have not been severe since the programs to
be optimized have usually satisfied these requirements. Due to the growing com-
plexity of image and video processing algorithms, there now also exist other pro-
grams which can no longer be accurately modeled. This disables some poten-
tial optimizations or makes them less effective. More accurate models have been
developed for dealing with non-affine indices, loop boundaries and conditions
[117, 4, 103]. These techniques can also be used here.

3.2 Bounding Box Geometrical Model
In the polyhedron geometrical model, the polyhedron can have complex convex
polytope shapes that makes the operations to be performed on them computa-
tionally complex. Typical operations used in this work are union or intersection
of two polyhedra, and counting of the number of lattice points in a polyhedron.
For speed reason, a simplified geometrical model, named the bounding box ge-
ometrical model, has hence been used instead. The bounding box geometrical
model is a simplified version of the polyhedron geometrical model in which all
the polyhedron representations are, if not already, approximated as bounding box.
A bounding box iteration domain (denoted by

←→
I ) is a rectangular approximation

of the original iteration domain which can have any convex shape. This approx-
imation is also called orthogonalization in [79]. The bounding box domain can
easily be defined by the lower bound (L) and upper bound (U) for each dimension
as

←→
I = {~i = [i1, . . . , im] |

m̂

g=1

Lg ≤ ig ≤Ug∧ [i1, . . . , im] ∈ Zm} (3.7)

in which Lg and Ug means the lower bound and the upper bound values at the gth
loop dimension.

Figure 3.9 provides a code example of a two dimensional iteration domain
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f o r ( i =0 ; i <=4; i ++)
f o r ( j =0 ; j <=4; j ++)

i f ( i <=j )
A[ i ] [ j ] = . . .

( a )

f o r ( i =0 ; i <=4; i ++)
f o r ( j =0 ; j <=4; j ++)

A[ i ] [ j ] = . . .

( b )

Figure 3.9: Approximation of iteration domain (a) before , (b) after
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Figure 3.10: Approximation of iteration domain (a) before , (b) after

approximation. This is also illustrated in Figure 3.10. The bounding box iteration
domain now is

←→
I = {[i, j]|0≤ i≤ 4∧0≤ j ≤ 4∧ [i, j] ∈ Z2}

The advantage of the bounding box geometrical model is that the operations
performed on it is in general much simpler and faster than on the polyhedron ge-
ometrical model. For example, the counting of the lattice points of a bounding
box can be performed by multiplying the distance of each dimension as defined
by the lower and upper bounds of the bounding box in that dimension. This is
much simpler and faster compared to counting the lattice points in a general poly-
hedron. Intersection and union operations on bounding boxes are also simple. In
practice, the bounding box representation is an efficient and appropriate approxi-
mation since most convex polytopes in our targeted application domain are rect-
angular and have regular accesses, i.e., images, blocks, etc. The possible errors
this approximation incurs are discussed in later chapters.

For the code example in Figure 3.4, the bounding box expression for statement
S1 exactly represents the original polyhedron shape while for statement S2 it is
approximated as

←→
I ′ = {[i, j,k]|0≤ i≤ 4∧0≤ j ≤ 7∧0≤ k ≤ 2∧ [i, j,k] ∈ Z3}
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Given a bounding box iteration domain of a statement, the data domain for
one array reference in that statement is also a bounding box since array indices
are required to be affine functions of the surrounded loop iterators. For each array
reference, the associated index expression maps the iterators of the statement to
the accessed index for that array reference. The data domain of one array reference
is now calculated by

←→
D = E(

←→
I ) ={[d1, . . . ,dn] |

n̂

h=1

dh =
m

∑
g=1

ch
gig + ch

m+1 (3.8)

∧ [i1, i2, . . . , im] ∈←→I ∧ [d1,d2, . . . ,dn] ∈ Zn}

={[d1, . . . ,dn] |
n̂

h=1

Lh ≤ dh ≤Uh∧ [i1, i2, . . . , im] ∈←→I ∧ [d1,d2, . . . ,dn] ∈ Zn},

where the comparison is applied componentwise and Lh and Uh are the lower
bound and upper bound values of the hth array dimension. For the example code
in Figure 3.4, the bounding box data domain for array A referenced in statement
S2 is:

←→
D ′ = E ′(

←→
I ′) ={[d1,d2,d3] | d1 = i− k∧d2 = j− i+ k∧d3 = k

∧ [i, j,k] ∈←→I S2∧ [d1,d2,d3] ∈ Z3}
={[d1,d2,d3] | 0≤ d1 ≤ 4∧0≤ d2 ≤ 7∧0≤ d2 ≤ 2

∧ [i, j,k] ∈←→I S2∧ [d1,d2,d3] ∈ Z3}

Note ch
m+1 in this code is zero at all dimensions of the index expression.

←→
D can

also be an approximation of the original data domain.
The MDV/EDV can also be calculated based on the bounding box geometri-

cal model. Due to the approximation of the polyhedron representation, pseudo
dependencies and hence pseudo dependency vectors might be added. They may
have effect on the calculation of MDV/EDV. In general, pseudo dependencies can
occur for non-affine code at where array index expression is not affine function
of surrounding loop dimensions. It only have effect when the pseudo dependency
vector is larger than the actual MDV/EDV. This however does not occur so often
for our target applications as most applications have regular data access with an
affine index expression of the arrays. It is hence acceptable to ignore it for our
estimation purpose. Figure 3.11 shows all the DVs for the bounding box repre-
sentation of the code in Figure 3.4. The vectors in the dashed lines are the pseudo
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DVs which do not exist in the polyhedron geometrical model representation. For
this example, these pseudo DVs does not effect the MDV/EDV calculation. Here-
after, when we say DVs in the bounding box GM, it also include the pseudo DVs.
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1

DVs

Pseudo DVs

Figure 3.11: Dependency vectors in bounding box geometrical model

3.3 Loop Transformations in the Geometrical Model

The objective of a loop transformation is to change the execution order of the
loops to exploit the architectural features of the hardware, while still computing
the same result. Loop transformations are mostly used in program optimization
for parallelism and performance but also for low power embedded system design
as reviewed previously in Chapter 2. Loop transformations are typically divided
into two classes: affine loop transformations and non-affine loop transformations.
Typical affine transformations are loop interchange, loop reverse, loop skewing,
loop fusion (also called merging), and loop shifting (also called bumping). Impor-
tant non-affine transformations include strip mining, loop tiling and loop fission
(here only loop body splitting is considered). Affine loop transformations can fur-
ther be classified as linear loop transformations and translations [35, 144]. Loop
interchange, loop reverse, and loop skewing are linear transformations which can
be represented as unimodular transformations, while loop fusion and loop shifting
are translations.

A loop transformation can be viewed as a reorganization of the loop iterations.
It is characterized by a transformation of the iteration domain. In this dissertation
we are interested in the unimodular transformations [15, 153, 46, 84]. Unimod-
ular transformations can be represented as matrix operation with a unimodular
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matrix‡ which determines the transformed loop and dependencies. The unimodu-
larity of the transformation matrix ensures that the mapping is one to one and with
unit stride. Unimodular transformations are linear transformations on an iteration
domain that gives a unified view of all possible sequence of most of the exist-
ing transformations. In this dissertation, for linear transformation, we mean the
unimodular linear transformations. Although the approach itself does not solve
the problem of deriving the optimal transformation(s) for a given loop nest or
for multiple loop nests in a program code, it allows to automatically perform a
set of transformations incrementally. This makes loop transformation exploration
feasible, even with a large set of transformation possibilities.

In this Section, we will first introduce the general technique of how linear
and also affine loop transformations are performed as unimodular matrix opera-
tion. This is the fundament for the incremental HMSE methodology as presented
later in Chapter 7. The various affine loop transformations as well as other loop
transformations are studied afterwards.

3.3.1 Fundamental for Unimodular Loop Transformations
A unimodular loop transformation is defined by an m by m unimodular integer
matrix A. A maps the iterator~i = (i1, . . . , im)T into a new iteration vector~i∗ =
(i∗1, . . . , i

∗
m)T ,

~i∗ = A ·~i (3.9)

and maps each dependency (denoted by P) into a new dependency (denoted by P′)

P∗ = A ·P (3.10)

The transformation is legal iff all dependency in P. are lexicographically positive.
The positivity of transformed dependencies is a strong condition, and ensures a
valid sequential execution of the transformed statement in a loop. Determining
the new loop bounds of the transformed iteration domain is nontrivial in the poly-
hedron geometrical model. For the bounding box geometrical model, it is much
simpler since the new loop bounds of the bounding box iteration domain is still a
bounding box.

When a statement in the loop is transformed, the order in which the array ele-
ments are referenced in the statement may also be transformed. The transformed
index expression of the arrays referenced in the statement is calculated as

E∗ = E ·A−1 (3.11)
‡A matrix with determinant ±1.
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The transformed data domain for one array reference in the statement is

D∗ = E∗ · I∗ = E ·A−1 ·A · I = E · I = D (3.12)

This shows that, for one array reference, the transformed data domain is always
equivalent with the original. This corresponds to the prerequisite that transforma-
tions do not changed the functionality of the original program code.

An affine loop transformation can be represented as a linear transformation
with unimodular integer matrix A and a translation vector a as

~i∗ = A ·~i+~a (3.13)

The translation vector always refers to the constant part. Translation includes loop
fusion and loop shifting which only have effect on the translation part.

Homogeneous coordinates [59, 34] are used in order to transform affine prob-
lems into linear problems, such that also translations can be represented as matrix
multiplications. Originally, homogenous coordinates were used to prove certain
problems in N-space. These problems have a corresponding problem in (N+1)-
space, where a solution can be found more easily. This solution is then projected
back to N-space. A point (x1,x2, ...,xn)T can be represented in homogeneous co-
ordinates by the point (wx1,wx2, ...,wxn)T+1, where w is called the scale factor. It
is also easy to project a point in homogeneous coordinates back to affine coordi-
nates. In this case, w=1 is always chosen.

Equation 3.13 can hence be represented with homogeneous coordinates by
adding an extra column corresponding to the translation vector and by adding an
extra row as [

~i∗
1

]
=

[
A ~a

~0A 1

][
~i
1

]
(3.14)

this is simply written as
ĩ∗ = Ã · ĩ (3.15)

~0A is a vector of as many zeros as there are columns in A. The index expression of
an array reference can also be represented by homogeneous coordinates, since an
index expression is in fact a mapping, namely from m-dimensional loop coordi-
nates to n-dimensional array subscripts. We will denote the full index expression
by Ẽ, and the linear part by E.

The transformed index expression of the array reference in a transformed state-
ment is hence equal to

Ẽ∗ = Ẽ · Ã−1 (3.16)
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The main benefit of this homogeneous coordinate notation is that the compo-
sition of a series of loop transformations amounts to multiplication of the corre-
sponding homogeneous transformation matrices. When a sequence of affine loop
transformations are performed, the transformations can be represented as

ĩ∗ = ÃN · ÃN−1 · . . . · Ã1 · ĩ (3.17)

in which Ã1 to ÃN are the sequence of transformation matrices, corresponding
to a sequence of N incremental loop transformations. The new iteration domain
of the statement and the index expression of array references in the transformed
statement also needs to be incrementally updated based on Equation 3.17 and
Equation 3.16, respectively.

Loop interchange, loop reverse, and loop skewing on perfectly nested loop
structure can all be captured by such unimodular transformation matrices. They
are illustrated based on the example code in Figure 3.12(a). In order to allow
to perform loop transformation globally among multiple loop nests, the program
code first needs to be placed in a common iteration space. For this example, only
one extra time dimension needs to be added as shown in Figure 3.12(b).

f o r ( i =0 ; i <=4; i ++)

f o r ( j =0 ; j <=5; j ++) {
S1 : A[ i ] [ j ] = . . . ;

i f ( i >=1 and j >=2)

S2 : . . . = f ( A[ i −1][ j −2]) ;

}

( a )

f o r ( i =0 ; i <=4; i ++)

f o r ( j =0 ; j <=5; j ++)

f o r ( t =0 ; t <=1; t ++) {
i f ( t ==0)

S1 : A[ i ] [ j ] = . . . ;

i f ( i >=1 and j >=2 and t ==1)

S2 : . . . = f ( A[ i −1][ j −2]) ;

}
( b )

Figure 3.12: Loop transformation code example (a) original (b) in the common iteration

space
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3.3.1.1 Loop Interchange

Loop interchange changes the position of two loops in a loop nest. Any two loops
in an N dimensional loop nest can be interchanged as long as it does not introduce
negative dependencies. Loop interchange is one of the most powerful transfor-
mations and can improve performance and access regularity. An example of a
loop interchange transformation is illustrated in Figure 3.13 which interchange
the outer i and j dimensions of the code in Figure 3.12(b). Note that, in this dis-
sertation, the original iterator names are not changed but their corresponding loop
bound values and their use in the index expressions are changed accordingly. The
extra pseudo time dimension has also been inserted in order to uniquely identify
the statements in the common iteration space.

f o r ( j =0 ; j <=5; j ++)

f o r ( i =0 ; i <=4; i ++)

f o r ( t =0 ; t <=1; t ++) {
i f ( t ==0)

S1 : A[ j ] [ i ] = . . . ;

i f ( j >=1 and i >=2 and t ==1)

S2 : . . . = f ( A[ j −1][ i −2]) ;

}

Figure 3.13: Loop interchange example

With loop interchange, the two loop dimensions i and j are interchanged for
both statements. The transformation matrix in the homogeneous coordinate for-
mat for the two statements (in this case they are identical) is

ÃS1 = ÃS2 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




In the above transformation matrix, each row (except the bottom row) corre-
sponds to a dimension (i, j, t in that order) in the loop nest. The matrix identifies
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how each loop dimension is transformed including both linear loop transformation
and translation.

3.3.1.2 Loop Reversal

When loop reversal is performed, the iteration order of one loop dimension is
reversed. The loop bounds are negated and the lower and the upper bounds are
switched. The loop index in the array index expression is negated for the array(s)
accessed in the body of the loop.

The unimodular transformation matrix

ÃS1 = ÃS2 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




will for instance transform the code of Figure 3.12(b) into the new code shown in
Figure 3.14.

f o r ( i =0 ; i <=4; i ++)

f o r ( j =−5; j <=0; j ++)

f o r ( t =0 ; t <=1; t ++) {
i f ( t ==0)

S1 : A[ i ][− j ] = . . . ;

i f ( i >=1 and j <=−2 and t ==1)

S2 : . . . = f ( A[ i −1][− j −2]) ;

}

Figure 3.14: loop reversal example
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3.3.1.3 Loop Skewing

Loop skewing is an enabling transformation that is primarily useful in combina-
tion with loop interchange. Skewing was invented to handle wavefront computa-
tions, in which the array propagate like a wave across the iteration domain.

f o r ( i =0 ; i <=4; i ++)

f o r ( j = i ; j <=i +5; j ++)

f o r ( t =0 ; t <=1; t ++) {
i f ( t ==0)

S1 : A[ i ] [ j−i ] = . . . ;

i f ( i >=1 and j <=−2 and t ==1)

S2 : . . . = f ( A[ i −1][ j−i −2]) ;

}

Figure 3.15: Loop skewing example

Figure 3.15 shows the typical wavefront array accesses. Skewing is performed
by adding the outer loop index multiplied by a skew factor to the bounds of the
inner iteration variable, and then subtracting the same quantity from every use of
the inner iteration variable inside the loop. The unimodular transformation matrix

ÃS1 = ÃS2 =




1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1




will for instance transform the code in Figure 3.12(b) to the new code in Figure
3.15.

3.3.1.4 Loop Fusion

Loop fusion merges together two loops in one new loop. The bodies of the two
original loops are used together as the new body. In case of non equal bounds of
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the two loops, one new loop can appear (in that case it is called body-merge-if loop
transformation). This transformation can add conditions to the original loop nest
bodies so that they are executed only for certain values. An alternative, instead of
keeping it in one loop nest, three new loop nests can appear (in that case it is also
called body-merge loop transformation). The middle new loop nest will contain
the loop bounds for which both bodies have to be executed, the first and last ones
will contain the just one body, executed for the still missing parts in the iteration
space. In this dissertation the first representation approach is used. This actually
does not affect the result of our estimation.

For instance, the unimodular transformation matrix

ÃS2 =




1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1




will transform statement S2 in the code of Figure 3.16(a) to the code in Figure
3.16(b) which is equivalent to the code in Figure 3.12(b) but with the extra time
dimension t0 added at the outermost dimension. The extra time dimension t0 is
needed for the code of Figure 3.16(a) in order to uniquely identify the execution
ordering of each iteration in the common iteration space. During the fusion, the
statement S1 is not changed.

In the above transformation matrix, each row (except the bottom row) corre-
sponds to a dimension (t0, i, j, t in the order) in the loop nest. As shown, the last
element in each row is the translation part, corresponding to effect of the loop fu-
sion in this case. In this example, statement S2 has been shifted at the two pseudo
time dimensions, therefore merging the two loop nests together.

3.3.1.5 Loop Shifting

Loop shifting, also called bumping, is a specific case of affine loop transformation.
It adjusts the lower and upper bounds of a loop by adding a constant integer.
Loop shifting is usually introduced when direct fusion is not legal because data
dependencies in the fused loop exist for which statements of one loop iteration
depend on results from statements of the following loop iterations.

For instance, the unimodular transformation matrix
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f o r ( t0 =0; t0 <=1; t0 ++) {
f o r ( i =0; i <=4; i ++)

f o r ( j =0; j <=5; j ++)

f o r ( t =0; t <=0; t ++)

i f ( t0==0 and t ==0)

S1 : A[ i ] [ j ] = . . . ;

f o r ( i =0; i <=4; i ++)

f o r ( j =0; j <=5; j ++)

f o r ( t =0; t <=0; t ++)

i f ( t0==1 and i >=1 and j >=2)

S2 : . . . = f ( A[ i −1][ j −2]) ;

}
( a )

f o r ( t0 =0; t0 <=0; t0 ++)

f o r ( i =0 ; i <=4; i ++)

f o r ( j =0 ; j <=5; j ++)

f o r ( t =0 ; t <=1; t ++) {
i f ( t0==0 and t ==0)

S1 : A[ i ] [ j ] = . . . ;

i f ( i >=1 and j >=2 and t ==1)

S2 : . . . = f ( A[ i −1][ j −2]) ;

}

( b )

Figure 3.16: Loop fusion example (a) before (b) after
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ÃS1 = ÃS2 =




1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1




will transform the code of Figure 3.12(b) into the new code shown in Figure 3.17.

f o r ( i =0 ; i <=4; i ++)

f o r ( j =3 ; j <=8; j ++)

f o r ( t =0 ; t <=1; t ++) {
i f ( t ==0)

S1 : A[ i ] [ j −3] = . . . ;

i f ( i >=1 and j >=2 and t ==1)

S2 : . . . = f ( A[ i −1][ j −2−3]);

}

Figure 3.17: Loop reversal example

Above we have illustrate how affine loop transformations are performed based
on matrix manipulation. The unimodular matrix identifies how each loop dimen-
sion is transformed including both linear loop transformation and translation. If
the diagonal element of one row is different from 1 and any of the other elements
on that row are non-zero, the corresponding loop dimension is transformed for
that statement. The last element in each row corresponds to the translation part
for that dimension. If it has a value other than zero, it corresponds to loop fusion
and/or loop shifting. Based on the evaluation of the elements in the matrix, we
can identify the loop dimensions that are transformed. This is fundamental for
our incremental HMSE methodology as will be discussed in Chapter 7. Note that
it is easier to identify which loop dimensions that have been transformed than to
identify what kind of loop transformations that have been performed based on the
unimodular transformation matrix. This is especially true when the unimodular
transformation matrix represents multiple loop transformations at a time.



54 Chapter 3. Geometrical Model and Loop Transformations

Other kind of loop transformations include loop extend/reduce which goes to
larger or smaller iterator range by adding manifest conditions, loop index split
which produces two loops from iterator range and loop body split which produces
two loops from statements in loop body. Further information can be found in
[14, 17, 85].

3.3.2 Non-affine Loop Transformations
Non-affine loop transformations cannot directly be represented as unimodular ma-
trix operations. Strip mining and loop tiling are the most useful among the non-
affine loop transformations. Further details about non-affine loop transformations
can be found [17, 85].

3.3.2.1 Strip Mining

Strip mining is used to adjust the granularity of an operation, especially for paral-
lelizable operation. An example is shown in Figure 3.18.

f o r ( i =0 ; i <=5; i ++)

A[ i ] = . . . ;

( a )

f o r ( i 1 =0; i 1 <=1; i 1 +=2)

f o r ( i 2 =0; i 2 <=2; i 2 ++)

A[ i 1∗3+ i 2 ] = . . . ;

( b )

Figure 3.18: Strip mining example (a) before (b) after

3.3.2.2 Loop Tiling

Loop tiling is the multi-dimensional generalization of strip-mining. Tiling (also
called blocking) is primarily used to improve cache reuse by dividing an iteration
domain into tiles and transforming the loop nest to iterate over them. However,
it can also be used to improve processor, register, translation look-aside buffer
(TLB), or page locality.
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f o r ( i =0 ; i <=n ; i ++)

f o r ( j =0 ; j <=n ; j ++)

A[ i ] [ j ] = . . . ;

( a )

f o r ( t i =0; t i<=n ; t i +=64)

f o r ( t j =0; t j<=n ; t j +=64)

f o r ( i = t i ; i <=min ( t i +63 , n ) ; i ++)

f o r ( j = t j ; j <=min ( t j +63 , n ) ; j ++)

A[ i ] [ j ] = . . . ;

( b )

Figure 3.19: Loop tiling example (a) before (b) after

There also exists other non affine loop transformations, such as loop unrolling
which can reduce loop overhead by reducing the number of iterations and repli-
cating the body of the loop.





Chapter 4

Fast Intra-Array Memory Footprint

Estimation

An essential step during the high level design space exploration is to perform
memory footprint estimation in order to give an early feedback on the memory
requirement. As there usually exist a large number of design possibilities at the
high level, e.g., to perform loop transformation, memory footprint estimation is
required to be performed frequently. The required estimation time hence becomes
critical, in addition to a sufficient level of estimation accuracy.

As discussed in Chapter 2, current techniques for memory footprint estimation
are too slow and/or assume a single memory. In [64] an algorithm has been intro-
duced for steering loop transformations, specifically loop fusion and loop shifting,
for memory minimization based on an integrated memory footprint estimation
technique. This technique is however slow and not scalable for large examples.
This chapter presents a fast memory footprint estimation technique that is usable
in a practical context with a distributed scratchpad-based memory organization.
In this dissertation, the execution ordering of the application is assumed to be al-
ready fixed. The focus is on fast estimation of memory footprint requirements for
arrays. Our estimation is performed in two phases:

1. intra-array memory footprint estimation

2. inter-array memory footprint estimation

57
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During intra-array memory footprint estimation, the memory location reuse is ex-
ploited between elements of each individual array when their lifetimes are not
overlapping. During inter-array memory footprint estimation, the reuse possibil-
ities are exploited among multiple arrays. This chapter first presents how to per-
form a novel fast intra-array memory footprint estimation. The inter-array mem-
ory footprint estimation technique will be presented in Chapter 5.

This chapter is organized as follows. Section 4.1 presents how to perform a
fast intra-array memory footprint estimation based on the MDV. Due to the fact
that existing approaches to calculate the MDV is slow, two approaches on how
to calculate the MDV are presented in Section 4.2: a general approach based on
an ILP formulation and a novel vertexes approach when iteration domains are
approximated as bounding boxes. Section 4.3 discusses errors which may occur
within the estimation approaches. Finally a summary is drawn in Section 4.4.

4.1 Intra-array Memory Footprint Estimation
For an array, a straightforward way of estimating its memory footprint require-
ment is to multiply the size of each array dimension. This will normally result
in a huge overestimate however, since not all array elements are alive at the same
time and the elements with non-overlapping lifetime can reuse the same memory
locations. One element’s lifetime is defined from the moment it is written (pro-
duced) and until it is read for the last time (consumed). It can be depicted as a
lifetime window in the iteration domain as illustrated later, which is constrained
by the dependency relation for this array element’s write and read references. In
this dissertation, the array index expression is assumed to be affine function of the
surrounding loop iterators. The estimation techniques presented in this chapter
consider that the array index expression can be optimized later on as a linear func-
tion of the surrounding loop iterators, simply called linearized array. [43, 134, 37]
have presented different approaches for memory optimization with linearized ad-
dress generation as described in Chapter 2.

The intra-array memory footprint estimation is performed on the geometrical
model based on data dependency analysis. Following let us first look at how to
perform the estimation for one array when it just has one write reference and
one read reference and there exist single pair dependencies between them. This
approach is then extended to the general case where multiple write references and
read references can exist for one array.
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4.1.1 Estimation for Single Pair Dependencies
For single pair dependencies, all the array elements which are written within one
array element’s lifetime window are also simultaneously alive since array’s index
expression is affine function of the surrounded loop iterators. The maximal life-
time window among the lifetime windows of all array elements in turn defines the
maximal number of simultaneously alive array elements. It hence constrains the
size requirement for this dependencies pair, and also the array’s memory footprint
requirement.

The problem of detecting the memory footprint requirement is hence equiva-
lent to detecting the maximal lifetime window of all array elements and of iden-
tifying the number of array elements written within this period. At the iteration
domain, this problem is equivalent to finding the dependency that defines the ar-
ray’s maximal lifetime and to count the number of iteration nodes at where array
elements are written within the corresponding lifetime window. Proposition 4-1
gives a definition of this dependency.

Proposition 4-1: In the iteration domain, the maximal dependency vector
(MDV) defines the maximal lifetime window over all array element accesses for
one pair dependencies.

The above proposition is always valid as long as the array index expressions
are affine and manifest functions of the surrounding iterators. The MDV always
contains the largest number of iteration nodes at where an array is being written
before it is read. The MDV concpet has been presented already in Chapter 3. The
problem is now how to calculate the MDV and how to perform the memory foot-
print estimation in the iteration domain. The MDV calculation will be presented
in the Section 4.2. The size estimation is done by counting the number of iteration
nodes constrained by the MDV at where array elements are written.

4.1.1.1 Illustration on an Example

Let us first illustrate how to estimate the memory footprint on the example code
in Figure 3.4. The memory footprint estimation is performed by counting the
number of iteration nodes constrained by the MDV. For this code, there are one
write reference and one read reference for array A and data dependencies exist
between them. Assuming the array is not used anywhere else, the array read
reference consumes the data. Assume i, j and k refer to the values of the loop
variables at the time the write is performed and i′, j′ and k′ refer to the values of
the loop variables at the time the read is performed. The loop iterators defines the
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two iteration domains as introduced in 3.1.4.2, at where array is written and read.

I ={[i, j,k]|0≤ i≤ 4∧0≤ j ≤ 7∧0≤ k ≤ 2∧ [i, j,k[∈ Z3}
I′ ={[i′, j′,k′]|0≤ i′ ≤ 4∧0≤ j′ ≤ 7∧0≤ k′ ≤ 2∧ i′ >= k′∧ j′ >= i′− k′

∧ [i′, j′,k′[∈ Z3}

The dependencies between these two array references are illustrated previ-
ously in Figure 3.5 and the dependency vectors of the original code are drawn
in Figure 3.6. In this dissertation, the memory footprint estimation is performed
on the bounding box iteration domains. This is because the counting of iteration
nodes in a bounding box iteration domain is simple and fast as discussed in Sec-
tion 3.2. For this example, the bounding box expression of the iteration domain for
the array write statement (denoted by

←→
I ) exactly represents the original polytope

shape, while the bounding box of the iteration domain for the array read statement
(denoted by

←→
I ′) is approximation of the original given by

←→
I ′ = {[i′, j′,k′]|0≤ i′ ≤ 4∧0≤ j′ ≤ 7∧0≤ k′ ≤ 2∧ [i′, j′,k′[∈ Z3}

1 2 3 4 5 j

0

i

1

2

6 7
k (0,1,2)

MDV

(a) (b)

Figure 4.1: (a) The maximal lifetime window constrained by MDV, (b) memory footprint

estimation on the MDV

As mentioned, the MDV defines the maximal lifetime window among all array
element accesses. In the bounding box iteration domain, the MDV can always be
drawn from the origin node to the node strided by the MDV, as shown in Figure
4.1(a) for this example. In this case, there is a one-to-one mapping between the
data elements and iteration nodes, i.e., each iteration node writes one data element.
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The size requirement can then simply be calculated by counting the number of it-
eration nodes within the array write iteration domain constrained by the MDV.
An efficient counting approach is to count and sum up the iteration nodes con-
strained by the dependency distance of the MDV at each loop dimension from the
outermost dimension to the innermost dimension.

When there is a one-to-one mapping between the data elements and iteration
nodes, the counting can be formulated as

size =
m−1

∑
g=1

(
MDV [g] ·

m

∏
l=g+1

(|Ul−Ll |+1)

)
+MDV [m]+1 (4.1)

in which m is the number of loop dimensions of the array write iteration domain.
In this formula, the counting is summed over each loop dimension starting from
the outermost dimension. Let us illustrate how it works on Figure 4.1(b) at where
the MDV equals to [2,2,0]. The distance of MDV at the outermost i-dimension is
first multiplied with the upper and lower bound distance difference, |Ul−Ll |+1,
of all inner dimensions. The resulting number of iteration nodes is 48 as the
distance at the outermost i-dimension is 2 and the bound ranges of j and k are
8 and 3 respectively. This procedure is repeated at the j dimension where the
number of nodes is 6. The innermost dimension, k, is treated separately by the
second part of the formula, since it is not going to be multiplied with anything.
In this case, the MDV distance of the k-dimension is zero. The last constant one
is added in order to count the iteration node reached by the MDV at where one
array element is written before the first read starts. The size requirement for this
example is hence 55.

If there is not a one-to-one mapping, e.g., data are accessed at every N iter-
ations, the end size requirement should be divided by the interval N as the array
index expressions are affine functions of the surrounding loop dimensions. This
can easily be handled as a postprocessing.

Counting the number of iteration nodes in the iteration domain based on Equa-
tion 4.1 is very simple and fast. In contrast, counting integral points in general
polyhedra is more computationally expensive [18].

4.1.1.2 General Estimation Algorithm

Above we have illustrate how the memory footprint estimation is performed on
an example. Equation 4.1 is always valid when the two iteration domains are
overlapping in each loop dimension. However, it would give incorrect results
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(a) (b)

Figure 4.2: Other MDV relations between array write and read iteration domains

when the two iteration domains are not overlapping or the MDV is negative in at
least one dimension. Figure 4.2 shows these kind of cases assuming the execution
ordering is fixed with the i-dimension outermost and k-dimension innermost. In
Figure 4.2(a) the array write iteration domain and the array read iteration domain
are not overlapping at all. In Figure 4.2(b) the two iteration domains are partially
overlapping while the dependency distance of the MDV at any loop dimension is
negative but it is still legal.

In Figure 4.2(a), the dependency distance at the i-dimension is 3, which is
larger than the bound distance of the array write iteration domain at the same
dimension. Using the upper and low bound distance difference directly would
result in over estimation during the counting of nodes at that loop dimension. This
can easily be handled by adding a comparison of the dependency distance and the
bound difference (calculated as |UBg−LBg |+1) at the gth loop dimension. If the
dependency distance has a value larger than the bound difference, the number of
nodes should be calculated using (|UBg−LBg |+1) instead of the MDV [g] value.
Since there are no new nodes constrained at inner dimensions of the array write
iteration domain, the counting procedure also stops at this dimension. When the
MDV has negative value for any dimension, e.g., -2 at the j-dimension in Figure
4.2(b), direct using the bounds difference would also result in incorrect counting.
The counting procedure should stop without counting even at this dimension.

Figure 4.3 shows the pseudo-code of our algorithm of memory footprint esti-
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mation for single pair dependencies. All the different cases are taken into account.

4.1.1.3 Comparison with the EDV Approach

In contrast to the MDV based approach, a similar estimation technique is pre-
sented by Kjeldsberg et al. in [79, 81, 121] based on the EDV. The EDV is required
by Kjeldsberg et al. since the execution ordering in their case can be partially
fixed. When they calculate the lifetime window constrained by the dependency
vectors, they have to take into account the worst case w.r.t. all the possible exe-
cution ordering. The EDV is hence used since it reflects the worst case lifetime
window for any execution ordering. For the code in Figure 3.4, the EDV is equal
to [2,4,0] as shown in Figure 3.7. This vector is not among the actual DVs. It is
a result of the projection of all DVs at each dimension and is caused by the two
DVs [0,4,0] and [2,2,0] in this case.

When the execution ordering is unfixed or partially fixed, their technique re-
sults in upper and lower bounds instead of the exact size requirement. When the
execution order is fixed as it is in this work, the upper and lower bounds converge
to a single value. Their estimation result is equal to what is achieved with this al-
gorithm but based on the EDV instead of the MDV. When using the EDV instead
of the MDV, the memory footprint requirement for the above example turns out
to be 61 instead of 55. This demonstrates that the EDV based approach used by
Kjeldsberg et al. can result in over-estimate compared to the MDV since they do
not take all available ordering information into account even when the execution
ordering is fully fixed.

However, they have to use the EDV when the execution ordering can be par-
tially fixed. When the execution ordering is partially unfixed, it would be possible
for them to calculate the largest dependency distance vector by taking into account
the partially fixed execution ordering. It could, however, be computationally ex-
pensive to do so as it needs to be performed iteratively. For most of our targeted
applications, the estimation difference between using MDV and EDV is small. If
computation time is the highest priority objective, it is hence sufficient for them
to just use the EDV. But if estimation accuracy has the highest priority, the MDV
approach is the best suited. Both approaches are therefore 2 Pareto points of esti-
mation accuracy versus computation time in the estimation “design space”.
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0: size = 0

b continue = 1

g = 1

nodes = 0

10: while (g <= m-1) and b continue

11: nodes = 0 //count nodes at one dimension

12: if (MDV[g] >= 0)

13: if (MDV[g] <= abs(Ug - Lg) +1 )

14: nodes = MDV[g]

15: else:

16: nodes = abs(Ug - Lg) +1

17: for (l=g+1; l <= m, l++)

18: nodes *= abs(Ul - Ll ) +1

19: if (MDV[g] > abs(Ul - Ll ) +1 )

20: b continue = 0

22: else

23: b continue = 0

24: size += nodes

25: g++;

26: if (b continue) //count the nodes at the innermost dimension and constant 1

27: if (0 <= MDV[m] <= abs(Um - Lm) +1 )

28: size += MDV[m] + 1

29: elsif (MDV[m] > abs(Um - Lm) +1 )

30: size += abs(Um - Lm) +1

31: return size

Figure 4.3: Pseudo-code of memory footprint estimation algorithm for single pair

dependencies
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4.1.2 Estimation for Multiple Pair Dependencies

So far has presented the memory footprint estimation algorithm for single pair
dependencies. That is, for dependencies between one array write reference and
one array read reference.

In general, multiple write and read references of the same array may exist in
the code. Flow dependencies may exist between every write and read pair, if they
access the same elements. The maximal lifetime window now can not be simply
derived among the multiple pair dependencies due to their various relation. This
makes it complex to achieve accurate estimation. In order to achieve a fast esti-
mation, this work hence chooses a simple approach. If two write-read pairs access
non-overlapping data, their sizes can be computed individually and summed. If
on the other hand they overlap, the overlapping data needs to be stored only once.
In this case, only the maximum of the two sizes needs to be stored. Basic set anal-
ysis [9] splits dependencies in this way. It needs to be performed only once, since
behavior-preserving transformations cannot change the dependency relations.

In the current version of tool implementation supporting the technique de-
scribed above, we do not go to basic set analysis but simply take the maximum of
the two sizes if the dependencies are overlapping. This however could result in
over-estimations or under-estimations, as various dependency relatons can happen
between the multiple references. Our estimation does not take them into account.
Further analysis is necessary for improving the estimate accuracy. A straight for-
ward way is to perform the basic set analysis before our estimation is performed.
This is, however, left for future work.

In the non-single assignment application code, one array element can be writ-
ten and read multiple times and there also exist other dependencies beside the
data flow dependency. In such a case, the EDV/MDV is calculated by taking the
worst case. That is, it is calculated by starting from the node at where one array
element is written for the first time till the node at where it is read for the last
time (consumed). As it can be already written multiple times in between, the last
read only consumes what has been written most recently. The actual MDV/EDV
can hence be smaller than the calculated one. Preprocessing the index expressions
into dynamic single assignment (DSA) form [142] avoids this problem. It has to
be performed only once, giving a quite acceptable overhead even in a system de-
sign space exploration context. Indeed, once the initial code is in DSA form, also
the code transformations become simpler and they will maintain the DSA form.
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4.2 MDV/EDV Calculation

The previous section presents the technique on how to estimate the array size re-
quirement for individual arrays based on the MDV or EDV. As shown, Equation
4.1 and its extension algorithm in Figure 4.3 are very simple and extremely fast,
independent to the complexity of the loop dimensions and the array index expres-
sions. This is critical for achieving fast estimation. To reach the goal, it is also
critical to perform a fast MDV calculation.

Current techniques on how to calculate the MDV and also the EDV is very
computationally expensive. They are based on a dependency analysis, i.e., a cal-
culation of dependency vectors as introduced in Chapter 3. Different techniques
has been presented on how to calculate dependency vectors by using integer lin-
ear programming [123, 125, 146, 93] and Fourier-Motzkin variable elimination
[116, 96]. The EDV is calculated by further performing a projection of all depen-
dency vectors at each loop dimensions and taking the maximal value. It is well-
known that both the integer linear programming algorithm and Fourier-Motzkin
variable elimination algorithm are computationally expensive. To perform a pro-
jection of all dependency vectors at each loop dimensions is also non-trivial.

In this section two techniques on how to calculate the MDV is introduced:
the general ILP formulation and the vertexes approach on the bounding box ge-
ometrical model. Both of them are again 2 Pareto points in the design space of
estimation accuracy versus computation time. These techniques can also be used
for a fast calculation of the EDV which could be useful for others. Since the MDV
calculation is equivalent to calculating the EDV with some extra constraints added
during computation, how to calculate the EDV is hence presented firstly. This is
followed by the MDV calculation.

4.2.1 The ILP Approach for MDV/EDV Calculation

This section presents the ILP formulation [123, 125] of calculating the EDV/MDV
between single pair dependencies on the polyhedron geometrical model. Their
iteration domains (I and I′) consist of a set of inequality constraints, as expressed
in Equation 3.1. When data flow dependencies exist, the index value of the array
write and read references (E and E ′) must be equal at each of the array dimensions.
This is because, when dependencies exist between these two array references, both
references access the same data element(s). Equation 3.4 hence results in a set of
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equalities:
E ′h = Eh | 1≤ h≤ n (4.2)

in addition to the set of inequality constraints for the iteration domains. In the
above expression, n is the number of array dimensions. For the code in Figure
3.4, the set of equalities are i = i′− k′, j = j′− i′+ k′ and k = k′ for the three
array dimensions. For this example, the numbers of array dimensions and loop
dimensions are the same. This does not necessarily have to be the case.

One way to find the EDV is to calculate all the DVs, or the corresponding de-
pendency distance polytope, with existing dependency analysis techniques. This
is then followed by the projection operation at each loop dimension, keeping the
maximal projected distance value at each dimension. In this dissertation, the EDV
is directly calculated by solving ILP problems:

MAX(i′g− ig) (4.3)

based on the set of inequality constraints for I and I′ expressed in Equation 3.1 and
the set of equality constraints expressed in Equation 4.2 of each loop dimensions.
In Equation 4.3, g is the analyzing dimension of the iteration domain in which
array elements are written. For the above example, the ILP maximal problem
needs to solved at each loop dimension, i.e., MAX(i′− i), MAX( j′− j), MAX(k′−
k) . Using an ILP solver, the EDV is found to be [2,4,0]. Note that, for this simple
example, there are not many constraints and variables. The ILP problem is easy to
solve when using an ILP solver. For the more general real-life applications, there
are usually more loop dimensions, and arrays can also have more dimensions
and/or more complex index expressions. The complexity of the ILP problem will
then grow exponentially.

The MDV is similarly calculated by solving the ILP MAX problems of Equa-
tion 4.3 at each loop dimension sequentially, starting from the outermost dimen-
sion. In addition, the calculated maximum distances of the outer dimensions are
propagated as equality constraints when calculating the dependency distance at the
inner loop dimensions. The reason for this is that ordering information must be
taken into account when calculating the actual dependency distance of the MDV at
the analyzing dimension. This actual distance is not necessarily the maximal dis-
tance at every loop dimension, as shown in Section 3.1.6. Note that Equation 4.2
gives one equality constraint for each array dimension while Equation 4.3 gives
one ILP problem for each loop dimension. The solution to each ILP problem has
to satisfy all constraints of Equation 4.2 and Equation 4.3.
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The procedure is now demonstrated using the example code of Figure 4.1.
The ILP problem MAX(i′− i) is first solved giving a dependency distance at the
outmost dimension equal to 2. By propagating the equality constraint i′− i = 2,
the ILP problem MAX( j′− j) is then solved and the dependency distance at the
second outermost dimension is equal to 2. The outer two equality constraints are
then propagated at the innermost loop dimension. The ILP problem MAX(k′− k)
is solved, giving the dependency distance at the innermost dimension equal to 0.
The MDV is hence equal to [2,2,0]. From Figure 4.1 we see that the MDV does
not have the maximal dependency distance for dimensions j (which is 4). This is
because the DV with length 4 in dimension j has lenght 0 in the outer i dimension.

Above has described how to calculating the MDV/EDV using the polyhedron
GM by solving ILP problems. The ILP approach naturally works when the bound-
ing box GM is used while less constraints exist. As the constraints are exact in the
polyhedron GM, the calculated MDV/EDV are accurate and there are not pseudo
DVs introduced. Pseudo DVs can only occur for the bounding box GM case. In
Figure 3.11 pseudo DVs exist, but they do not contribute to the calculation of the
MDV/EDV. The bounding box based MDV/EDV is then also accurate. This is
usually the case for the targeted applications at where data accesses are regular.

4.2.2 The Vertexes Approach for MDV/EDV Calculation

Above has shown how to calculate the EDV/MDV by solving one ILP problem at
each loop dimension. Since solving ILP problems in general is computationally
expensive, a much simpler approach, named vertexes approach, is further intro-
duced. The vertexes approach is a simplification of the ILP approach, based on
the bounding box geometrical model. It is performed with basic algebra compu-
tations without using any ILP solver. As will be shown in Chapter 9, it is orders
of magnitude faster. Following we first transform the ILP problems into an al-
ternative form and then discuss how to solve these ILP problems with the novel
vertexes approach.

In the ILP approach, the dependency distance of the MDV/EDV at one loop
dimension is calculated by solving the ILP problem of Equation 4.3. This ILP
problem provides a solution which satisfies the equality constraints in Equation
4.2 for all array dimensions. Instead of solving the ILP problem for one loop
dimension in one step with all array dimension constraints, the problem can be
decomposed and solved for each array dimension individually. The global de-
cision among the solutions for all array dimensions is taken afterwards. At one
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array dimension (h), the MAX ILP problem Equation 4.3 is solved based on its
own equality constraints only:

E ′h = Eh (4.4)

together with the inequality constraints for the iteration domains. One MAX value
output corresponds to one array dimension. Since all the MAX values are valid
for the analyzing loop dimension, the minimal one among all the MAX values is
still valid for the analyzing loop dimension, which is the global distance of the
EDV/MDV at this loop dimension.

Proposition 4-2: the minimal value of all the MAX values calculated at each
array dimension by solving the MAX ILP problem with its equality constraint in
Equation 4.4 defines the dependency distance of the MDV/EDV.

With such a decomposition, the MDV/EDV can be calculated at each loop
dimension by solving one ILP problems for each array dimension.

Above has shown how to decompose the general ILP approach of calculating
the dependency distance of the MDV/EDV at one loop dimension to the problem
of solving a set of ILP problems for each array dimension. Let us now present
how to solve these ILP problems without using any ILP solver.

The equality of Equation 4.2 can be rewritten as:

eh′
g · i′g +O′ = eh

g · ig +O (4.5)

in which eh
g and eh′

g are the index coefficients of the analyzing loop dimension g for
the array write and read references, at the analyzing array dimension h. O and O′
are the parts of the index expressions that do not contain the analyzing variables
ig or i′g. This is equivalent to

eh′
g · i′g− eh

g · ig = O−O′ (4.6)

which can be rewritten to isolate the difference between i′g and ig which needs to
be maximized:

i′g− ig =
(eh

g− eh′
g ) · ig +O−O′

eh′
g

(4.7)

If eh′
g is equal to zero, the expression at the right-hand side of Equation 4.7 is

divided by zero which is not legal and eh
g is used as denominator instead. When

both eh′
g and eh

g are zero, the equation is not valid which means the loop dimension
is indetermined at this array dimension. The MAX problem in Equation 4.7 is
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hence equivalent to

MAX(i′g− ig) =





MAX(
(eh

g−eh′
g )·ig+O−O′

eh′
g

) when eh′
g 6= 0

MAX(
eh

g·i′g+O−O′

eh
g

) when eh′
g = 0

undeterminant when eh
g = 0∧ eh′

g = 0

(4.8)

The right-hand side of Equation 4.8 is a linear combination of loop variables.
Because bounding box constraints are assumed on the loop variables, the maxi-
mum of this right-hand side can easily be found by replacing a loop variable with
its upper bound if it has a positive coefficient, and its lower bound if it has a neg-
ative coefficient. In other words, the maximum is always reached at one of the
vertexes of the bounding box iteration domain. We can immediately find which
vertex by looking at the coefficients of Equation 4.8. Since only integral solu-
tions of the MAX problem are considered, integral division result is used if the
denominator |eh′

g | or |eh
g| in Equation 4.8 is not equal to 1, respectively.

If the array has more than one array dimension, the MAX problem formula
of Equation 4.8 is performed for each array dimension with its own equality con-
straint found in Equation 4.2. The minimal value of all these maxima is the de-
pendency distance at this loop dimension.

Let us illustrate the vertexes approach on the example of Figure 3.4. At the
outermost loop dimension i, the maximal value at the first array dimension with
the equality i′−k′ = i is calculated. The ILP problem MAX(i′− i) in Equation 4.8
is then equal to MAX(k′). By taking the upper bound value 2 of k′, the maximal
value for the first array dimension at the outermost loop dimension is found to be
2. Similarly, the equality j′− i′+k′ = j at the second array dimension leads to the
ILP problem MAX( j′− j), which is equal to MAX(i′− k′). The maximal value
of MAX(i′− k′) is 4 when i′ = 4 and k′ = 0. At the third dimension of the array
index expression, the coefficients of i and i′ are zero, the problem MAX(i′− i) is
undeterminant and it does not affect the maximum. The minimal of the maximum
among all array dimensions is the dependency distance at the outermost loop di-
mension, that is 2. The EDV dependency distance at the other loop dimensions
can be calculated in a similar way.

For the MDV calculation, the calculated dependency distance equality con-
straints at the outer loop dimensions and the variables with their fixed bound val-
ues are propagated during the calculation of the dependency distance at the inner
loop dimensions using their fixed values. At the outermost i dimension, the depen-
dency distance is equal to 2 as found above. During the calculation of dependency



4.3. Estimation Errors and Exceptions 71

distance at the second outermost j dimension, the dependency distance equality
i′− i = 2 and the variable with its fixed bound value k′ = 2 are propagated for
the calculation of the dependency distance at the j dimension. Now at the first
array dimension, the coefficients of j and j′ of the array index expression are zero
and there is no fixed solution. At the second array dimension with the equality
j′− i′+ k′ = j, the MAX problem MAX( j′− j), equivalent to MAX(i′− k′), has
the maximal result 2 when the upper bound value i′=4, is used together with the
propagated constraint k′=2. The coefficients of j and j′ are zero at the third di-
mension of the array index expression. Consequently, the dependency distance
of the MDV at the second loop dimension is 2. In a similar way, the dependency
distance of the MDV at the third loop dimension is calculated, equal to 0. This
gives the MDV of [2,2,0].

4.3 Estimation Errors and Exceptions

4.3.1 Memory Footprint Estimation Errors
The memory footprint estimation presented in this dissertation is performed using
the bounding box geometrical model. Over-estimation can occur when the bound-
ing box representation does not exactly represent the original polytope shape of
the iteration domain. The counting of iteration nodes constrained by the MDV
can then include nodes that are not present in the polyhedron iteration domain.
For most advanced telecommunication and multi-media applications, the iteration
domains are typically very close to rectangular and the bounding box approach
works quite well. A major exception are skewed loops and diagonal loops with
code as shown in Figure 4.4 and graphically depicted in Figure 4.5.

For these, the simplified bounding box iteration domain could result in over-
estimates with a factor of 2 (for diagonal case, power of two). Typically, however,
only a few loop dimensions are not rectangular. It is then still possible to use the
MDV approach combined with exact counting of the number of points in those it-
eration domains. In Equation 4.1, the non-rectangular factors of the product term
should then be replaced by the exact counting function. An alternative would be
to preprocess the code by a loop transformation which makes the skewed domain
rectangular (which is feasible in the 2 examples above). The preprocessing could
potentially be performed quite fast once the code has been brought in the geo-
metrical model. But also that option has limitations because obviously, this only
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f o r ( i =0 ; i <=4; i ++)

f o r ( j =0 ; j <=4; j ++)

i f ( i = j )

A[ i ] [ j ] = . . . ;

( a )

f o r ( i =0 ; i <=4; i ++)

f o r ( j = i ; j <=i +4; j ++)

A[ i ] [ j−i ] = . . . ;

( b )

Figure 4.4: Code examples with (a) diagonal iteration domain, (b) loop skewed iteration

domain
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Figure 4.5: (a) diagonal iteration domain, (b)loop skewed iteration domain
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Figure 4.6: Data domain for Memory footprint estimation exception code

works for cases that can be considered as skewed rectangular domains. Further
study of alternative solutions for accuracy improvement w.r.t. these cases is left
for future work.

4.3.2 MDV Calculation Errors

The two approaches for MDV and EDV calculation have been presented. The
general ILP approach can work on both the polyhedron geometrical model and
the bounding box geometrical model. The MDVs calculated using the polyhedron
geometrical model are accurate. With the bounding box geometrical model, the
added pseudo dependency vectors can contribute to the calculation of the MDV.
This is the case both with the ILP approach or the vertexes approach. The error
appears mainly in triangular and skewed iteration domains, as discussed in Section
4.3.1. For the running example code it is for instance not a problem, even though
it has several pseudo DVs. There is a trade-off between accuracy (best with ILP
approach on the polyhedron geometrical model) and computation time (shortest
with vertexes approach on the bounding box geometrical model).

In Equation 4.8, if the denominator, |eh′
g | or |eh

g|, is not equal to 1, an integral
division is used. The result is then only an approximation. The approximation
only makes a difference for border cases of an array, which contribute little to the
total size. Figure 4.7 shows a typical code example where such an overestimation
occurs. Here the vertexes approach with Equation 4.8 would report MDV = [100]
while the real MDV is [0]. This is because, for one MAX ILP problemn, only
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variable on the left side of Equation 4.8 has non-zero coefficient. The one vari-
able has coefficient zero which means it is indeterminant and over-estimation can
hence occur. This error can still be removed with further analysis.

On the other hand, when any of the two variables on the left side of Equation
4.8 have a coefficient other than one, the integral division is only an approxima-
tion. By making the real division and round the result up, a maximum is found
which may be an overestimate. This overestimation due to the border cases can
be removed if basic set analysis [9] is applied before the estimation is performed.

f o r ( i =0 ; i <=200; i ++) {
i f ( i <=100)

A [ 1 0 0 ] [ i −100] = . . . ;

i f ( i >=100)

. . . = A[ i ] [ 0 ] ;

}

Figure 4.7: Code example

4.4 Summary
This chapter presents a system level memory footprint estimation technique for
individual arrays. It is based on calculating the maximal lifetime window of the
array accesses in the iteration domain, which is constrained by the MDV (or EDV
when the execution ordering is not fully fixed). By counting the number of it-
eration nodes constrained by the MDV/EDV, the estimation approach presented
in this dissertation is very fast. In order to achieve this fast estimation, two ap-
proaches of how to calculate the MDV/EDV have also been presented. The gen-
eral ILP approach can be used both with the bounding box geometrical model and
the polohedron geometrical model. In the last case, it is fully accurate. As will
be shown in Chapter 9, even then it is faster than the existing ILP and Fourier-
Motzkin variable elimination approaches, where the DVs are calculated first. This
is due to that the ILP approach presented in this dissertation works by solving the
problem for one variable at a time, which is much simpler than considering all
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variables at the same time. The ILP approach also skips the projection operation
for the EDV calculation, which is also not trivial.

The novel vertexes approach is performed based on the bounding box geomet-
rical model and is extremely fast compared to traditional ILP based calculations.
It still gives accurate output for most practical cases. This makes the memory
footprint estimation presented in this dissertation especially useful for giving fast
feedback during the system level exploration, where estimation speed is critical
in addition to accuracy. As already indicated in chapter 1 and section 2.2, the
memory footprint estimation is required in several different contexts during the
system design exploration trajectory, with different requirements on accuracy and
estimation speed. So all the variants that have been reported here have their own
valid position in the overall Pareto trade-off space.





Chapter 5

Fast Inter-Array Memory Footprint

Estimation

The second part of the overall memory footprint estimation methodology handles
inter-array inplace effects. The fact that different arrays having non-overlapping
lifetime can reuse the same memory locations is hence taken into account. The
maximal combined size of overlapping arrays give the memory footprint require-
ment for the complete application. As mentioned in Chapter 2, all previous mem-
ory footprint estimation techniques are too slow to be used repeatedly during the
system level search space exploration.

In this dissertation, the inter-array memory footprint estimation is performed
based on solving the Hanoi tower puzzle problem and hence named Hanoi tower
approach. The Hanoi tower puzzle was invented by the French mathematician
Edouard Lucas in 1883. The basic idea is that, by pre-defining a set of towers
which respond to the lifetime periods of each statements, all arrays that are simul-
taneously alive at any given tower is assigned to the corresponding tower. At the
end, all arrays are assigned and the tower which contains the arrays having the
maximal size requirement defines the memory footprint requirement for the ap-
plication. The Hanoi tower approach was first used in [40] for memory hierarchy
layer assignment and pre-fetching optimization to overcome the memory perfor-
mance/energy bottleneck. There is however no detail information about how it is
implemented. For the work in this dissertation, the problem is much simpler as
only the lifetime of arrays is considered. Several approaches based on the Hanoi
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tower puzzle are presented in order to perform a trade-off between estimation ac-
curacy and computation time. In this work, the memory footprint requirement for
an array is assumed to be constant by ignoring the boundary cases where the mem-
ory size requirement increases from zero to the constant size or decreases from the
constant size to zero. To take into account these boundary cases, as discussed in
[43, 41], is quite complex and needs full knowledge of the access pattern of the
arrays. Since this is very computationally expensive, it is simply ignored in this
work in order to achieve a fast estimation.

This chapter is organized as follows. In Section 5.1 the so called initial one-
layer Hanoi-tower approach is presented. In order to reduce the computation time,
the idea of performing an estimation on multi-layer Hanoi tower is also presented
in Section 5.2 and an improved one-layer Hanoi tower approach in Section 5.3.
Finally a summary is given in Section 5.4.

5.1 Initial One Layer Hanoi Tower Approach

A straight-forward implementation of the Hanoi tower approach is to consider
each statement as a tower and then evaluate all arrays’s lifetime on all the towers.
A tower’s lifetime is defined by its iteration domain within the common iteration
space. An array’s lifetime is defined from the first time any of its elements are
used (usually it is a write reference) until the last time any of its elements are
used (usually the last read reference). An array’s lifetime can be calculated by
performing an union operation of the lifetimes of all the references to this array.
If an array’s lifetime span over a tower, the array is assigned to that tower. An
array is hence assigned to all the towers within its lifetime period. Note that,
different from the original Tower of Hanoi puzzle, there are no shift operations
after an array is assigned to a towers. This evaluation procedure is repeated for all
arrays. At the end, all the arrays are assigned to the towers within their lifetime
period. The tower which contains the set of arrays having the largest memory
footprint requirement defines the memory size requirement for this application.

Figure 5.1 graphically illustrates how the one-layer Hanoi tower looks like
after full assignment of all arrays, assuming there are 4 statements and 10 arrays.
As shown in the figure, 4 statements are represented as 4 towers named from
1 to 4 and 10 arrays are named by capital letter from A to J respectively. The
horizontal dimension represents the lifetime of arrays and the vertical dimension
represents the size requirement of arrays. Each array is assigned to the towers
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within its lifetime period. For example, array A is assigned in all the 4 towers
meaning it is referenced at least in the first and last statements. It is however
not necessarily required to be referenced in the 2nd and 3rd towers. Array E is
only assigned to tower 2 which means its lifetime is limited to the corresponding
statement. The height of an array represents its memory footprint requirement,
which is calculated with the intra-array memory footprint estimation techniques
presented in the previous chapter. For arrays assigned to the same tower, they are
simultaneously alive and there is no in-place possibilities between them. When
all the arrays are assigned, it is obvious that the highest tower decides the overall
memory size requirement for the application. The highest tower contains the set
of arrays which are simultaneously alive having the largest size requirement.

BB

II

H

DD

AA

G

EE

size

lifetime

C

1 2 3 41 2 3 41 2 3 41 2 3 4F

J

Figure 5.1: Illustration of the one-layer Hanoi tower approach

This approach is very straight-forward to implement. In practice, however,
the number of statements are large in real life applications. For example, the
QSDPCM algorithm, which will be used for experiments later on, contains 182
statements. To let each statement represents a tower will then give very long
computation times. Even more so since the number of arrays can also be large.
When the initial one-layer Hanoi tower approach becomes slow, it is not feasible
to use it for memory footprint estimation methodology repeatedly. Alternative
approaches are hence required.

5.2 Multiple Layer Hanoi Tower Approach
In order to reduce the number of towers before performing array-to-tower assign-
ment to these towers, a multiple layer Hanoi tower approach is proposed. The idea
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is that the set of statements are unified consisting of one unified tower when their
lifetimes are equivalent at a certain number of outer loop dimensions. Lifetime
differences at inner loop dimensions of these statement are ignored. This set of
statements within one unified tower can again consist of a number of unified tow-
ers each containing statements that are equivalent also for a number of additional
inner dimensions. Obviously, an individual statement can still be a tower by itself.
These inner towers are hence sub-towers of the unified tower, also called the par-
ent tower. In this way, a multiple layer Hanoi tower structure can be built up. The
sub-towers are however transparent for arrays at its parent layer. Figure 5.2 illus-
trates an example of a two layer Hanoi tower structure. In this example, 4 towers,
instead of the total 9, are present at the first layer. For real life applications, the
unification ratio will be much larger. For the QSDPCM algorithm, for example,
there exist 12 towers when the lifetime of all 182 statements are unified at the
outer fourth loop dimension. When unified at the sixth loop dimension instead,
around 60 towers exist.

lifetime

Layer 1

Tower

Layer 2

Tower

size

Figure 5.2: Illustration of the multiple layer Hanoi tower approach

Since now the number of towers is limited at a given layer, the computation
time required to assign arrays to these towers can be reduced. When the array
assignment has been performed at one layer, the unified tower which contains the
set of arrays having the largest size requirement is selected for further evaluation
at its sub-towers. This is because the arrays assigned at this unified tower are
considered simultaneously alive until the loop dimension where the unified tower
is created. They are however not necessarily simultaneous alive at inner loop di-
mensions. This means that there may exist further in-place possibilities between
them, and the actual memory size requirement can be smaller. All these arrays
are hence evaluated for assignment again at the sub-towers. This procedure is re-
peated until the inner most tower layer is reached and the largest size requirement
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at one of these sub-towers is found. However, the largest size requirement at one
sub-tower can be smaller than the size requirement at its parent tower, since ad-
ditional in-place mapping may exist at the inner loop dimensions. This may lead
to a situation where the largest size requirement at the sub-tower is smaller than
the size requirement at another tower at its parent tower layer. In this case, the
evaluation should also be performed at sub-towers of the other tower. This proce-
dure is continued until the actual largest size requirement is found, which should
be equal to what is reported by the initial one layer approach.

Above the technique to build up a multiple layer Hanoi tower is discussed. The
critical issue for this approach is on deciding how many layers it should be and
at which loop dimension the statements should be unified. This varies at different
loop dimension for different applications. An algorithm which makes decision
at which dimension the union is performed is hence required. In this work, a
proposed approach is to make the decision based on the evaluation of estimation
accuracy ratio which can be achieved at each loop dimension. The estimation
accuracy ratio indicates to what degree an accurate estimate will be found at one
loop dimension compared to the result achieved without performing inter-array
estimation. At one loop dimension, all the arrays whose lifetime can be exactly
identified are summed up. The summed size over the estimated size achieved
without performing any inter-array estimation gives the estimation accuracy ratio.
The MDV is used to decide at which loop dimension an array’s lifetime is known.
The innermost dimension of the MDV with a nonzero value is the dimension at
where an array’s lifetime can be exactly determined while its lifetime spans over
the remaining inner loop dimensions. This is because all these identified arrays
are alive at this dimension and hence simultaneously alive. There is no inplace
possibilities between them. However, the non-identified arrays’s actual lifetimes
are transparent at this dimension. There is a chance for inplace between them
when their lifetimes are actually not overlapping. This can, however, only be
detected at the inner dimensions. In the multiple layer Hanoi tower structure,
the non-identified arrays are assumed to be simultaneously alive at the unified
tower. The inplace possibilities between them will be identified at the sub-towers
of the union one when required. The designer hence needs to pre-define to what
accuracy the multiple layer Hanoi tower should be built at each layer or it can be
interactively defined during the estimation based on the accuracy ratio output.

The multiple layer approach can reduce the number of towers to be consid-
ered at each layer. This is useful for large applications at where the number of
statements can be very large. However, to build the multiple layer Hanoi tower
represents an overhead for this approach. Based on the analysis of experiments, it
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was found that the overhead is not trivial even for not very big applications. Both
the accuracy and efficiency of this approach depend on at what loop dimensions
the multi layer tower structure is built, and the computation time required also
varies. Due to these factors, a third inter-array estimation alternative has been
developed, as described in the following section.

5.3 Improved One Layer Hanoi Tower Approach
The improved one-layer Hanoi tower approach is inspired by the multiple layer
approach in order to reduce the computation time compared to the initial one layer
approach. The idea is still to limit the number of towers in order to reduce the
computation overhead, but now there is only one layer of towers. The number of
towers is reduced based on evaluation of the estimation accuracy ratio The loop
dimension where a satisfactory estimation accuracy ratio can be achieved is used
to build towers by unifying statements based on their lifetime till the selected loop
dimension. This will reduce the number of towers while still giving a satisfactory
estimation result. The estimation accuracy can either be pre-defined before the
estimation is performed or interactively defined by the designer during the esti-
mation. As mentioned, this can be achieved based on the evaluation of the MDV
for each array.

The estimation accuracy can further be improved. Let us consider the case
that the estimation accuracy could be much higher at one inner dimension than the
dimension at where the pre-defined accuracy is reached. It may worth to perform
the estimation at the inner dimension with achieving much higher accuracy while
the increased computation time is still acceptable. The computation time increases
due to that the number of towers unified increase when it is performed at one
dimension inner. This solution would bring trade-off between estimation accuracy
and computation time. It is useful as the optimization effect can change during
the large search space exploration at the early design stage. The result however
varies depending on the pre-defined parameters for different applications.

5.4 Summary
This chapter presents a system-level inter-array memory footprint estimation tech-
nique. It is based on the principle that different arrays with non- overlapping life-
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time can reuse the same memory locations. In the current work, a constant size
requirement is used for individual array during the in-place estimation. Three
different inter-array in-place estimation techniques have been introduced: initial
one-layer Hanoi tower approach, multiple layer Hanoi tower approach, and im-
proved one-layer Hanoi tower approach. The efficiency and estimation accuracy
of the first and the last approaches are demonstrated in the experiments later in
Chapter 9. The first approach is fast when the application is small while the last
two approach can potentially speed up the estimate when the applications become
larger. The multiple layer Hanoi tower approach has not been implemented in this
work and is left for future work.





Chapter 6

Initial Hierarchical Memory Size

Estimation

As mentioned earlier, loop transformations play a crucial role in optimizing the
memory accesses at the earlier design stage. Traditionally improvement in data
locality and regularity is used to steer the code transformations. This is, how-
ever, a very abstract cost function, which does not represent how the data will be
mapped onto a memory platform. Further more, different loop transformations
may result in optimal utilization of different memory platform instances. Ad-hoc
decisions without estimating their impact on the actual memory utilization of-
ten lead to final sub-optimal solutions. An estimation of data mapping onto the
memory hierarchy is hence necessary to evaluate the loop transformations’ effect
during the its design space exploration. This allows to find the right version(s) of
loop transformations which will result in an optimal memory usage later on. A
fast estimation to rapidly evaluate the impact of different loop transformations on
multiple candidate memory platform instances are necessary. This can be of great
use to a system designer or a steering tool, by providing accurate and very fast
feedback during the huge loop transformation search space exploration.

This chapter presents a hierarchical memory size estimation methodology which
estimates both the memory footprint requirement (of both individual arrays and
between multiple arrays) and the data mapping onto a hierarchical memory archi-
tecture. The methodology presented in this chapter is named the initial Hierarchi-
cal Memory Size Estimation (HMSE) methodology, in order to distinguish it from
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the incremental approach presented in the next chapter. Since there exist typically
a huge number of code transformation possibilities, and the estimation needs to
be performed for each transformation, a fast estimation is crucial. Furthermore, as
loop transformations are usually performed at an early design stage where the data
memory platform, e.g., the number of layers and the exact size of the memories in
each layer, is often not known yet, the estimation should be able to handle these
unknown factors.

The initial HMSE methodology contains five main steps: intra-array size re-
quirement estimation, data reuse analysis (DRA), memory hierarchy layer assign-
ment (MHLA) estimation with Pareto curve output, inter-array memory footprint
estimation, and Pareto curves comparison to find the interesting one(s). Figure
6.1 illustrates the flow of the methodology. The source code is first parsed into the
geometrical model on which the estimation is performed. Each step is presented
at the following sections.

When a sequence of loop transformations are performed incrementally, the es-
timation with the above five steps can be performed repeatedly directly on the ge-
ometrical model. This saves the time for parsing and dumping of C-code to/from
the geometrical model. These processes usually consume quite some time for real
life applications. During the tool implementation of the HMSE methodology, the
first two phases are actually interleaved with each other, as are the third and fourth
phases.

Now let us explain how these steps are performed based on the small code
examples in Figure 6.2.

6.1 Intra-array Size Estimation

The first step of the initial HMSE methodology is to perform memory footprint
estimation for each individual array. This is essential as loop transformations im-
proves data access locality and regularity and also changes the data’s lifetime. The
size requirement for arrays will hence be affected. It is performed first because
this step explores memory location reuse, which has a direct effect on other steps
but not vice versa. For example, when the memory footprint estimation for one
array reports that the memory footprint requirement for this array is small enough,
it may be worth to assign this array on-chip directly. This makes it unnecessary
to perform data reuse exploration for this array, which identifies parts of the array
that is frequently accessed and therefore a candidate to be copied on-chip. This
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Figure 6.1: initial HMSE flow graph
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f o r ( i =0 ; i <=109; i ++)

f o r ( j =0 ; j <=69; j ++)

f o r ( k =0; k<=59; k ++)

f o r ( l =0 ; l <=29; l ++)

S1 :

. . . = f (A[40 i +k ] [ 2 0 j + l ] ) ;

f o r ( i =1 ; i <=109; i ++)

f o r ( j =1 ; j <=69; j ++)

f o r ( k =0; k<=59; k ++)

f o r ( l =0 ; l <=29; l ++)

S2 :

. . . = g (A[40 i +k−40][20 j + l −20 ] ) ;

( a )

f o r ( i =0 ; i <=109; i ++)

f o r ( j =0 ; j <=69; j ++)

f o r ( k =0; k<=59; k ++)

f o r ( l =0 ; l <=29; l ++) {
S1 :

. . . = f ( A[40 i+k ] [20 j+ l ] ) ;

i f ( i >0 and j >0)

S2 :

. . . = g ( A[40 i+k−40][20 j+l −20]) ;

}

( b )

f o r ( j =0 ; j <=69; j ++)

f o r ( i =0 ; i <=109; i ++)

f o r ( k =0; k<=59; k ++)

f o r ( l =0 ; l <=29; l ++) {
S1 :

. . . = f ( A[40 i+k ] [20 j+ l ] ) ;

i f ( i >0 and j >0)

S2 :

. . . = g ( A[40 i+k−40][20 j+l −20]) ;

}

( c )

Figure 6.2: Code examples: (a) original code, (b) after loop fusion, (c) after loop inter-

change
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step also affects the mapping decision of the MHLA estimation as the array re-
quires smaller memory size, which saves space and allow more data to be kept
on-chip.

In Chapter 4, a fast intra-array memory footprint estimation methodology has
been introduced which is performed based on counting the iteration nodes con-
strained by a maximal lifetime window. The lifetime window is constrained by
the MDV. Two techniques for calculating the MDVs have further been presented.
In the prototype CAD tool of the HMSE methodology, the intra-array size estima-
tion step is implemented using the vertexes approach based estimation technique
presented in Chapter 4.

6.2 Data Reuse Analysis

Data reuse analysis is used to detect the most frequently accessed data in an ap-
plication. The frequently accessed data can be a whole array or parts of an array
and are interesting candidates for mapping (copying) onto the memory hierarchy.
They are called copy candidates (CCs). It is normally beneficial to copy these CCs
from the main memory to smaller (on-chip) memories from where they are ac-
cessed multiple times. This can both save energy and improve performance since
accessing on-chip memory is faster and more energy efficient. A full reuse explo-
ration thus makes it possible to perform an optimal data mapping on the memory
hierarchy, which can be either a customized memory hierarchy or a predefined
one. Previous work on data reuse analysis [140, 24, 69] are all based on the poly-
hedral geometrical model resulting in a more accurate analysis. This model is
however too slow to be used for the estimation purpose when analysis needs to be
performed repeatedly during design space exploration of a huge number of loop
transformations.

In this dissertation, a fast data reuse analysis technique is proposed which
is performed on the bounding box geometrical model. It can result in an over-
estimate, but in practical cases it turns out to be as good as other more exact
analysis techniques. Following firstly illustrates how this fast approach works and
then highlights the differences of it compared to other techniques.

Initially, data reuse analysis is performed for all array references (both write
and read) of one array, assuming all loops iterate over their complete set of iterator
values. It results in the root for that array: i.e., the union of the data domains and
the sum of accesses of all references. Reuse is detected between different array
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references as well as between the different iterations of the outer loop dimensions
for the same array reference. The analysis is performed at every loop dimension,
starting from the outermost dimension. The root, together with the CCs at every
loop dimension, form the hierarchical data reuse tree (DRTree) for a given array.
The root and CCs consist of a parent-children relation. In DRTree, a CC created
at one loop dimension is a parent of CCs created at its inner loop dimensions. The
root is hence the parent of all the CCs of this array.

At one loop dimension, we analyze the data domain accessed within one iter-
ation of that loop by keeping all outer iterators constant and expanding the inner
iterators. Since the index expressions are affine functions of the surrounding loop
iterators and the iteration domains are bounding boxes, the data domain in any
given iteration of a loop dimension is the same as in its first iteration, but shifted.
We can therefore simply set the analyzing loop dimension to a constant and all
outer dimensions to 0. An interesting CC exists if the data domains accessed at
two consecutive iterations are overlapping. If overlap is found for two consecutive
iteration values it will exist for any two consecutive iteration values because of the
affine index expression and iteration domains. We therefore only need to calcu-
late the data domains at two consecutive iteration values, 0 and 1, regardless of
the actual bound values for that dimension. We calculate the data domain of one
array reference in statement Sx at these two consecutive iterations of the analyzing
dimension im as follows:

←→
D Sx,im = ESx(

←→
I Sx(

m−1̂

g=1

= 0, im = 0)) (6.1)

←→
D +

Sx,im = ESx(
←→
I Sx(

m−1̂

g=1

= 0, im = 1)) (6.2)

When analyzing the j-dimension of the example in Figure 6.2(a), i is set 0
while j is set to two constants 0 and 1 respectively. k and l iterates from their
lower to their upper bound values, that is 0 to 59 and 0 to 29, respectively. The data
domain of the array references in statement S1 in Figure 6.2(a) at two consecutive
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j-iterations (e.g., j=0 and j=1) are therefore

←→
D A,S1, j = EA,S1(

←→
I S1(i = 0, j = 0))

= {[d1,d2]T | ∃i, j,k, l : d1 = 40i+ k∧d2 = 20 j + l

∧ [i, j,k, l]T ∈ IS1 ∧ i = j = 0}
= {[d1,d2]T | 0≤ d1 ≤ 59∧0≤ d2 ≤ 29}

←→
D +

A,S1, j = EA,S1(
←→
I S1(i = 0, j = 1))

= {[d1,d2]T | ∃i, j,k, l : d1 = 40i+ k∧d = 20 j + l

∧ [i, j,k, l]T ∈ IS1 ∧ i = 0∧ j = 1}
= {[d1,d2]T | 0≤ d1 ≤ 59∧20≤ d2 ≤ 49}

Suppose this CC is assigned to the on-chip SPM layer, the overlapping part
would be reused during the second iteration without fetching it from main memory
again. The overlapping part is therefore called the reused part (denoted reuse part),
which can be calculated by performing an intersection operation on the two data
domains. The non overlapping part accessed at the second iteration value needs to
be fetched from off-chip main memory before it is accessed at that iteration. The
non overlapping part is called the update part (denoted update part). It is calcu-
lated by taking the difference between the data domain accessed at one iteration
and its reuse part. The reuse part and update part can be calculated by

reuse part =
←→
D Sx,im ∩

←→
D +

Sx,im (6.3)

update part =
←→
D +

Sx,im \ reuse part (6.4)

For this example, the reuse part and the update part are

reuse part =
←→
D j,A,S1 ∩

←→
D +

j,A,S1

= {[d1,d2]T | 0≤ d1 ≤ 59∧20≤ d2 ≤ 29}
update part =

←→
D +

A,S1, j \ reuse part

= {[d1,d2]T | 0≤ d1 ≤ 59∧30≤ d2 ≤ 49}
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For each CC, three numbers need to be calculated: the size required to keep it
in SPM (denoted size), the total number of accesses to the CC (denoted #accesses),
and the number of misses from SPM to the main memory if the CC is kept on SPM
(denoted #misses). They are calculated by

size =
n

∏
h=1

(|U←→D h
−L←→D h

|+1) (6.5)

#accesses =
m

∏
g=1

(|U←→I g
−L←→I g

|+1) (6.6)

#misses = #iterc

(
#reuse part +(|U←→I c

−L←→I c
|+1)#update part

)
(6.7)

where

#reuse part =
n

∏
h=1

(|Ureuse parth−Lreuse parth|+1),

#update part = #Dc−#reuse part

and

#iterc =
c−1

∏
g=1

(|U←→I g
−L←→I g

|+1)

#iterc is the number of iterations of the outer loop dimensions, c is the current
loop dimension. #Dc means the number of elements within the data domain at
one iteration of the current loop dimension. #reuse part and #update part are the
number of elements within their part respectively. (U←→I c

−L←→I c
+1) is the number

of times an #update part must be fetched from the main memory for all iterations
at the current dimension. In addition to that we need to fetch #reuse part once.
Multiplied with the number of iterations outside c, #iterc, this gives #misses.

This analysis is performed at each loop dimension resulting in a set of CCs.
The CCs, together with the root, constitute the data reuse tree (DRTree) for that
array. For the example code in Figure 6.2(a), the data reuse tree is shown in Figure
6.3(a). The CCs at the i and j dimensions are potentially interesting, but at the
inner k and l dimensions the reuse part is empty so no interesting CCs are found
here. The same analysis is also performed for the array reference in statement S2.

A reuse gain (gain) is also calculated for each CC. It will be used by the fol-
lowing MHLA estimation as discussed in Section 6.3. It is defined as the number
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of accesses to main memory that are avoided, per size unit, by assigning the CC
to the SPM.

gain =
#accesses−#misses

size
(6.8)

In general, the higher reuse gain a CC has, the more beneficial it is to copy it
on-chip.

In the discussion above, we have shown how to perform the data reuse analysis
for one array access. This analysis can also be performed between multiple array
references as there might also exist data reuse between them. We do this when,
for the current and all outer loop dimensions, the iteration domains of the mul-
tiple references are overlapping and their index expression coefficients are iden-
tical. When this is the case, the chance for potential reuse to be present is high.
The minimal lower bounds and the maximal upper bounds are then used instead
of individual bounds for these iteration dimensions. If the outer index expression
coefficients are not identical, reuse is usually small and it is very complexity to
exploit it in the final implementation. This makes it not worthy to be exploited.
In the current tool implementation, the union CC, if it exists, will replace the in-
dividual CCs in the DRTree, provided it has a larger gain. In fact, both the union
CC and all the individual CCs are valid candidates to be assigned to on-chip later
on. But they can only be contradictively assigned to the SPM: the assignment of
one would invalidate the possible assignment of the other. To keep both alterna-
tives would require a large memory space during the running of the tool. More
important, it will increase the complexity of the methodology especially for the
following MHLA estimation step.

For the example code in Figure 6.2(b), the union CC between the two array
accesses at the i-dimension has larger gain than the individual CCs and is kept
in the DRTree instead of the individual ones. This is shown in Figure 6.3(b). At
the j-dimension, a union CC between the two accesses also exists (size = 5000,
#reuse part = 2000, #update part = 3000, #misses = 23320000, gain = 815.56).
It is not kept because it has lower gain than the individual CCs (average gain
equals to 2500).

6.2.1 Comparison with Other DRA Techniques
The main difference between the DRA technique presented here and previous
techniques [140, 139, 138] is that the previous ones are performed on the poly-
hedral GM while the one presented here is performed on the bounding box GM.
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size=6232200
#accesses=27397800
#misses =0
gain=4

Root

j-dim

CC´´S1 CC´´S2

size=1800                  size=1800
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gain=2530                  gain = 2471
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CC´S1 CC´S2

size=84600               size=83400
#misses=6232200    #misses=6088200
gain=90                     gain = 89

size=6232200
#accesses=27397800
#misses =0
gain=4

Root
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size=1800                  size=1800
#misses=9306000     #misses=9090600
gain=2530                  gain = 2471

13860000   13537800

S2S1

i-dim
size=141000
#misses= 6288600
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Figure 6.3: (a) DRTree for the original code and (b) DRTree for the fused code

This results in significant difference of the execution time for them. This is be-
cause operations, such as intersection or union of two domains or calculating the
size of one domain, on the bounding box GM are much simpler and faster than on
the polyhedral domain.

Worth to note that there are no data reuse for the update parts at the first
and last iteration of the dimension being analyzed within that loop dimension.
This non reuse phenomena only happens at the boundary of each loop dimension.
Within the DRA technique presented here, the boundary cases are simply ignored
as [69] does. Suppose CC is assigned to the on-chip SPM, we assume the data
at the boundaries would also be fetched from the main memory to the SPM. [24]
proposes a method to evaluate the lifetime of stencil elements. This means an
exact reuse analysis but has high complexity for analysis and for generated code.
[140, 139, 138] attempts to explore tradeoffs between SPM size and power, as-
suming an optimal run-time placement of data in SPM. They propose to perform
the reuse analysis between both the same loop dimension level and also crossing
loop dimensions. Both of these two techniques take into account the boundary
cases. In contrast, [69] and our techniques do not perform analysis between cross-
ing loop dimensions and ignores the boundary cases. Ignoring the boundary cases
means lower analysis complexity and would also result in simpler code genera-
tion. [69] does the analysis by evaluating the reuse distance of the same set of data
between the current and next iteration of a certain loop level. All these methods
work on the general polyhedral GM and are quite computation expensive for large
applications. In general, [140] has lower complexity than [24] but higher than
[69]. In contrast, the complexity of our technique is significantly reduced due to
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the use of bounding box geometrical model. On the other hand, overestimation
can occur due to the use of bounding box geometrical model.

As we will demonstrate in Chapter 9, the results using the simplified bounding
box GM turns out to be as good as exact analysis for most practical cases in the
multi-media target domain where the polyhedra are usually rectangular shaped.
This simplification is critical to achieve a fast HMSE estimation. The technique
presented here also differs from the previous version of DRA [139] by the intro-
duction of the size dependent gain. Previous work has focused solely on accesses
and misses.

6.3 Memory Hierarchy Layer Assignment Estima-

tion
The main difference between the MHLA estimation techniques presented here
and a previous technique developed earlier at IMEC [27], is that the techniques
presented here perform a platform independent data assignment onto memory hi-
erarchy while the previous does not. Further more, the techniques presented here
aim at a fast estimation with a reasonably accurate (but not fully optimized) result.
The previous technique aims at an optimal data assignment solution for a given
memory hierarchy configuration.

The MHLA estimation aims to estimate which arrays and copies should be
stored in the SPM, so that the number of off-chip memory accesses is minimized.
The existing technique for MHLA [27] finds the optimal selection for one given
memory hierarchy (SPM size). Their approach is not feasible to be used for the
estimation purpose as the memory platform can usually not be given at the early
loop transformation exploration stage: it is not realistic to perform an estimate for
each possible memory hierarchy instance. Their backtracking algorithm also has
high complexity and is hence too slow for large applications, making it unfeasible
to be used frequently during the loop transformation design space exploration.

The MHLA estimation is performed for each version of the application code,
based on the DRTrees output of the previous step. As there is usually no de-
tailed memory platform defined at the loop transformations stage, we propose a
platform-independent MHLA estimation approach based on a two-layer memory
hierarchy template: the on-chip SPM layer and the main memory. The size of the
main memory is assumed to be large enough to hold all arrays while the on-chip
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SPM layer has an unfixed size varying from zero and up to the size required to
store all arrays.

At the start, the SPM is empty and all accesses from the processor go to the
main memory. Then at each pass of the estimation, the most promising unas-
signed CC/array is selected for assignment to the SPM layer. At the following
subsections, we present two MHLA estimation heuristics on how to select the
most promising unassigned CC at each pass of the estimation: a greedy MHLA
estimation algorithm and an improved MHLA estimation algorithm. This pro-
cedure is repeated until all CCs and arrays in the DRTrees are assigned. At the
end, all arrays are assigned. Each assignment results in a Pareto point between
the number of main memory accesses and that SPM size requirement. The set of
Pareto points consists of the Pareto curve for one version of code.

6.3.1 Greedy MHLA Estimation Algorithm
With the greedy MHLA estimation algorithm, the unassigned CC/array which
has the biggest gain calculated based on Eq. 6.8 is selected and assigned to the
SPM layer. The evaluation of all the CCs and arrays is done only once. This
evaluation procedure can be performed directly based on the DRTrees output by
sorting out all the CCs and arrays based on their gain value. The rationale behind
the assignment based on its gain is that the one with the highest gain replaces,
per size unit increase of SPM, the largest number of main memory accesses with
accesses to the SPM. Since accessing main memory is more costly than SPM,
this represents the most power saving per size unit increase of SPM. For each
assignment, the information regarding its size requirement and which CCs that
have been assigned are kept. This is used for the evaluation of the parent-children
relation. When one CC or an array root is assigned, all its children, if already
assigned, are removed since their data are not presented in SPM through their
parents.

For the fused code with DRTree shown in Figure 6.3(b), for example, CC
′′
S1

has the largest gain and is assigned to SPM first. It results in less main memory
accesses and more SPM accesses than assigning any of the other CCs or the root.
CC

′′
S2

is assigned next. Then CC
′
S1,S2

is assigned and its children CC
′′
S1

and CC
′′
S2

are removed from the SPM. The number of SPM accesses hence needs to be up-
dated accordingly by adding in CC

′′
S2

’s effect and removing that of CC
′′
S1

and CC
′′
S2

.
Finally the array root is assigned replacing its child CC

′
S1,S2

resulting in no misses
to the main memory. The Pareto curve output is shown in Figure 6.4.
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#MM accesses(     )

SPM Size (KBytes)
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Figure 6.4: the Pareto curve output for the fused code

6.3.2 Improved MHLA Estimation Algorithm
The greedy heuristic is very simple and each CC/array is considered for assign-
ment just once. However, due to the direct replacement of the already assigned
CCs with its parent, the greedy algorithm can lead to local sub-optimal solutions.
This is because we calculate the gain only once for each CC and array. When
the children CCs are already assigned, the actual number of accesses to the parent
should be equal to the number of misses from the assigned children, instead of the
total number of accesses of all its children. The actual gain of the parent should
hence be smaller when considering for assignment. It can in turn be more benefi-
cial if other CC having larger gain is assigned. This over-estimate only has local
effect but can still affect the data mapping result at certain critical SPM size(s).
An improved MHLA estimation algorithm is hence proposed.

With the improved algorithm, the gain for the CCs and arrays are recalculated
when any of its children is already assigned. As mentioned, all the CCs and array
roots from the DRTrees are sorted out in an order based on their gains before
the MHLA estimation starts. When one CC or an array root in the ordered list
is considered for assignment, it is firstly checked whether any of its children is
already assigned. If false, it is simply assigned and a new Pareto point is created
as the greedy algorithm does. If true, the actual accesses and the gain to the parent,
when its children already assigned, is recalculated as

#accesses = #missesassigned children +#accessesun assigned children−#misses (6.9)

gain =
#accesses

size
(6.10)

#missesassigned children means the number of misses for all the assigned children.
#accessesun assigned children means the number of accesses for all the un-assigned
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children. #misses means the number of misses for this parent. This Parent is
then resorted within the ordered list for the unassigned ones. If it still has the
highest gain, it is assigned replacing its children. Otherwise, the one having the
highest gain, instead of it, is assigned. However, resorting procedures need to be
performed each time when an parent’s gain is calculated. This is not efficient to
recursively perform the gain recalculation procedure during MHLA estimation.
This is especially the case in practice as a large number of parents usually exist in
the sorted list which takes time when performing resorting.

Alternatively, the gain recalculation procedure can be performed based on the
DRTrees output before the MHLA estimation starts. In order to recalculate the
gain for the root, the gain of its children needs to be recalculated and so on until
the end leaves (the CCs created at the innermost loop dimension). This can be
realized with a recursively procedure. If a CC has larger gain than its parent, then
the CC will be assigned to the SPM before its parent is considered. The actual
accesses to the parent can hence be calculated based on Equation 6.9 by taking
into account all its children’s effect. All the children which have larger gain are
used as assigned children in the equation. During the recursive procedure, an
evaluation is also performed for each CC. If its parent has larger gain than the CC
after recalculation assuming the CC would have been removed from the DRTree,
this CC will be removed from the DRTree as its parent is more beneficial to be
assigned. This removing ensures that only the CCs which will be assigned to
the SPM are kept. At the end, all CCs and the roots for the new DRTrees are
sorted descendingly based on their gain. This sorted list is then used from MHLA
estimation.

Figure 6.5 shows the DRTree for the original code when the gain has been
recalculated with the improved algorithm. The DRTree should be compared to
Figure 6.2(a) for the simple algorithm. For this simple example, the Pareto curve
is the same as shown in Figure 6.4 as the assignment order is not changed. This is,
however, not the case in general as there are usually multiple DRTrees for different
arrays and the recalculated gain for one CC/array usually changes the assignment
order.

6.3.3 Algorithm Complexity

Because of the stepwise assignment, where each array and CC need to be evalu-
ated only once for assignment, the greedy algorithm is very fast. As the gain for
each CC/array is already calculated in the previous data reuse step, all the CCs
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Figure 6.5: DRTree output by the improved MHLA algorithm for the original code

and arrays just need to be sorted based on their gains. At the MHLA estimation
stage, the assignment is performed based on the sorted list of all CCs and arrays.
The complexity of this algorithm is equal to the complexity of the sorting algo-
rithm used. For example, when quick sorting algorithm is used, the complexity
is O(n logn) (where n is the number of CCs and array roots in the DRTrees). n
is usually smaller than the total number of CCs and array roots in the original
DRTrees as all the uninteresting CCs are removed before the MHLA estimation
starts.

In contrast, the improved algorithm further contains gain re-computation by
traversing through the DRTrees. The complexity of that part depends on the depth
of the DRTrees (denoted by m) and the maximal number of children (denoted by
l) one parent can have. In theory, the complexity of the re-computation part is
O(ml). The complexity of the improved algorithm hence is O(ml)+ O(n logn).
In practice, the maximal number of children that one parent has usually is small.
It has not been larger than 13 for the applications studied in Chapter 9 and it is
usually smaller for most parents. Further more, not all CCs within the DRTrees
are beneficial to be assigned on-chip which reduces the number of interesting CCs
within the DRTrees. This makes the computation time of the gain re-computation
part insignificant compared to the whole HMSE methodology.

For comparison, [27] uses a backtracking algorithm which has a complexity
of O(2nn2 logn) for a given two-layer memory platform instance. To estimate
the mapping of a K-layer memory platform, the complexity of their approach is
O(knnk logn). The approaches presented here give a quick MHLA estimate and
the accuracy is quite reasonable as demonstrated on real life applications in Chap-
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ter 9. Their work is also targeting (and requires) one specific memory platform
instance at a time, while our MHLA estimation is platform instance independent.
This means that our MHLA estimation only needs to be performed once for a
given version of application code.

6.4 Inter Array In-place Estimation
Loop transformations change the data access lifetime, affecting the memory foot-
print requirement of individual arrays and hence the in-place memory footprint
requirement between multiple arrays for the whole application. The inter array
memory footprint requirement should hence also be estimated at each round when
loop transformations are performed. Since a platform independent MHLA esti-
mation is proposed here and the data are incrementally assigned, the inter array
in-place estimation should be integrated with the MHLA estimation step and per-
formed each time a CC or a root is assigned. The inter array in-place estimation
speed hence becomes critical since there are many CCs and array roots that are
going to be assigned. The techniques introduced in Chapter 5 can hence be used
to achieve such a fast inter array in-place estimation.

6.5 Pareto Curve Comparison
As explained in Section 6.3, one Pareto curve is created after each round of code
transformation. Among all these curves, a global Pareto curve is generated. A
global Pareto point is the one that has a smaller number of main memory accesses
than any other point with an SPM size not larger than the one this point has. A
global Pareto point will hence result in the most energy efficient use of a certain
two layer memory hierarchy instance with an SPM size equal to that of this point.
Hence, the corresponding loop transformation is interesting and should be kept
among the potential solutions. As a result, all curves which contribute to global
Pareto point and hence the global Pareto curve are kept.

Figure 6.6(b) shows the three Pareto curves generated by the greedy MHLA
estimation algorithm for the three versions of the code shown in Figure 6.2. We
can see that, for small SPM sizes, the interchanged code will result in less main
memory accesses than the fused code. This means that the interchanged code
can result in the most energy efficient use of certain two layer memory platform
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Figure 6.6: (a) DRTree output for the code after loop interchange and (b) Pareto curves

comparison

instances. On the other hand, the fused code has the smallest number of main
memory accesses for larger SPM sizes. The original code is the best for the SPM
having the size in between these two parts. Hence these two loop transformations
and the original code are all interesting and should be kept for selection until the
actual memory platform instance is defined. Although the difference in mem-
ory accesses is not that significant, this small example still demonstrates the fact
that different loop transformations might be optimal for different memory plat-
form instances. This just demonstrates the usefulness of the HMSE methodology
presented in this dissertation.

The Pareto curve comparison allows us to find all interesting loop transforma-
tions during the exploration. Later when the memory hierarchy is given, the Pareto
curves allow to find the most beneficial loop transformation with the correspond-
ing version of code. The initial HMSE methodology presented here is fast. It only
takes between a few milliseconds till a few seconds for real life applications as
demonstrated later in Chapter 9. The generated Pareto curves allow not only to
find the optimal loop transformations, but also to customize the optimal memory
hierarchy while trading off power consumption and SPM layer size requirement.
This is discussed in Chapter 8.

6.6 Summary
This chapter has represented the initial HMSE methodology. It estimates the low
power data mapping on a hierarchical memory platform and the memory size re-
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quirement for one version of code. The methodology can be coupled together
with any loop transformation algorithms when they are performed on the geomet-
rical model. The estimation can be performed repeatedly for any sequence of loop
transformations. This can save the dumping and parsing procedure between the
C-code and the geometrical model.

In order to achieve a fast estimation, advanced techniques have been used
at each step during the estimation: fast vertexes based MDV approach for intra
array in-place mapping estimation, data reuse analysis based on the bounding
box geometrical model, fast platform independent MHLA estimation with Pareto
curve output, Hanoi tower based inter array in-place mapping estimation. The
initial HMSE methodology presented here is fast and only takes between a few
milliseconds till a few seconds for real life applications as demonstrated later in
Chapter 9.



Chapter 7

Incremental Hierarchical Memory

Size Estimation

The previous chapter has presented the initial HMSE methodology, which per-
forms estimation starting from the source code. When a sequence of loop trans-
formations are performed incrementally, the estimation is repeated based on the
GM on which loop transformations are performed and represented as matrix oper-
ations as shown in Chapter 3. The GM contains the data and control flow informa-
tion for the previous version of code. Performing the estimate directly on the GM
saves the interactive dumping and parsing procedures between the source code and
the GM. Advanced techniques have also be introduced at each step of the initial
HMSE in order to achieve a fast estimate. It requires between a few millisecond
and a few seconds cpu time for real life applications as will be demonstrated in
Chapter 9. This is fast enough to be used as estimation basis in the later stages of
the system design trajectory (see Chapter 1 and Section 2.2).

However, in earlier stages of the system design trajectory, the freedom is much
larger still. Then, usually a huge number of (combined) loop transformation pos-
sibilities exist, often in the order of tens of thousands or more. For real life ap-
plications, even existing greedy automatic loop transformations algorithms, i.e.
[144, 58], need to perform a large number of loop transformations to reach their
optimal solution. Though the initial HMSE is pretty fast, it is still time consuming
when the number of loop transformation possibilities are large and the estimation
needs to be performed repeatedly. On the other hand, when loop transformations
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are performed incrementally, the transformations usually just have local effect.
This means that only a few loop nests and arrays are transformed. Furthermore,
the transformation can potentially be performed just on some array references and
even at a limited number of loop dimensions. Because of this kind of character-
istics, it is not necessary to perform the initial HMSE each time loop transforma-
tions are performed. The execution time can be reduced when performing HMSE
by locally updating the transformations is faster than performing the initial HMSE
again. In this Chapter, the incremental HMSE methodology is introduced which
exploits the local effect of loop transformations during estimation. This further
speeds up the hierarchical memory size estimation making the estimation feasible
to be used repeatedly during the loop transformation search space exploration.

This chapter is organized as follows. Section 7.1 gives an overview of the
whole HMSE methodology including both incremental HMSE and initial HMSE.
How to perform incremental intra-array memory footprint requirement estimation
is discussed in Section 7.2. An incremental data reuse analysis is presented in in
Section 7.3. A summary is given in Section 6.6.

7.1 Incremental Hierarchical Memory Size Estima-

tion
Figure 7.1 shows the flow for the whole HMSE methodology including the initial
and incremental HMSEs. Based on the initial HMSE output, we first check if
we are going to perform incremental loop transformations. If not, the estimation
stops. If yes, incremental HMSE is performed. When loop transformations are
performed, both the previous GM information, the transformation matrix infor-
mation, and the updated GM information are kept.

When a sequence of loop transformations are performed incrementally based
on the previous version, the loop transformations performed at each step usually
have very local effect compared to the previous version. The incremental HMSE
methodology intends to exploit the local effect to save the execution time when re-
peating the estimation. For the incremental HMSE methodology, as shown Figure
7.1, the intra-array memory footprint estimation and data reuse analysis are per-
formed incrementally. They are performed based on the incremental loop trans-
formation information, the previous GM information and the previous output at
that step. The MHLA estimation and inter-array memory footprint estimation are
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Figure 7.1: HMSE flow graph
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redone as they are in the initial HMSE, with a Pareto curve output. This curve is
then compared to those generated previously, and only those that contribute to any
global Pareto point are kept. This procedure is repeated until there are no more
incremental loop transformations to be performed.

The reason why only the intra-array memory footprint estimation and data
reuse analysis are performed incrementally is that local transformation effects can
easily be detected at these two steps, which might reduce the execution time.
Experiments show that these two steps dominate the overall execution time for
the HMSE methodology while the later MHLA estimation and inter-array memory
footprint estimation steps only takes a small part of the time. Furthermore, it is
more complex to exploit the local effect at the MHLA estimation and inter-array
memory footprint estimation steps.

We will now take a closer look at the incremental techniques.

7.2 Incremental Intra-array Memory Footprint Es-

timation

When loop transformations are performed incrementally, usually not all arrays
and loop nests are transformed. It is hence only necessary to perform the memory
footprint estimation for the arrays that have been transformed. A straight forward
approach is to perform the estimate for all the arrays which have been effected by
any of the loop transformations performed. They can be found easily in the GM by
first identifying all the statements which have been transformed and then all the ar-
rays which have been referenced within these statements. These arrays are named
as transformed arrays from now on although loop transformations performed may
not always have affect on their memory footprint requirement. The same intra-
array memory footprint estimation technique as used in the initial HMSE is then
performed for these arrays based on the updated GM information. The GM infor-
mation is updated based on the previous GM information together with the loop
transformations information which is represented as matrices.
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7.3 Incremental Data Reuse Analysis

As motivated in Chapter 3, when affine loop transformations are performed incre-
mentally, they are in fact represented as matrix operations. Based on the analysis
of the transformation matrix, it is possible to detect which arrays and loop dimen-
sions that are transformed. Based on this, we can directly update the data reuse
trees built previously only for the transformed arrays, instead of always recomput-
ing the data reuse trees from scratch for all arrays. Furthermore, we can simply
update the parts of the data reuse trees where the loop transformations take effect.
The key is hence to identify the loop dimensions at where loop transformations
are performed.

In [67], a simple incremental DRA algorithm has been introduced which is
limited to only translation (loop fusion and loop shifting). As discussed previously
in Chapter 3, translation can only make changes on the constant offset part of the
unimodular transformation matrix. The following matrix corresponds to the loop
fusion which transformed the code of Figure 3.16(a) to the code in Figure 3.16(b)

ÃS2 =




1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1




The last column in the matrix corresponds to the translation offset part. It is
very easy to identify at which loop dimensions of one statement translations are
performed. If any offset parts have a non zero value, this means the corresponding
loop dimension has been transformed. In contrast, linear transformation changes
the linear part of the unimodular transformation matrix. An extended algorithm
will be presented in this section which works for all affine loop transformations.
It also contains a simple algorithm that can handle translations. As a result, nearly
all relevant loop transformations (see chapter 2) are handled. For the others, that
occur much more rarely, the non-incremental methodology should still be used.
The algorithm is demonstrated on a small example code.

The effect on arrays and loop dimensions varies depending on the incremental
loop transformation performed. Let us demonstrate the incremental DRA using
the example code in Figure 7.2 as used previously in Chapter 3. The outer i and
j dimensions of the code in Figure 7.2(a) are interchanged in 7.2(b). The two
statements S1 and S2 are hence affected as their loop nests are transformed. The
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f o r ( i =0 ; i <=4; i ++)

f o r ( j =0 ; j <=5; j ++)

f o r ( t =0 ; t <=1; t ++) {
i f ( t =0)

S1 : A[ i ] [ j ] = . . . ;

i f ( i >=1 and j >=2 and t =1)

S2 : . . . = f ( A[ i −1][ j −2]) ;

}
( a )

f o r ( j =0 ; j <=5; j ++)

f o r ( i =0 ; i <=4; i ++)

f o r ( t =0 ; t <=1; t ++) {
i f ( t =0)

S1 : A[ j ] [ i ] = . . . ;

i f ( j >=1 and i >=2 and t =1)

S2 : . . . = f ( A[ j −1][ i −2]) ;

}
( b )

Figure 7.2: Loop interchange example: (a) before (b) after

transformation matrices of the two statements are identical for this transformation,
represented as

ÃS1 = ÃS2 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




In this case, loop transformations are performed at the outermost two dimen-
sions. This is seen at the matrix since the diagonal elements of the first two rows
are different from 1 and any of the other elements on those rows have a non-zero
value. As mentioned in Chapter 3, all affine loop transformations can be repre-
sented as matrix operations. Based on the transformation matrix, it can easily
be detected at which loop dimensions loop transformations have effect. For this
example, it is necessary to perform DRA update at these two transformed dimen-
sions. Sometimes a transformation at outer dimensions has ripple effects at inner
loop dimensions. Analysis must then also be performed at these inner dimen-
sions. Otherwise, no analysis is required to be redone at the inner dimensions.
The results from the previous run of DRA (initial or incremental) can be reused
instead. For real life applications, loop transformations usually also have effect on
a limited number of arrays, the untransformed arrays are not changed and DRA
hence does not need to be redone for them. Because of this, incremental DRA can
significantly save computation time when the transformation effect is local.
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An evaluation is performed to decide whether to perform a complete DRA or
to perform the normally much faster local updating. Identification of the dimen-
sions that are transformed is based on evaluation of the transformation matrix.
As mentioned in the theory part in Chapter 3, a dimension is transformed if the
diagonal element of a row is different from 1 and any of the other elements on
that row are non-zero. Thus it is necessary to identify the outermost dimension
that is transformed (denoted as tra OMD) and the innermost dimension that is
transformed (denoted as tra IMD) for all the transformed array accesses. We then
assume that the array accesses is transformed for all dimensions within this range.
The strip mining transform is not simply a matrix multiplication since it creates
a new dimension and divides the old dimension with the new dimension’s bound
difference. The tra OMD and tra IMD for strip mining are hence the old dimen-
sion and the new dimension. The updating of the iteration domain bounds during
strip mining is trivial and we will not go into further details. If an array is trans-
formed for all its dimensions, we choose to rebuild its DRTree from start. Other-
wise, local updating is performed by recomputing DRA only at the transformed
loop dimension range. Figure 7.3 shows the pseudo code of our incremental DRA
algorithm.

In the procedure incremental DRA, the GM update is executed for the first
time at line 11. At this line the iteration domain of each transformed statement and
the index function of all array accesses in the transformed statements are updated
based on the Equations 3.15 and 3.16. This is required even though the data
domain of the whole array is unchanged as proved by Equation 3.17. The reason is
that the data domain calculated for one iteration value of a certain loop dimension,
see Section 6.1, is usually changed by the loop transformation. Consequently,
it must be calculated based on the updated iteration domain and updated index
function.

Let us now illustrate our incremental DRA algorithm based on the loop in-
terchange example code. After the execution of GM update, one transformed
array is investigated at a time. tra OMD and tra IMD for the current array are
identified at line 13. They are actually the outermost and innermost transformed
dimensions found for any of the transformed array references. Since only the out-
ermost two loop dimensions have been interchanged for the two statements, the
if-condition at line 14 is false and the if-condition at line 17 is true. The proce-
dure local update is called at line 18 for the parent that are one dimension above
tra OMD. In this case the parent is the root. If both the outermost and innermost
dimensions had been transformed, the if-condition at line 14 would have been
true, and initial DRA would have been performed. If the outermost dimensions
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0: DRTrees : The data reuse trees for all arrays
GM : the GM info before incremental loop transformation
OMD : the outermost dimension
IMD : the innermost dimension
tra OMD : the outermost dimension that has been transformed
tra IMD : the innermost dimension that has been transformed
LTs info: the performed LT info

10: procedure incremental DRA()
11: GM updated = GM update(LTs info, GM)
12: for (each transformed array)
13: identify tra OMD and tra IMD based on LTs info
14: if (tra OMD = OMD and tra IMD = IMD )
15: recompute DRTrees[array] based on GM updated
16: else
17: if (tra OMD = OMD )
18: local update(DRTrees[array], GM updated, LTs info)
19: else
20: locate each parent whose children’s dimension is OMD tra
22: local update(parent, GM updated, LTs info)

30: procedure local update(parent, GM updated, LTs info)
31: if (parent.children != {} and (parent contains transformed array accesses))
32: CCs new = CCs calc(parent, GM updated, LTs info)
33: if (parent.children != CCs new) /* children have been changed * /
34: for (i=0; i<#parent.children; i++)
35: if (parent.children[i] exists in CCs new)
36: local update(parent.children[i], GM updated, LTs info)
37: else
38: update parent.children[i] from the CC within CCs new
39: if (parent.children[i] and CC contains the same array accesses)
40: local update(parent.children[i], GM updated, LTs info)
41: else /* DRTree for parent.children[i] is changed after transformation*/
42: compute DRTree below parent.children[i]
43: else
44: if (parent’s dim < (tra IMD of array accesses parent contains))
45: local update(parent.children[i], GM updated, LTs info)
46: else
47: compute DRTree below parent

50: function GM update(LTs info, GM)
/* update the iteration domain of each transformed statement */
/* and the index function of the corresponding array accesses */
return GM updated

60: function CCs calc(parent, GM updated, LTs info)
return CCs new /* recalculate the children CCs of parent */

Figure 7.3: Pseudo code of incremental DRA algorithm
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had not been transformed, the parents at one dimension above tra OMD would
have been found at line 20, followed by a call to local update at line 21 for each
parent.

Within the procedure call, the parent is the root for this example and the if-
condition at line 31 is true. The CCs at the dimension below the parent is recom-
puted (denoted as CCs new) based on GM updated. Since CCs new is not equal
to the old CCs at the same position within the DRTrees[array], the if-condition
at line 33 is true. In this case there is only one CC and the CCs new is updated
at line 38. Since both the old and new CC contain the two array accesses, the
if-condition at line 39 is true and local update is called again at line 40. This pro-
cedure call will continue the evaluation at the next inner dimension, in this case
at the second outermost dimension. The updated CC at the outer dimension now
becomes parent. The if-condition at line 31 is true, and the new CCs below the
parent are calculated at the second outer dimension. Since the loop interchange
takes effect at the two outermost dimensions, the new CC is not equal to the cor-
responding old CC in the DRTrees. Hence it is updated with the new CC at line
38. As both the new and old CC contain the same array accesses at the second
dimension, the function local update is again called at line 40. The parent now
becomes the updated CC at the second outer dimension. This time the analysis
is performed at the third dimension even if it is beyond the tra IMD. If the anal-
ysis detects any CC changes, DRTrees[array] will be updated with the new CCs
at this dimension and the analysis continues at the next inner dimension. If no
changes are detected, we go to line 44 and check if the parent contains any array
accesses which is transformed at that/inner dimension(s). In this case, there are
no changes at the third dimension, so the analysis stops for this branch. Since the
if-conditions at line 33 and 44 are both false, the analysis stops without analyzing
the third and fourth dimensions. The analysis also stops for this array since only
this CC exists. The DRTree output is the same as achieved by performing initial
DRA as shown in Figure 6.6(a).

For this small example, the local DRA needs to be performed at the three out-
ermost dimensions. Consequently, not much computation time can be saved with
incremental DRA compared to using the initial DRA. For real life applications,
e.g., the QSDPCM driver as demonstrated in the experiment chapter in Chapter
9, there can be more than ten loop dimensions. Typical loop transformations are
performed at the outer loop dimensions with no effect on the remaining inner di-
mensions, or at inner dimensions affecting only a limited number of statements.
In that case, the incremental DRA with local updating can significantly reduce
the computation time. As explained in Chapter 3, it is often necessary to insert
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extra time dimension before each loop dimension. The computation time saving
of incremental DRA is then even more evident. Furthermore, the number of CCs
in a DRTree can potentially increase exponentially at each level in the loop nest.
The number of CCs to recompute will therefore become very large for deep loop
nests. As a consequence, it is very beneficial to only recompute the CCs that have
actually been changed.

7.4 Summary
In this chapter the incremental HMSE methodology has been presented. The main
difference from the initial HMSE is that incremental intra-array memory foot-
print estimation and incremental data reuse analysis are only performed for the
arrays that have been transformed. An incremental data reuse analysis algorithm
is presented which can further limit data reuse analysis to be performed on the
transformed array references and also at the loop dimensions at where they are
potentially transformed. This can significantly reduce the estimation time since
incremental loop transformations usually have very local effect. Locally updating
DRTrees only where the data reuse are affected saves the unnecessary computa-
tion for building the DRTrees. This improvement can be globally significant for
the whole HMSE, as data reuse analysis is the most time consuming step. The
incremental HMSE can speed up the estimation in the order of two magnitudes,
as demonstrated on experiments in Chapter 9.



Chapter 8

Low Power Data Memory Platform

Exploration

As mentioned, at the early system level design exploration stage, the memory
platform structure can usually not be given, i.e., either the number of memory lay-
ers or the size requirement for one layer is not defined. This is, for example, the
case at the high level loop transformations stage within the DTSE methodology.
The designers should be able to customize the memory hierarchy configuration
in order to trade off cost functions of power, performance and size requirement.
This customization is however usually done at later design stages when more con-
straints are determined and there are more information about the implementation.
Designers traditionally perform such a customization by evaluating different ar-
chitectural configurations based on their intuition and experience or on simulation.
Usually a limited number of configuration instances are evaluated. This would
in most cases result in a sub-optimal solution. For the memory platform, there
usually exist many possible configuration instances. Due to the large scope of
the memory platform configurations, it is infeasible to exhaustively simulate the
performance and energy characteristics of an application for each configuration.
Meanwhile, there equivalently exist the large scope of the code transformation
exploration issues. Thus, exploration tools are necessary to rapidly evaluate the
impact of different candidate memory platform configurations. Such tools can be
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of great utility to a system designer by giving fast initial feedback on a wide range
of memory platform instances.

This chapter presents an approach for performing a fast low power data mem-
ory platform exploration. It is performed based on the Pareto curve output from
the HMSE methodology for each version of code. Based on the number of ac-
cesses to each layer of the memory platform, a power estimation can be performed
for all possible memory platform configurations. Using the quick power estima-
tion of all possibly memory platform configuration, an early low power memory
platform exploration can be performed.

This chapter is organized as follows. Section 8.1 presents how the power
estimation is performed for any given memory platform configuration. In Section
8.2, the low power data memory exploration is discussed.

8.1 Power Estimation For A Given Memory Plat-

form Configuration

This section introduces the principle of how to perform a power estimation for any
given memory platform configuration. First the power model used is discussed in
Section 8.1.1. Then Section 8.1 presents the principles on how to perform the
power estimation for any given memory platform configuration. This is followed
with discussion about how to perform an estimation for multiple layer memory
platform configurations in Section 8.1.3 .

8.1.1 Power Estimation Model

As mentioned, we propose to perform power estimation based on our HMSE
methodology Pareto curve outputs. As Pareto curve only contains the number
of accesses information, the power estimation is performed based on a simple
high level power model:

Powertotal =
eachlayers

∑
i=1

#accessesi ∗ powersize/accessi (8.1)
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In this equation, powersize/accessesi means the power per access for a mem-
ory with the considered size as the power per access is different for different sized
memory. The static power consumption of the memory can be taken into account
within the power model or it can be ignored. The total power consumption for
the memory platform is hence the sum of the power consumed at each layer. The
estimation accuracy hence also depends on the power model which will be used.
In this work, a model which is confidential to IMEC is used, that is based on a
realistic memory macro. This makes it feasible to compare the estimate achieved
by this work with theirs. However, any other memory model can also be used. For
example, [128] has used CACTI [150, 151] model in their work.

In the current version of this work, the power model only considers the case
that all data are accessed directly by the CPU. When a block of data is accessed, it
is however more power efficient for the data to be accessed by a DMA controller
and the power per access can hence be lower. This have not been considered yet in
the current version of work and is left for future work. This power model is simple
and still useful at the early design stage. To obtain a precise power estimation from
a high-level system description requires a full design effort. It would be very slow
which is not acceptable at the early stage. On the other hand, precise estimation is
not always needed. It is often sufficient to be able to make a relative comparison
among a large number of memory platform configurations so further evaluation
can be proceeded on a limited number of alternatives.

8.1.2 Power Estimation for a Given Memory Platform Config-

uration
The power estimation for a given memory platform configuration is performed
based on the Pareto curve output from the HMSE methodology. As explained in
Chapter 6, the Pareto curve is created based on a pre-assumed two-layer memory
platform structure where the on-chip SPM has unspecified size. A Pareto point is
created by assigning the most promising CC/array replaces, per size unit increase
of SPM, the largest number of main memory accesses with accesses to the SPM.
Since accessing main memory is more costly than SPM, this represents the most
power saving per size unit increase of SPM. The rationale behind is that each
Pareto point corresponds to a low power two layer data memory with that SPM
size requirement. We have information of the number of accesses to different
layers of memory. Then using the above mentioned power model, we can per-
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Figure 8.1: Power estimation for any two layer memory platform

form power estimation based on the Pareto curve for any given two layer memory
platform configuration.

Figure 8.1 illustrates how the data mapping for a given two layer memory
platform instance is performed. For a given two layer memory platform instance,
the Pareto point selected for simulating the on-chip SPM layer should be the one
having a size as close as possible to, but not larger than, the SPM size of the
selected platform. The chosen Pareto point defines which data (both CCs and the
root assigned at that point) that should be mapped on the on-chip SPM layer. The
CCs assigned at the point define which part of the arrays to copy from the off-
chip memory to the SPM. The off-chip memory of the selected platform should
be large enough to store the remaining roots unassigned at that Pareto point. The
off-chip memory should always be large enough to keep all the data and its size
is less relevant. The Pareto point contains all the access information: the number
of accesses from processor to the on-chip SPM layer, the number of misses from
the SPM to the main memory. The number of accesses to the main memory can
easily be calculated by adding the misses from the SPM and the bypass accesses,
which is equal to the total number of accesses minus the number of accesses from
processor to the SPM. The energy can hence be estimated based on the number of
accesses to each layer together with the abstract energy-per-access model, which
depends on the SPM size.
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8.1.3 Power Estimation for a Multiple-layer Memory Platform

Configuration

So far has described the principles of how to perform power estimation for a two
layer memory platform configuration. This technique can also work for a multiple
layer data memory platform, assuming multiple SPM layers exist as shown in
Figure 8.2. For a multiple layer data memory platform, each layer is assigned a
Pareto point with a size as close as possible to, but not larger than, the layer size.
Based on the selected Pareto points, the number of accesses to each layer can be
found. Power estimation can hence be performed based on the number of accesses
to each layer.

However, for multiple layer memory platform, over-estimate occurs. For ex-
ample, for a three layer memory platform, two Pareto points are selected and the
number of accesses to each of the three layers are calculated. Each Pareto point
defines the optimal data mapping for the two layer memory platform with the
SPM layer having a size equal to the size at the Pareto point. When the two points
are used for the three layer platform, the Pareto point having larger size in prin-
ciple also contains the data which are mapped for the Pareto point having smaller
size. In other words, some data are considered for mapping at both the two Pareto
points. In practice, as soon as data are mapped to the smaller SPM layer, it should
not be used again at the larger SPM layer. This potentially enable other data to
be assigned to the larger SPM layer. This overestimation cannot be avoided. The
key issue is how much effect such an overestimation would be and whether this
will still result in reasonable estimate. It will vary depending on the sizes of the
different SPM layers and also depending on the applications considered. Power
estimation for multiple layer memory platform has not been evaluated yet in the
experiments. Further evaluation is hence required and is left for future work.

8.2 Data Memory Platform Exploration

Above has presented the techniques used to perform power estimation for a given
memory platform. Since the estimation is performed based on the Pareto curve,
the estimation can be performed for any memory platform configurations. This
is very useful since estimation of one platform at a time is not feasible when a
large number of memory platform configurations can exist. Based on a power
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Figure 8.2: Power estimation for any multiple layer memory platform

estimation for all possible memory platform configurations, we can easily select
the most low power memory platform(s) for further more exact evaluation.

As stated previously, the goal of our HMSE methodology is to perform a fast
data mapping estimation to steer the loop transformation exploration. It is also
beneficial to perform this early memory platform exploration. The designer can
select the limited number of most lower power memory platform(s) at the early
design stage for further optimization, together with selecting the most interesting
transformed codes which may result in optimal data mapping for that memory
platform instances. This significantly limits the number of memory platform in-
stances together with the limited versions of the code that should be retained for
more detailed (and time-consuming) optimization at later design stages.

8.3 Summary
In this chapter we have represented the principle on how to perform power es-
timation for any given memory platform and how the low power data memory
platform exploration is performed based on that. The memory platform explo-
ration enables the designer to select the most lower power memory platform(s)
at the early design stage for further evaluation, together with selecting the most
interesting transformed codes which may result in optimal data mapping for that
platform instances. This significantly limits the number of memory platform in-
stances together with the limited versions of code for optimization at later design
stages.



Chapter 9

Experiments

This chapter presents experiments performed for the estimation methodologies
presented in this dissertation on several real life applications. It is organized as
follows. Section 9.1 first gives a brief description of prototype tools which im-
plement the estimation methodologies. In Section 9.2, the Cavity Detection algo-
rithm is used for demonstration. Section 9.3 studies the QSDPCM algorithm as
another test vehicle. Section 9.4 presents experiment results for the 2-dimensional
Wavelet transform algorithm. A summary is given afterwards.

9.1 Prototype Tools

Two prototype tools, MFE, for fast memory footprint estimation methodology,
and HMSE, for hierarchal memory size estimation, have been developed to prove
the feasibility and usefulness of the methodologies presented in this disserta-
tion. The current versions have been implemented in the object-oriented language
Python [3].

The MFE tool covers both intra-array memory footprint estimation and inter-
array memory footprint estimation. In the current version of tool implementation,
we do not go to basic set analysis but simply take the maximum of the two sizes
if the dependencies are overlapping. Note that, for the ILP approach of the MDV
calculation, the ILP problem is first formulated in Python and then solved by
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calling an ILP solver, l p solve [2] in this case which is implemented in C/C++.
For inter-array memory footprint estimation, the initial one layer Hanoi tower

approach and the improved one layer Hanoi tower approach have been imple-
mented and compared. For the improved approach, the tower union operation is
performed at a loop dimension at where the pre-defined accuracy ratio is reached.
In this case, the accuracy ratio is defined as 95%. The multiple layer Hanoi tower
approach has not been implemented. The estimation result achieved by the MFE
tool is also compared with what is achieved by the Atomium/MC tool. Atomium
[68] is the abbreviation of ”A Toolbox for Optimizing Memory I/o Using geomet-
rical Models” and operates at the behavioral level of an application, expressed in
C. It is a tool suite supporting the DTSE methodology as reviewed in Section 2.2.
The Atomium/MC tool refers to the memory compaction tool and is implemented
based on the techniques presented in [41].

For the HMSE methodology, both the initial HMSE and incremental HMSE
approaches are implemented. Note that the inter-array memory footprint estima-
tion step is not implemented yet within the prototype HMSE tool and is left for
future work. To evaluate the estimation accuracy of the HMSE, the HMSE esti-
mation results are compared with the results obtained with the Atomium/MH tool.
The Atomium/MH tool refers to the memory hierarchy tool and is implemented
partially based on the techniques presented in [27]. Note that in order to make
the fare comparison, the inter-array inplace optimization option in their tool is
not selected since this option is not implemented yet within the current HMSE
implementation.

9.2 Demonstration on Cavity Detection Algorithm
The MFE and HMSE methodologies have been applied to the Cavity Detection
algorithm, which is a medical image-processing application that extracts contours
from images to help physicians detect brain tumors. The initial algorithm consists
of several functions, each with one image frame as input and one as output. The
new value of a pixel in one function depends on its neighbors in the previous
function, which are too big to be on-chip and saved in background memory. There
are approximately 100 lines of C code (ignoring file I/O etc.) Experiments are
performed with images of 640*400 pixels.

The estimations are performed for a selected sequence of loop transforma-
tions. This selected sequence of loop transformations is chosen for illustration
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purposes. The HMSE methodology does, however, not require any specific se-
quence of loop transformations. It can work for any kind of sequence, depending
on the loop transformation algorithm used. The sequence of loop transformations
performed varies depending on the algorithm chosen for performing loop transfor-
mations. Note also that for one application, at each step, it can be a specific loop
transformation technique, as presented in Chapter 3, performed on a statement, or
it can also be a set of loop transformation techniques performed on a statement or
multiple statements.

Figure 9.1 gives the code used as start point for our estimations. This is the
resulting code after applying preprocessing and pruning on the straightforward
source code. Preprocessing and pruning is the first step in the DTSE method-
ology as presented previously in Section 2.2. Linear transformations have also
been applied to this code. In this case, loop interchange has been performed at
the outmost two dimensions (x- and y-dimension) for all the loop nests. This is
because that y- dimension has a smaller range and would result in larger buffers
after transformations, if kept second outermost.

As the first in the sequence of transformations, the two loop nests, input loop
and horizontal Gaussian blur are fused together at the outermost two dimensions.
This transformation is named LT-1. The part of transformed code is presented in
Figure 9.2 while the rest part of code is unchanged. The horizontal Gaussian blur
loop uses input pixels with coordinates [x-1][y] to [x+1][y]. The optimal locality
(for these two loops) is reached when input pixel [x+1][y] is used immediately
after it has been produced in the input loop. The input buffer size is then limited
to 3 pixels, instead of N*M as it is in Figure 9.1. To obtain this, the input and
horizontal Gaussian blur loops are fused. Before this is possible, the horizontal
Gaussian blur x-loop has to be shifted by 1, so that it starts only when all pixels
it needs are available. The y loop has no problem. Note that the conditions due
to the shifting are fused with the existing condition, if possible. Note also that the
input statement could have been further fused with the k-loop of the horizontal
Gaussian blur (guarded by the condition k==1), but this would create more com-
plexity while reducing the size of in image only by 1. The locality improvement
above is a local effect: the global effect, however, is also positive. Indeed, the
in image signal is not used anywhere else, so any local improvement is also good
globally.

The above fusion is followed by a set of loop transformations fusing all the
loop nests at the outermost y-dimension. This transformation is named LT-2. The
part of transformed code is presented in Figure 9.3. The same ideas as for the
input and Gaussian blur loops can be applied to the subsequent loops. Now, also
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vo id c a v d e t l 2 ( ) {
. . . / / D e c l a r a t i o n

/ / I n p u t

f o r ( y =0; y<M; ++y )

f o r ( x =0; x<N; ++x )

i n i m a g e [ x ] [ y ] = i n p u t ( ) ;

/ / GaussBlur

t o t = i n i t g a u s s s ( 1 ) ;

/ / H o r i z o n t a l Gauss ian b l u r x

f o r ( y =0; y<M; ++y )

f o r ( x =1; x<N; ++x ) {
g a c c x [ x−1][ y ] = 0;

f o r ( k=−1; k<=1; ++k )

g a c c x [ x−1][ y ] += g a u s s f i l t ( i n i m a g e [ x+k ] [ y ] , k ) ;

g tmp image [ x ] [ y ] = g a c c x [ x−1][ y ] / t o t ; }
/ / V e r t i c a l G a u s s i a n b l u r y

f o r ( y =1; y<M−1; ++y )

f o r ( x =1; x<N−1; ++x ) {
g a c c y [ x−1][y−1] = 0;

f o r ( k=−1; k<=1; ++k )

g a c c y [ x−1][y−1] += g a u s s f i l t ( g tmp image [ x ] [ y+k ] , k ) ;

g a u s s i m a g e [ x ] [ y ] = g a c c y [ x−1][y−1]/ t o t ; }
/ / Compute Edges

f o r ( y =2; y<M−2; ++y )

f o r ( x =2; x<N−2; ++x ) {
m a x d i f f [ x−2][y−2] = 0;

f o r ( k=−1; k<=1; ++k )

f o r ( l =−1; l <=1; ++l )

i f ( k !=0 | | l !=0)

m a x d i f f [ x−2][y−2] = m a x d i f f c o m p u t e ( g a u s s i m a g e [ x+k ] [ y+l ] ,

g a u s s i m a g e [ x ] [ y ] , m a x d i f f [ x−2][y−2]) ;

ce image [ x ] [ y ] = m a x d i f f [ x−2][y−2]; }
/ / Reve r se k e r n e l & D e t e c t R o o t s k e r n e l & Outpu t

f o r ( y =3; y<M−3; ++y )

f o r ( x =3; x<N−3; ++x ) {
o u t t m p [ x−3][y−3] = 0;

f o r ( k=−1; k<=1; ++k )

f o r ( l =−1; l <=1; ++l )

i f ( k !=0 | | l !=0)

i f ( o u t t m p [ x−3][y−3] == 0)

i f ( ce image [ x+k ] [ y+l ] < ce image [ x ] [ y ] )

o u t t m p [ x−3][y−3] = 1;

o u t p u t ( o u t t m p [ x−3][y−3] , x , y ) ; }
}

Figure 9.1: Cavity Detection Algorithm (orig)
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f o r ( y =0; y<M; ++y )

f o r ( x =0; x<N; ++x ) {
/ / I n p u t

i n i m a g e [ x ] [ y ] = i n p u t ( ) ;

/ / H o r i z o n t a l Gauss ian b l u r

i f ( x>=2) {
g a c c x [ x−1][ y ] = 0;

f o r ( k=−1; k<=1; ++k )

g a c c x [ x−2][ y ] += g a u s s f i l t ( i n i m a g e [ x+k−1][ y ] , k ) ;

g tmp image [ x−1][ y ] = g a c c x [ x−2][ y ] / t o t ;

}
}

}

Figure 9.2: The part of code after LT 1

shifting in the y direction is required. Fusing the y loops reduces all intermediary
signals. The memory footprint requirement for g tmp image and gauss image are
reduced from N*M to 3*(N-2) pixels, and ce image from N*M to 3*(N-4) pixels.

Next, a set of loop transformations are performed fusing all the loop nests
also at the x-dimension. This transformation is named LT-3 and the transformed
code is shown in Figure 9.4. Fusing of the x-loops in addition to the y-loops
improves locality even more, as the data is consumed immediately after it has
been produced. Fusing the x loops further reduces all intermediary signals with N
pixels. g tmp image is now reduced to 2*(N-2)+1 pixels, gauss image to 2*(N-
2)+3 pixels and ce image to 2*(N-4)+3 pixels.

Locality could be improved even further by reversing all the k- and l-loops.
Indeed, then the production of a pixel is immediately followed by its first read.
However, this effect is extremely small: the distance between the write and last
read references is virtually unchanged, and the distance between different con-
sumptions does not change. Therefore, this transformation is not applied.

Following let us look at the experiment results achieved on the different ver-
sion of the loop transformation codes. All the experiments are performed on a
server with four 2.8GHz Intel Xeon processors with 2G memories.
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f o r ( y =0; y<M; ++y ) {
f o r ( x =0; x<N; ++x ) {

/ / I n p u t

i n i m a g e [ x ] [ y ] = i n p u t ( ) ;

/ / H o r i z o n t a l Gauss ian b l u r

i f ( x−1>=1) {
g a c c x [ x−1][ y ] = 0;

f o r ( k=−1; k<=1; ++k )

g a c c x [ x−2][ y ] += g a u s s f i l t ( i n i m a g e [ x+k−1][ y ] , k ) ;

g tmp image [ x−1][ y ] = g a c c x [ x−2][ y ] / t o t ; }
}
/ / V e r t i c a l G a u s s i a n b l u r

f o r ( x =1; x<N−1; ++x )

i f ( y−1>=1 && y<M) {
g a c c y [ x−1][y−1−1] = 0;

f o r ( k=−1; k<=1; ++k )

g a c c y [ x−1][y−1−1] += g a u s s f i l t ( g tmp image [ x ] [ y+k−1] , k ) ;

g a u s s i m a g e [ x ] [ y−1] = g a c c y [ x−1][y−1−1]/ t o t ;

}
/ / Compute Edges

f o r ( x =2; x<N−2; ++x )

i f ( y−2>=2 && y−2<M−2) {
m a x d i f f [ x−2][y−2−2] = 0;

f o r ( k=−1; k<=1; ++k )

f o r ( l =−1; l <=1; ++l )

i f ( k !=0 | | l !=0)

m a x d i f f [ x−2][y−2−2] = m a x d i f f c o m p u t e ( g a u s s i m a g e [ x+k ] [ y+l −2] ,

ga u s s im a g e [ x ] [ y−2] , m a x d i f f [ x−2][y−2−2]);

ce image [ x ] [ y−2] = m a x d i f f [ x−2][y−2−2];

}
/ / Reve r se k e r n e l & D e t e c t R o o t s k e r n e l & Outpu t

f o r ( x =3; x<N−3; ++x )

i f ( y−3>=3 && y−3<M−3) {
o u t t m p [ x−3][y−3−3] = 0;

f o r ( k=−1; k<=1; ++k )

f o r ( l =−1; l <=1; ++l )

i f ( k !=0 | | l !=0)

i f ( o u t t m p [ x−3][y−3−3] == 0)

i f ( ce image [ x+k ] [ y+l −3] < ce image [ x ] [ y−3])

o u t t m p [ x−3][y−3−3] = 1;

o u t p u t ( o u t t m p [ x−3][y−3−3], x , y ) ;

}
}

Figure 9.3: The part of code after LT 2
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vo id c a v d e t l 2 ( ) {
. . . / / D e c l a r a t i o n

/ / GaussBlur

t o t = i n i t g a u s s s ( 1 ) ;

f o r ( y =0; y<M; ++y )

f o r ( x =0; x<N; ++x ) {
/ / I n p u t

i n i m a g e [ x ] [ y ] = i n p u t ( ) ;

/ / H o r i z o n t a l Gauss ian b l u r

i f ( x−1>=1) {
g a c c x [ x−1][ y ] = 0;

f o r ( k=−1; k<=1; ++k )

g a c c x [ x−2][ y ] += g a u s s f i l t ( i n i m a g e [ x+k−1][ y ] , k ) ;

g tmp image [ x−1][ y ] = g a c c x [ x−2][ y ] / t o t ; }
/ / V e r t i c a l G a u s s i a n b l u r

i f ( x−1>=1 && x−1<N−1 && y>=2) {
g a c c y [ x−1−1][y−2] = 0;

f o r ( k=−1; k<=1; ++k )

g a c c y [ x−1−1][y−2] += g a u s s f i l t ( g tmp image [ x−1][ y+k−1] , k ) ;

g a u s s i m a g e [ x−1][y−1] = g a c c y [ x−1−1][y−2]/ t o t ; }
/ / Compute Edges

i f ( x−2>=2 && x−2<N−2 && y>=4) {
m a x d i f f [ x−2−2][y−2−2] = 0;

f o r ( k=−1; k<=1; ++k )

f o r ( l =−1; l <=1; ++l )

i f ( k !=0 | | l !=0)

m a x d i f f [ x−2−2][y−2−2] = m a x d i f f c o m p u t e ( g a u s s i m a g e [ x+k−2][ y+l −2] ,

ga u s s im a g e [ x−2][y−2] , m a x d i f f [ x−2−2][y−2−2]);

ce image [ x−2][y−2] = m a x d i f f [ x−2−2][y−2−2]; }
/ / Reve r se k e r n e l & D e t e c t R o o t s k e r n e l & Outpu t

i f ( x−3>=3 && x−3<N−3 && y>=6) {
o u t t m p [ x−3−3][y−3−3] = 0;

f o r ( k=−1; k<=1; ++k )

f o r ( l =−1; l <=1; ++l )

i f ( k !=0 | | l !=0)

i f ( o u t t m p [ x−3−3][y−3−3] == 0)

i f ( ce image [ x+k−3][ y+l −3] < ce image [ x−3][y−3])

o u t t m p [ x−3−3][y−3−3] = 1;

o u t p u t ( o u t t m p [ x−3−3][y−3−3], x , y ) ; }
}

}

Figure 9.4: Cavity detection algorithm after loop transformation (LT-3)
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9.2.1 Intra-array Memory Footprint Estimation

Table 9.1 compares the intra-array memory footprint estimation between our two
MDV calculation approaches (ILP approach and vertexes approach) and also with
the Atomium/MC tool. In the table, t is the CPU execution time. As shown,
the vertexes approach and ILP approach based memory footprint estimations are
identical with the optimized results reached by Atomium/MC. When comparing
the computation time, the ILP approach based estimation takes less than 200ms
for all versions of Cavity Detection codes. The ILP approach based estimation is
in the same magnitude of computation time as the Atomium/MC tool does. The
vertexes approach based estimation just takes less than 5 milliseconds, which is 3
orders of magnitude faster.

Application Declared MDV approach Atomium/MC

code size est. size tvertexes tILP est. size tMC

orig 2536880 1016984 124.0ms 5.8s 1016984 24.9s

LT-1 2536880 760987 114.3ms 6.0s 760987 27.1s

LT-2 2536880 5743 166.4ms 6.0s 5743 26.5s

LT-3 2536880 3838 168.5ms 6.0s 3838 82.4s

Table 9.1: Intra-array memory footprint estimation for Cavity Detection Algorithm

9.2.2 Inter-array Memory Footprint Estimation

Within the inter-array estimation experiments, the effect of intra-array memory
footprint estimation is also included. For the inter-array estimate, the vertexes
approach based intra array estimation is used.

As shown in Table 9.2 , the improved one layer Hanoi tower approach gives
estimation result very close to the original one layer Hanoi tower approach while
the computation speed is between one and two orders of magnitude faster. The two
Hanoi tower based estimation techniques still give very reasonable estimates when
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compared to what Atomium/MC gives. The improved Hanoi tower approach is
however 3 orders of magnitude faster.

Application Declared Inter Hanoi tower approach Atomium/MC

code size Initial approach Improved approach

size time size time size time

orig 2536880 511202 306.0ms 511202 31.2ms 511213 25s

LT-1 2536880 509126 361.4ms 509126 7.8ms 509137 25s

LT-2 2536880 5741 594.0ms 5741 1.2ms 5741 25s

LT-3 2536880 3836 846.4ms 3840 28.5ms 3840 85s

Table 9.2: Inter-array memory footprint estimation comparison for Cavity Detection Al-

gorithm

9.2.3 HMSE Estimation

Figure 9.5 shows the HMSE estimation result for the Cavity Detection algorithm.
First the initial HMSE is performed for the orig code. Then the incremental
HMSE is performed for the sequence of loop transformations based on the geo-
metrical model information for the previous version of code and the loop transfor-
mation matrices information. The figure demonstrates that the fully transformed
version LT-3 always results in the global Pareto curve. Compared to the first two
code versions orig and LT-1 which require over 1M memory to store all arrays,
the last two versions only require 5K and 3K, respectively. It is therefore possible
to keep all the data of the last two versions on a small SPM layer. With the same
SPM size (3K), the original code would need more than 3 million accesses to main
memory. The figure also shows why it is important for the memory size estimation
to take into account the memory hierarchy. The total memory size requirement is
3838Bytes for LT-3 and over 1M for the LT-1. Without taking into account the
memory hierarchy exploration, the conclusion would therefore be that the code
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Figure 9.5: HMSE estimate with Pareto curves output for Cavity Detection Algorithm

LT-1 is not interesting at all. However, when the hierarchical memory size estima-
tion is performed, it turns out that for SPM sizes up to 1286Bytes, the code LT-1 is
a viable alternative. Since the LT-1 code has lower complexity (the loop shifting
of LT-3 adds if-clauses), it is actually preferred for small SPM sizes. Analysis
of the code complexity as a third trade-off axis can be performed at a later stage
when the memory platform is given.

Table 9.3 compares the execution time of the initial HMSE and incremen-
tal HMSE. The GMparsingupdate corresponds to the time required to parse the
source code into the geometrical model or update the geometrical model when
loop transformations are performed. This is required to perform the HMSE esti-
mation, but is usually anyway performed during loop transformation exploration
and is not considered as a step within the estimation. The Intra−+DRA means
the time required to perform both intra-array estimation and DRA. As shown, the
incremental HMSE takes only a few tens of milliseconds. This is at most one-
quarter of the execution time of the original code for this example. Even for this
small application, incremental HMSE reduces the execution time significantly.

To evaluate the estimation speed and accuracy of the HMSE methodology,
the HMSE estimate results are compared with what is obtained with the Atomi-
um/MH tool. Note that in order to make a fair comparison, the inter-array inplace
optimization option in their tool is not used since this option has not been imple-
mented yet for HMSE. For the Cavity Detection algorithm, the HMSE estimates
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GM parsing/update Intra- + DRA MHLA est. total/ init. HMSE

initial HMSE (orig) 208.5ms 120.0ms 1.2ms 100ms

incre. HMSE (LT-1) 142.0ms 19.0ms 1.2ms 16.7ms

incre. HMSE (LT-2) 140.1ms 30.1ms 1.3ms 25.9ms

incre. HMSE (LT-3) 140.4ms 19.2ms 1.2ms 16.8ms

Table 9.3: Execution time comparison of HMSEs for Cavity Detection Algorithm

are identical to the results that Atomium/MH achieves. This is, because for this
small testbench, the estimation result achieved by the HMSE is the same as what
Atomium/MH is got. The computation time for the Atomium/MH tool varies be-
tween 2s to 10s of the CPU time while the initial HMSE takes about 120ms and the
incremental HMSE just takes maximal 30ms. This shows that the initial HMSE
is over one order of magnitude faster than Atomium/MH while the incremental
HMSE is 4 times faster than the initial HMSE. The speedup is not very significant
yet, as the Cavity Detection algorithm is rather small and not much gain can be
achieved then.

Based on the Pareto curve outputs, a power estimation has been performed on
a number of two layer memory platform configurations for the sequence of loop
transformations as shown in Figure 9.6. The power estimation is performed based
on the model presented in Chapter 8. The two layer memory platform consists of
an on-chip SPM layer and the off-chip main memory. The horizontal dimension
refers to the size requirement of the SPM layer and the vertical dimension refers
to the total power consumed on the memory platform. As shown, the power esti-
mated on several different memory platform configurations just matches what is
represented in the Pareto curves. Further study shows that the results achieved are
equivalent to what are achieved with the Atomium/MH tool.
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Figure 9.6: Power estimation for two layer memory platforms for Cavity Detection Al-

gorithm

9.3 Demonstration on QSDPCM Algorithm

The QSDPCM algorithm is an inter-frame compression technique for video im-
ages, involving hierarchical motion estimation and a quadtree-based encoding of
the motion compensated frame-to-frame differences [130]. Our estimation is per-
formed on a number of code versions resulting from different loop transforma-
tions. The QSDPCM algorithm is a medium size application, its core having
more than 800 lines of c-code.

9.3.1 Intra-array Memory Footprint Estimation

Table 9.4 compares the results of two code version using the memory footprint es-
timate techniques presented in this dissertation and Atomium/MC. As shown, the
vertexes approach takes a few seconds, which is one order of magnitude faster than
the ILP approach. It is again significantly faster than the Atomium/MC approach.
For this algorithm, the estimated size by the MDV approach is not identical with
the size achieved by the Atomium/MC tool. This over-estimate is caused by the
fact that the current techniques does not perform an exact analysis when multiple
array write references exists for the same array. This was discussed in Chapter 4.



9.3. Demonstration on QSDPCM Algorithm 131

Application Declared MDV approach Atomium/MC

code size est. size tvertexes tILP est. size tMC

orig 154019 159250 6.0s 58.9s 151203 93.1s

LT-7 154019 96044 1.2s 12.4s 85128 48.0s

Table 9.4: Intra-array memory footprint estimation for QSDPCM Algorithm

9.3.2 Inter-array Memory Footprint Estimation

Table 9.5 compares the the inter-array memory footprint estimation between the
two Hanoi tower approaches and the Atomium/MC tool. For this algorithm, the
improved one layer Hanoi tower approach is at least three orders of magnitude
faster than the original one layer Hanoi tower approach. This is achieved with the
same loss in estimate accuracy. The estimate accuracy for this algorithm is still
within 97% of the initial one layer Hanoi tower approach. The estimate accuracy
can be pre-configured before the experiments or interactively defined by the de-
signer during the estimation. It can hence be used to trade off estimation speed.
For this algorithm, the estimated size by the Hanoi tower based approaches are not
identical with the size achieved by the Atomium/MC tool due to the overestimate
for the multiple pair dependencies that occur at the intra-array estimation step.
This can however be removed by performing basic set analysis as mentioned.

Application Declared Inter Hanoi tower approach Atomium/MC

code size Initial approach Improved approach

size time size time size time

orig 118906 118442 78.1s 118670 11.9ms 117338 97s

LT-7 118906 94868 24.1s 96044 2.0ms 85128 55s

Table 9.5: Inter-array memory footprint estimation comparison for QSDPCM Algorithm



132 Chapter 9. Experiments

9.3.3 HMSE Estimation
Figure 9.7 and Table 9.6 show the Pareto curves output and the execution time
comparison for QSDPCM algorithm. For QSDPCM, several versions of loop
transformations have been implemented incrementally. The fully transformed
code LT-7 is always the best. This means that this version of code will result
in optimal memory usage for all possible hierarchy instances. For QSDPCM, the
incremental HMSEs take between 0.7% and 15% of the execution time needed
for the initial HMSE. This is because the incremental loop transformations are all
performed at the outermost two of over 12 loop dimensions and only a limited
number of arrays are transformed. Most of the loop transformations performed
have no effect at the inner dimensions and the incremental DRA only needs to
locally update the transformed arrays at the two outermost dimensions. This sig-
nificantly reduces the computation time. LT-5 and LT-6 are big transformation
steps which affect about 50% of the array accesses. Still, since not all dimensions
are transformed, 85% of the time can be saved by performing HMSE incremen-
tally.
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Figure 9.7: HMSE output of Pareto curves for QSDPCM

Figure 9.8 shows the comparison of the #mainmemoryaccesses of HMSE and
Atomium/MH for the QSDPCM algorithm for several realistic two layer memory
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GM parsing/update Intra- + DRA MHLA est. total/init. HMSE (%)

initial HMSE 542.7ms 1627.6ms 10.2ms 100ms

incre. HMSE (LT-1) 6.1ms 9.1ms 9.3ms 1.2ms

incre. HMSE (LT-2) 1.6 ms 2.0ms 9.5ms 0.7ms

incre. HMSE (LT-3) 1.5 ms 2.1ms 9.3ms 0.7ms

incre. HMSE (LT-4) 4.7 ms 8.2ms 9.0ms 1.1ms

incre. HMSE (LT-5) 64.3ms 222.1ms 11.5ms 14.3ms

incre. HMSE (LT-6) 61.1ms 177.9ms 8.9ms 11.4ms

incre. HMSE (LT-7) 3.5ms 9.3ms 8.9ms 1.1ms

Table 9.6: Execution time comparison for QSDPCM Algorithm

hierarchy instances. The horizontal dimension means the on-chip SPM layer size
of a two layer main memory hierarchy and the vertical dimension presents the
number of accesses to the off-chip main memory.

Compared to the Atomium/MH result, the HMSE estimation in general gives
close estimates. When the two layer memory hierarchy instances have an SPM
layer size between 2K and 8K, HMSE gives some overestimates compared to the
Atomium/MH tool. This is because the Atomium/MH tool finds data dependent
copies for some arrays that the HMSE does not find. The reason is that the simpli-
fied bounding box geometrical model, which is the input of the HMSE, does not
model data dependent terms in the index expressions fully accurate.

For the QSDPCM algorithm, Atomium/MH takes a few minutes of the CPU
time. In contrast, the initial HMSE takes less than 2s which is two order of mag-
nitude faster than the Atomium/MH tool. The incremental HMSE takes between
12ms and 234ms of the CPU time, which is again between one and two order of
magnitude faster than the initial HMSE. It varies depending on what loop transfor-
mations are performed and their effect. The computation time is trivial when the
loop transforms performed at an instance have very local effect. For the transfor-
mation instance LT-5, the transformation effect is fairly global as over one-quarter
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of statements and two-third of all arrays are transformed. The computation time
of it is just 15% of the initial HMSE approach.
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Figure 9.8: HMSE and Atomium/MH comparison for QSDPCM

9.4 Demonstration on 2D Wavelet Transformation

Algorithm

Wavelet-based compression schemes are an important part of modern multime-
dia codecs and can be exploited to build novel and inherently scalable video
codecs(SVC). For these applications, data transfer and storage are the main cost
factor in an efficient implementation and loop transformations have significant im-
pact on the global data accesses. In this section, the 2-dimensional (2D) Wavelet
transformation algorithm is chosen, with a sequence of loop transformations, to
evaluate the estimation methodologies presented in this dissertation. The 2D
Wavelet algorithm is another intermediate size application , its core having nearly
1000 lines of c code.



9.4. Demonstration on 2D Wavelet Transformation Algorithm 135

9.4.1 Intra-array Memory Footprint Estimation

Table 9.7 shows results of the intra-array memory footprint estimation for the
2D Wavelet Algorithm. As shown, the vertexes approach based estimation takes
about two seconds for the two versions of code while the ILP approach based es-
timation takes over a hundred seconds. The ILP approach is still faster than the
Atomium/MC tool. For this application, the size difference between different ap-
proaches and the declared approaches is small as there are not much intra-inplace
possibilities.

Application Declared MDV approach Atomium/MC

code size est. size tvertexes tILP est. size tMC

orig 2739220 2723648 2.0s 27.2s 2721364 158s

LT-4 2739220 2723448 2.1s 34.7s 2721364 168s

Table 9.7: Intra-array memory footprint estimation for 2D Wavelet Algorithm

9.4.1.1 Inter-array Memory Footprint Estimation

Table 9.8 compares the the inter-array memory footprint estimation for 2D Wavelet
algorithm between the two Hanoi tower approaches and the Atomium/MC tool.
For this algorithm, the improved one layer Hanoi tower approach is at the same
order of magnitude as the original one layer Hanoi tower approach. Both are be-
tween one and two order of magnitude faster than the Atomium/MC tool. For
LT-4, the improved approach is even slower than the initial approach. In which, it
takes 0.5s to union the towers which dominates the overall time of this approach.
Further analysis is required to find out why it comes like this. Possible improve-
ment may be necessary to make this approach valuable if this is not a bug. For
this application, there is not much inter-inplace possibilities.
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Application Declared Inter Hanoi tower approach Atomium/MC

code size Initial approach Improved approach

size time size time size time

orig 2739220 2723648 0.04s 2723648 0.02s 2721364 6.2s

LT-4 2739220 2723448 0.4s 2723448 0.6s 2721364 4.1s

Table 9.8: Inter-array memory footprint estimation comparison for 2D Wavelet Algo-

rithm

9.4.2 HMSE Estimation

Figure 9.9 shows the Pareto curves output for the 2D Wavelet transform after hav-
ing performed initial HMSE and 4 incremental HMSEs, corresponding to four
sequences of loop transformations. As shown, the Pareto curves are interleaved
with each other. The original code results in the least main memory accesses when
the SPM size is not larger than 270K. For sizes smaller than 4K it has 2,000,000
fewer main memory accesses than any of the other versions. This huge amount
of main memory accesses are consequently then replaced by SPM accesses with
a corresponding boost in performance and reduction in power consumption. Sim-
ilarly, LT-2, LT-3 and LT-4 have the least number of main memory accesses for
certain SPM sizes. LT-1 is not optimal for any SPM sizes, and can be discarded.
This demonstrates the importance of performing HMSE in order to find the right
versions of code during loop transformation exploration. Without doing so, it can
easily end up with a sub-optimal solution.

Table 9.9 compares the execution time required for the initial HMSE and each
of the incremental HMSEs. All the 4 incremental HMSEs take less than 30% of
the time required by the initial HMSE. The execution time for performing HMSE
is also compared to the time needed to read in the GM information for the initial
HMSE case and to update GM for incremental HMSE. This GM read-in and up-
dating must in any case be done once during loop transformations and is in fact
not part of our iteratively applied HMSE.

Figure 9.10 shows a comparison of the #main memory accesses of HMSE and
Atomium/MH for 2D Wavelet algorithm on several realistic two layer memory
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GM parsing/update Intra- + DRA MHLA est. incr./init. HMSE (%)

initial HMSE 208.5ms 911.1ms 6.6ms 100ms

incre. HMSE (LT-1) 142.0ms 249.4ms 6.4ms 27.9ms

incre. HMSE (LT-2) 140.1ms 253.3ms 6.4ms 28.4ms

incre. HMSE (LT-3) 140.4ms 252.2ms 6.4ms 28.2ms

incre. HMSE (LT-4) 140.4ms 254.7ms 6.4ms 28.5ms

Table 9.9: Execution time comparison for 2D Wavelet Transform Algorithm



138 Chapter 9. Experiments

0

1

2

3

4

5

128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k

SPM Size (Bytes)

#
M

a
in

m
e

m
o

ry
a

c
c
e

s
s
e

s
(

)
original.MH

original.HMSE

LT-4.MH

LT-4.HMSE

WAC

Figure 9.10: HMSE and Atomium/MH comparison for 2D Wavelet Algorithm

hierarchy instances. For the original version of the 2D Wavelet code, HMSE pro-
duces estimates that are very close to the Atomium/MH tool. For the transforma-
tion LT −4, there exists estimation difference between HMSE and Atomium/MH.
This is partially due to that the different intra-array memory size estimation tech-
nquies give different results.

For this application, Atomium/MH takes a few minutes of the CPU time. In
contrast, the initial HMSE takes less than 1s of the CPU time which is two order
of magnitude faster than the Atomium/MH tool. The incremental HMSE takes
around 260ms for all the selected transformation instances presented in the table,
which is around one order of magnitude faster than the initial HMSE. For other
unlisted transformations,

9.5 Experiments on Other Applications

The memory footprint estimation is also performed for several other realistic
applications. As shown in Table 9.10, the technique presented in this disserta-
tion present very accurate estimation results compared to what are achieved with
Atomium/MC. For all applications, the technique presented in this dissertation is
at least three orders of magnitude faster than Atomium/MC. In [11], Balasa et
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Application Declared MDV approach Atomium/MC

code size size time size time

durbin.c (N=500) 502000 251498 3.0ms 251003 70s

dynprog.c 1020001 19701 1.2ms 19604 7.0s

gauss.c 5280008 1436016 2.1ms 1436008 6.1s

reg detect.c 8392 4337 1.7ms 4297 5.8s

Table 9.10: Estimation comparison for other applications

al. has presented a memory footprint estimation tool, named K2, for exactly the
minimum memory footprint requirement, developed at the University of Illinois
at Chicago. Their approach is performed based on the polyhedron GM while their
previous work has been reviewed in Chapter 2. For their approach, it takes 15s
for the Durbin algorithm, 137s for the 2-D gauss blue filter (gauss.c), and 0.8s
for the regularity detection algorithm (reg detect.c). Their approach is also much
slower than the technique presented in this dissertation. Their estimation results
are not listed here as different parameters are used in their experiments, result-
ing in different results. In general, their approach can result in smaller memory
footprint requirement as their estimate are performed on smaller units, basic set
as reviewed in Chapter 2. The minimum memory footprint requirements are diffi-
cult to use in practical allocation problems (typically requiring significantly more
complex hardware for address generation).

9.6 Summary
Experiments on several test vehicles demonstrate that the MFE methodology pre-
sented in this dissertation is very fast and gives reasonable estimation result at
the early design stage. It is orders of magnitude faster than the compared Atomi-
um/MC. The MFE methodology contains the intra-array estimate using the novel
vertexes approach based MDV calculation and the Hanoi tower based inter-array
estimation.
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For HMSE, the initial HMSE just takes a few seconds for all the experiments.
It is also fairly fast, which is two orders of magnitude faster than Atomium/MH.
However, it is still too expensive considering the estimation has to be performed
interactively over the large number of loop transformation search space explo-
ration. The incremental HMSE can further speed up the estimation, just taking
between a few milliseconds to hundred milliseconds for all the experiments. Its
computation time varies depending on the effect of the loop transformations per-
formed. But in principle, when the application is larger, usually one instance of
the sequence of incremental loop transformations performed will have more local
effect. The estimation time will be less ratio of the initial HMSE. This, however,
also varies depending on what sequence of loop transformations performed, which
again varies depending on the chosen loop transformation algorithm. This makes
the incremental HMSE scalable for even larger size applications.

The prototype tools presented here are implemented in Python while the Atom-
ium tool suite is implemented in C++. The prototype tools would be even faster
when implemented in C/C++. A fast estimation is critical since it has to be per-
formed frequently during the early system level exploration.

The number for the #main memory accesses of HMSE and Atomium/MH pre-
sented above can be used to perform a power consumption for a set of memory
hierarchy instances as discussed in Chapter 8. This is also illustrated for the Cav-
ity Detection algorithm and the estimated power is comparable to what Atomi-
um/MH gives as the number of accesses to each layer are quite close for them.
Further experiments on other applications are left for future work.
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Conclusions and Future Work

10.1 Conclusions

The work presented in this dissertation has been devoted to the development of fast
estimation methodologies. It consists of two major parts, one about fast memory
footprint estimation and one about fast hierarchical memory size estimation. At
the early design stage, usually a large degree of freedom is present and the system
optimization search space is huge. This is the case, for example, at the global
loop transformation and control flow transformation stage. It is not realistic to
evaluate each alternative through full implementation, since this is too time con-
suming. On the other hand, due to high-level system descriptions, the early stage
transformations are usually steered using abstract cost functions. This can lead to
sub-optimal end- products. As an alternative to this, the estimation methodolo-
gies presented in this thesis evaluates the later design stage’s effect at the early
design stage. The estimation is required to be performed interactively during the
transformation exploration. They help the designer or automatic tool to find the
right transformation instance(s) for a global optimization during the system level
search space exploration.

Fast estimation is critical as usually a huge number of transformation possibil-
ities need to be evaluated. To achieve this goal together with achieving reasonable
estimation accuracy, a number of advanced techniques have been introduced in
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this dissertation.
In order to perform a fast memory footprint estimation for an application, we

propose to split it into two steps: first to perform intra-array memory footprint
estimation as discussed in Chapter 4 and secondly to perform inter-array esti-
mation as discussed in Chapter 5. The intra-array memory footprint estimation
is performed at the iteration domain and the memory footprint requirement for
an array is defined by the maximal lifetime window which is constrained by the
maximal dependency vector. The memory footprint requirement for an array is
easily calculated by counting the number of iteration nodes constrained by the
maximal dependency vector. This technique is extremely fast as the estimation
complexity is independent on the complexity of the data access pattern. Instead it
is a linear function of the number of surrounding loop iterators. For fast maximal
dependency vector calculation, two approaches have been presented: an ILP for-
mulation and the vertexes based approach. The intra-array estimation techniques
have been published in [65].

Inter-array memory footprint estimation is performed based on a lifetime anal-
ysis between multiple arrays. Several Hanoi tower approaches have been intro-
duced: initial one layer Hanoi tower approach, multiple layer Hanoi tower ap-
proach and improved one layer Hanoi tower approach. The initial approach is fast
but the improved approach is faster and scalable for large applications.

The next part of the dissertation presents the hierarchical memory size estima-
tion methodology used to evaluate the loop transformations’ effect on both data
mapping onto the memory hierarchy and the resulting storage requirement. The
methodology is classified as an initial approach and an incremental approach as
described in Chapter 6 and 7 respectively. Several advanced techniques have been
introduced to achieve a fast estimation, such as bounding box data reuse analy-
sis, platform independent memory hierarchy layer assign estimation with Pareto
curve output, and fast memory footprint estimation. In order to further speed up
the estimation when it is performed repeatedly, the incremental approach is in-
troduced that performs incremental intra-array memory footprint estimation and
incremental data reuse analysis [66]. It exploits the fact that incremental loop
transformations usually have very local effect. Locally updating the estimation
can then remove redundant recomputation and hence speed up the estimation.
The estimation makes it possible to find the most interesting loop transformations
which might result in optimal usage of any memory platform selected later. The
Pareto curve further allows the designer to perform a fast low power memory plat-
form exploration as represented in Chapter 8. The initial HMSE techniques have
been published in [63, 67].
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Prototype tools have been implemented that proves the usefulness and effi-
ciencys of the estimation methodologies. As demonstrated on several real life
applications in Chapter 9, the estimation is sufficiently accurate for the purpose
and at the same time very fast. This shows that the methodologies are very suitable
to be used repeatedly at the early system level design space exploration stage.

Several additional journal and conference papers are in progress, based on
the material presented in this dissertation. Besides the material presented in this
dissertation, the author has also been contributed to other work, partially published
in [64, 132, 133, 11].

10.2 Future Work
Even though it has been shown that the estimation methodologies are useful in its
current version, a number of research topics are open for future work. The imple-
mentation of integrating the fast inter-array memory footprint estimation within
the hierarchical memory size estimation has not been completed. Further exper-
iments after this is included should also be performed to check its effect. Future
work is also required to verify the accuracy of the power estimation and the data
memory platform exploration.

The current intra-array memory footprint estimation methodologies are accu-
rate for most cases of practical applications. Overestimation however occurs for
some cases which may occur in real life applications. Techniques are introduced
to handle this in order to reduce the overestimate, but they have not been imple-
mented. A search for more general solutions is hence still interesting, e.g., for
non-rectangular arrays. For inter-array memory footprint estimation, the multiple
layer Hanoi tower approach has not been implemented and further investigation is
required to evaluate its efficiency.

The current hierarchical memory size estimation methodology targets the uni-
processor case. For future work, the challenge is to apply it also for the multi-
processor case.
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