
Abstract. The coordination of rhythmic movements is
characterized by attraction to stable modes as well as by
loss of stability due to the manipulation of external
control parameters. For isochronous coordination be-
tween two oscillating components, frequency-induced
transitions from antiphase to inphase coordination are
frequently observed. Such transitions have been under-
stood on the basis of a dynamical model, the HKB
model, consisting of both a potential function for relative
phase and a description of the oscillating limbs in terms
of nonlinearly coupled limit cycle oscillators. According
to the latter aspect of this model, the loss of stability of
the antiphase pattern, which precedes the transition to
the inphase pattern, is mediated by the decrease in
movement amplitude that occurs when the movement
frequency is scaled up. This amplitude-based transition
mechanism was examined experimentally in the context
of a unimanual tracking task. Subjects were instructed to
maintain a prescribed amplitude, while tracking an
oscillating visual stimulus in either the inphase or the
antiphase mode. Three di�erent movement amplitudes
were used to examine the prediction that larger ampli-
tudes lead to more stable coordination. When the
frequency of oscillation was gradually increased, transi-
tions from antiphase to inphase coordination were
observed in the majority of the trials, despite constant
or sometimes even slightly increasing amplitudes. No
signi®cant e�ects of amplitude on pattern stability, as
indicated by the variability of relative phase and by the
critical frequency, were observed. To the extent that these
®ndings can be generalized beyond the present task
domain, they suggest that frequency-induced transitions
in coordinated rhythmic movements may not be medi-
ated by a drop in amplitude and that alternative
directions in modeling may have to be considered.

1 Introduction

In performing daily activities, our movement system
constantly has to adapt to changing conditions. Whereas
such adaptations often involve merely quantitative
scaling of relevant variables, qualitative changes be-
tween di�erent coordination patterns are also observed.
For instance, increase in the speed of locomotion results
in transitions between gait patterns in a large number of
species. Quadrupeds walk at slow speeds but change to
trot and subsequently to canter, transverse gallop, or
rotary gallop at higher speeds. Such transitions in gait
have been interpreted as functional adaptations on the
basis of considerations of mechanical stability, metabol-
ic cost, mechanical interference between the limbs, and
maneuverability (e.g., Grillner et al. 1979; Hildebrand
1980; Hoyt and Taylor 1981). In certain quarters, it is
believed that the switches between coordination patterns
result from the selection of speci®c motor programs
(e.g., Shapiro et al. 1981).

The dynamical systems approach to movement co-
ordination, however, seeks an explanation for such
qualitative changes in coordination in principles of
pattern formation and self-organization (e.g., Beek et al.
1995; Diedrich and Warren 1995; Haken 1996; Kelso
1994, 1995; Turvey 1990). Within this perspective, it has
been proven useful to capture the order in the system
(i.e., the coordination pattern) by one or a few collective
variables or order parameters. The dynamics of these
order parameters and, thus, the stability of the coordi-
nation patterns are in¯uenced by aspeci®c control pa-
rameters. Gradual scaling of a control parameter may
result in loss of stability of the initial coordination pat-
tern followed by an abrupt transition to another, still
stable pattern. As a result, various coordination modes
may be captured by a single dynamical system with or-
der parameter dynamics that undergo qualitative (non-
linear) changes at critical values of a control parameter.
During such `phase transitions', the system reveals itself
in the sense that the order parameter (the dimension
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along which the sudden nonlinear change occurs) and
the control parameter (the linearly scaled parameter that
in¯icts the transition) can be determined. For this rea-
son, the study of phase transitions plays an essential role
in the dynamical systems approach to movement coor-
dination.

Phase transitions between coordination patterns were
originally demonstrated in the context of isochronous
rhythmic interlimb coordination (e.g., Kelso 1984; Kelso
et al. 1987). If two limbs cycle with the same su�ciently
low frequency, two coordination patterns can be stably
performed without speci®c training: the inphase pattern
(simultaneous movements in identical directions, re-
sulting in a phase di�erence of 0°) and the antiphase
pattern (simultaneous movements in opposite directions,
resulting in a phase di�erence of 180°). When starting in
antiphase coordination, a gradual increase in the fre-
quency of the movements (control parameter) results in
an abrupt transition to the inphase pattern. The occur-
rence of critical ¯uctuations (Kelso et al. 1986) and
critical slowing down (Scholz et al. 1987), indicators of
pattern instability, revealed that this transition indeed
resulted from loss of stability of the antiphase pattern.

Building on this original line of research, transitions
from the antiphase to the inphase mode have also been
demonstrated in the coordination between wrist move-
ments in a pronation-supination task (Byblow et al.
1994), between di�erent limbs (e.g., an arm and a leg;
Jeka and Kelso 1995), between a limb and a visual
(Wimmers et al. 1992) or auditory stimulus (Byblow et al.
1995; Kelso et al. 1990), and between the lower legs of
two di�erent persons (Schmidt et al. 1990). In addition,
frequency-induced transitions have been demonstrated
in multifrequency tapping tasks, where transitions from
one frequency ratio (e.g., 5:8) to another, less complex,
frequency ratio (e.g., 2:3) were observed (Haken et al.
1996; Peper et al. 1991, 1995).

To account for the transition from antiphase to
inphase coordination during isofrequency coordination
tasks, a dynamical model was developed by Haken et
al. (1985). This model, referred to in the literature as
the Haken-Kelso-Bunz (or HKB) model, involves two
interrelated levels of modeling, namely that of the
dynamics of the order parameter relative phase (i.e.,
the phase di�erence between the moving limbs) and
that of the individual limb movements and their in-
teractions. At the ®rst level, the dynamics of relative
phase were accounted for by means of the potential
function:

V �/� � ÿa cos/ÿ b cos�2/� �1�

where / denotes relative phase and a and b are two
parameters. The minima of this function represent the
attractor states of the system, where the corresponding
values of the order parameter are stable. Indeed, for b/a
>0.25, (1) results in minima for 0° and 180°, implying
that both the inphase and antiphase coordination
pattern can be performed stably (see Fig. 1). To account
for the observed transition between these coordination
modes, scaling of the control parameter was translated

into annihilation of the attractor for antiphase coordi-
nation. This was accomplished by assuming that changes
in movement frequency in¯ict parametric changes in the
potential function: Increasing movement frequency was
associated with a decrease in the ratio between the
parameters b and a. This results in a di�erential decrease
in stability for the two coordination modes and culmi-
nates in the observed transition at b/a � 0.25 (see
Fig. 1; cf. Haken et al. 1985).

Although the potential function (1) can account for
the observed transition, it is unclear at this level of
analysis why the ratio between the coupling parameters
b and a would be a�ected by changes in the frequency of
oscillation. In the HKB model, this issue was resolved by
modeling the system also at the level of the equations of
motion that describe the kinematics of the limb move-
ments. At this level, the model is tailored more speci®-
cally to the movements of the limbs and the way in
which they interact. In general terms, the resulting
model of coupled oscillators is de®ned by

�x1 � h�x1; _x1� � g�x1� � I12�x1; _x1; x2; _x2� �2a�

�x2 � h�x2; _x2� � g�x2� � I21�x2; _x2; x1; _x1� �2b�
where xj (j � 1, 2) denotes the limb position in time and
the dot notation is used to indicate time derivatives. On
the basis of the kinematics of the movements, the
moving limbs were modeled as nonlinearly damped
oscillators with both a Van der Pol (x2 _x) and a Rayleigh
( _x3) damping term (Haken et al. 1985; Kay et al. 1987).
Such oscillators involve both positive and negative
damping and are therefore self-sustaining. Moreover,
they are characterized by speci®c spatiotemporal prop-
erties: With increasing frequency, peak velocity increases

Fig. 1. The potential V �/� for di�erent values of b/a. Behavioral
changes are represented by the overdamped motion of a rolling ball in
the potential. At b/a � 0.25, the antiphase pattern becomes unstable
(white instead of black ball), resulting in a transition to the inphase
pattern
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due to the Van der Pol damping term, whereas
amplitude decreases due to the Rayleigh term. As will
be discussed below, the latter aspect of the model plays
an essential role in the explanation of the observed
transition from antiphase to inphase coordination.

The mutual interactions between the two oscillators
were modeled by Haken et al. (1985) in terms of their
state variables x and _x. The coupling functions I12 and
I21 in (2) had to be de®ned in such a way that the col-
lective dynamics, i.e., the dynamics of the order pa-
rameter /, of the resulting system was adequately
modeled by the potential function (1). From the relation

d/
dt
� ÿ dV �/�

d/
�3�

it follows that the dynamics of /, as de®ned by the HKB
potential function (1), are captured by the order
parameter equation

d/
dt
� ÿa sin/ÿ 2b sin�2/� �4�

Although a variety of coupling functions may lead to the
required order parameter equation (4), two speci®c
formulations were suggested by Haken et al. (1985).
Whereas the functional form of the coupled oscillators
has been validated (Kay et al. 1987; but see also Beek
et al. 1996), the form of the proposed coupling functions
still awaits empirical evaluation. Such an evaluation is
important for at least three reasons. First, the identi®-
cation of the proper coupling functions for the coordi-
nation of rhythmic movements is an essential step in the
formal characterization of such movements qua instanc-
es of coupled limit cycle oscillators, which is (still) of
theoretical relevance in its own right, especially in cases
where no potential function can be derived, such as in
the production of multifrequency patterns (Haken et al.
1996). Second, the construction of coupled oscillator
models may provide a means for evaluating the formal
degree to which the claim holds true that dynamical
principles of movement coordination apply quite gener-
ally, regardless of their material implementation. Third,
the formal identi®cation of coupling functions may help
to provide insight into the neural mechanisms underly-
ing these patterns and thus promote our understanding
of the relation between brain and behavior. Therefore,
the behavioral predictions of the two coupling functions
proposed by Haken et al. (1985), which are described
below, were tested empirically in the current experiment.

Although both derivations presented by Haken et al.
(1985) lead to the required coordination dynamics, the
resulting order parameter equations are not identical.
For a full discussion of the two derivations, the reader is
referred to Haken et al. (1985) and Peper and Beek
(1998). For our present purpose, it is su�cient to focus
on the di�erences between the two versions of the model
with respect to the resulting order parameter equations.
In the prevailing version of the model of coupled dif-
ferential equations, the coupling between the two oscil-
lators was modeled using time derivatives (Haken et al.

1985; see also Peper and Beek 1998). This derivation
resulted in the order parameter equation

d/
dt
� �a� 2br2� sin/ÿ br2 sin�2/� �5�

where r is the real amplitude of the oscillations and a
and b are two adjustable but then ®xed parameters (i.e.,
a and b are assumed to be constant during an
experimental run). Equation (5) is identical to (4) if
a� 2br2 � ÿa and br2 � 2b. This implies that the
transition from antiphase to inphase, which occurs at
b/a � 0.25 in (4), takes place at the critical amplitude
r � ��������������ÿa=4b

p
, a < 0. In other words, according to this

version of the model, movement frequency does not
a�ect the stability of the coordination patterns directly,
but its in¯uence is mediated entirely by the associated
drop in amplitude (modeled by means of the Rayleigh
damping term in the component oscillators).

In an alternative formulation of the model, the cou-
pling between the limbs was assumed to depend on their
positions at earlier moments in time, which was for-
malized by incorporating a time delay function (Haken
et al. 1985; see also Peper and Beek 1998). The resulting
order parameter equation

d/
dt
� ÿ 1

x2

��a� 6br2� sin/ÿ 3br2 sin�2/�� �6�

reveals that in this version of the model, pattern stability
not only depends on the parameters a and b and
amplitude r, but also directly on the movement frequen-
cy x itself. Although this implies that an increase in x
results in an overall decrease in pattern stability, the
attractor for antiphase coordination will not be annihi-
lated, because both sine terms are equally a�ected by
this parameter. Therefore, also for this version of the
model, the vanishing of the attractor for antiphase
coordination is explained on the basis of the drop in
amplitude that is associated with an increase in frequen-
cy and occurs at the critical amplitude r �����������������ÿa=12b
p

; a < 0.
In summary, in both versions of the HKB model,

annihilation of the attractor for antiphase coordination
is based on the inverse relation between movement fre-
quency and amplitude, which is accounted for by the
Rayleigh damping term in the component oscillators.
Whereas the basic transition mechanism is the same, the
two versions of the model di�er with respect to the in-
¯uence of movement frequency: While in the time de-
rivatives version of the model the e�ect of movement
frequency is fully mediated by the associated changes in
amplitude, the time delays version shows an additional
inverse dependence of pattern stability on movement
frequency itself.

The HKB model was originally developed to explain
the empirically observed frequency-induced transition
from antiphase to inphase coordination. Because both
versions of the model of coupled oscillators can account
for this transition, the functional form of the coupling
between the oscillators has so far not been evaluated.
Yet the coupling function featuring in the time
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derivatives version of the model has been used in mod-
eling the space-time properties of bimanual rhythmic
movements (Kay et al. 1987), and it has been called a
``fundamental biophysical coupling'' (Kelso 1994, p.
401; see also Jirsa et al. 1994). In addition, the proposed
amplitude-mediated transition mechanism has been
generalized to account for frequency-induced transitions
in multi-frequency coordination (Haken et al. 1996).
Because the choice for this particular coupling function
has not been based on direct empirical support but only
on its formal expediency in accounting for phase tran-
sitions, the present study aims at a `head-on' empirical
evaluation of the functional form of the coupling be-
tween the limbs. This will be helpful in determining
whether the coupling function derived for the time de-
rivatives version of the model is indeed correct, or
whether another coupling function (for instance, the one
that was used in the time delays version of the model)
would be more adequate.

Although the time derivatives version of the HKB
model is more commonly used in the literature (e.g.,
Fuchs and Kelso 1994; Jirsa et al. 1994; Kay et al. 1987;
Kelso 1994; Kelso et al. 1987), it may be argued that the
time delays version is more plausible, because the in-
corporated time delays may re¯ect delays associated
with underlying neurophysiological processes, for in-
stance the use of a�erent signals (cf. Haken 1996; Peper
and Beek 1998). Moreover, in multifrequency coordi-
nation, coupling strength has been demonstrated to be
inversely related to movement frequency, whereas no
dependence on the amplitude of oscillation was observed
(Peper and Beek 1998). Because the generalized version
of the HKB model (Haken et al. 1996), which accounts
for the coordination of multifrequency relations, is de-
rived along similar lines as the HKB model, an empiri-
cally motivated choice between the two versions of the
model could be made on the basis of these results: The
strong inverse relation to movement frequency per se
indicated that the coupling between the limbs was more
adequately modeled when the time delay function was
incorporated in the derivation (Peper and Beek 1998).

In the study by Peper and Beek (1998), the tempo of
performance remained constant during each experimen-
tal run. Therefore, the model prediction that frequency-
induced transitions are mediated by the inverse relation
between movement frequency and amplitude could not
be tested. This aspect of the model was examined in the
present experiment. By instructing the subjects to main-
tain a ®xed amplitude while increasing the frequency of
oscillation, (the e�ect of) the Rayleigh damping term was
eliminated from the component oscillators. If an increase
in movement frequency is not accompanied by a drop in
amplitude, neither version of the model of coupled os-
cillators predicts annihilation of the attractor for the
antiphase pattern. According to the time derivatives
version of the model, in which pattern stability varies
solely as a function of movement amplitude, no transi-
tions to the inphase pattern are expected to occur. Ac-
cording to the time delays version of the model, however,
the dependence on movement frequency itself leads to an
overall decrease in pattern stability. Therefore, transi-

tions to the inphase pattern might occur if the stability of
the antiphase pattern becomes too small to resist sto-
chastic ¯uctuations (cf. SchoÈ ner et al. 1986). The addi-
tional dependence on movement amplitude was
examined by studying the behavior for di�erent ampli-
tude conditions. If a larger amplitude of oscillation in-
deed results in more stable coordination, the transition
from antiphase to inphase coordination is expected to
occur at a higher critical frequency.

2 Experiment

To be able to prescribe the required amplitude of
oscillation e�ectively, the amplitude-based transition
mechanism of both versions of the HKB model was
examined using a rhythmic tracking task. Frequency-
induced transitions have been demonstrated in the
context of rhythmic tracking and have been interpreted
on the basis of the HKB model (Wimmers et al. 1992).
Although this task involves a purely unidirectional
coupling between a visual stimulus and an oscillating
limb, the order parameter dynamics predicted by the
HKB model are qualitatively the same as those predicted
for bidirectionally coupled systems.1

2.1 Method

Subjects. Potential subjects were screened before they
were invited to participate in the experiment. During this
screening, the required coordination patterns were
practised under all amplitude conditions in a session
that lasted about 30 min. One potential subject did not
meet the amplitude requirements (for speci®cations see
Procedure), whereas another one was unable to perform
the antiphase coordination pattern. The other eight
subjects (one woman and seven men) were invited to
take part in the experiment. They were all self-professed
right-handers (mean age 27.3 years, range 24±35 years).
The subjects gave their informed consent prior to
participating in the experiment. They were paid for
their services.

Experimental set-up. A vertical manipulandum connect-
ed to a rotatable horizontal lever that rested on a vertical
axle was secured on a tabletop, with the vertical axis
pointing downward through a hole in the tabletop
surface (see Fig. 2). A DC potentiometer, connected to
an A/D interface card (sampling rate 200 Hz, 12 bits/s,
LabMaster) to a microcomputer (486 processor, 33

1 Note that if the stimulus frequency is not equal to the eigen-
frequency of the oscillating limb (assuming it has one), a symmetry-
breaking term (Dx: the di�erence in eigenfrequency of the two
oscillating components) has to be incorporated in the potential
function (e.g., Kelso et al. 1990). The resulting dynamics may in-
clude phase drift and phase wrapping. These phenomena are also
observed for bidirectionally coupled systems with di�erent eigen-
frequencies (e.g., the coordination between an arm and a leg; Jeka
and Kelso 1995).
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MHz), was attached to the lower end of the axle for
registration of the angular position of the lever. A LED
bow, on which an oscillating signal with adjustable
amplitude and frequency could be presented, was
positioned in front of the manipulandum at a distance
of about 1 m. The setup was calibrated in such a way
that the angular positions of the manipulandum
matched those of the LED signal. Three amplitudes
were used in the experiment: 5°, 15°, and 25°. (Note that
the range of motion was twice the amplitude of
oscillation.) These amplitudes were speci®ed by means
of static color-coded targets (width: ca. 1 cm) positioned
just below the LED signal on the LED bow and by
means of the LED signal itself.

Procedure. Subjects were seated in a chair close to the
table on which the manipulandum was mounted, at a
distance that ®tted the individual body measures. They
grasped the manipulandum with their right hand, and its
position was adjusted in such a way that the wrist was
located directly above the rotation point of the lever.
The lower arm rested comfortably on an arm rest
positioned on the table. To avoid sideward movements

of the wrist, the most distal part of the lower arm was
secured between two vertical metal bars coated with
foam-rubber. The position of these bars could be
adjusted to ®t each subject's wrist snugly.

The experiment consisted of two parts. In the ®rst
part, the preferred movement frequency was determined
for each amplitude condition as well as for the preferred
amplitude of oscillation. The four conditions (i.e., three
prescribed amplitudes and the preferred amplitude) were
presented blockwise (randomized order, ®ve trials per
block). The subjects were instructed to oscillate their
hand at a comfortable frequency of oscillation while, for
the prescribed amplitude conditions, the required am-
plitude was speci®ed by the color-coded targets. Once a
comfortable frequency was attained, the actual mea-
surement (lasting 30 s) was started, during which the
prescribed amplitude was also speci®ed by means of two
LEDs at the extremes of the required movement range.
For each movement cycle, the amplitude of the hand
movement was determined. If for a given trial more than
50% of the cycles were performed with an amplitude
that di�ered by more than �5° from the required am-
plitude, the recorded data were deleted and the trial was
rerun. Over subjects, the average number of rerun trials
was 0.9 (range 0±2).

In the second part of the experiment, the LED signal
oscillated (sine wave) in the horizontal plane. During a
trial, its frequency was scaled from 1.0 to 2.8 Hz in 10
bins (0.2-Hz steps), consisting of 10 cycles each (trial
duration 58.4 s). The subjects were instructed to oscillate
their hand either in phase (same movement direction) or
in antiphase (opposite movement direction) with this
signal, while matching its amplitude. They were also told
that they should not actively resist if the pattern changed
during a trial (cf. Kelso 1995). The inphase and anti-
phase conditions were tested blockwise, counterbalanced
over the subjects. Within these coordination mode
blocks, the three amplitude conditions (5°, 15°, and 25°)
were arranged in blocks (consisting of ®ve trials each)
which were presented in a random order. For each trial,
the movement amplitudes were determined for each cy-
cle and evaluated per frequency bin. If for any of the
bins more than 50% of the movement amplitudes dif-
fered by more than �5° from the required amplitude,
the data were deleted and the trial was rerun. Over
subjects, the average number of rerun trials was 2.8
(inphase 3.1 [range 0±8]; antiphase 2.5 [range 0±4]).

Running the experiment took about 1.5±2 h. Between
the ®rst and the second part of the experiment and be-
tween the inphase and antiphase divisions of part 2, the
subjects were allowed a rest period of approximately
10 min.

2.2 Analysis

The signals were low-pass ®ltered with a recursive
second-order Butterworth ®lter, which was applied back
and forth (cut-o� frequency 15 Hz). A peak-®nding
algorithm was used to identify maximal extension and
¯exion for each cycle. Cycle frequency (in Hz) was

Fig. 2. Schematic representation of the experimental set-up
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de®ned as the inverse of the period between two peak
extensions; cycle amplitude (in degrees) was de®ned as
the average of two adjacent extension-¯exion, ¯exion-
extension half-cycle excursions divided by 2.

For the frequency-scaled trials, point estimates of
relative phase were determined using the maximal ex-
cursions in the visual signal (V ) and in the recorded
wrist movements (W). Relative phase (/) was deter-
mined for every peak in the visual signal, resulting in
two estimates of relative phase for each movement cycle.
These were de®ned as �t�Vn� ÿ t�Wm��=�t�Wm�1�
ÿt�Wm��p, where t refers to the moment in time at which
a given peak was attained and m and m� 1 refer to the
indices of the two peaks in the wrist signal between
which the considered peak in the visual signal (indexed
by n) was situated in time.

For each bin in the frequency-scaled trials, the mean
direction of relative phase, a measure of central ten-
dency, was calculated following Mardia (1972; see also
Batschelet 1981). In addition, the `uniformity', of re-
lative phase, which is a measure of variability for cir-
cular data, was determined. Uniformity takes values on
the unit interval [0, 1], but can be transformed to the
range of 0±1 using:

s0 � ÿ2 ln�
�������������
1ÿ S0

p
� �7�

where S0 denotes the measure of uniformity on the unit
interval [0, 1] and s0 is the transformed uniformity
measure. This measure is somewhat analogous to the
sample standard deviation and permits the use of
inferential tests based on standard normal theory
(Mardia 1972). Note that larger values for transformed
uniformity correspond to smaller variability.

On the basis of the transformed uniformity of rela-
tive phase, each bin was categorized as showing either
stable or unstable behavior: A bin was considered to be
performed in a stable fashion if the transformed uni-
formity was larger than 2.25. This criterion was chosen
on the basis of detailed inspection of the data. To de-
termine whether the correct phase relation was per-
formed, a tolerance range of �30° was used. As
described in the Results section (Mean direction of
initial relative phase), the subjects tended to perform
both coordination patterns with a considerable o�set,
which probably resulted from the asymmetry in the
experimental setup (see footnote 1). To deal with these
phase shifts, the analyses not only included a tolerance
range around the required frequency range, but also
one centered around the mean direction of relative
phase that was performed in the ®rst bin. If, for a
speci®c frequency bin, the performance was considered
to be stable (i.e., transformed uniformity >2.25), and
the mean direction of relative phase was situated in
either tolerance range, the performance was categorized
as `stable performance of the required coordination
pattern'. The frequency that was performed in the ®rst
frequency bin for which these requirements were no
longer met was adopted as the critical frequency (i.e.,
regardless of whether or not a transition to another
phase relation occurred). In case the stability of the

required phase relation was not lost, the maximal re-
quired frequency (2.8 Hz) was taken as the critical
frequency.

3 Results

3.1 Part 1: Control trials

Amplitude. A one-way repeated measures ANOVA with
the factor Amplitude (4 levels: small, middle, large, and
preferred amplitude) performed on the amplitude of the
hand movements revealed a signi®cant e�ect (small 5.2°;
middle 14.7°; large 25.4°; preferred amplitude 20.0°),
F(3, 21) � 118.4, P < .0001. Post-hoc analysis (New-
man-Keuls, P < .05) showed that all conditions result-
ed in signi®cantly di�erent movement amplitudes.

Preferred frequency. Although there was a tendency for
the preferred frequencies to decrease with movement
amplitude (small 1.56 Hz; middle 1.53 Hz; large
1.32 Hz; preferred amplitude 1.49 Hz), a one-way
repeated measures ANOVA testing the e�ect of ampli-
tude on preferred movement frequency revealed that
these di�erences were not signi®cant.

3.2 Part 2: Frequency-scaled trials

Accuracy of frequency tracking. To establish whether the
subjects were adequately tracking the frequency of the
visual signal across the frequency bins (1±2.8 Hz),
Pearson's product-moment correlations were deter-
mined between the required and the actually performed
frequencies for each of the 240 trials (30 trials per
subject). For all subjects and conditions, the values of r
were in the range from .97 to 1.00. In addition, the mean
constant error in frequency (observed frequency ) target
frequency), averaged over frequency bins and amplitude
conditions, was small (inphase 0.01 Hz; antiphase
0.02 Hz).

Movement amplitude. Movement amplitude was exam-
ined in a 2 ´ 3 ´ 10 ANOVA, with the factors Coordi-
nation Mode, Amplitude, and Tempo. The e�ect of
amplitude was signi®cant (small 6.4°; middle 15.6°; large
25.1°), F(2, 14) � 1702.8, P < .0001. Post-hoc analysis
(Newman-Keuls, P < .05) revealed that all three am-
plitude conditions resulted in signi®cantly di�erent
movement amplitudes. The main e�ect of tempo was
also signi®cant, F(9, 63) � 12.9, P < .0001, resulting
from decreasing amplitude with increasing tempo (New-
man-Keuls post-hoc analysis, P < .05). In addition, the
two-way interaction e�ects between Coordination Mode
and Tempo and between Amplitude and Tempo were
signi®cant, F(9, 63) � 9.2, P < .0001 and F(18,
126) � 3.7, P < .0001, respectively, as well as the
three-way interaction between Coordination Mode,
Amplitude, and Tempo, F(18, 126) � 4.0, P < .0001.
Post-hoc comparisons (Newman-Keuls, P < .05) re-
vealed that the e�ect of tempo was stronger for the
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inphase conditions than for the antiphase conditions,
and that the decrease in amplitude with increasing
tempo was more pronounced for larger required ampli-
tudes (see Fig. 3). Interestingly, according to the post-
hoc tests, no signi®cant decrease in amplitude occurred
in the antiphase trials for the small amplitude. For the
middle amplitude, the antiphase trials showed only a
signi®cant di�erence between the ®rst bin (1 Hz) and the
last two bins (2.6 and 2.8 Hz).

Mean direction of initial relative phase. In a large number
of trials, the subjects started o� performing the required
phase relation with a substantial phase shift in the ®rst
frequency bin (inphase )38.1°, SD � 21.1°; antiphase
)44.4°, SD � 21.4°): In 99% of the trials, the wrist
oscillations were leading the visual signal in time. The
observed phase shift never exceeded �90°, implying that
the performed phase relation in the ®rst frequency bin
was always closer to the required phase relation (i.e., 0°
or 180°) than to the other coordination pattern (i.e., 180°
or 0°, respectively). This phase shift may have resulted
from the asymmetry in the experimental setup, involving
the coordination between a hand and an oscillating
visual signal. A di�erence in eigenfrequency between
two oscillating components has been demonstrated to
lead to shifts in equilibrium phase (e.g., Schmidt et al.
1993; Sternad et al. 1992), which is in agreement with the
extended version of the HKB model in which the
di�erence in eigenfrequency (Dx) has been incorporated
as a symmetry-breaking term (Kelso et al. 1990; see also
footnote 1).

Variability of relative phase. A 2 (Coordination Mode) ´
3 (Amplitude) ´ 10 (Tempo) repeated measures ANO-
VA on the transformed uniformity of relative phase
revealed that performance was less variable (higher
values for transformed uniformity) during the inphase
trials (inphase 2.48; antiphase 2.14), F(1, 7) � 73.9,
P < .0005. The e�ect of Tempo was also signi®cant,
revealing that with increasing movement frequency the
variability of relative phase increased, F(9, 63) � 10.74,
P < .0001. The e�ect of amplitude tended towards
signi®cance (small 2.22; middle 2.40; large 2.30), F(2,
14) � 3.5, P < .1. In addition, the interaction between
Coordination Mode and Tempo resulted in a signi®cant
e�ect, F(9, 63) � 3.7, P < .005. Post-hoc analysis
(Newman-Keuls, P < .05) revealed that for inphase
coordination, the transformed uniformity decreased
steadily over the frequency bins, indicating increasing
variability. The decrease in transformed uniformity in
the ®rst four bins was stronger in the antiphase trials
than in the inphase trials. Following a brief increase (see
Fig. 4), the transformed uniformity obtained for the
antiphase trials in the last four bins was not signi®cantly
di�erent from the corresponding values obtained for the
inphase trials.

Critical frequency. In all antiphase trials stability was
eventually lost, whereas in 18% of the inphase trials (i.e.,
22 trials) the required pattern was performed stably
throughout the trial. A 2 ´ 3 repeated measures
ANOVA with the factors Coordination Mode and
Amplitude revealed that the critical frequencies obtained
for the inphase trials (mean 2.37 Hz) were signi®cantly
higher than those obtained for the antiphase trials (mean
1.57 Hz), F(1, 7) � 64.2, P < .0005. In addition, the
di�erence between the amplitude conditions was signi-
®cant: The critical frequencies obtained for the small
and large amplitudes (1.93 Hz and 1.94 Hz, respectively)
were signi®cantly lower than those obtained for the
middle amplitude (2.04 Hz), F(2, 14) � 4.2, P < .05.
However, if, for each individual subject, the critical
frequencies were scaled to the mean preferred frequen-
cies (fpref) determined for each amplitude condition, a

Fig. 3. Movement amplitude (averaged over subjects) as obtained for
each amplitude condition, presented per frequency bin

Fig. 4. Transformed uniformity of relative phase, averaged over
subjects and amplitude conditions, presented for each frequency bin.
Larger values re¯ect smaller variability
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similar ANOVA revealed that only the di�erence
between the two coordination modes (inphase 2.0 ´
fpref; antiphase 1.3 ´ fpref) was signi®cant, F(1, 7) �
36.6, P < .001.

Transitions. As mentioned above, stability of perfor-
mance of the required pattern was lost in all antiphase
trials. In a subsequent analysis, it was determined
whether this loss of stability of the required phase
relation was followed by a transition to the inphase
coordination pattern. Such a transition was deemed to
have occurred if for at least two adjacent bins the mean
direction of relative phase fell within the range of )30°
to 30° or, taking the initial phase shift into account,
within the same tolerance range around the mean
direction of relative phase performed in the ®rst bin
shifted by 180°. In addition, these bins had to meet the
criterion for stable performance (i.e., transformed uni-
formity of relative phase >2.25). According to this
analysis, loss of stability of the required coordination
mode was in 57.5% of the antiphase trials (i.e., 69 trials)
followed by a transition to the inphase pattern (see
Fig. 5). The number of trials in which a transition
occurred did not di�er signi®cantly over the amplitude
conditions (small 55.0%; middle 62.5%; large 55.0%),
v2�2� � 2:3. A similar analysis performed on the inphase
trials revealed that transitions to the antiphase pattern
never occurred.

To examine whether loss of stability of the antiphase
pattern was associated with the slight decreases in am-
plitude over the frequency bins that had occurred despite
the task instructions (see Fig. 3), the mean amplitude in
the transition bin was determined for each antiphase
trial. This amplitude was compared with the mean am-
plitude attained in the ®rst bin of the same trial to de-
termine whether loss of stability of the antiphase pattern
was associated with either a decrease or an increase in
amplitude. Although the number of trials in which
movement amplitude had decreased (68 trials; mean de-
crease � )1.9°; SD � 1.8°) was larger than the number
of trials in which an increase was observed (52 trials;

mean increase � 1.6°; SD � 1.3°), this di�erence was
not signi®cant, v2�1� � 2:13. The same analysis was
performed on the subset of 69 antiphase trials in which a
transition to the inphase coordination mode was ob-
served. Again, the di�erence in the number of occur-
rences of either a decrease (37) or an increase (32) was not
signi®cant, v2�1� � 0:33. For this subset of trials, the
mean decrease in amplitude was )1.6° (SD � 1.5°) and
the mean increase was 1.7° (SD � 1.5°).

4 Discussion

The current formulations of the HKB model of coupled
oscillators explain frequency-induced transitions from
antiphase to inphase coordination on the basis of the
inverse relation between movement frequency and
amplitude. In the present study, using a unimanual
tracking task, the frequency-amplitude relation was
altered by means of the instruction to maintain a ®xed
amplitude while the movement frequency was increased.
According to both the time derivatives and the time
delays versions of the HKB model, an increase in
movement frequency does not result in annihilation of
the attractor for antiphase coordination when move-
ment amplitude is constant. This prediction as well as
related predictions regarding the e�ects of frequency and
amplitude on pattern stability were examined by study-
ing the behavior for three constant amplitude condi-
tions.

The results revealed that for all amplitude conditions,
transitions from antiphase to inphase coordination oc-
curred in the majority of antiphase trials, even if the
movement amplitude increased slightly during the trial.
In addition, the variability of relative phase (a measure
of pattern stability) was shown to be inversely related to
the frequency of the oscillations, whereas no signi®cant
di�erences were obtained between the three amplitude
conditions. These results indicate that, at least in the
rhythmic tracking task examined, the e�ect of move-
ment frequency on pattern stability is not, or at least not
necessarily, mediated by a drop in movement amplitude.
As such, they undermine an essential property of both
the time derivatives and the time delays versions of the
model, albeit that their implications are more damaging
for the former than for the latter. The obtained results
cannot be accounted for by the prevailing time deriva-
tives version, because in this version of the model, the
e�ect of movement frequency on pattern stability de-
pends solely on the associated drop in amplitude. The
occurrence of transitions despite constant or even
slightly increasing movement amplitudes, however, can
still be reconciled with the time delays version of the
model, where movement frequency itself is associated
with an overall decrease in pattern stability. Although
also for this version of the model the deterministic aspect
of the transition (annihilation of the attractor for anti-
phase coordination) depends on a drop in amplitude,
frequency-induced transitions to inphase coordination
may be argued to occur if the pattern stability becomes
too small to resist the stochastic ¯uctuations in the

Fig. 5. A typical transition from antiphase to inphase coordination,
as obtained for a single trial in the `middle' amplitude condition. The
start of each frequency bin is indicated on the horizontal axis

298



system (cf. SchoÈ ner et al. 1986). Figure 6 indicates how
even in case the amplitude remains constant, an increase
in the movement frequency may result in a transition
from antiphase to inphase coordination.

Although the occurrence of frequency-induced tran-
sitions can be understood, in line with Peper and Beek
(1998), on the basis of the time delays version of the HKB
model, the absence of systematic e�ects of movement
amplitude on the number of transitions, pattern stability,
and critical frequency seems to be at odds with both
versions of the model. It may be, however, that pattern
stability does not depend on the absolute amplitude of
the movements, but rather on relative changes therein
(with r being, for instance, normalized to the initial am-
plitude of oscillation). On the other hand, the absence of
the predicted e�ects of movement amplitude on the sta-
bility of coordination may indicate that the spatial and
temporal aspects of movement coordination were con-
trolled relatively independently of each other. In this
respect, the data are consistent with motor control
models that assume that target position and movement
speed are factorized, such as the VITE model for goal-
directed arm movements (Bullock and Grossberg 1988).

In interpreting the results of the present study as well
as those of Peper and Beek (1998), it is important to
realize that they were obtained using speci®c experi-
mental settings (unimanual tracking and multifrequency
tapping, respectively), while movement amplitude was
constrained by means of instruction. Whereas the cur-
rent results indicate that transitions are not necessarily
mediated by a drop in amplitude, this does not rule out
the possibility that in rhythmic coordination without
such spatial constraints, the drop in amplitude does play
an instrumental role in inducing transitions from anti-
phase to inphase coordination. Therefore, it would be
worthwhile to examine the relation between movement
amplitude and pattern stability also for rhythmic per-
formance without restrictions on the amplitude of os-
cillation. This may be accomplished by estimating the
parameters a and b in (1) and by relating these estimated
parameters to the frequency and amplitude of the
movements (Peper and Beek 1998).

In principle, the parameters a and b can be estimated
on the basis of the relaxation time (i.e., the time needed

to return to the original coordination pattern following
a brief mechanical perturbation) as obtained for both
antiphase and inphase coordination (SchoÈ ner et al.
1986) or on the basis of the stochastic properties of the
otherwise unperturbed time evolution of relative phase.
The latter possibility was recently pursued by Molenaar
and Newell (1997), who estimated the evolution of the
parameters a and b during experimental runs using a
recursive ®t procedure. Their estimations were based on
the time series of / during phase transitions that were
obtained for rhythmic coordination between the two
index ®ngers (i.e., the task for which the HKB model
was originally formulated). Their results showed that
although the ratio b/a indeed decreased when the fre-
quency was scaled up, this decrease did not involve a
di�erential decrease of the two parameters. On the
contrary, whereas b gradually decreased, a was demon-
strated to increase with increasing frequency. This
®nding challenges both versions of the model which
predict that an increase in frequency is associated with
decreasing values for both b and a, given the dependence
on amplitude and, for the time delays version, move-
ment frequency itself.

Whereas in many instances the dynamics of relative
phase has been demonstrated to adhere to the HKB
model or one of its more recent extensions (e.g., Kelso
et al. 1990; Tre�ner and Turvey 1996), the current results,
as well as those of Peper and Beek (1998) and Molenaar
and Newell (1997), suggest that the HKB potential
function, the validity of which has been well
corroborated, is not yet accompanied by an equally well-
validated system of coupled di�erential equations.
Although the proposed versions of the coupled oscillator
model result in the required order parameter dynamics
and as such are consistent with the HKB potential func-
tion, the predicted relations between pattern stability and
movement kinematics have not been fully corroborated.
If the predicted relation between pattern stability and
movement amplitude is not supported in future experi-
ments either, the functional form of the coupling between
the oscillators may have to be reformulated. This should
be done in such a way that pattern stability is inversely
related tomovement frequency but remains una�ected by
the associated changes in amplitude of oscillation.

Fig. 6. The potential V �/� for the time delays version of the HKB model with ®xed parameters (a � ÿ1, b � 0:11) and constant amplitude
(r � 1), presented for three di�erent frequencies (x). The e�ect of noise is schematically represented by the arrows. When frequency is increased,
both attractors become less stable. As a result a noise-induced transition from antiphase to inphase coordination may occur when the antiphase
attractor has become su�ciently unstable (grey instead of black ball in panel C)
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Although various modeling strategies may be pur-
sued, one possibility would be that frequency-induced
changes in the kinematics of the oscillating limb(s), such
as the drop in amplitude with increasing frequency (cf.
Beek et al. 1996; Kay et al. 1987), result from biome-
chanical properties of the end e�ector(s) and do not play
a role in the neural coupling underlying the coordination
between limb movements. If this is the case, a two-tiered
rather than a single-level model has to be developed in
which a system of neural oscillators interacts with the
dynamical properties of the end e�ector(s). Such a two-
tiered model will have the additional advantage that it
may account for the negative lag-1 autocorrelations that
are typically obtained for unimanual rhythmic tapping
(cf. Wing and Kristo�erson 1973), given the fact that a
dynamical model of two coupled oscillating components
with an additional noise source has been shown to
produce this characteristic aspect of the temporal vari-
ability of performance (Da�ertshofer 1998).
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