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1 Introduction

Has declining oil price volatility contributed to a more stable macroeconomic

environment since the mid-1980s, or, do high and volatile oil prices still make

a material contribution to recessions? The views are diverse. According to

Hamilton (2009), the run-up of oil prices in 2007-08 had very similar con-

tractionary effects on the U.S. economy as earlier oil price shocks (such as in

the 1970s), and should therefore be added to the list of recessions to which

oil prices appear to have made a material contribution.1 Others argue for

a reduced role for oil as a cause of recessions the last decade(s). For in-

stance, Nakov and Pescatori (2010) and Blanchard and Gali (2008) analyze

the U.S. prior to and post 1984, and find that less volatile oil sector shocks

(i.e., good luck) can explain a significant part of the volatility reduction of

inflation and GDP growth post 1984, a period commonly referred to as the

Great Moderation in the economic literature. In addition, better (or more

effective) monetary policy (i.e., good policy) has also played an important

role, in particular for reducing volatility of inflation.

Common to studies such as Nakov and Pescatori (2010) and Blanchard

and Gali (2008), is the fact that they analyze volatility of oil price shocks

and the effectiveness of monetary policy by comparing macroeconomic per-

formance before and after a given break point in time (typically 1984). There

are several reasons why analyzing the relationship between oil price volatility

and macroeconomic volatility in a split sample framework such as this may

give misleading results. First, while the persistent decline in macroeconomic

volatility since the mid 1980s is well documented, see among others Kim

and Nelson (1999a), McConnell and Perez-Quiros (2000), Stock and Wat-

son (2003) and Canova et al. (2007), it is not clear whether there has been

a systematic reduction in oil price volatility that coincides with this Great

Moderation. Instead, large fluctuations in the oil price seem to be a recurrent

1Since the seminal paper by Hamilton (1983), a large body of literature has appeared

documenting a significant negative relationship between oil price increases and economic

activity in a number of different countries (see, e.g., Burbidge and Harrison (1984), Gisser

and Goodwin (1986), Hamilton (1996, 2003, 2009) and Bjørnland (2000) among many

others). Higher energy prices typically lead to an increase in production costs and inflation,

thereby reducing overall demand, output and trade in the economy.
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feature of the economic environment, but with a sharp increase in volatility in

the first quarter of 1974 standing out, see Figure 1.2 Second, policy may also

have changed multiple times in the last decades. For instance Bikbov and

Chernov (2013) show that although policymakers were less concerned with

the stabilization of inflation in the 1970s than from the mid 1980s, during

several brief periods in the 1990s and 2000s has the stabilization of inflation

also prompted less concern. And when agents are aware of the possibility of

such regime changes, their beliefs will matter for the law of motion underlying

the economy, see e.g., Bianchi (2013).

This paper instead analyzes the role of oil price volatility in reducing

macroeconomic instability using a Markov Switching Rational Expectation

(MSRE) New-Keynesian model. The model accommodates regime-switching

behavior in shocks to oil prices, macro variables as well as in monetary pol-

icy responses. With the structural model we revisit the timing of the Great

Moderation (if any) and the sources of changes in the volatility of macroe-

conomic variables. In so doing, we make use of new solution algorithms, see

Maih (2014). The algorithms rely on Newton methods which extend Farmer

et al. (2011). The model is estimated using Bayesian techniques accommo-

dating different regimes or states within one model. We estimate models

where the sets of parameters switch independently, or in combination with

the other parameter sets, allowing for a simultaneous inference on both the

policy parameters and the stochastic volatilities.

There are by now several papers that analyze the so called good policy

versus good luck hypothesis using a regime switching framework, see e.g. Sims

and Zha (2006), Liu et al. (2011) and Baele et al. (2015). While none of these

papers analyze the effect of oil price volatility directly, oil price shocks are

often suggested candidates for the heightened volatility of the 1970s, see in

particular Sims and Zha (2006). We contribute to this literature by examining

the role of oil price volatility explicitly, allowing also for regime switching in

other demand and supply shocks and in policy responses using the MSRE

model.

2In 1974, OPEC announced an embargo on oil export to some countries supporting Israel

during the Syrian and Egypt led attack on Israel. This led to a fall in oil production and

almost a doubling in oil prices in the first quarter of 1974.
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Figure 1. Percentage change in the real price of oil (WTI)

Note: The figure shows the quarterly percentage change in the real price of oil. The vertical

red line is plotted for 1984Q1.

Furthermore, and in contrast to Blanchard and Gali (2008) and Nakov

and Pescatori (2010), we allow oil prices to be endogenously determined by

macroeconomic shocks. This follows Kilian (2009) that suggests there is a

“reverse causality” from the macroeconomy to oil prices. In particular, he

finds that if the increase in the oil price is driven by an increased demand

for oil associated with fluctuations in global activity and not disruptions of

supply capacity, economic activity may not be negatively affected, at least not

in the short run. Corroborating results are shown in Lippi and Nobili (2012)

and Aastveit et al. (2014), among others. Hence, it would seem important to

allow for different shocks to affect oil prices when examining the consequences

of an oil price increase on the U.S. economy.

Finally, while our focus is to nest the good luck and good policy hypoth-

esis with the hypothesis of reduced oil price volatility, there are alternative

hypotheses for explaining the rise of macroeconomic stability since the mid-

1980s. In particular, the share of oil in consumption and production in the

industrialized world is smaller today than it was in the 1970s, suggesting a

dampened effect of oil prices on the macroeconomy, see Blanchard and Gali

(2008) and Nakov and Pescatori (2010) among others. For completeness, we

also examine this, and some other related hypotheses, in a Markov Switching

framework in the end.
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We have three major findings. First, our results support regime switch-

ing behaviour in monetary policy, U.S. shock volatility and oil price shock

volatility. The model that performs best is the model where all three sets of

parameters are allowed to change. Hence, both good luck and good policy

matter.

Second, we find no break in oil price volatility to coincide with the Great

Moderation, nor do we find that a dampening of the transmission of oil price

shocks matter. Instead, we find several short periods of heightened oil price

volatility throughout the whole sample, many of them preceding the dated

NBER recessions. If anything, the post-1984 period has had more episodes

of high oil price volatility than the pre-1984 period. According to our results,

then, we cannot argue that a decline in oil price volatility was a factor in

the reduced volatility of other U.S. macroeconomic variables post-1984. In-

stead, we confirm the relevance of oil as a recurrent source of macroeconomic

fluctuations, not only in the past but also in recent times.

Third, the most important factor reducing macroeconomic variability is

a decline in the volatility of structural shocks (demand and supply). In all

the model variants, the break date is estimated to occur in 1986. That is not

to say there were no spurs of volatility since then. However, these periods of

heightened macroeconomic volatility have been much briefer, maybe because

in addition a more credible monetary policy regime, responding more strongly

to inflation, was in place since 1981/1982.

Going forward, if indeed the recurrent spikes in oil prices are causal factors

contributing to economic downturns, the Federal Reserve should pay atten-

tion to the short-run implications. We find no evidence that the effects of

these spikes have been smaller since monetary policy became more credible.

Quite the contrary. Thus, the evidence presented here suggests that the Fed-

eral Reserve should give careful consideration to the possible consequences of

shocks to commodity prices when designing monetary policy.

The remainder of the paper is structured as follows. Section 2 describes

the New-Keynesian model, and the general framework for the MSRE model.

In Section 3 we present the results and demonstrate that our baseline model

is preferred, while Section 4 shows that the results are robust to alternative

specifications. Section 5 concludes.
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2 A regime switching New-Keynesian model

The model we use relates to Blanchard and Gali (2008). It is a standard

small scale New-Keynesian model, consisting of an IS-equation, a forward

looking New-Keynesian Phillips curve, a Taylor rule, and an oil price equation.

We differ from the setup in Blanchard and Gali (2008) in three respects:

(i) We allow for feedback from the macroeconomy to the oil price; (ii) we

assume a more general Taylor rule (allowing for interest rate smoothing);

and, importantly, (iii) we allow for regime switches in the parameters and

the shock volatilities. We deliberately focus on a small-scale model, so as

to allow for rich dynamics from the time-varying specification. This also

facilitates comparison with previous studies analyzing the role of oil prices

for macroeconomic stability in constant-parameter models.

In the setup described below, we allow for three regimes, which could be

a composite of states from different Markov chains. The first chain governs

the general macroeconomic volatility and is denoted Smt . The second chain

governs the policy parameters, and is denoted Spt . Lastly, we include a chain

that governs the volatility of shocks to the oil price. We denote this by Sot .

More details on the specification and estimation of the Markov chains will be

provided in the subsequent sections below.3

2.1 The log-linearized model

Below we specify the main equations of the log-linearized model. Additional

details can be found in Appendix A. Small letters denote logarithms of the

variable. We start by specifying the IS-equation for the output gap (yt) that

governs the demand side of the economy

yt = Et[yt+1]−
(
rt − Et[πt+1]

)
+ Λst + zd,t, (1)

where rt is the interest rate, πt is inflation, st is the real price of oil and Λ

captures the direct effect of oil prices to the output gap. This equation is

3In section 4.3, we also examine some alternative hypothesis for the Great Moderation; such

as whether a smaller share of oil in consumption and production may have weakened the

transmission of oil price shocks over time. We find that such hypothesis play a minor role

for describing the data.
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derived from the intertemporal Euler equation that relates optimal consump-

tion today to expected consumption tomorrow. Λ ≥ 0 illustrates that ceteris

paribus, a rise in st make firms substitute away from oil and towards labour.

This factor substitution implies higher output (GDP) because labour, not oil,

represents value added, see Blanchard and Gali (2008).

The inflation dynamics in the model is governed by a forward-looking

New-Keynesian Phillips curve

πt = βEt[πt+1] + κyt + Γst + zs,t, (2)

where β is the subjective discount factor, κ is the effect on inflation from

a change in the output gap, and Γ gives the direct effect from oil prices to

inflation (i.e., an oil price markup). Note that the oil price markup enters

the Phillips curve like a cost-push term. Γ ≥ 0 determines the effect on

domestic markups of a rise in st. A rise in st leads to higher marginal cost of

production, and when prices are sticky, to a temporary decline in the markup

of firms. Firms raise prices in an attempt to stabilize the markup. Thus,

higher oil price translates into producer price inflation, see Blanchard and

Gali (2008).

Both the demand, (zd,t), and the supply shifter, (zs,t), are given as AR(1)

processes

zd,t = ρdzd,t−1 + εd,t, where εd,t ∼ N
(

0, σd
(
Smt
)2)

(3)

zs,t = ρszs,t−1 + εs,t, and εs,t ∼ N
(

0, σt
(
Smt
)2)

(4)

where ρd is the persistence of the shock to the IS-equation and ρs is the

persistence of the shock to the Phillips equation.4 The shock specification for

the IS and Phillips curves specify that the demand and supply shocks follow

the same chain, Smt , i.e., they will switch together (but not necessarily in the

same direction).

Monetary policy is governed by a Taylor rule of the following form

rt = ρr
(
Spt
)
rt−1 +

(
1− ρr

(
Spt
))[

φπ
(
Spt
)
πt + φy

(
Spt
)
yt

]
+ σrεr,t, (5)

4We also estimate the IS-equation and the Phillips curve equation as hybrid functions,

allowing for both backward- and forward-looking terms. In this case the demand and

supply shifter will be N(0, 1). Results are robust to such changes.
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where φπ and φy are parameters governing the central banks responsiveness

to inflation and the output gap respectively. The parameter ρr gives the rate

of interest rate smoothing over time and εr,t ∼ N (0, σ2
r) is a monetary policy

shock. Importantly, we allow all parameters that the monetary authorities

may have control over to switch throughout the sample. The policy parame-

ters follow the same chain, Spt , implying they will switch together, (albeit not

necessarily in the same direction).5

Blanchard and Gali (2008) model the oil price process as an AR(1) pro-

cess. Here, we also allow the oil price to respond to macroeconomic shocks.

As motivated above, Kilian (2009) and others have shown that changes in

demand can be an important oil price driver. We will therefore assume that

the oil important country (the U.S.) is large and potentially can affect oil

prices through increased consumption.6 To account for such a simultaneity,

we allow for a direct feedback effect from the output gap to the oil price

st = ρost−1 + ζyt + εo,t, where εo,t ∼ i.i.d.N
(

0, σo
(
Sot
)2)

, (6)

ρo is a persistence parameter and ζ gives the feedback from the macroeconomy

(i.e., the output gap) to the oil price. The notation used for the variance

makes it clear that the volatility of an oil price shock can vary according to

different regimes, Sot .

2.2 Markov Switching Rational Expectation framework

The model outlined above can be cast in a general Markov Switching Rational

Expectation (MSRE) framework. Below we lay out the general framework

for this MSRE model. All models in this paper are estimated using Bayesian

methods, and the computations for solving and estimating the models are

5In Section 4.3, we also estimate a model where we allow the variance of the monetary policy

shock, σr, to also switch. Our main results remain invariant to this augmentation.
6We approximate the world economy with the U.S. output gap. We believe this to be a

realistic approximation inasmuch as U.S. is the main consumer of petroleum products and

an important driver of the oil price during the sample period. Having said that, since the

start of the century, emerging economies, China in particular, have increased consumption

of natural resources and thereby also potentially affected the oil price, see Aastveit et al.

(2014). Still, Section 4 demonstrates that our results are robust to alternative measures of

global activity.
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performed using the RISE toolbox.7 The advantage of these procedures is

that the likelihood is evaluated at each point in time under the different

regimes. This information, through a Bayesian filtering scheme, is used to

update the probabilities of being in different states. So even if there was only

one outlying observation (such as the oil price shock of 1974), the estimation

procedure would still pick it up, perhaps as a change in volatility.

To allow for regime switching in the parameters and shock processes, we

first cast the New Keynesian model into the general MSRE system given by

Et
{

A+(St+1)xt+1 + A0(St)xt + A−(St)xt−1 + B(St)εt
}

= 0, (7)

where the vector xt ∈ Rn×1 contains the n endogenous variables, and the

vector εt ∈ Rl×1 contains the l structural shocks, where εt ∼ i.i.d.N(0, Il).

The parameter matrices take the following form, A+(St+1),A
0(St),A−(St) ∈

Rn×n and B(St) ∈ Rn×l, where St denotes the different states of the system.

That is, the MSRE framework allows the model economy to be in different

regimes at certain times. Each regime can be described as a specific state

where the economy is governed by certain separate rules specific for that state.

In general, we can have h different regimes so that St ∈ {1, 2, . . . , h}. The

probabilities of moving between regimes are given by a transition probability

matrix

P =
[
pSt,St+1

]
=


p11 · · · p1h
...

. . .
...

ph1 · · · phh

 , where
h∑
j=1

pij = 1 ∀i.

where the probability pij = Pr
(
St+1 = j

∣∣St = i
)
, is the probability of moving

from regime i this period into regime j the next period. We assume that

the agents in the economy know the transition probability matrix, and form

expectations as follows:

Et
[
A+(St+1)xt+1

(
St+1

)∣∣∣St = i
]

=
h∑
j=1

pijEtA+(St+1 = j)xt+1

(
St+1 = j,St = i

)
.

(8)

7RISE; “Rationality In Switching Environments” is a toolbox for Matlab developed by

Junior Maih. See Maih (2014) for further details.
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The agents’ expectations of the future x vector are a weighted sum over all

the possible states of the world. A general solution to the system is given in

equation (7)

xt
(
St,St−1

)
= T(St)xt−1

(
St−1,St−2

)
+ R(St)εt. (9)

In this system the parameters are allowed to switch and the traditional

stability concept for constant parameters cannot be used. We use instead

a concept from the engineering literature: mean square stability (MSS), see

Svensson and Williams (2005) and Farmer et al. (2011).8 We let the number of

possible states be h, and the transition probability matrix, P , be of size h×h.

Consider the solution to the MSRE system in equation (7) given by equation

(9). If for any initial condition x0 there exist a µ and a Σ independently of

x0 such that

lim
t→∞

∣∣∣∣E[xt]− µ∣∣∣∣ = 0 and lim
t→∞

∣∣∣∣E[xtx>t ]−Σ
∣∣∣∣ = 0, 9

then the system satisfies MSS. This is a requirement that the first and second

order moments of the stochastic process, {xt}∞t=0, are finite.

2.3 Data and Bayesian estimation

The data series are quarterly and span the periods 1970Q1 – 2014Q1. The

observed variables are the U.S. output gap (yt), the U.S. inflation rate (πt),

the U.S. interest rate (rt), and the real price of crude oil (st). The U.S.

output gap is calculated using a Hodrick-Prescott (HP) filter on U.S. real

GDP.10 The inflation rate is calculated as the first difference of the logarithm

of the U.S. GDP deflator; πt = log
(
Pt
)
− log

(
Pt−1

)
. For the interest rate we

observe the Federal Funds Rate. This series is quarterly but the values are

8See do Valle Costa et al. (2006), page 36, for a detailed definition.
9To check if these conditions are satisfied, a necessary and sufficient condition is that the

matrix Ξ given by

Ξ ≡
(
P ⊗ In2

)
· diag [T(St = 1)⊗T(St = 2)⊗ · · · ⊗T(St = h)] ,

has all its eigenvalues inside the unit circle.
10We also analyze and document robustness to the HP filtering using other data transforma-

tions.
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annualized, so we calculate quarterly values. The real oil price is defined as

St = Po,t/Pt, where Po,t is the nominal price of oil, and st = po,t− pt. For the

price of oil we use the West Texas Intermediate (WTI) divided by the U.S.

GDP deflator. The series were downloaded from the FRED database.11 All

data are demeaned before the estimation.

In order to estimate the model, the likelihood has to be computed. Due to

the presence of unobserved variables, the likelihood has to be computed using

a filtering procedure. The switching process makes the standard Kalman filter

inappropriate in this case because the information up to time t includes all

the history of the states of the Markov chains. An ideal filtering procedure

should take into account all possible paths, multiplied by the number of states

at each iteration. This is infeasible. Instead, we use a filter that limits the

number of states that are carried forward at each iteration of the Kalman

filter. The filter is a combination of Hamilton (1994) and Kim and Nelson

(1999b), but with some modifications, see Maih (2014) for details.

The likelihood obtained from the filtering procedure is then combined with

the prior density of the parameters to form the posterior kernel. This posterior

kernel is maximized to get the posterior mode. The full posterior distribution

is calculated using Markov Chain Monte Carlo (MCMC) methods. To find

the mode we use a stochastic grid search algorithm, which is derivate-free,

then the regions where the global peak might lie is located. The global peak

is reached using a Newton-based optimization procedure. This procedure can

be computational heavy, especially if the posterior kernel has many peaks,

see Maih (2014) for details.

3 Results

We present here the results from estimating the MSRE New-Keynesian model.

We first compare model performance for the eight different models, before

detailing the chosen model framework and implied results.

11See http://research.stlouisfed.org/fred2/. In the FRED database, the real GDP

series is denoted gdpc1, the GDP deflator is named gdpdef, the Federal funds rate is named

fedfunds and the WTI series is named oilprice.
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3.1 Model selection

From the three independent Markov chains described above, we get eight

potential model combinations; The first model, M1, is a model without any

parameter switching, i.e., constant parameters model. It is our staring point,

from which the other models will be evaluated against. M2 refers to a model

allowing for switching in macroeconomic volatility, i.e., the variance of the

structural shocks to the IS-equation and to the Phillips equation, and with

the states of the economy denoted St = Smt . The third model, M3, allows

for switching in oil volatility, i.e., the variance of the structural shocks to the

oil price; St = Sot . M4 refers to a model allowing for switching in policy

parameters; St = Spt . The remaining four models are combinations of the

above mentioned states. M5 allows for switching in both macroeconomic

volatility and oil price volatility; St =
{
Smt ,Sot

}
. M6 allows for switching in

macroeconomic volatility and policy; St =
{
Smt ,S

p
t

}
. M7 admits switching

in oil price volatility and policy; St =
{
Sot ,S

p
t

}
. Finally, M8, allows for

switching in macroeconomic volatility, oil price volatility, and policy; St ={
Smt ,Sot ,S

p
t

}
. Thus, the different specifications will differ with respect to

which parameter sets are allowed to switch. This implies that all models

will be nested, allowing us to evaluate which of these specifications are most

important in explaining the data.

We adopt the convention that the variance in regime 1 is higher than the

variance in regime 2 for the structural shocks:

σd
(
Smt = 1

)
≥ σd

(
Smt = 2

)
,

σo(Sot = 1) ≥ σo
(
Sot = 2

)
.

where the first specification refers to the macroeconomic volatility regime

(normalised so that macroeconomic volatility is high when volatility of shocks

to the IS-equation are the highest) and the second equation defines the oil

price volatility regime. Finally, we define a high monetary policy response

regime as the periods where the monetary authorities respond the most to

inflation:

φπ(Spt = 1) ≥ φπ
(
Spt = 2

)
.
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This specification assumes the policy responses to switch together, but does

not restrict the other responses to be high or low in the same regime.

The model specification is uncertain. To evaluate whether a regime switch-

ing model gives an accurate description of the data relative to a constant

parameter model, we use a statistical criterion to decide what specification

is preferred. In particular, we compute the Laplace approximation of the log

Marginal Data Density (MDD) for the constant parameter model which we

then compare with all the seven alternative regime switching models.12

Table 1 displays results and ranking of models based on the MDD. Details

of prior and posterior distributions are given below. Importantly, however, we

keep the priors constant when comparing performance across models. Clearly,

the worst performing model is,M1, the model with constant parameters. The

results show that by letting the variance of the shocks to the U.S. macroeco-

nomic variables switch (model M2), we get the largest improvement in the

MDD. Allowing for switches in oil price volatility (M3), improves the MDD

substantially as well, while allowing for switches in the Taylor rule (M4)

yields the least important improvement, but still an improvement. In the

end, the model that suggests the largest improvement in MDD is the model

that allows all three chains to switch, i.e., model M8. In the following we

denote this as the baseline model and present details below.13

3.2 Priors and parameter estimates

Table 2 displays prior and posterior distributions for the baseline model,

M8. We report 90 percent probability intervals for both the priors and the

posteriors together with the mean for the posterior. When choosing the priors,

we use related literature for guidance. There are by now several studies that

estimate a Markov-switching model with switches in volatility and policy, see

e.g. Bianchi (2013) and Liu et al. (2011). Our work is novel in estimating

a model with oil prices, so here we lack guidance. Our starting point in

12Recall, with three independent Markov chains (oil volatility, macroeconomic volatility,

and policy parameters), we will have eight possible model combinations, ranging from a

constant parameter model (M1) to model (M8) where all three regimes are allowed to

change.
13Details on all the various models can be given on request.
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Table 1. Model performance

Model Description Switching parameters Log-MDD Rank

M1 No parameter switching. – 2250 #8

M2 The volatility of the demand and

supply shocks can change.

σd, σs 2291 #4

M3 The variance of the oil price

shock can change.

σo 2272 #6

M4 The Taylor rule can change. φπ, φy, ρr 2253 #7

M5 M2 and M3 together. σd, σs, σo 2325 #2

M6 M2 and M4 together. σd, σs, φπ, φy, ρr 2295 #3

M7 M3 and M4 together. φπ, φy, ρr, σo 2293 #5

M8 M2,M3 and M4 together. σd, σs, φπ, φy, ρr, σo 2332 #1

Note: The table reports model performance using the logarithm of the marginal data density,

for the eight different models. The last column shows how the different models are ranked.

our choice of oil specific priors is the calibration done in Blanchard and Gali

(2008). We do not choose very restrictive priors, and we strive to capture

most parameter values that are estimated in similar studies.

For the subjective discount factor, β, we choose the bounds so that the

parameter lies within the interval [0.96, 1.00).14 For the persistence param-

eters, ρd, ρs, and ρo, we use an almost uniform prior, implemented using a

Beta distribution.15 For the parameters κ, Λ and Γ we base our priors on the

calibration in Blanchard and Gali (2008). For the policy parameters, there

are several studies we can relate to.16 For the inflation response we use a

Gamma prior with a 90 percent probability interval between 0.50 and 3.50;

for the output response we us a Gamma prior with a 90 percent probability

interval between 0.05 and 1.50; and lastly, for the interest rate smoothing pa-

rameter we choose a Beta prior with a 90 percent probability interval between

14To ease the computations we estimate a transformation of β, given by β̃ ≡ 100(β−1 −
1). β̃ follows a Gamma distribution where we choose the bounds so that the 90 percent

probability interval of β̃ is [0.2, 4.0].
15We use a Beta distribution instead of a uniform distribution as we want to avoid values of

the persistence parameter equal to 1.
16For a linear Taylor rule see Liu et al. (2011), while for a Taylor rule with switching more

in line with our setup, see Bianchi (2013).
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0.05 and 0.95. For the shock volatilities we set priors based on the volatility

of an subsample of the data. The priors for the transition probability matrix

are set according to similar studies, e.g. Bianchi (2013). The priors are given

in the rows 2–4 in Table 2.

We start by describing the results for the constant parameters. First, we

estimate the subjective discount factor, β, to 0.97, which corresponds to a

quarterly rate of interest of 3 percent. The persistence parameters ρd, ρs,

and ρo, are, in line with many other studies, estimated to be fairly high:

0.91, 0.75, and 0.97 respectively. κ is estimated to be 0.06, emphasizing a

substantial response in inflation to the output gap. Λ and Γ are estimated to

be 0.0007 and 0.0006, suggesting a non-negligible response in the output gap

and inflation to oil price variation. Finally, we find ζ to be 0.45, suggesting a

simultaneous response in the oil price to macroeconomic conditions, a feature

also found in many empirical studies such as Kilian (2009).

Turning to the parameters governing the high and low macroeconomic

volatility regime, we find a clear difference between the various regimes. In

particular, the standard deviation of demand shocks is found to be three times

higher in the high volatility regime than in the low volatility regime. Further,

the standard deviation of supply shocks switches in the same direction as

the demand shock, and is estimated to be more than twice the size in the

high relative to the low volatility regime. Overall we find the probability of

moving from high to low volatility regime to be 10 percent, which is slightly

higher than moving from the low to high volatility regime (8 percent). Based

on these numbers, we can also calculate the expected duration times of each

regime over this specific sample. Doing so we find the high macroeconomic

volatility regime is expected to last for 10.4 quarters, while the low volatility

regime lasts 12 quarters.

Regarding oil price shocks, we confirm again a substantial difference be-

tween the high and low volatility regimes. In particular, a standard deviation

shock to the oil price in the high volatility regime is 26 percent while it is

7 percent in the low volatility regime. Furthermore, the probability of mov-

ing from the high to the low oil price volatility regime is 14 percent, which is

twice as high as the probability of mowing from low to high oil price volatility

regime. In line with this, the expected duration time in the high oil volatility
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Table 2. Prior and posterior distributions for the model M8

Prior distribution Posterior distribution

Parameter Distribution 5%–95% Mean 5%–95%

Constant parameters:

β Gamma 0.96–1.00 0.97 0.93–1.00

κ Beta 0.05–0.30 0.06 0.01–0.21

ζ Uniform 0.05–2.00 0.45 0.03–0.92

ρd Beta 0.05–0.95 0.91 0.87–0.96

ρs Beta 0.05–0.95 0.75 0.66–0.97

ρo Beta 0.05–0.95 0.97 0.95–0.99

100σr Inv. Gamma 0.05–1.00 0.20 0.18–0.27

100Λ Gamma 0.01–1.00 0.07 0.00–0.26

100Γ Gamma 0.01–1.00 0.06 0.03–0.53

Switching macro volatility:

100σd(Smt = 1) Inv. Gamma 0.05–1.00 0.42 0.27–0.53

100σd(Smt = 2) Inv. Gamma 0.05–1.00 0.14 0.08–0.19

100σs(Smt = 1) Inv. Gamma 0.05–1.00 0.15 0.10–0.26

100σs(Smt = 2) Inv. Gamma 0.05–1.00 0.05 0.04–0.10

pm12 Beta 0.05–0.15 0.10 0.06–0.14

pm21 Beta 0.05–0.15 0.08 0.05–0.13

Switching oil volatility:

σo(Sot = 1) Inv. Gamma 0.05–1.00 0.26 0.20–0.35

σo(Sot = 2) Inv. Gamma 0.05–1.00 0.07 0.06–0.08

po12 Beta 0.05–0.15 0.14 0.09–0.20

po21 Beta 0.05–0.15 0.07 0.05–0.11

Switching policy:

φπ(Spt = 1) Gamma 0.50–3.50 1.96 1.43–3.35

φπ(Spt = 2) Gamma 0.50–3.50 1.54 1.28–1.81

φy(Spt = 1) Gamma 0.05–1.50 0.05 0.03–0.15

φy(Spt = 2) Gamma 0.05–1.50 0.74 0.16–1.02

ρr(Spt = 1) Beta 0.05–0.95 0.33 0.17–0.84

ρr(Spt = 2) Beta 0.05–0.95 0.85 0.71–0.91

pp12 Beta 0.05–0.15 0.07 0.03–0.16

pp21 Beta 0.05–0.15 0.15 0.05–0.24

Note: Model M8 allows for switching in the macroeconomic volatility, oil price volatility,

and policy; St =
{
Smt ,Sot ,S

p
t

}
. The posterior is simulated using a Metropolis Hastings

algorithm. The results are from one single chain where we use 100 000 draws. We use a

burn in of 10 percent.
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regime will be 7.3 quarters, increasing to 13.6 quarters in the low volatility

regime.

Finally, we also find a substantial difference between the parameters gov-

erning the policy regimes. In particular, the policy response to inflation is

estimated to be 1.96 in the high policy response regime, while it is 1.54 in

the low response regime. The response to the output gap, however, moves

in the other direction. The response is low (0.05) when policymakers are re-

sponding strongly to inflation (denoted the high response regime), and high

(0.74) in the low response (to inflation) regime. Note also that the interest

rate smoothing parameter is estimated to be 0.33 in the high response regime,

and 0.85 in the low response regime. This implies that the relative difference

between the parameters in the high and low policy regimes will be even larger.

Finally, the probability of moving from the low to the high response regime is

15 percent, more than twice as high as the probability of moving from a high

to low response regime. Consistent with this, the regime with the longest

duration is the high monetary response regime with an expected duration of

14.6 quarters.

3.3 Smoothed regime probabilities

The smoothed probabilities for the model are plotted in Figure 2. Panel

2a shows the smoothed probabilities for being in the high macroeconomic

volatility regime. We identify a regime with high volatility in the structural

macroeconomic shocks (i.e., shocks to the IS curve and to the Phillips curve)

for the periods prior to 1986. That is, throughout the 1970s and until 1986,

the economy is in a regime of high macroeconomic volatility. From 1986, the

economy moves into a low volatility regime. The shift from the high to the

low volatility regime in the middle 1980s is in line with the literature on the

Great Moderation, see e.g. Bianchi (2013) and Liu et al. (2011), although

we find that the shift to a low macroeconomic volatility regime occurred 1-2

years than in the above mentioned studies. In addition, we identify some

short periods of heightened volatility after 1986, mostly coinciding with the

NBER recessions.

Panel 2b shows the smoothed probabilities for the high oil price volatil-
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Figure 2. Smoothed probabilities for model M8

(a) Probability of being in the high macroeconomic volatility regime

(b) Probability of being in the high oil price volatility regime

(c) Probability of being in the high policy response regime

Note: Panel (a) presents the smoothed probabilities for being in the high macroeconomic

volatility regime. Panel (b) presents the smoothed probabilities for being in the high mone-

tary policy response regime. Panel (c) presents the smoothed probabilities for being in the

high oil volatility regime. The shaded areas correspond to the dated NBER recessions.

ity regime. A quick glance at the figure suggests there is no support for

the hypothesis that a fall in oil price volatility coincided with the decline in

macroeconomic instability from the mid-1980s (the start of the Great Mod-

eration) noted in many previous studies. Instead, we find that the oil price

has displayed several periods of heightened volatility throughout the sample,

many of them coinciding with the NBER recessions. Thus, we reject the

notion put forward in Nakov and Pescatori (2010) and Blanchard and Gali
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Figure 3. The inflation response, (1− ρr)φπ.

Note: The figure plots the initial response to inflation over time as the Taylor rule param-

eters for the high and low response regime weighted using the smoothed probabilities for

being in the high monetary policy response regime.

(2008), that, based on a split sample, argue that reduced oil price volatility

has contributed to increase macroeconomic stability over time.17

Looking at the graph in more detail, we identify seven periods where the

structural shocks to the oil price are in a high volatility state. Interestingly,

these episodes correspond well with the historical oil price shocks identified

in Hamilton (2013). The first and second episodes are well-known distinct

spurs of high oil price volatility: the 1973–1974 OPEC embargo; and the 1978

Iranian revolution followed by the Iran-Iraq war of 1980. Both episodes led to

a fall in world oil production, an increase in oil prices and a gasoline shortage

in the U.S., see Hamilton (2013) for more details. Between 1981 and 1985,

Saudi Arabia held production down to stimulate the price of oil, until, in 1986

they brought production up again, which led in turn to a collapse in the oil

price. This sharp fall in 1986 coincides with our third episode. The fourth

episode in 1990/1991, coincides with the first Persian Gulf war during which

Iraqi production collapsed and oil prices again shot up. The fifth episode is

slightly more persistent than the previous episodes and coincides with the

East Asian Crisis around 1997/1998 and what Hamilton (2013) calls a period

17 Herrera and Pesavento (2009) also analyze the contribution of oil prices shocks and sys-

tematic monetary policy to the Great Moderation by splitting the sample. They report

that an oil price shock had a larger and longer-lived effect on output and inflation in the

pre-Volcker period. They also find that systematic monetary policy helped stabilize the

economy during the 1970s, but had no effect after the mid-1980s.
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of resumed growth.18 The sixth episode coincides with the Venezuelan unrest

and the second Persian Gulf war 2001/2002. The seventh episode, 2007–2009,

coincides with what Hamilton (2013) calls a period of growing demand and

stagnant supply. The probability of a high oil price volatility regime shoots

up before the last NBER recession, suggesting high oil price volatility may

also have played a role here.

Panel 2c shows the smoothed probabilities for the high monetary policy

response regime. There is a widespread belief that the more Hawkish policy

imposed by the Chair of Federal Reserve Paul Volcker helped bring down

the high inflation that persisted during the 1970s, see e.g. Clarida et al.

(2000)and Lubik and Schorfheide (2004). Our results support this view that

the FED’s response to inflation grew stronger after Volcker took office. More

specifically, we identify a switch to a more hawkish regime around 1982. A

similar shift to a more responsive policy regime around that time was also

found by Bianchi (2013) and Baele et al. (2015). The regime is in place until

the end of the financial crisis, when the probability of being in the hawkish

regime declines to less than 0.5 percent.

Figure 3 illustrates our results further. In that figure we graph the Taylor

rule coefficient on inflation during the periods of the different Chairs of the

Federal Reserve. There is a clear shift towards a higher inflation response

during the Volcker period, since which it has remained fairly stable, inter-

rupted briefly by Chairman Ben Bernanke’s intervention during the global

financial crisis.

To sum up, we nest the “Good luck” hypothesis and find that a reduction

in volatility of demand and supply shocks coincides with the general decline

in volatility in the U.S. economy, although not before 1986. Further, the

volatility reduction is not permanent, and we also identify some brief periods

of high macroeconomic volatility throughout the 1990s and 2000s. We also

nest the “Good policy” hypothesis, and find that the FED moved into a

regime of responding more strongly to inflation around 1982. As to the oil

price, we do not find declining oil price volatility to play a separate role for

the observed volatility reduction in the U.S. economy.

18During this period the oil price fell below $12, the lowest price since 1972.

20



3.4 Oil and the macroeconomy

Having observed the coinciding pattern of heightened oil price volatility and

the NBER-dated U.S. recession, a natural follow up question is how an oil

price shock affects the macroeconomy in the different policy regimes. More

specifically, is it the oil price shocks that depress output over time, or are

the recessions that followed the severe oil shocks instead caused by the Fed-

eral Reserve’s contractionary response to inflationary concerns? Bernanke

et al. (1997) presented key evidence supporting this latter view, demonstrat-

ing that, had it not been for the Federal funds rate responses (of an increased

interest rate) to the oil shock, the economic downturns might have been

largely avoided.

Figure 4 goes a long way in answering these questions. It displays the

responses associated with the oil price shock to output and inflation in both

the high and low monetary response regimes. The oil price is normalized to

increase with 24 percent on impact, corresponding to a one standard deviation

shock in the high oil price volatility regime. The figure has two take-away

points. First, independent of whether monetary policy is in the low or high

monetary policy regimes, inflation increases and output eventually falls for a

prolonged period of time following an adverse oil price shock. This suggests

an independent role for oil price shocks in past and present NBER dated

recessions, in line with the arguments put forward in Hamilton (2009).

Second, the negative effect on output of an oil price shock is magnified

when the policymakers are in the high policy response regimes. In particular,

when monetary policy is responding more aggressively to inflation, output

falls by more than 0.3 percent within a year, compared to the 0.1 percent

decline in the low policy response regime. The reason, of course, is that the

increase in interest rates, although effectively curbing inflation, will exacer-

bate the oil-led contraction of the economy. Thus, and in line with results

of Bernanke et al. (1997), the effect of an oil price shock is most severe in

the high policy response regime, whereas for inflation the opposite is the

case. However, as it turns out, since the policymakers have been in the high

response regime since the early 1980s, oil price shocks have been most con-

tractionary for the U.S. economy in the period of the Great Moderation, and
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Figure 4. The effects of an oil price shock

Note: The effects of a one standard deviation oil price shock in the high oil price volatility

regime (24 percent) to output and inflation. The 67.5 percent credible bands are plotted.

not just in the Volcker area as suggested in Bernanke et al. (1997).

4 Extensions

We began this paper by questioning whether a reduction in oil price volatil-

ity could be partly responsible for the Great Moderation, that is, a period

of stable economic conditions from the mid-1980s. Our results suggest that,

contrary to common perception, there is no support for the role of oil price

shocks in reducing macroeconomic instability. Instead we find the usual sus-

pects of “Good luck” and “Good policy” in explaining the Great Modera-

tion. There are, however, alternative hypotheses for explaining the rise of

macroeconomic stability since the mid-1980s. Below we examine two of these

hypothesis before addressing other extensions related to model specification

and estimation.

4.1 Declining oil dependence

The share of oil in consumption and production in the industrialized world

is today smaller than it was in the 1970s. Blanchard and Gali (2008) ar-

gue that these declining oil shares play an important role in explaining the
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reduced impact of oil prices on output and inflation over time. Nakov and

Pescatori (2010) also argue that the transmission of oil price volatility has

been dampened since the mid-1980s, thereby contributing effectively to the

Great Moderation.19

To examine the hypothesis of a reduced transmission (or dependence)

of the oil price shocks, we allow the parameters Λ and Γ that govern the

response in respectively output and inflation to an oil price shock to switch.

We denote model M9 as the model that allows for switching only in the oil-

macroeconomic response, and normalize the high dependence regime to be a

regime where the transmission of oil price shocks to inflation is the largest. We

also add switching in the oil-macroeconomic dependence to our main model

M8 and call this model M10. Model M10 is then a model with 4 different

Markov chains meaning that we have a total of 16 possible regimes.

The results (see Table 3 in Appendix B.1 for details) suggest that allowing

for switches in only Λ and Γ (modelM9), produces a much worse performance

(in terms of MDD) than our constant specification in modelM1, and is there-

fore a poor explanation of the changing volatility in the macroeconomic data.

For model M10, the performance also falls relative to our best performing

model M8, but the difference is now minor, suggesting that switching in

the macroeconomic dependence may add new features to the baseline regime

switching model deserving of attention.

To illustrate this, Figure 5 plots the smoothed probabilities for being in

the high oil dependence regime together with the probability of being in the

high oil price volatility regime.20 The figure shows the economy has been in

the low oil dependence regime during most of the period. Further, the low

oil dependence regime is close to our baseline with respect to the estimated

parameter values for Λ and Γ. Interestingly, we note that the probability

of being in the high oil dependence regime increases in between the high oil

volatility periods. This is most notable in the early 1980s, briefly in 1989, and

then again from 2003 to 2007. As oil prices have increased, so has also the

19Again, in their model this is measured by splitting the sample and comparing model per-

formance in the two samples.
20The baseline results are robust to this additional regime, with the exception that the

hawkish policy regime declines somewhat during the mid-1990s, see Appendix B.1.
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Figure 5. Probability of being in the high oil dependence regime

Note: The figure shows the smoothed probabilities for being in the high oil dependence

regime. Shaded areas are NBER recessions and the black dashed line gives the probability

of being in the high oil price volatility regime.

share of energy goods and services in total consumption, see Hamilton (2009).

To the extent that we observe a marked fall in oil dependence from the mid-

1980s, it could therefore in part be in response to the reduced consumption

shares in this period. Yet, impulse responses plotted in Appendix B.1 show

that, irrespectively of the oil dependence regimes, an oil price shock still has

a substantial and significant contractionary effect on output and inflation,

although more so in the high oil dependence regimes.

4.2 Volatility of monetary policy shocks

In our baseline model we allow the policy parameters in the Taylor rule to

change, but keep the volatility of monetary policy shocks, σr, constant in

all periods. This is in contrast to Liu et al. (2011), Bianchi (2013), and

Baele et al. (2015), who argue that volatility of monetary policy shocks (i.e.,

discretionary policy) should also be allowed to change.21 One reason for this

choice, is that during recessions or after large shocks (such as the oil price

shocks), the Fed is more willing to deviate from its interest rate rule. This

could then also explain an important part of the change in macroeconomic

dynamics. However, since we are including oil prices explicitly in the model,

thereby allowing the Fed to respond to oil prices via its effect on output and

inflation, policy errors due to omitted variables may be of less concern.

21In the case of Liu et al. (2011), only discretionary policy is allowed to change, at the cost

of leaving the systematic policy (the Taylor rule coefficients) unchanged over the sample.
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Still, it is interesting to examine the role of discretionary (unsystematic)

monetary policy in reducing overall macroeconomic volatility. In so doing we

follow Baele et al. (2015) in letting σr switch according to its own independent

Markov chain. That is, we allow the origins of the shocks to be different.

Results suggest that allowing for changing volatility in unsystematic policy

gives no value added once we have allowed for oil price volatility to switch.

Hence, our results remain robust, see Figure 8 in Appendix B.2.

4.3 Additional model extensions and robustness tests

We have estimated the model using a number of alternative data compositions

and model specifications. As described in greater detail in Appendix C.1, the

main conclusions of the paper are robust to all of these alternatives. Below,

we provide a brief summary.

First, we estimate the models using a truncated estimation sample, ex-

cluding data from 2007:Q1. This alternative experiment excludes the financial

crisis and the period thereafter from the sample. One argument for excluding

this period is that during the financial crisis and after, monetary policy as-

sumed a form our model cannot account for (zero-lower bound, quantitative

easing). Another argument is that while our set-up is for an oil importing

country, lately, the U.S. has relied more on home produced oil and gas and is

therefore less dependent on imports. This could change the results. Exclud-

ing the last few years, still we find that the importance of macroeconomic

volatility is prevalent. In fact, the responses obtained using the truncated

sample are not significantly different from each other. If anything, the results

based on the truncated estimation sample are stronger, in line with what we

suggested here, see Figure 9 in Appendix C.1.

Second, the output gap is not observed. As discussed in Appendix C.1,

the results reported in Section 3 are not affected by changing how we measure

this variable, using, for instance, a band-pass filter.

Third, Aastveit et al. (2014) has shown that demand from emerging coun-

tries has been an important driver of the oil price the last decade. To test the

implication of this, we include an index of global demand (OECD) directly.

Results do not change must using this index, most likely as the business cycles
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have been synchronized in the OECD.

We have also conducted a series of other robustness checks, for which

details can be provided on request. In particular, the inclusion/exclusion of

alternative measures of inflation, additional lags in the Phillips and IS curve

will potentially also affect the estimates. Still, the main results are robust

to estimating the models using these alternative representations. Lastly, our

results seem robust to different prior specifications.

5 Conclusion

This paper revisits the role of oil price volatility in reducing general macroeco-

nomic volatility by estimating Markov Switching Rational Expectation New-

Keynesian models that accommodate regime-switching behavior in shocks to

oil prices, macro variables as well as in monetary policy. With the structural

model we revisit the timing of the Great Moderation (if any) and the sources

of changes in the volatility of macroeconomic variables. We have three major

findings. First, our results support regime switching in monetary policy, U.S.

shock volatility and oil price shock volatility. The best fit model is is when

both the volatility of shocks and systematic monetary policy are allowed to

change. Hence, both good luck and good policy matter.

Second, we do not find a break in oil price volatility from the mid-1980s

that coincides with the Great Moderation. What we find instead is several

short periods of heightened oil price volatility throughout the whole sample,

many of them preceding the dated NBER recession. If anything, the post-

1984 period has had more episodes of high volatility than the pre-1984 period.

Hence, according to our results, we cannot argue that declining oil price

volatility was a factor in the reduced volatility of other U.S. macroeconomic

variables. Instead, and in contrast to common perceptions, we confirm the

relevance of oil as a recurrent source of macroeconomic fluctuations.

Third, the most important factor reducing macroeconomic variability is

the decline in volatility of structural shocks (demand and supply). In all the

model variants, the break date is estimated to occur in 1986. That is not

to say there has not been any spurs of volatility since then. However, these

periods of heightened macroeconomic volatility have been much briefer.
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Thus, if indeed the recurrent spikes in oil prices are causal factors con-

tributing to economic downturns, the Federal Reserve should give careful

consideration to the possible consequences of shocks to commodity prices

when designing monetary policy.
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Appendices

For Online Publication

Appendix A The New-Keynesian model

The model we use is in most respects a standard New-Keynesian model ex-

tended to include an oil sector. The model is based on the model developed

in Blanchard and Gali (2008). Because we follow their model so closely, we

refer to that paper for details. Here we lay out the fundamental equations for

the log-linearized model outlined in Section 2.

Households

We start from the households that have the following objective

max
{CH,t,Co,t,Bt,Nt}

E0

∞∑
t=0

βt
(

logCt −
N1+ϕ
t

1 + ϕ

)
, (A.1)

where consumption Ct is a combination of home produced goods CH,t and

consumption of imported oil, Co,t. Bt is a one-period risk-less bond that pays

one unit of domestic currency in the next period. Nt is hours worked. The

parameter β is the subjective discount factor and ϕ is the inverse of the Frisch

labor supply elasticity. Consumption of non-oil goods is a CES aggregate of

different varieties on the unit measure given by CH,t ≡
(∫ 1

0
CH,t(i)

ε−1
ε

) ε
ε−1

,

where ε is the elasticity of substitution between domestic goods.

The aggregate consumption basket is given by

Ct ≡
(
Co,t
χ

)χ(
CH,t
1− χ

)1−χ

= ΘχC
χ
o,tC

1−χ
H,t , (A.2)

where Co,t is consumption of oil, Θχ ≡ χ−χ(1 − χ)−(1−χ) and χ is the oil

share in the consumption basket. The household faces the one period budget

constraint given by

PH,tCH,t + Po,tCo,t +QtBt = WtNt +Bt−1 + Πt, (A.3)

where PH,t is a domestic price index given by PH,t ≡
(∫ 1

0
PH,t(i)

1−εdi
) 1

1−ε
.

Po,t is the price of imported oil in domestic currency. Wt is the nominal wage,
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Qt is the price of the one-period nominal risk-less domestic bond, Bt, and Πt

is gross profits.

Let’s define the CPI as Pt ≡ P χ
o,tP

1−χ
H,t . By solving the household problem

we get the intertemporal Euler equation

Qt = βEt
{

Ct
Ct+1

Pt
Pt+1

}
, (A.4)

which governs the allocation of consumption over time. We also get the

optimality condition governing the allocation of labor and consumption

Wt

Pt
= CtN

ϕ
t . (A.5)

Firms

We have a continuum of firm i on the unit interval, all producing a differen-

tiated good using the following production function

Qt(i) = AtOt(i)
αoNt(i)

αn where αo + αn ≤ 1. (A.6)

Ot(i) and Nt(i) are oil and labor input for firm i respectively. The level of

technology is constant across firms and given by At, the parameters αo and

αn are the oil share and labor share in production respectively. Aggregate

gross output is defined as

Qt ≡
(∫ 1

0

Qt(i)
ε−1
ε di

) ε
ε−1

.

We assume Calvo pricing where a fraction 1 − θ of the firms can reset their

price every period. Optimal price setting by firms gives the following first

order condition

Et

{
∞∑
k=0

θkΛt,t+kQt+k|t
(
P ∗t −MPΨt+k|t

)}
= 0,

where P ∗t is the price set by the firms that can change the price. Qt+k|t and

Ψt+k|t are the output and the marginal cost for a firm in period t + k that

last reset its price at time t. Λt,t+k is the stochastic discount factor between

period t and t + 1 and Mp = ε
ε−1 is the steady state gross markup. The

parameter θ is the probability that the firm must keep the price fixed for one

more period. Solving for the optimal price gives

P ∗H,t =MpEt

{∑∞
k=0 θ

kβkP ε
H,t+kΨ

r
t+k|t∑∞

k=0 θ
kβkP ε−1

H,t+k

}
. (A.7)
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Aggregate relationships

Gross domestic product, Yt is defined as

PtYt ≡ PH,tQt − Po,tOt. (A.8)

In equilibrium with balanced trade, Bt = 0, the total value of consumption

is equal to the total value of output minus the total value of imported oil.

PtCt = PH,tQt − Po,tOt.

Monetary authorities

We assume that monetary authorities set the interest rate according to the

following rule

Rt

R̄
=

(
Rt−1

R̄

)ρr (( Pt
Pt−1

)φπ (Yt
Ȳ

)φy)1−ρr

eεr,t , (A.9)

where Rt is the gross interest rate, R̄ is steady state gross interest rate, and

Ȳ is steady state output. This rule says that the monetary authorities care

about both price stability and that the output gap is closed, and they respond

to inflation according to the parameter φπ and to the output gap according

to φy. We allow for interest rate smoothing according to the parameter ρr

and εr,t is a monetary policy shock.

The importance of oil

The model includes oil both as a factor in production and as a consumption

good. We do not specify a production sector for oil, in the model developed

by Blanchard and Gali (2008) the oil price is assumed to follow an AR(1):

st = ρost−1 + εo,t. (A.10)

We augment this AR(1) model to allow for demand factors as possible drivers

of the oil price. In our model we use the following specification for the oil

price

st = ρost−1 + ζyt + εo,t, (A.11)

where ζ measures the direct effect of chance in the output gap on the real

price of oil.
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Appendix B Additional Figures and Tables:

Alternative hypothesis

Below we show results from examining two alternative hypotheses for the

reduction in macroeconomic volatility from the mid-1980s. Section B.1 first

examines whether the economy has become less dependent on oil, while Sec-

tion B.2 examines whether (discretionary) monetary policy has become less

volatile.

B.1 Declining oil dependence

One alternative explanation in the literature on the Great Moderation is that

the economy has become less dependent on oil, i.e., the oil share in both pro-

duction and consumption has fallen over time. This is one of the hypotheses

examined by Blanchard and Gali (2008). The parameters governing the oil

dependence of the economy are Λ and Γ. It can be shown that both pa-

rameters are increasing in the oil share in production as in the oil share in

consumption. The alternative hypothesis that oil has a dampening effect on

the macroeconomy over time can then be tested by letting parameters Λ and

Γ change over time.

We proceed then to estimate our model in which we allow for switching

in the effect from oil prices to the macroeconomy. We denote model M9 as

the model that allows for switching in oil dependence, and normalize the high

dependence regime to be St = Smot = 2 such that

Γ(Smo = 2) ≥ Γ(Smo = 1).

This gives us a model with two possible regimes, one where movements in

the oil price have a relatively large effect on the macroeconomy (dependence

is high), and one where this effect is relatively small (dependence is low).

We also estimate a model where, in addition to letting Λ and Γ switch,

we allow for all the different regimes as in our baseline model M8. We call

this specification model M10. In this specification the state of the economy

can be written as St = {Smt ,Sot ,S
p
t ,Smot } and we have a total of 16 different

regimes into which the economy can move. In Table 3 we report the model
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Table 3. Model performance - Alternative hypothesis

Model Description Switching parameters Log-MDD Rank

M9 The parameters in front of the

oil price in the IS- and Phillips

equation can change.

Γ,Λ 2212 #10

M10 A combination of M2,M3,

M4 and M9.

σd, σs, φπ, φy, ρr, σo,Γ,Λ 2297 #3

Note: The table reports the model performance, using the logarithm of the marginal data

density, for the models allowing for switching in the oil-macro response. The last column

shows how the two models are ranked compared to the models M1 −M8.

performance of these two alternative hypothesis. We find that allowing for

switches in only Λ and Γ (model M9), performs much worse than our con-

stant specification in model M1 based on the MDD, and is therefore a poor

explanation of the changing volatility in the macroeconomic data.

For modelM10, the performance also falls relative to our best performing

model M8, but the difference is minor, suggesting that switching in oil de-

pendence may add new features to the baseline model, deserving of attention.

The smoothed probabilities for model M10 are plotted in Figure 6. We also

graph the impulse responses to an oil price shock in the high and low depen-

dence regime in Figure 7. Interestingly, we find an oil price shock to have

a substantial and significant effect on output and inflation in both regimes,

but even more so when oil dependence is high. In particular, following a

one standard deviation oil price shock (normalised to increase oil prices by

24 percent, as in the high oil price volatility regime), output gradually falls

by close to 0.5 percent and inflation increases with 0.3 percentage points. A

similarly sized shock in the low dependence regime eventually reduces output

by close to 0.2 percent, and increases inflation with 0.09 percentage points.
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Figure 7. The effects of an oil price shock

Note: The effects of a one standard deviation oil price shock (24 percent) to output and

inflation. The 67.5 percent credible bands are plotted.

36



B.2 Switching in the volatility of monetary policy shocks

Some papers specifying Markov-switching models with a Taylor rule also

allow for switching in the volatility of monetary policy shocks. There are

different ways of modeling the possibility of a switch in the parameter σr.

Bianchi (2013) uses two different Markov chains to estimate switching, one

for structural parameters and one for volatility parameters. This means that

he is bundling all volatility parameters together and forcing them to switch

together. The volatility of monetary policy shocks must therefore switch

together with the general macroeconomic volatility in the model. Another

approach is suggested by Baele et al. (2015). Here, the volatility of the dif-

ferent shocks switch according to different and independent Markov chains.

This implies that the volatility regime of the monetary policy shocks is inde-

pendent of the other regimes in the model.

Since we have shown that the origins of the shocks are very different, we

follow Baele et al. (2015) by letting the volatility of unsystematic monetary

policy (σr) switch according to its own chain. We define the chain that governs

volatility of monetary policy shocks as Srt ∈ {0, 1}. The Taylor rule can be

written in this specification as

rt = ρr
(
Spt
)
rt−1 +

(
1− ρr

(
Spt
))[

φπ
(
Spt
)
πt + φy

(
Spt
)
yt

]
+ σr(Srt )εr,t. (B.1)

Results are given in Figure 8. The figure shows that our results remain

robust. Letting monetary policy switch on its own does not give any value

added, once we have allowed for volatility in oil price shock and in demand

and supply shocks.
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Figure 8. Smoothed probabilities

(a) Probability of being in the high macroeconomic volatility regime

(b) Probability of being in the high oil price volatility regime

(c) Probability of being in the high policy response regime

(d) Probability of being in the high monetary policy volatility regime

Note: The smoothed probabilities for being in the various regimes in the model where we

also allow for switching in the volatility of monetary policy shocks.
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Appendix C Robustness

C.1 Estimation of truncated sample

We analyze our results with a view to establishing their robustness to a trun-

cated sample ending before the financial crisis. From 2007, the U.S. experi-

enced a recession. Oil prices were also fluctuating wildly and the monetary

policy regime was different (zero-lower bound). We want to examine whether

these events influence our results. We therefore stop the estimation in the

last quarter of 2006. The smoothed probabilities for the estimated model on

the pre-2007 data sample is plotted in Figure 9. Results are robust to the

truncated sample.
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Figure 9. Smoothed probabilities for pre-2007 data

(a) Probability of being in the high macroeconomic volatility regime

(b) Probability of being in the high oil price volatility regime

(c) Probability of being in the high policy response regime

Note: The smoothed probabilities for being in the various regimes estimated for model M8

where we stop the estimation in 2006Q4.
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C.2 Measures of output gap

We estimate the output gap using the Baxter-King (BK) bandpass filter (see

Baxter and King (1999)) and the Christiano-Fitzgerald (CF) asymmetric ran-

dom walk filter (see Christiano and Fitzgerald (2003)) instead of the Hodrick-

Prescott filter. The results are robust to either measure, see Figures 10 and

11.

Figure 10. Smoothed probabilities using the BK-filter

(a) Probability of being in the high macroeconomic volatility regime

(b) Probability of being in the high oil price volatility regime

(c) Probability of being in the high policy response regime

Note: The smoothed probabilities for being in the various regimes estimated for model M8

where we estimate the model using the BK-filter.
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Figure 11. Smoothed probabilities using the CF-filter

(a) Probability of being in the high macroeconomic volatility regime

(b) Probability of being in the high oil price volatility regime

(c) Probability of being in the high policy response regime

Note: The smoothed probabilities for being in the various regimes estimated for model M8

where we estimate the model using the CF-filter.
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C.3 Global output gap measure in the oil price equa-

tion

As discussed in the main part of the paper, contrary to earlier beliefs that

the oil price was purely supply driven and could be treated as exogenous,

many studies have shown that global demand is an important oil price driver,

see e.g. Kilian (2009). In our baseline model we approximate global demand

by the U.S. output gap. We believe this to be a reasonable approximation,

especially in the early parts of our sample. We proceed then to check whether

this result is robust to the inclusion of a broader output gap measure, using

the OECD – Total index obtained from the OECD database. We use data

on GDP denoted in real U.S. dollars with base year 2005, the data is in fixed

PPPs, and seasonally adjusted.

st = ρost−1 + ζyOECD
t + σo(Sot )εo,t (C.1)
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Figure 12. Smoothed probabilities for model with global GDP

(a) Probability of being in the high macroeconomic volatility regime

(b) Probability of being in the high oil price volatility regime

(c) Probability of being in the high policy response regime

Note: The smoothed probabilities for being in the various regimes in the model where we

use global GDP in the oil price equation.
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Figure 6. Smoothed probabilities for model M10

(a) Probability of being in the high macroeconomic volatility regime

(b) Probability of being in the high oil price volatility regime

(c) Probability of being in the high policy response regime

(d) Probability of being in the high oil to macro regime

Note: Panel (a) presents the smoothed probabilities for being in the high macroeconomic

volatility regime. Panel (b) presents the smoothed probabilities for being in the high mone-

tary policy response regime. Panel (c) presents the smoothed probabilities for being in the

high oil volatility regime. Panel (d) presents the probability of being in the regime with the

high oil to macro relationship.
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