
Evolution of a Risk Coefficient in Artificial Societies

Vincent van der Goes and A.E. Eiben

Abstract— In this paper we investigate how life expectation
influences the development of risk attitude within an artificial
species. Our hypothesis is that agents with a very long life span
are likely to become more risk averse because they have more to
lose. To assess this hypothesis we set up a simple system, based
on Sugarscape, where risk attitude is an inheritable (hence,
evolvable) property. Performing numerous simulations with
different versions of this system we found that long-lived agents
consistently and clearly evolve a more risk averse behavior
than short-lived agents. Perceiving evolution as a generalforce
towards optimal behavior, these results indicate that increased
risk avoidance is a generally good strategy for agents with a
higher life expectation. This finding can be used to explain
various real-world phenomena. For instance, it can clarifythe
fact that people tend to adopt risky strategies when their life
is in danger.

I. I NTRODUCTION

Behavior under uncertainty and risk is an important topic
in the social sciences. Uncertainty is a pervasive element of
everyday life and present in even the most simple situations.
Consumers daily need to make decisions involving chance.
Within both the fields of economics and psychology, models
have been developed to capture human behavior under such
conditions.

In this paper we investigate how factors in biological
evolution can influence the development of risk attitude
within a species. In particular, we are interested in the role
of life expectation. Is a short-lived species likely to exhibit
a different type of behavior under risk than a long-lived
species? Our hypothesis is that since agents with a very long
life span have more to lose, they are likely to become more
risk averse.

Multi-agent systems provide a suitable tool to research this
kind of question [4] [6]. To answer this question we set up
a simple system of agents with basic properties of a natural
species. They breed and depend on the consumption of a
resource. The multi-agent model is inspired by and similar
to the Sugarscape [4]. Agents move around a grid to gather
their food, sugar. They are in constant need of sugar for
consumption and when they don’t manage to gather enough
of it, they die from starvation. However, if they manage to
gather sugar a large amount of sugar in excess of their needs
for consumption, they can use it to create offspring.

The system has been modified, to introduce an element of
risk. In the process of gathering sugar, the agents are now
offered a choice between a safe method of harvesting and
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a more risky method. The risky method can yield a greater
amount of sugar, but at the risk of gaining no yield at all.

Agents decide on this issue in accordance to a genetically
encoded risk aversion parameter. Agents with a lower param-
eter tend to opt for the safe method of harvest, while agents
with a higher parameter tend to use the risky method. The
risk parameter is inherited over generations and subject to
mutation. Thereby, it can evolve over time. We investigate the
evolution of the risk parameter, while varying the maximal
age of agents.

This research is an extension of earlier work [12], where
the same research question was also addressed with a multi-
agent system. However, in this paper we test the same hy-
pothesis for a much larger set of parameter settings and come
up with an improved method of measuring risk aversion. In
contrast to earlier work, we manage to evolve a coefficient of
relative risk aversion, which provides a quantative measure
of behavior under risk.

The remainder of this paper is set up as follows. Section
II gives a brief introduction to the underlying theory of risk
models. A detailed description of the multi-agent model can
be found in section III. Section gives an overview of the
experiments we performed and the parameter settings that
have been used. The results are in section V and in section
VI we conclude and suggest directions for further research.

II. ECONOMIC BACKGROUND: EXPECTEDUTILITY

In this section we outline the basics of the theory of
expected utility maximization, which is considered as the
normative model of choice under risk in economics. The
theoretic concepts outlined here will serve as the base of the
mental model of our agents. The main advantage of having
agents following the expected utility model is not that it
realistically models biological evolution in nature, but rather
that it provides a simple and elegant mental framework,
where the degree of risk aversion can be tuned with a single
parameter with a clear meaning.

A. Expected utility maximization

In the field of economics, various formal models have been
developed to capture human behavior in situations where out-
comes are subject to probabilities. In this context we speak
of behavior under risk, when the set of possible outcomes of
each action is known, as well as their respective probabilities.
When the probabilities are unknown beforehand, or when
even not all of the possible outcomes are known, we talk
aboutuncertainty. This paper deals exclusively with decision
under risk. The agents have full knowledge of their prospects
whenever they need to make a decision.
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Agents in our model will behave according to the model
of expected utility maximization. This is considered to be the
rational behavioral model [2] [8], even though it is widely
considered as outdated for the purpose of describing human
psychology (see, e.g., [7], [1]).

Consider a case where an agent is facing probabilities of
gains or losses of a single resource. This resource could be
money, as is often the case in economics, but it could also
be another resource. Within the scope of this work, it will
be sugar.

Further suppose that the probabilities of specific gains or
losses depend on the behavior of the agent. The agent can
choose between several differentactionsAi. After the agent
has made a decision, performing the action can result in
several differentoutcomes, depending on random chance.
Each outcome is represented by an amount of resourcex
that the agent gains. Whenx is negative, it is a loss rather
than a gain. The possible values ofx after taking actionAi

arexij (i = 1, 2, ..., n; j = 1, 2, ..., mi). The probabilities of
each of those outcomes to occur, given that the agent has
chosen actionAi, is pij .

The theory of expected utility assumes a rational agent,
having given preferences regarding the possible outcomes.
The preferences are assumed to satisfy a number of con-
ditions, such as consistancy and completeness. It is also
assumed that the agent has full knowledge ofxij and pij .
Under these assumptions, expected utility theory explains
how the agent should rank the possible actions in order to
optimize his prospects [2].

The expected utility model is based on the concept of
a utility function. Informally speaking, utility measures the
happiness of an agent at a given wealth level. The utility
function maps every wealth levelw to a utility level U(w).
The utility value corresponding to a loss or gain ofx, given
an initial wealth levelw0, is thenU(w0 + x).

In order to rank the possible actions, the agent calculates
the expected value of the utility of the outcomes for each
action, as in equation 1. The best action is the action
producing the highest expected utility.

EU(Ai) =

mi
∑

j=1

pijU(w0 + xij) (1)

When there are several actions maximizing expression 1,
the agent isindifferent between those actions. The theory
makes no prediction of the choice of the agent in this case.

An important feature of expected utility theory is that the
attitude of an agent toward risk is completely identified with
the utility function. If we know the utility function of the
agent for every wealth level, we can predict the choice for
any given actionAi, xij andpij .

However, utility functions are not uniquely defined.
Adding a constant to it would not change anything about
the behavior of the agent, since the choice of an agent
depends only on the relative quality of outcomes. Similarly,
multiplying a utility function with a positive constant does
not change any preferences either. This implies that given

a utility function, we are free to apply any positive affine
transformation, ie, we are free to choose the origin and to
choose a unit length.

B. The Standard Gamble Question

When an agent is maximizing expected utility, a conve-
nient way of reconstructing the utility function is by means
of the standard gamble question.

A standard gamble question confronts an agent with a
binary choice. If the agent chooses actionA1, he will gain
y for sure. If he chooses actionA2, he has a probability of
p to gain z > y, but a probability of1 − p to gain x < y.
The outcomes forA2 can be abbreviated tozpx (where the
probability is tied to the first state).

For values ofp close to zero, it is clear that the agent
will prefer actionA1. At the other end of the spectrum, for
p close to one, the agent will preferA2. Therefore, there
should be some valuep∗ for which the agent is indifferent
between the two actions [2]. This implies that the utility of
gainingy equals the expected utility ofzp∗x. In a standard
gamble, an agent is given a choice such as above and has to
reveal the value ofp∗ satisfying this condition, as in equation
2.

U(w0 + y) = (1 − p∗)U(w0 + x) + p∗U(w0 + z). (2)

In the case thatw0 = 0, this expression simplifies to

U(y) = (1 − p∗)U(x) + p∗U(z). (3)

Since we are free to choose our unit length and origin, we
may chooseU(x) = 0 and U(z) = 1. It then follows from
equation 3 thatU(y) = p∗.

Now suppose the agent can reveal his choices for any given
values ofw0, x, y andz. In that case the utility function can
easily be reconstructed over a given interval[A, B]. To this
end, we fixw0 at w0 = 0, x = A andz = B. For each value
of y ∈ [A, B], the agent should now reveal the corresponding
p∗ that makes him indifferent between the safe optiony and
the gamblexp∗z. The utility of any wealth levely ∈ [A, B]
is then equal to the probabilityp∗.

C. Relative Risk Aversion

For utility functions depending on a single parameter, it is
possible to quantify the risk attitude of the agent. When the
utility function is the identity functionU(x) = x, the agent
is maximizing the expected value of the resource itself. This
is called risk neutral behavior, because it implies that the
agent will take a bet if and only if it has a positive expected
value.

When the utility function is concave, each increment in the
resource conveys progressively less utility to the agent. As
a consequence, the agent will reject a fair bet, implyingrisk
aversebehavior. If, on the other hand, the utility function is
convex, the agent will take some bets that are less than fair,
leading torisk seekingbehavior.



In order to define those types of behavior quantatively, we
can userelative risk aversionor RRA, as in equation 4.

Ru(x) =
−xu′′(x)

u′(x)
(4)

It quantifies the local concavity of the utility function,
which in turn characterizes the type of behavior. A class of
simple utility functions that is often considered in economics
is the class ofisoelastic utility functions. Those are utility
functions with a constant relative risk aversion for all values
of x. They have the additional property of being insensitive
to scale. That is, when an agent maximizing such a utility
function has to make a choice involving possible losses or
gains of a resource, multiplying all relevant quantities ofthe
resource by a constant factor will have no influence on his
decision.

The general functional form of isoelastic utility functions
is shown in equation 5.

Uη(x) =

{

x1−η

1−η
for η 6= 1

log(x) for η = 1
(5)

Whereη, thecoefficient of risk aversion, equals the relative
risk aversionRUη

(x) for any value ofx.
Within this paper we will restrict attention to the case

η < 1. Values ofη greater than one correspond to extreme
risk aversion. For such utility functions,U(0) = −∞. This
implies that the agent would avoid a possible loss of all
wealth at any cost, ie, would even decline a bet where
an extremely large amount of wealth can be gained at a
vanishingly small risk of losing everything. This type of
behavior would not be realistic within our setting.

For values ofη < 1, equation 5 can be simplified. Recall
that utility functions can be freely transformed by positive
affine transformations. Since1− η is a positive constant for
η < 1, the utility function can be multiplied by this number.

In order to simplify the equation further, we useρ =
1 − η as our measure of risk aversion, rather thanη itself.
Restricting to the caseη < 1, multiplying by 1 − η and
substitutingη for 1− ρ produces the Cobb-Douglas class of
utility functions, see equation 6.

U(x) = xρ, ρ ∈ ℜ+ (6)

Whereρ is a risk aversion parameter. Whenρ = 1, the
agent is risk neutral. Forρ < 1 the agent is risk averse,
while for ρ > 1 the agent is risk loving. Cobb-Douglas
utility functions represent a convenient behavorial modelfor
the scope of this research, since it can model both risk
averse and risk loving behavior. Another advantage is that
the only parameter that is allowed to vary between agents,
risk aversion, is exactly the quantity we are trying to estimate.

III. T HE MULTI -AGENT MODEL

We investigate the influence of an exogenously given fixed
maximum lifetime on the evolution of risk attitude. To this
end, we consider a multi-agent system loosely based on the

Sugarscape model [4], although it differs in some details. It
features agents consuming a single resource, calledsugar.
The agents are in constant need of sugar in order to survive.
However, sugar is a scarce good in this system, because it
grows in limited quantities. Thereby the system supports a
limited population of agents, where they have to compete for
survival.

A. Birth, Death and Consumption

The environment of the agents consists of a square lattice
of N ×N locations. Each location can be occupied by zero
or more agents. The world is connected at the edges, giving
it the topology of a torus. That is, when an agent walks off
one edge it reappears at the opposite edge. A location can be
in two different states. Either it is empty, or contains sugar.
When a location is empty, it has a probabilityα to ’grow’
new sugar in the next timestep and a probability1 − α to
remain empty. A location containing sugar will remain in
that state until an agent harvests the sugar.

Agents can move around the world and harvest sugar when
they find it. Once harvested, the sugar is stored in the stock
of the agent. The current amount of sugar held by agenti
is denoted assi. Agents can keep an unlimited amount of
sugar in stock for indefinite time, but need to consume one
unit of sugar from stock at each timestep. When the agents
has no sugar in stock left, it dies from starvation.

Initially, all locations are empty. An initial number of
N0 agents are created at random positions. Multiple agents
can share the same location. All agents start with a stock
containingγ/2 sugar.

During each timestep, all agents carry out a number
of action rules. Each of those action rules is carried out
simultaniously by all agents. In cases where this would lead
to conflicts, the agents get to act in a random order.

First, all agents move a single step into a random direc-
tion. The direction can either be horizontally, verticallyor
diagonally.

Next, all agents get to harvest sugar. If the new location
contains sugar, the agent picks it up and adds it to its own
stock. As soon as any agent harvests the sugar, the location
reverts to the empty state. As a result, when multiple agents
share the same location with sugar, only the agent acting first
gets to harvest it.

The agent has to choose one of two possible methods of
harvesting. It can either choose a safe method, which has a
guaranteed but low yield ofy units of sugar. Alternatively, it
can choose a risky method, which could either yield a higher
amount ofz sugar, or it could fail and yield a lower amount
of x sugar. The resulting amount of sugar is added to the
stocksi.

Since harvesting will never yield more thanz sugar, the
total available amount of sugar in the system is kept limited.
Once an agent has harvested sugar, all sugar at the location
disappears, regardless of the amount of sugar the agent has
managed to extract.

After harvesting comes the reproduction rule. If an agent
has gathered at leastγ units of sugar, it will reproduce. A



new child agent is created at the same location. The parent
loses half of the sugar it has in stock and transfers it to the
stock of the child. After reproduction,schild equalssparent.

The next action rule is metabolism. All agents digest a
quantity ofδ sugar, which is substracted fromsi.

The final action rule in each timestep is death. Ifsi ≤
0, agenti dies and is removed. Additionaly, agents have a
maximal ageAmax. If the agent has been alive for this many
timesteps, it also dies during this phase.

All of the action rules of the system and their re-
lated system parameters are summarized in table I.
The table also lists symbolic representations for each
of the action rules. The total rule set of the system
is {{Gα}, {M, H, Rγ, Eδ, DAmax

}}, where the world ac-
tion rules are {Gα} and the agent action rules are
{M, H, Rγ , Eδ, DAmax

}.

TABLE I

ACTION RULES OF THEMULTI -AGENT SYSTEM

Order Description Symbol Parameters

Sugar Growback Gα α
1 Movement M -
2 Harvest Sugar H -
3 Reproduction Rγ γ
4 Metabolism Eδ δ
5 Death DAmax

Amax

B. Evolution of Decision Rules

Agents in our model get a choice between two methods of
harvesting sugar. The choice takes the form of the standard
gamble question in equation??. There are three possible
resulting sugar yields from harvesting:x, y andz, with x <
y < z. If the agent chooses the safe method of harvesting,
he gainsy sugar for sure. When the agent chooses the risky
method, he has gainsz sugar with probabilityp andx sugar
otherwise.

The quantitiesx, y and z and the probabilityp are
revealed to the agent beforehand. The agent now calculates
the expected utility of both options. Utility is taken as a
function of the total amount of sugar that the agent will
have in stock after addingx, y or z. The agents have a
Cobb-Douglas utility function, as specified in equation 6.
The risk aversion parameterρ differs between agents and is
genetically encoded. The resulting calculations for agenti
are given in equations 7 and 8.

EUsafe(si, ρi) = (si + y)ρi (7)

EUrisk(si, ρi) = p(si + x)ρi + (1 − p)(si + z)ρi (8)

If EUsafe > EUrisk, the agent chooses the safe harvest
method and ifEUrisk > EUsafe, he chooses the risky
method. In the unlikely event thatEUsafe = EUrisk, the
agent is indifferent and chooses either option with50%
probability.

In the encoding ofrhoi there is no distinction between
genotype and phenotype. Each agenti has a genetic code
consisting of the single alleleρi. At reproduction, the genetic
code of the child agent is inherited from the parent agent
and subjected to a mutation operator known aslognormal
mutation, see equation 9.

ρchild = ρparent · e
ζ (9)

ζ ∼ N(0, σ) (10)

Whereσ in equation 10 is a constant mutation parameter
of the model.

C. Parameters of the Harvest Process

Recall that the harvest decision takes the form of a
standard gamble question. As explained in section II-B, the
shape of a utility function can be recovered over an interval
by keepingw0 = si, x and z fixed and lettingy increase
from x to z.

In order to stimulate the evolution of a utility function
that works well over the entire domain of interest, we adopt a
similar approach. Unfortunately,si depends on the history of
the agent and can’t be kept fixed. Nonetheless, in the multi-
agent system we keep the amountsx and z in the harvest
gamble fixed, while varyingy. The safe yieldy is drawn
randomly with uniform distribution from〈x, z〉, implying
x < y < z. This ensures that the utility function is evaluated
at many different points.

The probability parameterp is also varied. There is a prob-
lem with the choice ofp that merits careful consideration.
If p were simply a function ofy, for example, it would
be possible that expected utility of one of the two methods
of harvesting would be higher than the other for the entire
population for any value ofy. In this scenario, all agents
would prefer the same method of harvesting. In that case,
no agent would have any selective advantage over any of the
others. Therefore, there would be no selective pressure on
risk aversion at all.

In order to avoid such a situation,p is manipulated in a
manner designed to optimize selective pressure. The idea is
that when the agents start to evolve risk loving strategies,the
probability of winning the high amountz is proportionally
decreased to test whether the agents are willing to take even
more risk. Conversely, when agents become risk averse, the
probability of winning is increased to test if the agents will
now evolve even more risk aversion.

We gauge the dominating risk attitude of the agents in the
current population by calculating the average value ofρi at
the beginning of each timestep, as in equation 11.

ρ̄t =
1

n

n
∑

i=1

ρi (11)

Now we choosep such that an agent with a risk aversion
parameterρi > ρ̄t will always choose the risky harvest
method, while an agent withρi < ρ̄t will choose the safe
option. This creates a high selective pressure. For example,



consider the case where the agents could on average increase
their fitness significantly by becoming more risk averse. It
is then ensured that a part of the population will choose the
safe method of harvesting, giving them a significant selective
advantage over the rest.

This condition can be restated as follows. When the risk
aversion gene of an agent would be equal to the population
average, he should be indifferent between the safe harvest
method and the risky harvest method. This is formally
specified in equation 12

EUsafe(si, ρ̄t) = EUrisk(si, ρ̄t) (12)

Solving equation 12 yields the following function forp:

p(si, y, ρ̄t) =
(si + y)ρ̄t − (si + x)ρ̄t

(si + z)ρ̄t − (si + x)ρ̄t
(13)

In summary,x andz are kept constant,y is drawn uniform
randomly from〈x, z〉 andp is calculated fromsi, y and ρ̄t

as in equation 13.

IV. EXPERIMENTAL SETUP

We performed a series of experiments with the multi-agent
system of section III. In each experiment, the model was run
a total of100 times. The simulations were all aborted after
T = 20000 timesteps. At the end of each run, we calculated
and stored the average risk aversion in the population at
the beginning of the final timestep̄ρT . Those averages were
averaged over the simulation runs.

The entire experiment of100 system runs has been re-
peated for several parameter settings. We explored the behav-
ior of the system by systematically varying some parameters
of interest and keeping all other parameters equal.

The first parameter that was varied was the maximum
lifetime Amax, since the main question is whether this has
any influence on the result. The maximum lifetime was varied
between the values of40, 80, 160, 320 and∞. An infinite
lifetime means agents do not have a maximum lifetime at all
and is equivalent toAmax = T .

Another parameter which is likely to play a major role in
the evolution of behavior under risk is the sugar threshold
for reproductionγ. The reason why we believe so, is that
winning a gamble while harvesting could push the available
amount of sugar beyond this threshold. In that case the agent
would be able to reproduce immediately, which could provide
a strong incentive to risk the gamble.

In order to gain insight in the influence ofγ, it was also
varied between experiments. It was consecutively held at
the values of40, 80 and 160. Every combination of these
two parameters has been tried, resulting in a total of5 × 3
experiments of100 runs each.

The stepsize parameterσ for evolution and the run length
T were manually tuned for good performance. There are two
criteria that we tried to meet in tuning those parameters. First
of all, σ should not be too large, in order to keep the effect
of genetic drift limited. Secondly,T should be sufficiently
large for the evolution to reach a long-term equilibrium. We

found that the values ofσ = 0.01 andT = 20000 timesteps
met both criteria reasonably well.

A detailed list of all the parameter settings that have been
used in the experiments can be found in table II.

TABLE II

EXPERIMENT DESCRIPTION TABLE FOR THE TESTS

Experiment Details

Simulation LengthT 20000 Timesteps
Number of Repeats 100
World Size 50 × 50 Locations
Sugar Growth (α) 0.01

Harvest Choice Details

x 0
z 100
y random uniform over〈x, z〉
p p(si, y, ρ̄t)

Agent Details

Reproduction Thresholdγ 40, 80, 160
Metabolismδ 1
Maximal AgeAmax 40, 80, 160, 320, ∞
Initial Agents 100
Initial Sugarsi,0 γ/2
Initial Agent Location Uniform Random

Evolution Details

Genetic Encoding Direct Representation
Mutation Operator Lognormal Mutation
Mutation Parameterσ 0.01
Initial σ 1
Crossover Operator none

V. EXPERIMENTAL RESULTS

Table III shows the experimental results, averaged over all
100 repetitions of the experiment. It also shows the standard
deviations to indicate the spread in the results.

In one case, whereAmax = 40 and γ = 160, we did
not get a result at all. The reason is that the system was
no longer stable under this parameter setting, resulting in
frequent population crashes. The most likely explanation is
that agents were living too short to gather enough sugar to
reach their reproduction threshold, thus failing to reproduce.

The standard deviations in̄ρT give an indication of the
stability of the evolutionary process and the effect of genetic
drift at t = T . It turns out that the signal-to-noise ratio
is good enough to draw meaningful conclusions about the
behavior of the system.

The results clearly show thatγ plays an important role
in the evolution of risk aversion in this multi-agent system.
When the agents need a larger amountγ of sugar to be able to
reproduce, they tend to develop more risk-loving strategies.

For each of the three values ofγ, the average value of
ρ̄T over the runs decreases strictly withAmax. Not all of
the differences between those average values are statistically
significant. However, it can be shown that for these values
of γ the overall negative correlation of̄ρT with Amax is
statistically significant at high confidence levels.



For γ = 40, a T-test indicates that the average value of
ρ̄T is significantly greater forAmax = 40 than forAmax =
80 at the99% confidence level. The latter value is in turn
significantly greater than forAmax = ∞, again at the99%
confidence level.

For γ = 80 we can say exactly the same:ρ̄T,Amax=40 >
ρ̄T,Amax=80 > ρ̄T,Amax=∞. These inequalities are estab-
lished with statistical significance at the99% confidence
level.

For γ = 160, it likewise holds that ρ̄T,Amax=80 >
ρ̄T,Amax=160 > ρ̄T,Amax=∞ with statistical significance at
the 99% confidence level.

Summarizing, we have no case where the result increases
with Amax, while the average value of̄ρT over the test runs
decreases withAmax for each of the three values ofγ in our
test suite.

These results are fully in line with our hypothesis that
agents with a longer maximum lifetime are likely to evolve
more risk aversion.

TABLE III

EVOLVED RISK PARAMETER ρ̄T , AVERAGED OVER100 RUNS EACH.

Amax γ = 40 γ = 80 γ = 160
40 1.34 ± 0.10 1.87 ± 0.13 −
80 1.22 ± 0.084 1.76 ± 0.10 2.73 ± 0.15
160 1.21 ± 0.085 1.60 ± 0.088 2.52 ± 0.097
320 1.20 ± 0.086 1.56 ± 0.80 2.10 ± 0.089
∞ 1.19 ± 0.081 1.54 ± 0.070 1.84 ± 0.076

VI. CONCLUSIONS

We investigated the effect of an exogenously given life
expectancy on the evolution of risk attitude in a multi-
agent system. The multi-agent system was a variant of the
sugarscape world [4]. It models a species consuming and
depending on a single resource, sugar, living in a niche of
limited carrying capacity.

We introduced risk into the model, taking the form of
a standard gamble question. Agents were offered a choice
between two methods of harvesting sugar, a safe and a risky
method. The safe method offered a fixed reward, while the
risky method had a probability of yielding a higher amount,
but also a risk of yielding no sugar. The agents decided by
maximizing their expected utility. The functional form of
the utility curve was fixed up to a single degree of freedom.
The one parameter that was allowed to vary between agents
corresponds to relative risk aversion [2].

The risk aversion parameter was treated as the genetic code
of the agent. By observing many evolutions of the gene, we
were able to measure the preferred degree of risk aversion
of the agents under given parameter settings of the model.
The experiments have been repeated for various parameter
setting. We found that long-lived agents consistently and
clearly evolve a more risk averse type of behavior than short-
lived agents, for all of the parameter settings in our test suite.

This finding is consistent with earlier work [12], lending
independent support to the hypothesis that a longer maximum
lifetime will encourage the evolution of more risk averse
strategies for survival. In contrast to this earlier study,we
established that there is an effect for finite differences in
maximum lifetime and under a range of relevant parameter
settings of the system. Additionaly, we improved on the
earlier results by quantifying risk aversion in the form of
a coefficient of relative risk aversion.

It should be noted, however, that in both this research and
in [12] the agents were allowed to reproduce during their
entire lifecycle. The effect of a limited fertile period remains
to be investigated. Other features that could be explored in
future work include the effects of sexual reproduction, a
crossover operator and multiple resources. In the context of
human behavior one would also need to consider trade and
social factors such as altruism.

There are several real-world cases where our hypothesis
could be tested or used as an explanatory factor. As one
example, in most animal species, including humans, females
have a longer average life expectancy than males, while
males are often more inclined to engage in risky activities
[13] [9]. More generally, in relation to animal species it is
consistent withlife history theory[3] [11]. Life history is a
mathematical framework relating patterns of behavior of ani-
mals to effects of natural selection on the key characteristics
that define the life course, such as maturation, reproduction
and life expectation.

In the field of economics, an evolutionary influence of
life expection could serve as a partial explanation for some
findings ofprospect theory. Prospect theory has widely been
accepted as a better descriptive model for human behavior
under risk than expected utility theory [7], [1]. An important
feature of prospect theory isframing: people tend toward risk
loving behavior when facing losses, while being much more
risk averse when facing possible gains. Of particular interest
in relation to our research, it has been found that people are
stating to have especially risk-loving tendencies in matters
of life and death [5].

Earlier attempts to explain framing from a perspective of
biological evolution include [10]. In this research, a model
from risk-sensitiveoptimal foraging theorywas developed.
It was argued that framing has evolved as an adaptation to
optimize fitness in a hunter-gatherer society.

We propose the evolutionary influence of life expectancy
on risk attitude as an additional explanatory factor for fram-
ing effects, especially for situations where life and deathare
at stake.
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