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Evolution of a Risk Coefficient in Artificial Societies

Vincent van der Goes and A.E. Eiben

Abstract— In this paper we investigate how life expectation a more risky method. The risky method can yield a greater
influences the development of risk attitude within an artifidal  gmount of sugar, but at the risk of gaining no yield at all.
species. Our hypothesis is that agents with a very long lifepan Agents decide on this issue in accordance to a genetically
are likely to become more risk averse because they have more t . . )
lose. To assess this hypothesis we set up a simple system edas encoded risk aversion parameter. Agents with a Iowgr param-
on Sugarscape, where risk attitude is an inheritable (hence €ter tend to opt for the safe method of harvest, while agents
evolvable) property. Performing numerous simulations wih  with a higher parameter tend to use the risky method. The
different versions of this system we found that long-lived gents  risk parameter is inherited over generations and subject to
consistently and clearly evolve a more risk averse behavior mutation. Thereby, it can evolve over time. We investighee t

than short-lived agents. Perceiving evolution as a generdbrce luti f the risk hil . h imal
towards optimal behavior, these results indicate that inceased €volution of the risk parameter, while varying the maxima

risk avoidance is a generally good strategy for agents with a age of agents.
higher life expectation. This finding can be used to explain This research is an extension of earlier work [12], where
various real-world phenomena. For instance, it can clarifythe  the same research question was also addressed with a multi-
ECI:] tg:;g;?ple tend to adopt risky strategies when their fle 5,00t sustem. However, in this paper we test the same hy-
pothesis for a much larger set of parameter settings and come
up with an improved method of measuring risk aversion. In
contrast to earlier work, we manage to evolve a coefficient of
Behavior under uncertainty and risk is an important topigelative risk aversion, which provides a quantative measur
in the social sciences. Uncertainty is a pervasive element of behavior under risk.
everyday life and present in even the most simple situations The remainder of this paper is set up as follows. Section
Consumers daily need to make decisions involving chancg.gives a brief introduction to the underlying theory ofkis
Within both the fields of economics and psychology, modelgodels. A detailed description of the multi-agent model can
have been developed to capture human behavior under sugh found in section Ill. Section gives an overview of the
conditions. experiments we performed and the parameter settings that
In this paper we investigate how factors in biologicahave been used. The results are in section V and in section
evolution can influence the development of risk attitude/| we conclude and suggest directions for further research.
within a species. In particular, we are interested in the rol
of life expectation. Is a short-lived species likely to ehi I[l. ECONOMIC BACKGROUND: EXPECTEDUTILITY
a different type of behavior under risk than a long-lived
species? Our hypothesis is that since agents with a very lon

life span have more to lose, they are likely to become mo i . N .
normative model of choice under risk in economics. The

risk averse. . . .
. . . theoretic concepts outlined here will serve as the baseeof th
Multi-agent systems provide a suitable tool to research thi . :
. . . . mental model of our agents. The main advantage of having
kind of question [4] [6]. To answer this question we set up . o . .
. . . ' agents following the expected utility model is not that it
a simple system of agents with basic properties of a natura

. . ]{ealistically models biological evolution in nature, bather
species. They breed and depend on the consumption of a_ . : :

. L .. that it provides a simple and elegant mental framework,

resource. The multi-agent model is inspired by and similar . : . .

. where the degree of risk aversion can be tuned with a single

to the Sugarscape [4]. Agents move around a grid to gather . .

: . Darameter with a clear meaning.
their food, sugar. They are in constant need of sugar for

consumption and when they don’t manage to gather enoug‘h

of it, they die from starvation. However, if they manage to -

gather sugar a large amount of sugar in excess of their needsn the field of economics, various formal models have been

for consumption, they can use it to create offspring. developed to capture human behavior in situations where out
The system has been modified, to introduce an element@®mes are subject to probabilities. In this context we speak
risk. In the process of gathering sugar, the agents are n&fbehavior under riskwhen the set of possible outcomes of

offered a choice between a safe method of harvesting agéch action is known, as well as their respective probasilit
When the probabilities are unknown beforehand, or when
Vincent van der Goes is with the Departement of Economics an@ven not all of the possible outcomes are known, we talk
Buss_iness Administration, VU University Amsterdam, Thethéelands; aboutuncertainty This paper deals exclusively with decision
email: vgoes@feweb.vu.nl . i
A.E. Eiben is with the Department of Computational Sciences under risk. The agents have full knowledge of their prospect
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I. INTRODUCTION

In this section we outline the basics of the theory of
pected utility maximization, which is considered as the

Expected utility maximization
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Agents in our model will behave according to the modeh utility function, we are free to apply any positive affine
of expected utility maximizatiofhis is considered to be the transformation, ie, we are free to choose the origin and to
rational behavioral model [2] [8], even though it is widelychoose a unit length.

considered as outdated for the purpose of describing human
psycho|ogy (See, e.g., [7]' [1]) B. The Standard Gamble Question

Consider a case where an agent is facing probabilities of when an agent is maximizing expected utility, a conve-
gains or losses of a single resource. This resource could fent way of reconstructing the utility function is by means
money, as is often the case in economics, but it could algsf the standard gamble question
be another resource. Within the scope of this work, it will A standard gamble question confronts an agent with a
be sugar. binary choice. If the agent chooses actidn, he will gain

Further suppose that the probabilities of specific gains ¢f for sure. If he chooses actiaf,, he has a probability of
losses depend on the behavior of the agent. The agent Gag gain > > y, but a probability ofl — p to gainz < y.
choose between several differemtions A;. After the agent The outcomes ford, can be abbreviated tg,z (where the
has made a decision, performing the action can result 'b'robability is tied to the first state).
several differentoutcomes depending on random chance. For values ofp close to zero, it is clear that the agent
Each outcome is represented by an amount of resaurceyjj|| prefer actionA4,. At the other end of the spectrum, for
that the agent gains. Whenis negative, it is a loss rather ;, close to one, the agent will prefet,. Therefore, there
than a gain. The possible valuesoffter taking actiond;  should be some valug® for which the agent is indifferent
arex;; (i =1,2,...,n;j =1,2,...,m;). The probabilities of petween the two actions [2]. This implies that the utility of
each of those outcomes to occur, given that the agent hgsiningy equals the expected utility of,-z. In a standard
chosen actiom;, is pi;. gamble, an agent is given a choice such as above and has to

The theory of expected utility assumes a rational agenfeveal the value of* satisfying this condition, as in equation
having given preferences regarding the possible outcomes.

The preferences are assumed to satisfy a number of con-

ditions, such as consistancy and completeness. It is also

assumed that the agent has full knowledgergf and p;;. Ulwo+y) =1 —-p")U(wo +z) +p"Ul(wo + 2). (2)
Under these assumptions, expected utility theory explains
how the agent should rank the possible actions in order to
optimize his prospects [2].

The expected utility model is based on the concept of Uly) = (1 —=p)U(z) +p"U(2). 3)
a utility function Informally speaking, utility measures the
happiness of an agent at a given wealth level. The utili%
function maps every wealth level to a utility level U (w).

The utility value corresponding to a loss or gainagfgiven Now suppose the agent can reveal his choices for any given

an initial wealth levehuy, is thenl/(wo + z). values of andz. In that case the utility function can
In order to rank the possible actions, the agent calculates o T, Y = y

the expected value of the utility of the outcomes for eac asily be_reconstructed over a given interi| B]. To this
. . . . . .—end, we fixwy atwg = 0, x = A andz = B. For each value
action, as in equation 1. The best action is the action .
roducing the highest expected utility of y € [A, B], thg agen_t should now reveal the corre_spondlng
P ’ p* that makes him indifferent between the safe optjcand
the gamblez,-z. The utility of any wealth level € [A, B]

EU(A;) = ZpijU(wO + 45) (1) is then equal to the probability*.
j=1

In the case thatvg = 0, this expression simplifies to

Since we are free to choose our unit length and origin, we
ay choosd/(z) = 0 andU(z) = 1. It then follows from
equation 3 thal/ (y) = p*.

When there are several actions maximizing expression ¢: Relative Risk Aversion
the agent isindifferent between those actions. The theory For utility functions depending on a single parameter, it is
makes no prediction of the choice of the agent in this caspossible to quantify the risk attitude of the agent. When the

An important feature of expected utility theory is that theutility function is the identity functiorl/(z) = «, the agent
attitude of an agent toward risk is completely identifiedhwit is maximizing the expected value of the resource itselfsThi
the utility function. If we know the utility function of the is calledrisk neutral behavior, because it implies that the
agent for every wealth level, we can predict the choice forgent will take a bet if and only if it has a positive expected
any given action4;, z;; andp;;. value.

However, utility functions are not uniquely defined. When the utility function is concave, each increment in the
Adding a constant to it would not change anything aboutsource conveys progressively less utility to the agest. A
the behavior of the agent, since the choice of an ageatconsequence, the agent will reject a fair bet, implyisg
depends only on the relative quality of outcomes. Similarlyaversebehavior. If, on the other hand, the utility function is
multiplying a utility function with a positive constant dee convex, the agent will take some bets that are less than fair,
not change any preferences either. This implies that givéeading torisk seekingoehavior.



In order to define those types of behavior quantatively, wBugarscape model [4], although it differs in some details. |

can userelative risk aversioror RRA as in equation 4. features agents consuming a single resource, calleghr
. The agents are in constant need of sugar in order to survive.
Ru(z) = —2 () (4) However, sugar is a scarce good in this system, because it
u'(x) grows in limited quantities. Thereby the system supports a

It quantifies the local concavity of the utility function, imited population of agents, where they have to compete for
which in turn characterizes the type of behavior. A class djurvival.
simple utility functions that is often considered in econcen Birth, Death and Consumption

is the class ofisoelastic utility functionsThose are utility . . .
; . . X The environment of the agents consists of a square lattice
functions with a constant relative risk aversion for allues . . )
i, S .. of N x N locations. Each location can be occupied by zero
of z. They have the additional property of being insensitive

to scale. That is, when an agent maximizing such a utiIitfr more agents. The world is connected at the edges, giving

function has to make a choice involving possible losses \, the topology of a torus. That is, when an agent walks off

r . . X
gains of a resource, multiplying all relevant quantitieshs one edge it reappears at the opposite edge. A location can be
resource by a constant factor will have no influence on h

in two different states. Either it is empty, or contains suga

- \then a location is empty, it has a probabilityto 'grow’

decision. : . "
. . - . new sugar in the next timestep and a probability « to

The general functional form of isoelastic utility functen . . S . o

. . . remain empty. A location containing sugar will remain in

is shown in equation 5. 4

that state until an agent harvests the sugar.

2 for N1 Agents can move around the world and harvest sugar when
Uy(z) = { I=n (5) they find it. Once harvested, the sugar is stored in the stock
log(z) forn=1 of the agent. The current amount of sugar held by agent
Wherey), thecoefficient of risk aversigrequals the relative iS denoted as;. Agents can keep an unlimited amount of
risk aversionRy, (z) for any value ofz. sugar in stock for indefinite time, but need to consume one
n

Within this paper we will restrict attention to the caseunit of sugar from stock at each timestep. When the agents
n < 1. Values ofy greater than one correspond to extrem&as no sugar in stock left, it dies from starvation.
risk aversion. For such utility functions](0) = —oo. This Initially, all locations are empty. Ar.1.|n|t|al number of
implies that the agent would avoid a possible loss of afi¥o agents are created at random positions. Multiple agents
wealth at any cost, ie, would even decline a bet wheré@" share the same location. All agents start with a stock
an extremely large amount of wealth can be gained at @ntainingy/2 sugar.
vanishingly small risk of losing everything. This type of During each timestep, all agents carry out a number
behavior would not be realistic within our setting. o_f action rules. Each of those action rules is carried out
For values ofy < 1, equation 5 can be simplified. Reca”SlmuItar_nously by all agents. In cases where this would lead
that utility functions can be freely transformed by positiv t©© conflicts, the agents get to act in a random order.
affine transformations. Since— 7 is a positive constant for _ First, all agents move a single step into a random direc-
n < 1, the utility function can be multiplied by this number. tion. The direction can either be horizontally, verticatly

In order to simplify the equation further, we uge= diagonally. _
1 — 1 as our measure of risk aversion, rather thaitself. Next, all agents get to harvest sugar. If the new location

Restricting to the casg < 1, multiplying by 1 — 7 and contains sugar, the agent picks it up and adds it to its own

substitutingy for 1 — p produces the Cobb-Douglas class ofStock. As soon as any agent harvests the sugar, the location
utility functions, see equation 6. reverts to the empty state. As a result, when multiple agents

share the same location with sugar, only the agent actirtg firs
o + gets to harvest it.
Ula) =af,p e R © The agent has to choose one of two possible methods of
Wherep is a risk aversion parameter. When= 1, the harvesting. It can either choose a safe method, which has a
agent is risk neutral. Fop < 1 the agent is risk averse, guaranteed but low yield af units of sugar. Alternatively, it
while for p > 1 the agent is risk loving. Cobb-Douglascan choose a risky method, which could either yield a higher
utility functions represent a convenient behavorial mddel amount ofz sugar, or it could fail and yield a lower amount
the scope of this research, since it can model both risf = sugar. The resulting amount of sugar is added to the
averse and risk loving behavior. Another advantage is thatocks;.
the only parameter that is allowed to vary between agents, Since harvesting will never yield more thansugar, the
risk aversion, is exactly the quantity we are trying to eatien  total available amount of sugar in the system is kept limited
Once an agent has harvested sugar, all sugar at the location
disappears, regardless of the amount of sugar the agent has
We investigate the influence of an exogenously given fixeghanaged to extract.
maximum lifetime on the evolution of risk attitude. To this After harvesting comes the reproduction rule. If an agent
end, we consider a multi-agent system loosely based on thas gathered at least units of sugar, it will reproduce. A

IIl. THE MULTI-AGENT MODEL



new child agent is created at the same location. The parentin the encoding of-ho; there is no distinction between
loses half of the sugar it has in stock and transfers it to ttgenotype and phenotype. Each agéntas a genetic code
stock of the child. After reproductioniiq equalssy.ren:.  CONsisting of the single allelg;. At reproduction, the genetic

The next action rule is metabolism. All agents digest aode of the child agent is inherited from the parent agent
guantity ofd sugar, which is substracted from. and subjected to a mutation operator knownl@gmormal

The final action rule in each timestep is deaths)f< mutation see equation 9.

0, agent: dies and is removed. Additionaly, agents have a
maximal ageA,,....- If the agent has been alive for this many
timesteps, it also dies during this phase.

All of the action rules of the system and their re- ¢ ~N(00) (10)
lated system parameters are summarized in table I wheres in equation 10 is a constant mutation parameter
The table also lists symbolic representations for eachf the model.
of the action rules. The total rule set of the system
is {{Ga},{M,H,R,,Es,D4,,.}}, where the world ac- C. Parameters of the Harvest Process
tion rules are {G,} and the agent action rules are Recall that the harvest decision takes the form of a

Pchild = Pparent * eC (9)

{M,H,R,,E5,Da4,,,.} standard gamble question. As explained in section II-B, the
shape of a utility function can be recovered over an interval
TABLE | by keepingwy = s;,  and z fixed and lettingy increase
ACTION RULES OF THEMULTI-AGENT SYSTEM from z to z.
In order to stimulate the evolution of a utility function
Order| Description | Symbol | Parameters that works well over the entire domain of interest, we adopt a
Sugar Growback]  Ga a similar approach. Unfortunately; depends on the history of
1 Movement M - the agent and can’t be kept fixed. Nonetheless, in the multi-
2 Harvest Sugar H - .
3 Reproduction R, ~ agent system we keep the amountand z in the harvest
4 Metabolism Es ) gamble fixed, while varying,. The safe yieldy is drawn
5 Death Dapos Amaz randomly with uniform distribution from(x, z), implying

x <y < z. This ensures that the utility function is evaluated
at many different points.
The probability parameteris also varied. There is a prob-

] ] lem with the choice ofp that merits careful consideration.
Agents in our model get a choice between two methods f ,, were simply a function ofy, for example, it would

harvesting sugar. The choice takes the form of the standasd possible that expected utility of one of the two methods

gamble question in equatiod?. There are three possible of harvesting would be higher than the other for the entire

resulting sugar yields from harvesting, y andz, with = < popylation for any value of. In this scenario, all agents

y < z. If the agent chooses the safe method of harvestingoy|d prefer the same method of harvesting. In that case,
he gainsy sugar for sure. When the agent chooses the risky, agent would have any selective advantage over any of the
method, he has gainssugar with probabilityy andx sugar  gthers. Therefore, there would be no selective pressure on
otherwise. risk aversion at all.

The quantitiesz, y and z and the probabilityp are |y order to avoid such a situatiop, is manipulated in a
revealed to the agent beforehand. The agent now calculai@gnner designed to optimize selective pressure. The idea is
the expected utility of both options. Utility is taken as aghat when the agents start to evolve risk loving stratedies,
function of the total amount of sugar that the agent W”brobability of winning the high amount is proportionally
have in stock after adding, y or z. The agents have a gecreased to test whether the agents are willing to take even
Cobb-Douglas utility function, as specified in equation 6more risk. Conversely, when agents become risk averse, the
The risk aversion parameterdiffers between agents and is propability of winning is increased to test if the agents! wil
genetically encoded. The resulting calculations for agentpow evolve even more risk aversion.
are given in equations 7 and 8. We gauge the dominating risk attitude of the agents in the
current population by calculating the average value 0t
the beginning of each timestep, as in equation 11.

B. Evolution of Decision Rules

EUsafe(Siapi) = (Si"‘y)pi (7)

E'ris Sis Pi = S )P 1-— S; z)P (8 _ "
Urisk(si5 pi) psi+ )7 + (1= p)(si +2)” (8) Pt:%ZPi (1)
If EUsqre > EUrisk, the agent chooses the safe harvest i=1

method and ifEU,;sx > EUsqfe, he chooses the risky Now we choose such that an agent with a risk aversion

method. In the unlikely event tha&U,,r. = EU,is;, the parameterp; > p: will always choose the risky harvest

agent is indifferent and chooses either option with% method, while an agent witp; < p; will choose the safe

probability. option. This creates a high selective pressure. For example



consider the case where the agents could on average increfasand that the values of = 0.01 and7" = 20000 timesteps
their fithess significantly by becoming more risk averse. Iinet both criteria reasonably well.
is then ensured that a part of the population will choose the A detailed list of all the parameter settings that have been
safe method of harvesting, giving them a significant selecti used in the experiments can be found in table II.
advantage over the rest.

This condition can be restated as follows. When the risk TABLE Il
aversion gene of an agent would be equal to the population EXPERIMENT DESCRIPTION TABLE FOR THE TESTS
average, he should be indifferent between the safe harvest
method and the risky harvest method. This is formally

Experiment Details

specified in equation 12 Simulation LengthT" 20000 Timesteps
Number of Repeats 100
B B World Size 50 x 50 Locations
EUsqfe(siypt) = EUrisi(8i, pt) (12) Sugar Growth &) 0.01
Solving equation 12 yields the following function fpr Harvest Choice Details
_ _ T 0
o (sity) = (sit o) 13) * 100
p(si Y, pi) = (5i + 2)7* — (51 + z)r (13) Yy random uniform ovefz, z)
! ! P p(si,y, pt)

In summaryy andz are kept constany; is drawn uniform

. Agent Details
randomly from(z, z) andp is calculated froms;, y and p, g

i ; Reproduction Threshol 40, 80, 1
as in equation 13. MeFt)e_\bolismd d 10 80, 160
IV. EXPERIMENTAL SETUP mg’t‘gr‘ﬁg;ﬂi““"m 10, 80: 160, 520, 00

We performed a series of experiments with the multi-agentlnitial Sugars; o v/2
system of section IIl. In each experiment, the model was run"ta Agent Location Uniform Random
a total of 100 times. The simulations were all aborted after Evolution Details
T = 20000 timesteps. At the end of each run, we calculated Genetic Encoding Direct Representation
and stored the average risk aversion in the population aMutation Operator Lognormal Mutation
the beginning of the final timestefyr. Those averages were 120" Parameter (1)'01
averaged over the simulation runs. Crossover Operator none

The entire experiment 0of00 system runs has been re-
peated for several parameter settings. We explored thevbeha
ior of the system by systematically varying some parameters
of interest and keeping all other parameters equal.

The first parameter that was varied was the maximum Table Il shows the experimental results, averaged over all
lifetime A,,..., since the main question is whether this had00 repetitions of the experiment. It also shows the standard
any influence on the result. The maximum lifetime was varie@eviations to indicate the spread in the results.

V. EXPERIMENTAL RESULTS

between the values af0, 80, 160, 320 and co. An infinite In one case, whered,,,,., = 40 andy = 160, we did
lifetime means agents do not have a maximum lifetime at aflot get a result at all. The reason is that the system was
and is equivalent td,,,,, = T. no longer stable under this parameter setting, resulting in

Another parameter which is likely to play a major role infrequent population crashes. The most likely explanat®n i
the evolution of behavior under risk is the sugar thresholthat agents were living too short to gather enough sugar to
for reproductiony. The reason why we believe so, is thatreach their reproduction threshold, thus failing to repmel
winning a gamble while harvesting could push the available The standard deviations ipy give an indication of the
amount of sugar beyond this threshold. In that case the agetability of the evolutionary process and the effect of giene
would be able to reproduce immediately, which could providdrift at ¢ = T. It turns out that the signal-to-noise ratio
a strong incentive to risk the gamble. is good enough to draw meaningful conclusions about the

In order to gain insight in the influence of it was also behavior of the system.
varied between experiments. It was consecutively held at The results clearly show that plays an important role
the values 0f40, 80 and 160. Every combination of these in the evolution of risk aversion in this multi-agent system
two parameters has been tried, resulting in a totah af3  When the agents need a larger amouof sugar to be able to
experiments ofl00 runs each. reproduce, they tend to develop more risk-loving strategie

The stepsize parameterfor evolution and the run length  For each of the three values of the average value of
T were manually tuned for good performance. There are twer over the runs decreases strictly with,,.... Not all of
criteria that we tried to meet in tuning those parameterst Fi the differences between those average values are stltistic
of all, o should not be too large, in order to keep the effecsignificant. However, it can be shown that for these values
of genetic drift limited. Secondly]" should be sufficiently of v the overall negative correlation gfy with A,,.. is
large for the evolution to reach a long-term equilibrium. Westatistically significant at high confidence levels.



For v = 40, a T-test indicates that the average value of This finding is consistent with earlier work [12], lending

pr is significantly greater ford,, ., = 40 than for A, =

independent support to the hypothesis that a longer maximum

80 at the99% confidence level. The latter value is in turnlifetime will encourage the evolution of more risk averse

significantly greater than fad,,,.. = oo, again at the99%

confidence level.

For v = 80 we can say exactly the samer 4,,,,=40 >

strategies for survival. In contrast to this earlier studhg
established that there is an effect for finite differences in
maximum lifetime and under a range of relevant parameter

DT, Apaa=80 > PT,A,..—cc- These inequalities are estab-settings of the system. Additionaly, we improved on the
lished with statistical significance at thH#% confidence earlier results by quantifying risk aversion in the form of

level.

For v =

160, it likewise holds thatpr a,,,.=s0 >

a coefficient of relative risk aversion.
It should be noted, however, that in both this research and

DT, Aan=160 > PT.A,...—cc With statistical significance at in [12] the agents were allowed to reproduce during their

the 99% confidence level.

entire lifecycle. The effect of a limited fertile period rains

Summarizing, we have no case where the result increadesbe investigated. Other features that could be explored in
with A,...., while the average value @ over the test runs future work include the effects of sexual reproduction, a

decreases withl,,, ... for each of the three values ofin our

test suite.

crossover operator and multiple resources. In the context o
human behavior one would also need to consider trade and

These results are fully in line with our hypothesis thagocial factors such as altruism. .
agents with a longer maximum lifetime are likely to evolve There are several real-world cases where our hypothesis
more risk aversion.

TABLE Ill
EVOLVED RISK PARAMETER P, AVERAGED OVER 100 RUNS EACH.

could be tested or used as an explanatory factor. As one
example, in most animal species, including humans, females
have a longer average life expectancy than males, while
males are often more inclined to engage in risky activities
[13] [9]. More generally, in relation to animal species it is

Aon ~ =40 ~ =80 ~ =160 consistent witHife history theory[3] [11]. Life history is a
40 1.34£0.10 | 1.87£0.13 - mathematical framework relating patterns of behavior af an
80 | 1.2240.084 | 1.76+0.10 | 2.73+0.15 : i
160 | 12140085 | 1.60+0.088 | 259+ 0097 mals to .eﬁects Qf natural selection on the key charactez;lst_
320 | 1.20+0.086 | 1.56+ 0.80 | 2.10 + 0.089 that define the life course, such as maturation, reproductio
co | 1.1940.081 | 1.54+0.070 | 1.84 +0.076 and life expectation.

In the field of economics, an evolutionary influence of
life expection could serve as a partial explanation for some
findings ofprospect theoryProspect theory has widely been
accepted as a better descriptive model for human behavior
We investigated the effect of an exogenously given Iif<?under risk than expected ut|I|ty_ theory [7], [1]. An |mpcm_ta

: . ; ; . feature of prospect theory feaming people tend toward risk
expectancy on the evolution of risk attitude in a multi- . . . . )
. . loving behavior when facing losses, while being much more
agent system. The multi-agent system was a variant of the : . . - )
. . na:k averse when facing possible gains. Of particular eger
sugarscape world [4]. It models a species consuming an . .
”t relation to our research, it has been found that people are

erendlng on a smgle_ resource, sugar, living in a niche %ating to have especially risk-loving tendencies in rmatte
limited carrying capacity. of life and death [5]
We introduced risk into the model, taking the form of )

tandard bl i Agent fered hoi Earlier attempts to explain framing from a perspective of
a standard gamble question. Agents were ofiered a chol ?ological evolution include [10]. In this research, a mbde
between two methods of harvesting sugar, a safe and a ri

¥m risk-sensitiveoptimal foraging theorywas developed.

methOd' The safe method gﬁered a f|?<ed revyard, while thl? was argued that framing has evolved as an adaptation to
risky method had a probability of yielding a higher amount?Ptimize fitness in a hunter-gatherer society.

2}“; ?ILS].O .2 r';l](e(.)rf Z'el(;':tg dno tﬁ}:ga[.rr; h? ig?g:}sa;j?gr'?ne%fb We propose the evolutionary influence of life expectancy
Ximizing Ir exp Uty uncti on risk attitude as an additional explanatory factor forfra

the utility curve was fixed up to a single degree of freedomlfig effects, especially for situations where life and des

VI. CONCLUSIONS

The one parameter that was allowed to vary between agen
S . at stake.

corresponds to relative risk aversion [2].

The risk aversion parameter was treated as the genetic code
of the agent. By observing many evolutions of th_e 9ene, We 1e authors would like to thank Cees Withagen for re-
were able to measure the preferred degree of risk aversion .

. ) V|eW|ng an early draft of the paper.

of the agents under given parameter settings of the model.
The experiments have been repeated for various parameter
setting. We found that long-lived agents consistently an
clearly evolve a more risk averse type of behavior than short
lived agents, for all of the parameter settings in our teiésu
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