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A Taylor Series Expansion Approach

to the Functional Approximation of

Finite Queues

Karim Abbas∗, Bernd Heidergott†, Djamil Aı̈ssani‡

Abstract

This paper presents a new approach to the functional approximation
of the M/G/1/N built on a Taylor series approach. Specifically, we es-
tablish an approximative expression for the remainder term of the Taylor
series that can be computed in an efficient manner. As we will illustrate
with numerical examples, the resulting Taylor series approximation turns
out to be of practical value.

keywords: Series expansion approach; Taylor series; M/G/1/N queue;
Performance Measures; Deviation matrix

1 Introduction

Queueing models are a well-established tool for the analysis of stochastic sys-
tems from areas as divers as manufacturing, telecommunication, transport and
the service industry. Typically, a queueing model is a simplified representation
of the real-world system under consideration. In addition, often there is not
sufficient statistical data to determine the service and interarrival time distribu-
tion, or, in case the type of distribution is known, there is statical uncertainty
on the exact values of the parameters of the distribution. For these reasons,
perturbation analysis of queueing systems (PAQS) has been developed. PAQS
studies the dependence of the performance of a given queueing system on the
underlying distributional assumptions. Consider, for example, an M/M/1 model
with interarrival rate λ and service rate µ and suppose that one is interested
in the variance of the stationary queue length. A first question addressed by
PAQS is that on what the effect of small change in, say, λ on the performance
would be. This type of perturbation analysis is called parameter sensitivity.
In addition, PAQS addresses the issue what would happen if, say, the service
time distribution is uniform on a certain interval rather than exponential. This
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is called distributional sensitivity. With the advent of sample path techniques,
such as infinitesimal perturbation analysis [10, 5, 2], the score function method
[18, 20], and measure-valued differentiation [17], parameter sensitivity is well
understood.

The distributional sensitivity is less developed. Importance sampling, see
e.g. [19], is a sample path method applicable to this problem. Unfortunately,
importance sampling suffers from large variance if the nominal and the per-
turbed distribution are not ‘sufficiently close’ and it requires that the perturbed
distribution is absolutely continuous with respect the nominal one. For these
reasons, most authors use numerical analysis to come up with bounds on the
effect of a distributional perturbation. See, for example, the strong stability
method [12, 16].

In this paper we present a new approach to PAQS. Firstly, we comprise pa-
rameter and distributional sensitivity in one framework. This is achieved by
interpreting the distributional sensitivity as a parametric problem: we assume
that the distribution under consideration is a convex combination of the nominal
and the perturbed distribution, where the weight factor of the convex combina-
tion introduces an artificial parameter into the model. Secondly, we develop the
performance of the system under consideration into a Taylor series with respect
to the parameter of interest, where we make use of a fundamental result on
Taylor series for Markov chains, see [7].

For explicatory purposes, we will consider in the following the single server
queue with Poisson arrival process and generally distributed service times. Ser-
vice following the first-come first-served (FCFS) discipline, and there is a limited
capacity of in total N customers that can be present at the queue (the one in
service included). Customers that do not find an empty place at the queue
upon their arrival are lost. Let π∗ denote the stationary distribution of the
continuous-time queue-length process of the M/G/1N queue. It is well known
that π∗ can be expressed via the stationary distribution of the Markov chain
embedded at departure points of customers, denoted by π. Specifically, let ρ
denote the traffic rate, then it holds that

π∗(i) =
π(i)

π(0) + ρ
, i = 0, . . . N − 1, (1)

and

π∗(N) =
1

ρ

(
ρ− 1 +

π(0)

π(0) + ρ

)
=

π(0) + ρ− 1

π(0) + ρ
, (2)

see [6] for details.
For the PAQS presented in this paper we consider π∗ as a mapping of some

real-valued parameter θ, in notation π∗
θ . For example, θ may denote the mean

service time of the queue. We are interested in obtaining the functional depen-
dence of π∗(θ) on θ in a simplified form. For our approach we will compute π∗

θ

for some parameter value θ numerically. However, then we will approximate the
function π∗(θ +∆) on some ∆-interval. More specifically, we will approximate
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π∗(θ +∆) by a polynomial in ∆. To achieve this we will use the Taylor series
expansion approach established in [7]. More specifically, let πθ denote the sta-
tionary distribution of the queue-length process embedded at departure epoches
in the M/G/1/N queue, where θ ∈ R denotes a control parameter. Under quite
general conditions it holds that πθ+∆ can be developed into a Taylor series of
the following from

πθ+∆ =

k∑
n=0

∆n

n!
π
(n)
θ ,

where π
(n)
θ denotes the n-th order derivative of πθ with respect to θ. We call

Hθ(k,∆) =
k∑

n=0

∆n

n!
π
(n)
θ

the k-th order Taylor approximation of πθ+∆ at θ, and

rθ(k,∆) = πθ+∆ −Hθ(k,∆)

the k-th order remainder term at θ. Let η denote the width of the interval
(θ − η, θ + η) on which the stationary distribution has to be approximated.

The usefulness of any Taylor series based approach relies on two factors:

1. Fast convergence of the series (a Taylor polynomial of small order yields
already a satisfying approximation), i.e., if for small k it holds that

sup
|∆|≤η

|rθ(k,∆)| (3)

is sufficiently small.

2. The ability of computing the remainder term of the Taylor series in an
efficient way so that order of the Taylor polynomial that is sufficient to
achieve a desired precision of the approximation can be decided a priori.

The contribution of the paper is as follows. We investigate the applicability
use of the Taylor polynomial Hθ(k,∆) for numerical purposes for M/G/1/N
queue. Specifically,

• we identify a recursive form of the derivatives which simplifies coding the
algorithm;

• our numerical studies show that already a Taylor series of small order
yields good approximations (this addresses topic (1) above);

• a simplified and easily computable expression bounding the remainder of
the Taylor series, see (3), is established (this addresses topic (2) above).
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The paper is organized as follows. The embedded Markov chain of the
M/G/1/N model is presented in Section 2. Our series expansions approach is
detailed in Section 3. Numerical examples are provided in Section 4.

We conclude the introduction with a brief discussion of implications of our
approach to the numerical approximation of the M/G/1/∞ queue. The station-
ary distribution π of the embedded jump chain can be obtained in a closed-from
only for special cases. This has lead to a rich literature on approximations of
the stationary distribution π∗. A very efficient numerical approach is to ap-
proximate the M/G/1/N queue by the M/G/1/∞ queue, see [24, 23]. However,
this approach is limited to the cases where the traffic load is less than one (so
that the corresponding M/G/1/∞ model is stable). For a detailed overview on
numerical approaches to the M/G/1/N queue we refer to the excellent survey
in [22]. The approach presented in this paper yields a new numerical approach
to the M/G/1/N queue that is also feasible for traffic loads larger than one. In
addition, our approach yields an approximation of a performance functional on
an entire interval and allows for an error bound of the approximation that holds
uniformly on an interval.

2 The M/G/1/N Queue

Consider the M/G/1/N queue, where customers arrive according to a Poisson
process with rate λ and demand an independent and identically distributed
service time with common distribution function B(t) with mean 1/µ. There
can at most be N customers be present at the queue (including the one in
service), and customers attempting to enter the queue when there are already
N customers present are lost. The service discipline is FCFS.

Let X(t) denote the number of customers in the M/G/1/N queue at time t,
for t ≥ 0. Note that the queue-length processes {X(t) : t ≥ 0} of the M/G/1/N
system fails to be a Markov process because the service time distribution does
not have the memoryless property. Since we have assumed that customers that
do not find an empty buffer place upon their arrival are lost, the stationary
distribution of {X(t) : t ≥ 0}, denoted by π, exists (independent of the traffic
rate). Let {Xn : n ∈ N} denote the queue–length process embedded right
after the departure of the nth customer, see [6]. Note that Xn has state-space
{0, . . . , N − 1} as after the departure of a customer the system cannot be full.
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Then {Xn : n ∈ N} is a Markov chain with transition matrix

P =



a0 a1 a2 a3 · · · aN−2 1−
N−2∑
k=0

ak

a0 a1 a2 a3 · · · aN−2 1−
N−2∑
k=0

ak

0 a0 a1 a2 · · · aN−3 1−
N−3∑
k=0

ak

0 0 a0 a1 · · · aN−4 1−
N−4∑
k=0

ak

. . .
...

...
...

0 0 0 0 · · · a0 1− a0


, (4)

where

ak =

∫ ∞

0

(λt)k

k!
e−λtdB(t), k = 0, . . . , N − 2. (5)

In words, ak is the probability of k Poisson arrivals during an B(·) distributed
service time.

3 The Taylor Series Expansion Approach

In this section, we present the Taylor series approximation for the M/G/1/N
queue.

Let B(·) have density mapping b(·). Let Θ = (a, b) ⊂ R, for 0 < a < b < ∞.

(A) For 0 ≤ k ≤ N − 2 it holds that ak is n-times differentiable with respect
to θ on Θ.

Under (A) it holds that the first n derivatives of P exists. Let P (k) denote
the kth order derivative of P with respect to θ, then it holds that

P (k)(i, j) =
d(k)

dθ(k)
P (i, j), 0 ≤ i, j ≤ N − 1,

or, more specifically,

P (k) =



a0(k) a1(k) a2(k) a3(k) · · · aN−2(k) −
N−2∑
j=0

aj(k)

a0(k) a1(k) a2(k) a3(k) · · · aN−2(k) −
N−2∑
j=0

aj(k)

0 a0(k) a1(k) a2(k) · · · aN−3(k) −
N−3∑
j=0

aj(k)

0 0 a0(k) a1(k) · · · aN−4(k) −
N−4∑
j=0

aj(k)

. . .
...

...
...

0 0 0 0 · · · a0(k) −a0(k)


(6)
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where

aj(k) =
dk

dθk
aj , 0 ≤ j ≤ N − 2.

Example 1 Consider the M/D/1 queue with arrival rate λ and deterministic
service rate c. Then, ak is given by the probability to see k arrivals in an time
interval of length c:

ak =
(λc)k

k!
e−λc.

Example 2 Consider the M/G/1 queue with arrival rate λ and Weibull-(µ,γ)-
distributed service times, where the density function is given by

b(t) = µγ(µt)γ−1e−(µt)γ , t ≥ 0.

Note that the mean of the Weibull-(µ,γ)-distribution is 1/µ and that γ defines
the shape of the distribution. In particular, γ = 1 yields the exponential distribu-
tion with rate µ. The influence of γ on the shape of the service time distribution
is illustrated in more detail in Section 4.2. Then,

ak =
γµγλk

k!

∫ ∞

0

tk+γ−1e−λt−(µt)γdt.

Let πθ denote the stationary distribution of the embedded chain, where θ
denotes the parameter of interest, and denote the deviation matrix byDθ defined
by

Dθ =
∞∑

n=0

(Pn
θ −Πθ),

where Πθ is a square matrix with rows equal to π⊤
θ , with x⊤ denoting the

transposed of vector x. As shown in [9], for any finite-state aperiodic Markov
chain the deviation matrix exists.

Theorem 1 Let θ ∈ Θ and let Θ0 ⊂ Θ a closed interval with θ be an interior
point such that the queue is stable on Θ0. Provided that the entries of P are
n-times differentiable with respect to θ, let

Kθ(n) =
∑

1≤m≤n
1≤lk≤n

l1+···+lm=n

n!

l1! · · · lm!

m∏
k=1

(
P

(lk)
θ Dθ

)
.

Then it holds that
π
(n)
θ = πθ Kθ(n) .

Proof: We prove the theorem by induction. For n = 1, we have to show that
π′
θ = πθP

′
θDθ. By simple algebra, it holds that for ∆ such that θ +∆ ∈ Θ that

πθ+∆ − πθ = πθ+∆(Pθ+∆ − Pθ)Dθ,

6



see, e.g., [9] for a proof, which yields

1

∆
(πθ+∆ − πθ) = πθ

1

∆
(Pθ+∆ − Pθ)Dθ + (πθ+∆ − πθ)

1

∆
(Pθ+∆ − Pθ)Dθ. (7)

Element-wise differentiability of P implies that

lim
∆→0

πθ
1

∆
(Pθ+∆ − Pθ)Dθ = πθP

′
θDθ. (8)

Since, Θ0 is a compact neighborhood of θ, and πθ is finite for any θ ∈ Θ0, it
holds that

sup
θ∈Θ0

|πθ|

is finite. Moreover,

0 ≤ |(πθ+∆ − πθ)|
∣∣∣∣ 1∆(Pθ+∆ − Pθ)Dθ

∣∣∣∣ ≤ sup
θ∈Θ0

|πθ|
∣∣∣∣ 1∆(Pθ+∆ − Pθ)Dθ

∣∣∣∣ .
Element-wise differentiability of P then yields

lim
∆→0

∣∣∣∣ 1∆(Pθ+∆ − Pθ)Dθ

∣∣∣∣ = 0,

which implies that the term on the righthand side of (7) tends to zero as ∆
tends to zero. Hence, taking the limit for ∆ to zero in (7) reduces to (8), which
proves the claim for n = 1.

The proof for the general case follows by induction with respect to n like in
conventional analysis. 2

Remark 1 The result put forward in Theorem 1 appears to be a special case of
Theorem 4 in [7]. However, the latter result was established for Markov chains
with general state-space and in the general case the analysis of the differentia-
bility of πθ requires elaborate conditions concerning the geometric ergodicity of
the Markov chain with respect to a particular type of norm corresponding to the
Lyapunov function of the system. This results in conditions that are often hard
to check, even for simple systems. For this reason, we provide in Theorem 1
a new, simple and self- contained proof that is tailored to the class of problems
studied in this paper.

The derivatives in Theorem 1 enjoy a recursive structure in the sense that
a (k + 1)-st order derivative is mainly constituted out of information already
provided by the k-th order derivative. The following lemma provides the exact
statement.

Lemma 1 Under the conditions put forward in Theorem 1 it holds for k < n
that

π
(k+1)
θ =

k∑
m=0

(
k + 1
m

)
π
(m)
θ P

(k+1−m)
θ Dθ .

7



Example 3 For ease of reference we will provide in the following an explicit
representation of the first derivatives of πθ:

π
(1)
θ = πθP

(1)
θ Dθ

and
π
(2)
θ = πθP

(2)
θ Dθ + 2πθ(P

(1)
θ Dθ)

2.

Elaborating on the recursive formula for higher order derivatives in Lemma 1,
the second order derivative can be written as

π
(2)
θ = πθP

(2)
θ Dθ + 2π

(1)
θ P

(1)
θ Dθ.

In the same vein, we obtain for the third order derivative

π
(3)
θ = πθP

(3)
θ Dθ + 3π

(2)
θ P

(1)
θ Dθ + 3π

(1)
θ P

(2)
θ Dθ,

and

π
(4)
θ = πθP

(4)
θ Dθ + 4π

(3)
θ P

(1)
θ Dθ + 6π

(2)
θ P

(2)
θ Dθ + 4π

(1)
θ P

(3)
θ Dθ.

A Taylor polynomial yields an approximation and the error introduced by
this approximation can be expressed by the Lagrange form of the remainder as
follows

rθ(k,∆) =

∫ ∆

0

xk

k!
π
(k+1)
θ+x dx. (9)

From a numerical point of view the above expression is rather pointless as, by
Theorem 1, it holds that

π
(k+1)
θ+x = πθ+∆Kθ+∆(k + 1)

which implies that for computing the remainder we already have to know the
very entity we want to approximate, namely, πη for η ∈ [θ, θ + η]. To overcome
this drawback we will present an alternative form for the remainder term.

The basic idea is that analyticity of πθ implies that of π
(k)
θ for all k and

we can again use a Taylor series to approximate π
(k+1)
θ+x in (9). By doing so

we initiate the Taylor series in the tail of original Taylor series, and we expect
that the error of this second Taylor approximation step is negligibly small. We
explain this approach in the following.

Let

Gθ(k,m, δ) =
m∑

n=0

δn

n!
π
(k+1+n)
θ

denote the Taylor polynomial of order m for π
(k+1)
θ , i.e.,

π
(k+1)
θ+δ ≈ Gθ(k,m, δ)
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for m sufficiently large. Inserting the above approximation into (9) yields

rθ(k,∆) ≈
∫ ∆

0

xk

k!
Gθ(k,m, x) dx

=

∫ ∆

0

xk

k!

m∑
n=0

xn

n!
π
(k+1+n)
θ dx

=
m∑

n=0

1

k!n!
π
(k+1+n)
θ

∫ ∆

0

xk+n dx

=
m∑

n=0

∆k+n+1

k!n! (k + n+ 1)
π
(k+1+n)
θ . (10)

We denote by

gθ(k,m,∆) =

m∑
n=0

∆k+n+1

k!n! (k + n+ 1)
π
(k+1+n)
θ

the expression for the approximation of the remainder term obtained from (10).
Provided that |gθ(k,m,∆)−rθ(k,∆)| is small form small, we will use gθ(k,m,∆)
in our Taylor series approach to determine the order of the polynomial that
is sufficient for achieving the desired precision of the approximation. As the
following theorem shows, gθ(k,m,∆) is of order c∆mrθ(k,∆) for some small
constant c. In other words, letting, for example, ∆ = 0.1 and choosing m = 3,
the error introduced by our approximation of the remainder term at k is typically
smaller than 10−(5+k).

In order to state the precise statement, we introduce the norm

||x|| =
n∑

i=1

|xi|

on Rn.

Theorem 2 Let θ ∈ Θ be an interior point of Θ and let ∆ > 0 be such that
θ + ∆ ∈ Θ. Assume that the entries of P are (k + m + 2)-times continuously
differentiable with respect to θ on Θ. Suppose that a finite constant d exists such
that

d ≥ sup
x∈[θ,θ+∆]

||π(k+2+m)
x ||,

then

|gθ(k,m,∆)− rθ(k,∆)| ≤ d
∆(m+k+2

m! k! (m+ k + 2)

Proof: Note that the Lagrange form of the remainder for Gθ(k,m, δ) reads∫ δ

0

um

m!
π
(k+m+2)
θ+u du.
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Applying the norm || · || and using the bound d, yields

|gθ(k,m,∆)− rθ(k,∆)| ≤

∣∣∣∣∣
∫ ∆

0

xk

k!

(∫ x

0

um

m!
π
(k+m+2)
θ+u du

)
dx

∣∣∣∣∣
≤ d

∫ ∆

0

xk

k!

(∫ x

0

um

m!
du

)
dx

= d
∆m+k+2

m! k! (m+ k + 2)
,

which proves the claim. 2

In the numerical examples presented in the following sections, we will show
that choosing m = 2 already yields a sufficient precision for approximating the
remainder term.

Remark 2 Taylor series like approaches for performance approximation have
been studied in the literature before, see, e.g. [3, 4]. However, no a priori knowl-
edge on the quality of the approximation of these approach could be established.

Remark 3 The Taylor series approximation developed above applies to differ-
entiable Markov kernels. This extends the case of linear θ dependence that has
been studied in the literature so far; see, for example, [1, 14, 21]. More specif-
ically, for linear perturbations the standard assumption is that Pθ, the Markov
kernel of the embedded jump chain, is of form

Pθ = θP + (1− θ)P̂ , θ ∈ [0, 1]. (11)

In this case, Pθ has derivative P ′
θ = P − P̂ and elements of Taylor series are of

simple algebraical form

π
(n)
θ = πθ((P − P̂ )Dθ)

n, (12)

where Dθ is the deviation matrix associated with Pθ. See [1] for the denumerable
state-space case and [8] for the general state-space case. Moreover, it has been
shown in [9] that the remainder term can be bounded in terms of πθ, P, P̂ and
Dθ. This algorithm has earned its merits as the bound of the remainder term
is numerically efficient and due to its simple algebraical form, the Taylor series
can be easily computed. Extensions of this basic algorithm to continuous time
processes are provided in [7, 15].

In contrast to the model in (11), the Taylor series expansions established
in this section applies to non-linear perturbations. The case of a non-linear
perturbation hasn’t been studied in the literature so far. This case is significantly
more difficult than the linear case as in this case all higher-order derivatives of
Pθ maybe different from zero. Moreover, the elements of the Taylor series in

the linear case are of rather simple form, compare the expression for π
(n)
θ in

Theorem 1 with (12). This stems from the fact that in the linear case all but
the first derivative of P with respect to θ are zero.
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4 Applications to the M/G/1/N Queue

In this section we present the two numerical examples. In the first one, we let
the distribution of the service times be deterministic, with θ denoting the de-
terministic service time, and in the second one we assume Weibull distributed
service times, where θ is the shape parameter of the distribution. As perfor-
mance measure we focus on the blocking probability π∗

θ(N), which is due the
fact that customers arrive according to a Poisson arrival stream, equal to the
probability that an arriving customer is lost due to no available free waiting
space. Let E[B(θ)] denote the mean service time depending on θ and assume
that the arrival rate λ is independent of θ. Then, the traffic rate is given by

ρ(θ) = λE[B(θ)].

Recall, that by (2), it holds that

π∗
θ+∆(N) =

πθ+∆(0) + ρ(θ +∆)− 1

πθ+∆(0) + ρ(θ +∆)
. (13)

Inserting our Taylor series expansion for πθ+∆(0) into the above expression
yields a functional representation of π∗

θ+∆(N) as function in ∆. Elaborating on
(2), a similar procedure leads the a functional representation of the mean queue
length and via Little’s law to one of the stationary waiting time.

4.1 Parameter Sensitivity: The M/D/1/N Queue

Consider the M/D/1 queue with arrival rate λ and deterministic service time
c = θ. The elements of P are provided in Example 4.1.

Lemma 2 For the M/D/1/N queue, P is infinitely often differentiable with
respect to c.

Proof: By (6) differentiability properties of P can be deduced from that of the
αj entries. By Example 1, all higher-order derivatives exist for aj , which proves
the claim. 2

The following numerical examples illustrate our approach. In all numerical
examples we have set λ = 1 and N = 5We first illustrate the numerical behavior

of π
(n)
θ (i) for 0 ≤ i ≤ N − 1 and n = 1, 2, 3, for the stationary distribution of

the embedded jump chain of the M/D/1/N queue.
As a first example, we apply the Taylor series of order 1, i.e,

Hθ(1,∆) = πθ +∆π′
θ

= πθ +∆πθP
(1)
θ Dθ,

see Example 3. and we plot in Figure 1 the relative error given by

Hθ(1,∆)(i)− πθ+∆(i)

πθ+∆(i)

11



for each element i = 0, . . . , 4. In words, the relative error times the factor 100
yields the error percentage of the Taylor series approximation. For Figure 1, we
let θ = 1 and vary ∆ by at most 10 percent of θ, i.e., 0 ≤ ∆ ≤ δ = 0.1. Note
that in this situation the traffic load of the system is one but, due to the fact
that we consider a loss system, stability is still guaranteed.

0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.08

−0.06
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−0.02

0

0.02

0.04

perturbation ∆ 
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Error of first order expansion

 

 

π
1+∆(0)

π
1 + ∆ 

(1)

π
1+ ∆ 

(2)

π
1+ ∆ 

(3)

π
1+ ∆ 

(4)

Figure 1: The relative error in predicting π1+∆ by H1(1,∆) for ρ = 1.

We now repeat this example, but we apply a Taylor series of order 2, i.e,

Hθ(2,∆) = πθ +∆π
(1)
θ +

∆2

2
π
(2)
θ

= πθ +∆πθP
(1)
θ Dθ +

∆2

2
πθP

(2)
θ Dθ +∆2πθ((P

(1)
θ Dθ)

(2),

see Example 3, and we plot in Figure 2 the relative error given by

Hθ(2,∆)(i)− πθ+∆(i)

πθ+∆(i)

for each element i = 0, . . . , 4. As for Figure 1, we let θ = 1 and vary ∆ by at
most 10 percent of θ, i.e., 0 ≤ ∆ ≤ 0.1.
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Figure 2: The relative error in predicting π1+∆ by H1(2,∆) for ρ = 1.

We conclude this series of examples by plotting the relative error of the
Taylor series expansion for order 3 in Figure 3, where

Hθ(3,∆) = πθ +∆π
(1)
θ +

∆2

2
π
(2)
θ +

∆3

6
π
(3)
θ

= πθ +∆πθP
(1)
θ Dθ +

∆2

2
πθP

(2)
θ Dθ +∆2πθ(P

(1)
θ Dθ)

2

+
∆3

6

(
πθP

(3)
θ Dθ + 3π

(2)
θ P

(1)
θ Dθ + 3π

(1)
θ P

(2)
θ Dθ

)
,

see Example 3.
Comparing Figure 1 to Figure 3 one notes that the state i which yields

the dominant relative error changes with the order of the derivative. More
specifically, while for the first order derivative, π′

θ(0) yields the dominant error
in Figure 1, the dominant error for the second order derivative stems from state
i = 4, see Figure 2. As can be seen from the figures, a third order Taylor series
yields a remarkably good approximation of the stationary probabilities through
the range θ ± 0.1. It is also worth noting that the quality of approximation
increases with increasing traffic load. This is of particular interest as standard
numerical methods for approximation the M/G/1/N queue are restricted to the
case of ρ < 1.
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Figure 3: The relative error in predicting π1+∆ by H1(3,∆) for ρ = 1.

We now turn to the blocking probability. Starting point is the expression
for the loss probability in (13). The traffic rate is given by ρ(θ+∆) = λ(θ+∆)
and πθ+∆(0) is approximated via a Taylor series polynomial of degree k, i.e.,
we replace πθ+∆(0) by Hθ(k,∆)(0). Figure 4 shows the relative absolute error
in medium traffic, i.e., θ = 0.5, for k = 2, 3. The approximation in case of
saturation, i.e., ρ(θ) = 1, is illustrated in Figure 5. Finally, in Figure 6 we show
the behavior of our approximation for the case of over saturation, i.e., ρ = 1.2.

As can be seen from the figures, the approximation yields a satisfying pre-
cision in predicting the loss probability π∗

θ+∆(N) as a mapping of ∆ in a range
of ∆ being 10 percent of θ.

We conclude the discussion of the M/D/1/N queue by providing a bound
on the error of the Taylor series approximation for π∗

θ+∆(N). Suppose that for
given order k of the Taylor approximation, the error is bounded by R for any
∆ such that |∆| ≤ δ, i.e., assume that

|πθ+∆(0)−Hθ(k,∆)| ≤ R,

see Theorem 2. Replacing πθ+∆(0) in (2) or (13) by Hθ(k,∆) and noting that
ρ(θ +∆) = λθ +∆λ, implies thus that the true value for π∗

θ+∆(N) is bounded
by

Hθ(k,∆)−R+ λθ +∆λ− 1

Hθ(k,∆)−R+ λθ +∆λ
≤ π∗

θ+∆(N) ≤ Hθ(k,∆) +R+ λθ +∆λ− 1

Hθ(k,∆) +R+ λθ +∆λ
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Figure 4: The relative error in predicting the loss probability in medium traffic
(ρ = 0.5, θ = 2).

The numerical error can thus be bounded by∣∣∣∣Hθ(k,∆) +R+ λθ +∆λ− 1

Hθ(k,∆) +R+ λθ +∆λ
− Hθ(k,∆)−R+ λθ +∆λ− 1

Hθ(k,∆)−R+ λθ +∆λ

∣∣∣∣
=

2R

(Hθ(k,∆) +R+ λθ +∆λ)(Hθ(k,∆)−R+ λθ +∆λ)

noting that Hθ(k,∆) ≥ 0 for all ∆, yields

≤ 2R

(R+ λθ +∆λ)(−R+ λθ +∆λ)
=

2R

λ2(θ −∆)2 −R2

and from |∆| ≤ δ it follows

≤ 2R

λ2(θ − δ)2 −R2
.

We summarize our analysis in the following lemma.

Lemma 3 Consider the M/D/1/N queue with arrival rate λ and deterministic
service time θ. Suppose that for k it holds for |∆| ≤ δ that

|πθ+∆(0)−Hθ(k,∆)| ≤ Rθ(k, δ),
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Figure 5: The relative error in predicting the loss probability in saturated traffic
(ρ = 1, θ = 1).

then

sup
|∆|≤δ

∣∣∣∣π∗
θ+∆(N)− Hθ(k,∆) + λ(θ +∆)− 1

Hθ(k,∆) + λ(θ +∆)

∣∣∣∣ ≤ 2Rθ(k, δ)

λ2(θ − δ)2 − (Rθ(k, δ))2
.

We conclude this section with a discussion of the numerical bound on the error
provided in Lemma 3 and Theorem 2. To this end we consider the Taylor series
approximation of degree k = 2 for the blocking probability. Figure 7 plots the
true remainder term against the approximation of the remainder term obtained
from inserting the expression in Theorem 2 into the bound provided in Lemma 3,
where we have chosen m = 2. As can be seen from Figure 7, the approximation
of the remainder term yields good results for small values of ∆. For example,
the approximative remainder term indicates that a Taylor series of degree 2
yields a maximal error of 5 × 10−4 in predicting blocking probability, whereas
the true error is no greater than 3× 10−4.

4.2 Distributional Sensitivity: The M/Weibull/1/N Queue

In this section we illustrate the use of the Taylor series for the M/G/1/N queue
where the service time distribution is given by the Weibull distribution, see
Example 2. We let θ = γ, which yields that for θ = 1 the service distribution
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Figure 6: The relative error in predicting the loss probability in over-saturated
traffic (ρ = 1.2, θ = 0.833).

B(t) yields the exponential distribution with mean 1/µ. Note that for θ > 1,
B(t) is a heavy tailed distribution, whereas for θ < 1 it becomes light tailed.
Varying θ around one, provides a sensitivity analysis with respect to the shape
of the distribution.

Lemma 4 For the M/Weibull/1/N queue, P is infinitely often differentiable
with respect to γ.

Proof: By (6) differentiability properties of P can be deduced from that of
the αj entries. By Example 2, all higher-order derivatives exist for aj , which
proves the claim. 2

In the following we will let λ = µ = 1, which implies ρ = 1 and independent
of θ. We let |∆| ≤ δ = 0.1 and we illustrate the effect a change of θ by ±∆ has
on the density in Figure 8.

Like for the M/D/1/N case, we present in the following the relative errors for
predicting π∗

θ+∆ for various order of the Taylor polynomial and traffic rate one,
where we restrict ∆ to positive values, i.e., 0 ≤ ∆ ≤ δ. Figure 9 illustrates the
relative error of the Taylor series approximation of degree 1. The relative error
of the Taylor series approximation of degree 2 is shown in Figure 10. Eventually,
we show relative error of the Taylor series approximation of degree 3 is shown
in Figure 11.
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Figure 7: The remainder term vs. the bound for the remainder at k = 2 and
m = 2.

Comparing the numerical results with those for the M/D/1/N case, one notes
that the qualitative behavior of the relative error is similar but that the effect of
perturbing the value of the mean service time in the M/G/1/N queue is better
predictable than that of perturbing the shape of the service time distribution.

We conclude the example with presenting the absolute relative error for
predicting the blocking probability in the M/G/1/N queue for various traffic
rates, where for ρ = 1.2 we plot only the range |∆| ≤ 0.05 for better visibility
of the curve.

We now turn to the bound on the remainder term. Since for the M/W/1/N
model the traffic rate ρ = λ/µ is independent of θ, we obtain the following
adaptation of Lemma 3 to the M/W/1/N queue.

Lemma 5 Consider the M/W/1/N queue with arrival rate λ, service rate µ,
and shape parameter θ. Denote the traffic rate by ρ = λ/µ. Suppose that for k
it holds for |∆| ≤ δ that

|πθ+∆(0)−Hθ(k,∆)| ≤ Rθ(k, δ),

then

sup
|∆|≤δ

∣∣∣∣π∗
θ+∆(N)− Hθ(k,∆) + ρ− 1

Hθ(k,∆) + ρ

∣∣∣∣ ≤ 2Rθ(k, δ)

ρ2 − (Rθ(k, δ))2
.
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Figure 8: The extreme values of the density

We conclude this section with a discussion of the numerical bound on the error
provided in Lemma 3 and Theorem 2. To this end we consider the Taylor
series approximation of degree k = 2 for the blocking probability. Figure 15
plots the true remainder term against the approximation of the remainder term
obtained from inserting the expression in Theorem 2 into the bound provided
in Lemma 5, where we have chosen m = 2. As can be seen from Figure 15, the
approximation of the remainder term yields good results for small values of ∆.
For example, the approximative remainder term indicates that a Taylor series of
degree 2 yields a maximal error of 4.5× 10−5 in predicting blocking probability,
whereas the true error is no greater than 3.7× 10−5.

5 Conclusion

We have presented a new approach to the functional approximation of finite
queues. As illustrated by the numerical examples for the M/G/1/N queue, the
convergence rate of the Taylor series is such that already a Taylor polynomial of
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Figure 9: The relative error in predicting π1+∆ by H1(1,∆) for ρ = 1.

degree 2 or 3 yields good numerical results. We established an approximation
for the remainder term of the Taylor series that provides an efficient way of
computing (approximately) the remainder term and thereby provides an algo-
rithmic way of deciding which order of the Taylor polynomial is sufficient to
achieve a desired precision of the approximation. This implies the proposed
Taylor series approximation can be of practical value. Future research will be
on investigating the behavior of the series expansion for multi-server queues.

References

[1] X.-R. Cao, The Maclaurin Series for performance functions of Markov
chains. Advances in Applied Probability 30 (1998) 676–692.

[2] M. Fu and J.-Q. Hu, Conditional Monte Carlo. Kluwer Academic, Boston,
1997.

[3] M. Girish and J.Q. Hu, Higher order approximations for tandem queueing
networks. Queueing Systems 22 (1996) 249–276.

[4] M. Girish and J.Q. Hu, An interpolation approximation for the G/G/1
queue based on multipoint Padé approximation. Queueing Systems 26
(1997) 269–284.

20



0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

1.5

2
x 10

−4

 perturbation ∆ 

 r
el

at
iv

e 
er

ro
r 

 Error of second order expansion 

 

 

π
1+∆(0)

π
1 + ∆ 

(1)

π
1+ ∆ 

(2)

π
1+ ∆ 

(3)

π
1+ ∆ 

(4)

Figure 10: The relative error in predicting π1+∆ by H1(2,∆) for ρ = 1.

[5] P. Glasserman, Gradient Estimation via Perturbation Analysis. Kluwer
Academic Publishers, Boston, 1991.

[6] D. Gross and C. Harris, Fundamentals of Queueing Theory, Wiley, 1985.

[7] B. Heidergott and A. Hordijk, Taylor series expansions for stationary
Markov chains. Advances in Applied Probability 35 (2003) 1046–1070.

[8] B. Heidergott, A. Hordijk and N. Leder, Series expansions for continuous-
time Markov chains. Operations Research 58 (2010) 756–767.

[9] B. Heidergott, A. Hordijk and M. van Uitert, Series expansions for finite-
state Markov chains. Probability in Engineering and Informational Sciences
21 (2007) 381–400.

[10] Y.-C. Ho and X.-R. Cao, Perturbation Analysis of Discrete Event Dynamic
Systems. Kluwer Academic, Boston, 1991.

[11] A. Hordijk and F. M. Spieksma, A New Formula for the Deviation Matrix,
Chapter 36 in Probability, Statistics and Optimization (F.P. Kelly, ed.)
Wiley, 1994.

[12] N.V. Kartashov, Strong Stable Markov Chains, Edition VSP, Utrecht
TBIMC Scientific Publishers, Kiev, 1996.

21



0 0.02 0.04 0.06 0.08 0.1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−5

 perturbation ∆ 

 r
el

at
iv

e 
er

ro
r 

 Error of third order expansion 

 

 

π
1+∆(0)

π
1 + ∆ 

(1)

π
1+ ∆ 

(2)

π
1+ ∆ 

(3)

π
1+ ∆ 

(4)

Figure 11: The relative error in predicting π1+∆ by H1(3,∆) for ρ = 1.

[13] D. Kendall, Stochastic processes occurring in the theory of queues and their
analysis by the method of embedded Markov chains. Ann. Math. Statist.
24 (1953) 338-354.

[14] S. Kirkland, M. Neumann and B. Shader, Application of Paz’s inequality to
perturbation bounds for Markov chains. Linear Algebra and its Applications
(1998) 268 183–196.

[15] N. Leder, B. Heidergott and A. Hordijk, An approximation approach for the
deviation matrix of continuous-time Markov processes with applications to
Markov decision theory. Operations Research 58 (2010) 918–932.

[16] Z. Mouhoubi and D. Aı̈ssani, New perturbation bounds for denumerable
Markov chains. Linear Algebra and its Applications 432 (2010) 1627-1649.

[17] G. Pflug, Optimisation of Stochastic Models. Kluwer Academic, Boston,
1996.

[18] M. Reiman and A. Weiss, Sensitivity Analysis for Simulations via Likeli-
hood Ratios. Operations Research, 37 (1989) 830-844.

[19] B. Ripley, Stochastic Simulation. Wiley & Sons, New York, 1987.

22



0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

 perturbation ∆ 

 a
bs

ol
ut

e 
re

la
tiv

e 
er

ro
r 

 Error of series expansion for blocking probability 

 

 

second order
third order

Figure 12: The relative error in predicting the loss probability in dense traffic
(ρ = 0.7)

[20] R. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity Analysis
and Optimization by the Score Function Method. Wiley, 1993.

[21] E. Schweitzer, Perturbation theory and finite Markov chains. Journal of
Applied Probability 5 (1968) 401-413.

[22] J. M. Smith, Optimal Design and Performance Modelling of M/G/1/K
Queueing Systems.Mathematical and Computer Modelling 39 (2004) 1049–
1081.

[23] H. Tijms, Heuristics for finite-buffer queues. Probability in the Engineering
and Informational Sciences 6 (1992) 277–285.

[24] H. Tijms, Stochastic Modeling and Analysis, Wiley, New York, 1986.

23



0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5

 perturbation ∆ 

 a
bs

ol
ut

e 
re

la
tiv

e 
er

ro
r 

 Error of series expansion for blocking probability 

 

 

second order
third order

Figure 13: The relative error in predicting the loss probability in saturated
traffic (ρ = 1)
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Figure 14: The relative error in predicting the loss probability in over saturated
traffic (ρ = 1.2)
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