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Abstract. We develop a framework for differentiation of positive operators, such as
Markov kernels, through interpreting derivatives of positive operators as differences
between positive operators. This new paradigm allows to deal with differentiability
issues while retaining the framework of positive systems.

1 Introduction

In this paper we show how the dichotomy between positivity and differentia-
tion can be overcome through a concept of ”weak” differentiation. The basic
idea will be to write the derivative of a positive operator as re-scaled difference
of two positive operators. Our main object of study will be Markov chains. The
first part of the paper illustrates our concept of differentiation with finite state
Markov chains: ”weak differentiability” for finite Markov chains is introduced
and it is shown that differentiability of the transition matrix of a finite state
Markov chain implies differentiability of its stationary distribution. The proof
elaborates on the product rule of differentiation (for real–valued mappings)
and is different from the proofs put forward in [8] and [4], respectively, where
this result has been shown by using the fact that the stationary distribution
of a Markov chain is an invariant distribution of the Markov kernel. In the
second part of the paper, a review of the theory of ”weak differentiation” for
general Markov chains will be given. Eventually, we discuss the situation for
general positive operators and identify topics of further research.

2 Finite state Markov chains

Let Θ = (a, b) ⊂ R, with a < b. Let Xθ(n) ∈ {1, . . . , N} be a discrete-time
Markov chain depending on a control parameter θ with deterministic initial
value Xθ(0) = x0 ∈ {1, . . . , N}. Let Pθ denote the transition probability
matrix of Xθ(n), i.e.:
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(Pθ)ij = P ( Xθ(n + 1) = j |Xθ(n) = i ) , i, j ∈ {1, . . . , N} ,

for n ≥ 0. For example, Xθ(n) may model the queue length in a M/M/1 queue
where θ represents the service rate.

2.1 Differentiability

Assume that the elements of Pθ are differentiable and denote the derivative
of Pθ by P ′θ, i.e.,

(P ′θ)ij =
d

dθ
(Pθ)ij , 1 ≤ i, j ≤ N . (1)

Notice that while Pθ acts as a mapping on the set of probability vectors in Rn,
the image space of P ′θ contains vectors with negative elements. In other words,
for any probability distribution µ = (µ1, · · · , µN ) (i.e.,

∑
µk = 1 and µk ≥ 0),

µPθ is again a probability distribution whereas µP ′θ fails to be one. However,
as we will show in the following, µP ′θ can be written as difference between
positive vectors. The key observation is that a matrix CPθ

and Markov kernels
P+

θ and P−θ exists such that P ′θ = CPθ
(P+

θ − P−θ ). Typically, CPθ
turns out

to be a diagonal matrix with identical elements on the diagonal, which yields
µP ′θ = CPθ

(ν+ − ν−) with ν+ = µP+
θ and ν− = µP−θ probability vectors.

Examining the situation in (1) more closely, one notices that
∑

j(Pθ)ij = 1
implies that

∑
j(P

′
θ)ij = 0, for 1 ≤ i ≤ N . In words, because Pθ has row

sums equal to one (and thus independent of θ), P ′θ has row sum zero, or,
equivalently: ∑

j

max((P ′θ)ij , 0) =
∑

j

max(−(P ′θ)ij , 0) ,

for any row i. For 1 ≤ i ≤ N , let cPθ
(i) =

∑
j max((P ′θ)ij , 0), then the

matrices P+
θ and P−θ defined through

(P+
θ )ij =

{
max((P ′

θ)ij ,0)
cPθ

(i) for cPθ
(i) > 0

(Pθ)ij for cPθ
(i) = 0

and

(P−θ )ij =

{
max(−(P ′

θ)ij ,0)
cPθ

(i) for cPθ
(i) > 0

(Pθ)ij for cPθ
(i) = 0

are transition matrices, i.e., their row sum equals one. Moreover, the derivative
of Pθ has the following representation

P ′θ = CPθ

(
P+

θ − P−θ
)

, (2)

where
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(Cθ)ij =


cPθ

(i) for cPθ
(i) > 0 and j = i

1 for cPθ
(i) = 0 and j = i

0 otherwise.

The representation of P ′θ in (2) allows to interpret the derivative of the tran-
sition matrix as re-scaled difference of two transition matrices.

Remark 1. Let P,Q denote transition matrices on a common state space. In
the theory of singularly perturbed Markov chains, the situation is studied
when Pθ = θ(Q − P ) + P , for θ ∈ [0, 1], see Chapter 4 in [2] for details
on singularly perturbed Markov chains. Hence, Q− P is the derivative of Pθ

with respect to θ and formulae for singularly perturbed Markov chains can be
interpreted as particular derivative expressions. For an interpretation of the
above model in terms of infinitesimal perturbation analysis we refer to [3].

Example 1. Let Xθ(n) be the discrete-time queue length process of an
M/M/1/N queue with arrival rate λ and service rate θ, with θ > λ > 0.
The transition matrix is then given in matrix form by

Pθ =


0 1 0
θ

λ+θ 0 λ
λ+θ 0

0 θ
λ+θ 0 λ

λ+θ 0 · · ·
. . .

1 0


The matrix Pθ is differentiable with respect to θ with derivatives

d

dθ
(Pθ)i j =


−λ

(λ+θ)2 for 2 ≤ i ≤ N − 1 , j = i + 1
λ

(λ+θ)2 for 2 ≤ i ≤ N − 1 , j = i− 1

0 otherwise.

Let Cλ,θ be a matrix with diagonal elements 1
(λ+θ)2 and zero elements el-

sewhere, then
d

dθ
Pθ = Cλ,θ

(
P+ − P−

)
, (3)

with

P+ =


0 1
1 0

. . .
1 0

1 0

 P− =


0 1

0 1
. . .

0 1
1 0

 ,

where the definitions of the elements of the first and the last rows of Cλ,θ, P+

and P− have been chosen in order to obtain a simple representation. Notice
that P+ and P− are transition matrices. The triple (Cλ,θ, P

+, P−) may serve
as matrix–valued representation of P ′θ.
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For i, j ∈ {1, . . . , N}, the probabilities P (Xθ(n + 1) = j |Xθ(1) = i ) are
given through the elements of nth power of Pθ, denoted by Pn

θ := (Pθ)n,
where P 0

θ is the identity matrix, i.e., P (Xθ(n + 1) = j |Xθ(1) = i ) = (Pθ)n
ij .

We have assumed that Pθ is differentiable. Therefore, Pn
θ is differentiable as

well. Specifically,
d

dθ
Pn

θ =
n−1∑
j=0

P j
θ Pθ

′Pn−j−1
θ . (4)

Example 2. We revisit the M/M/1/N queue as introduced in Example 1. In-
serting (3) in (4) and noticing that Cλ,θ is a matrix that only has elements
on its diagonal and these elements are identical, yields

d

dθ
Pn

θ = Cλ,θ

n−1∑
j=0

P j
θ P+ Pn−j−1

θ −
n−1∑
j=0

P j
θ P− Pn−j−1

θ

 .

In words, the derivative of the nth power of a differentiable transition matrix
admits a representation like (2) as well.

2.2 Differentiating a stationary distribution

In this section we show that, under some mild additional conditions, differen-
tiability of Pθ implies differentiability of the unique invariant distribution of
Pθ (existence is assumed here), denoted by πθ, and that the derivative of πθ

can be obtained as difference between appropriate Markov chains. We denote
by

Πθ = lim
N→∞

1
N + 1

N∑
n=0

Pn
θ

the ergodic projector associated to Pθ. Specifically, Πθ is a matrix with rows
equal to πθ and it holds that πθ = µΠθ, for any initial distribution µ. Assume
that µ is independent of θ. Hence,

d

dθ
πθ = µ

d

dθ
Πθ

In the following we calculate

d

dθ

(
lim

N→∞
1

N + 1

N∑
n=0

Pn
θ

)
.

The key conditions for our analysis is the following.
The space of transition probabilities on {1, . . . , N} can be equipped with a

norm, denoted by || · ||, such that for an open neighborhood Θ0 ⊂ Θ of θ it
holds that:
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(C1) ||πθ|| is finite on Θ0 (local stability),
(C2) finite constants cθ′ and ρθ′ , with supθ′∈Θ0

cθ′ < ∞ and supθ′∈Θ0
ρθ′ , ρ <

1, exist such that

∀θ′ ∈ Θ0 : ||Pm
θ′ −Πθ′ || ≤ cθ′ ρm

θ′ ,

(local geometric ergodicity at uniform rate)
(C3) P ′θ is Lipschitz continuous at θ, i.e.,

∀θ′ ∈ Θ0 : ||Pθ
′ − (

Pθ′
)′|| < |θ − θ′|K ′ ,

for some finite number K, and ||P ′θ|| is finite on Θ0.

A typical choice for || · || is the supremum norm on Rn, which implies that
||Pn

θ || ≤ 1, for any n, and ||Πθ|| ≤ 1 provided that πθ exists. By (4),

lim
N→∞

d

dθ

(
1

N + 1

N∑
n=0

Pn
θ

)
= lim

N→∞
1

N + 1

N∑
n=1

n−1∑
j=0

P j
θ Pθ

′Pn−j−1
θ

and the fact that Pθ
′ has row sum zero implies

1
N + 1

N∑
n=1

n−1∑
j=0

P j
θ Pθ

′Pn−j−1
θ =

1
N + 1

N∑
n=1

n−1∑
j=0

P j
θ Pθ

′(Pn−j−1
θ −Πθ) . (5)

By conditions (C1) – (C3), for any N , the supremum norm of the expression
on the right–hand side of the above equation is bounded by c ||P ′θ|| 1

1−ρ , which
is finite. Hence, the limit exists and we compute

lim
N→∞

1
N + 1

N∑
n=1

n−1∑
j=0

P j
θ Pθ

′(Pn−j−1
θ −Πθ)

= lim
N→∞

1
N + 1

N∑
n=0

Pn
θ

∞∑
j=0

Pθ
′(P j

θ −Πθ)

= ΠθPθ
′
∞∑

j=0

(P j
θ −Πθ) = ΠθPθ

′Dθ ,

with

Dθ =
∞∑

j=0

(P j
θ −Πθ) ,

where Dθ is known as deviation matrix in the literature, see for example [7].
We have thus shown that

lim
N→∞

d

dθ

(
1

N + 1

N∑
n=0

Pn
θ

)
= Πθ

∑
j=0

Pθ
′Dθ
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and elaborating on (C1) - (C3) it follows that

Π ′
θ = lim

N→∞
d

dθ

(
1

N + 1

N∑
n=0

Pn
θ

)
. (6)

For a proof use the fact that we may choose Θ0 small enough such that
supθ′∈Θ ||Pθ′ || =: K < ∞. Hence, the expression in equation (5) is uniformly
bounded on Θ0 in N . By Lipschitz continuity of P ′θ and Pθ (which follows
from K < ∞), we obtain that the expression in equation (5) is uniformly
continuous as well. The theorem of Arzela-Ascoli applies and the right–hand
side of (6) converges uniformly, which implies that interchanging the order of
differentiation and limit is justified. Hence,

d

dθ
πθ = µΠθPθ

′Dθ = πθΠθ
′Dθ , (7)

or, equivalently,

d

dθ
πθ = πθ CPθ

P+
θ Dθ − πθ CPθ

P−θ Dθ .

In words, the derivative of the stationary distribution (the fix-point of the
positive operator Pθ) can be represented as the difference of two well–defined
positive systems. Specifically, the above result recovers the result in [9] for the
case of finite state space. The above formula can be translated in various ways
into unbiased gradient estimators for the stationary performance, see [6, 4] for
details.

Example 3. We revisit the M/M/1 example. If the system is stable on Θ0 with
Θ0 an open neighborhood of θ, then π′θ = πθ Cλ,θ P+ Dθ − πθ Cλ,θ P−Dθ.

3 General state–space Markov chains

In this section we review the theory of differentiation for Markov chains on a
general state–space S. Let (S, T ) denote a measurable space, i.e., T is a σ–field
over S, and consider a family of Markov kernels (Pθ : θ ∈ Θ) on (S, T ), with
Θ = (a, b) ⊂ R, for a < b. Let L1(Pθ; Θ) ⊂ RS denote the set of measurable
mappings g : S → R such that

∫
S

Pθ(s; du) |g(u)| is finite for all θ ∈ Θ and
s ∈ S.

A first complication arises when one tries to define what ”differentiability”
of Pθ should mean. The following definition has been fruitful in applications.
Let D ⊂ L1(Pθ;Θ). We call Pθ D–differentiable if a transition kernel P ′θ exists
such that for any s ∈ S and any g ∈ D

d

dθ

∫
S

Pθ(s; du) g(u) =
∫

S

P ′θ(s; du) g(u) . (8)
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For example, the Markov kernel Pθ in Example 1 is RN–differentiable. Let
Cb(S) denote the set of continuous bounded mappings from S to R. Then,
Cb(S) ⊂ D implies that P ′θ in (8) is uniquely defined. Notice that uniqueness
of P ′θ comes for free in the finite state–space case.

Any triple (cPθ
(·), P+

θ , P−θ ), with P±θ Markov kernels and cPθ
a measurable

mapping from S to R, that satisfies∫
S

P ′θ(s; du) g(u) = cPθ
(s)

(∫
S

P+
θ (s; du) g(u) −

∫
S

P−θ (s; du) g(u)
)

,

for any g ∈ D, is called a D–derivative of Pθ. Notice that D–derivatives are
not unique. For example, the Markov kernel in Example 1 has RN–derivative
(cPθ

, P+, P−) with P+ and P− as defined in Example 1 and cPθ
(s) = λ/(λ +

θ)2.
DoesD–differentiability of Pθ already imply the existence of aD–derivative

of Pθ? For the finite state space case, the answer is ”yes” as we have shown
in Section 2.1. For a general state–space, however, the situation is more com-
plicated. Provided that (S, T ) is such that T is countable, it holds that if
D contains for any A ∈ T its indicator function, then D–differentiability of
Pθ implies the existence of a D–derivative. For general (S, T ), we have the
following result. Denote the total variation norm of a transition kernel Q on
(S, T ) by

‖Q‖tv , sup
s∈S

sup
f∈Cb(S)
|f |≤1

∫
f(z)Q(s; dz) . (9)

If Cb(S) ⊂ D and if ‖P ′θ‖tv < ∞, then D–differentiability of Pθ implies the
existence of a D–derivative, see [5].

The key ingredients for our proof of differentiability of the stationary di-
stribution in Theorem 1 was that (i) a product rule of differentiation holds,
and that (ii) there exists a norm, say || · ||, such that ||P ′θ|| is finite, P ′θ
is Lipschitz and Pθ is geometrically ergodic with coefficient ρθ, such that
supθ′∈Θ0

ρθ′ , ρ < 1 for some neighborhood Θ0 of θ, i.e., conditions (C1) -
(C3) hold.

It can be shown that, provided the Markov kernel satisfies a weak Lip-
schitz condition, the product of D–differentiable Markov kernels is again D–
differentiable, see [6]. To find good candidates for the norm, we have to resort
to stability theory for Markov kernels. A first choice is the total variation norm,
see equation (9) for a definition. This is the choice in [8] where it is shown that,
under suitable conditions, the stationary distribution is Cb(S)–differentiable.
Of course, Cb(S)–differentiability of π is not satisfactory in applications where
one is also interested in unbounded performance indicators. Fortunately, the
concept of normed ergodicity allows to overcome this restriction. The key idea
is to find a Lyapunov function g for Pθ and to consider v = eλg, for some po-
sitive λ. The norm is then the weighted supremum norm with respect to v, in
symbols:
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||Q||v , sup
s∈S

sup
g

|g|≤v

∣∣∫ g(z) Q(s; dz)
∣∣

v(s)
,

with Q a transition kernel on (S, T ), see [4] for details. In [4] sufficient con-
ditions are established such that Pθ is ergodic with coefficient ρθ, such that
supθ′∈Θ0

ρθ′ , ρ < 1, and ||Πθ′ || < ∞, for θ′ ∈ Θ0, where Θ0 is neighborhood
of θ (i.e., condition (C1) and (C2) hold for || · ||v). Under these conditions, it
holds true that if Pθ is Dv–differentiable with P ′θ Lipschitz continuous at θ and
||P ′θ||v finite, then the stationary distribution is Dv–differentiable as well and
its derivative is given by equation (7), we refer to [4] for details. Facilitating
this formula for gradient estimation is discussed in [4].

4 General positive operators

Let λθ denote an eigenvalue and xθ an eigenvector (associated to λθ) of the
positive operator Tθ, i.e., λθxθ = Tθxθ, θ ∈ Θ, for some suitable set Θ. For
example, Tθ may represent the transition operator in a (max,+)– or (min,+)–
linear system and λθ the unique eigenvalue (existence is assumed here) and
xθ an eigenvalue, see [1] for details. For the analysis in the previous sections,
we relied on the fact that, for Markov chains, the maximal positive eigenvalue
of Tθ is independent of θ (in fact, λθ = 1 for θ ∈ Θ). For general operators
eigenvector(s) as well as eigenvalue(s) will depend on θ. The development
of an approach for general positive operators is topic of future research. An
application of these results might, for example, lead to a sensitivity analysis
of the spectral gap of a Markov chain.
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