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Abstract. We study a particular class of transition kernels that stems
from differentiating Markov kernels in the weak sense. Sufficient con-
ditions are established for this type of kernels to admit a Jordan-type
decomposition. The decomposition is explicitly constructed.

1. Introduction

Let (Pϑ)ϑ∈Θ be a parametric family of Markov kernels Pϑ from a mea-
surable space (X,X ) to a locally compact space Y , with ϑ ∈ Θ ⊂ R, and
let Cc(Y ) denote the set of continuous real-valued mappings with compact
support on Y . The family of Markov kernels (Pϑ)ϑ∈Θ is called weakly dif-
ferentiable at ϑ if for any x ∈ X a finite signed Baire measure P ′ϑ(x; ·) on Y
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exists such that for any g ∈ Cc(Y ):

d

dϑ

∫
g(y)Pϑ(x; dy) =

∫
g(y)P ′ϑ(x; dy). (1)

This definition of weak differentiability differs slightly from the original one
in [7]. The concept of weak differentiability of measures has been success-
fully applied in different mathematical contexts (see [3], [4], [11], [8], [12],
[13]).

For applications related to the sensitivity analysis of Markov Chains [5] it
is important that we are able to obtain P ′ϑ by a conditional sampling proce-
dure. Conditional sampling procedures are within standard mathematical
theory governed by Markov kernels and measurable transformations. It is
therefore desirable to show that P ′ϑ can be represented as a measurably
scaled difference of two Markov kernels, i.e., it is desirable to show that

P ′ϑ(x;A) = cPϑ(x) · [Q+
ϑ (x;A)−Q−ϑ (x;A)], (2)

where Q+
ϑ and Q−ϑ are Markov kernels and cPϑ : X → R is a X -measurable

function.
In this paper, we give sufficient conditions for P ′ϑ to possess a represen-

tation as a scaled difference of two Markov kernels. Specifically, we show
that sup-norm boundedness of the linear functional g 7→

∫
g(y)P ′ϑ(x; dy) on

C•c (Y ) := Cc(Y )∪ 1Y together with second countability of Y is sufficient for
P ′ϑ to decompose as a scaled difference of two Markov kernels.

We note that for fixed x equation (2) gives just a scaled decomposition
of the signed measures P ′ϑ(x; ·). Hence Q+

ϑ and Q−ϑ are easily obtained
from the point-wise Jordan decomposition of P ′ϑ. However, this does not
establish that cPϑ(·) is a measurable function and Q+

ϑ (·, A) and Q−ϑ (·, A) are
Markov kernels, i.e, it does not establish measurability of cPϑ(·), Q+

ϑ (·, A)
and Q−ϑ (·, A) for any measurable set A. The analysis put forward in this pa-
per will establish sufficient conditions for the measurability of cPϑ , Q+

ϑ (·, A)
and Q−ϑ (·, A), providing thus an answer to the question when (2) holds with
Q+
ϑ and Q−ϑ Markov kernels and cPϑ : X → R an X -measurable function.
Further Example 2 constitutes a counterexample indicating that local

compactness of Y is strictly essential for our results.
The paper is organized as follows. Section 2 introduces measure theoretic

and topological concepts (compare with [9] and [14]) and shows that, un-
der suitable conditions, the finite signed Baire measures P ′ϑ(x, ·) constitute
indeed a kernel P ′ϑ. In Section 3, a Jordan type decomposition of P ′ϑ is
explicitely constructed. Section 4 is concerned with counterexamples and
an extension of our results to infinite products of locally compact second
countable spaces.
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2. Conditional integrals and kernels

Throughout the paper we let Y always denote a locally compact second
countable Hausdorff space. We denote by Y the σ-field of Baire measurable
subsets of Y , i.e., the σ-field generated by the compact subsets of Y .

Remark 1. Y is a Polish (completely metrizable and separable) space.1

On a second countable locally compact space the Borel-field (the σ-field
generated by the open or closed sets) and the Baire-field coincide.2 Thus,
Y is the σ-field generated by the family of open sets in Y .

The space Rn and any submanifold of it constitutes a locally compact
second countable space.

Let X be an arbitrary set and let X be an arbitrary σ-field on X. Let
Bb(Y ) denote the family of real-valued bounded Y-measurable functions on
Y , let Cc(Y ) denote the family of continuous functions with compact support
on Y and let B(X) denote the family of real-valued X -measurable functions
on X. We note that Cc(Y ) ⊆ Bb(Y ).

We call a Baire measurable function g : Y → R simple if an integer n ∈ N
and, for i ≤ n, sets Bi ∈ Y and constants γi ∈ R exist such that

g(y) =
n∑
i=1

γi1Bi(y), y ∈ Y.

The family of Baire measurable simple functions on Y is denoted by
Bsimp(Y ).

Let ‖·‖ denote the sup-norm on Bb(Y ). We call a set G ⊂ Bb(Y ) uniformly
bounded or sup-norm bounded if supg∈G ‖g‖ < ∞. We say that a sequence
(gn)n∈N of functions gn ∈ Bb(Y ) is uniformly bounded if the set {gn | n ∈ N}
is uniformly bounded.

We say that a linear functional J : Cc(Y ) → R is an integral if it is sup-
norm bounded, i.e, J is bounded on uniformly bounded subsets of Cc(Y )
(see also [1, Section 13.1]). We say that a linear functional J̃ : Bb(Y ) → R
is an extended integral if it is sup-norm bounded on (Bb(Y ), ‖ · ‖).

1The one-point compactification of a second countable locally compact space is again
second countable. We thus conclude by Urysohn’s metrization theorem ([14, 23.1]) that
the one-point compactification of Y is metrizable and we conclude further by [14, Exercise
24B 4] that the one-point compactification of Y is even completely metrizable. Since Y
is an open subset of its one-point compactification and thus a Gδ-subset of a completely
metrizable space, we conclude from [14, 24.17] that Y is itself completely metrizable.
Thus by second countability Y is a Polish space.

2This holds true since any open set in a second countable locally compact space is a
countable union of compact sets.
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A measure µ on Y is regular, if for E ∈ Y we have that

sup{µ(K) | K ⊆ E, K compact} = µ(E) = inf{µ(O) | O ⊇ E, O open}.

Definition 1. A kernel P (·, ·) from X to Y is a function P : X × Y → R
such that P (x, ·) is for any x ∈ X a finite signed measure on (Y,Y) and
x 7→ P (x,B) is for any B ∈ Y a X -measurable function on X. We say that
the kernel is Markov (or a Markov kernel) if for any x ∈ X the measure
P (x, ·) is a probability measure. We denote the space of all kernels from X
to Y by P(X,Y ).

Definition 2. A conditional integral I(·, ·) from X to Cc(Y ) is a function
I : X × Cc(Y )→ R such that
• I(x, ·) is an integral (i.e. a linear functional on Cc(Y ) which is sup-norm

bounded) and
• x 7→ I(x, f) is for any f ∈ Cc(Y ) a X -measurable function on X.

We denote the space of conditional integrals from X to Cc(Y ) by I(X,Y ).

Definition 3. Let Z denote an arbitrary Hausdorff space. We say that
a function F : Bb(Y ) 7→ Z is point-wise sequentially continuous on uni-
formly bounded subsets of Bb(Y ) if for any uniformly bounded point-wise
convergent sequence (gn)n∈N in Bb(Y ) with limit g ∈ Bb(Y ) we have that
limF (gn) = F (g).

Given a function space F ⊆ RX . We say that a set S ⊂ F is point-wise
sequentially closed if S contains all the limits (that are in F !) of point-wise
convergent sequences (gn)n∈N whose elements gn are in S. We say that a set
S is the point-wise sequential closure of a set S if S is the smallest point-
wise sequentially closed set containing S. A set S is point-wise sequentially
dense in a set T if T is a subset of the sequential closure S of S. (For more
details on sequential continuity and measurable functions see [9, Section
3.2].)

Proposition 1. Let K ⊆ Y be compact and let O ⊆ Y be open such that
K ⊂ O. Then there exists a continuous function f : Y → [0, 1] such that
f(K) = 1 and f(Y \O) = 0.

Proof. This follows by an application of the Urysohn Lemma (see [14, 15.6])
to K and Y \O ∪ {∞} in the one-point compactification (see [14, 19.2 and
19A]) Y ∪{∞} of Y , since any compact space is normal (see [14, 17.10]).
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Lemma 1. It holds that:
(a) The space B(X) is point-wise sequentially closed in RX .
(b) The function-space Bsimp(Y ) is point-wise sequentially dense in Bb(Y ).
(c) The function-space Cc(Y ) is point-wise sequentially dense in Bb(Y ).

Proof. (a) Is the well known fact that a limit of a point-wise convergent
sequence of measurable functions is again measurable.

(b) Is a consequence of the fact that any measurable function is the point
wise limit of a sequence of simple functions. (See for example Corollary
3.2.1 of [9].)

(c) Given an arbitrary compact set K we can by second countability and
local compactness of Y choose a sequence (On)n∈N of open sets such that
On+1 ⊂ On,

⋂
nOn = K and the closures On are compact. By Proposition

1 we find continuous functions fn such that fn(K) = 1 and fn(Y \On) = 0.
Since On is compact these functions fn possess compact support. Thus,
1K = limn∈N fn(x), and 1K lies in the point-wise sequential closure of Cc(Y ).
Since any open set O is — by second countability and local compactness
of Y — the countable union of compact sets, we see that also any function
1O and thus especially the function 1Y belongs to the sequential closure
of Cc(Y ). (That 1Y belongs to the sequential closure of Cc(Y ) can also be
easily seen using a countable partition of unity.) Hence, any finite linear
combination of functions 1A with A ∈ Y belongs to the sequential closure of
Cc(Y ) and thus by (b) the space Bb(Y ) is a subset of the sequential closure
of Cc(Y ). So we obtain (c) from (b).

Proposition 2 (Representation Theorem of Riesz). Let J : Cc(Y ) → R be
an integral. Then there exists a unique finite signed measure µ on (Y,Y)
such that the extended integral J̃ : Bb(Y )→ R given by

g 7→
∫
g(y)µ(dy)

is the unique extension of J to Bb(Y ) that is point-wise sequentially contin-
uous on uniformly bounded sets.

Proof. This is a consequence of [9, Section 5.2 Exercise 3] and Lemma 1 of
this article.

Remark 2. Note that any finite signed measure µ on Y is regular, i.e.,
its Jordan decomposition µ = µ+ + µ− decomposes the measure into two
regular (positive) measures µ+ and µ−. This follows from the usual results
on the Jordan decomposition ([9, Section 4.2]) and from [9, Scholium 5.2].
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Lemma 2. Any conditional integral I ∈ I(X,Y ) extends uniquely to a
conditional integral Ĩ : X×Bb(Y ) 7→ R such that for any x ∈ X the function
Ĩ(x, ·) is point-wise sequentially continuous on uniformly bounded subsets of
Bb(Y ). Moreover, there exists a one-one correspondence between kernels
and conditional integrals G : P(X,Y )→ I(X,Y ) given by[

G(P )
]
(x, f) =

∫
f(y)P (x, dy) for all f ∈ Cc(Y ), (3)

or, if we prefer to consider the extensions Ĩ of the conditional integrals I,
by

^[G(P )
]
(x, g) =

∫
g(y)P (x, dy),

for all g ∈ Bb(Y ).

Proof of Lemma 2. For notational convenience we call the above exten-
sion Ĩ of a conditional integral I the extended conditional integral. The
proof consists of 3 steps:

Step 1. By Proposition 2 there exists for an arbitrary conditional integral
I ∈ I(X,Y ) and for any x ∈ X a unique measure P (x, ·) on (Y,Y) and a
unique extended integral Ĩ(x, ·) on Bb(Y ) such that

I(x, f) =
∫
f(y)P (x, dy) for all f ∈ Cc(Y ), (4)

Ĩ(x, g) =
∫
g(y)P (x, dy) for all g ∈ Bb(Y ), (5)

and Ĩ(x, ·) is the unique extension of I(x, ·) that is sequentially point-wise
continuous on uniformly bounded sets.

Step 2. In the second step we show that the functions x 7→ Ĩ(x, g) are
X -measurable, for g ∈ Bb(Y ) arbitrary, i.e., we show that Ĩ is a conditional
extended integral. Further we show that the unique corresponding function
P : X × Y → R, defined in the first step, is a kernel.

Let RX be endowed with the topology of point-wise convergence. Define
an operator T : Bb(Y )→ RX by

[T (g)](x) = Ĩ(x, g).

The fact that, for arbitrary x ∈ X, the integral Ĩ(x, ·) is point-wise sequen-
tially continuous on uniformly bounded sets of Bb(Y ) implies that T is also
point-wise sequentially continuous.

Further, f ∈ Cc(Y ) implies by definition of T and the fact that I ∈
I(X,Y ) that

T (f) =
[
x→ I(x, f)

]
∈ B(X), (6)

i.e., we have that T (Cc(Y )) ⊆ B(X).
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By (6) together with Lemma 1 (c) and the point-wise sequential continu-
ity of T , we obtain that T (Bb(Y )) ⊆ B(X). In other words, we obtain that
g ∈ Bb implies that x 7→ Ĩ(x, g) is X -measurable. The fact that x 7→ Ĩ(x, g)
is X -measurable implies in the case that g is the characteristic function of
a set B that x 7→ P (x,B) is X -measurable. Thus, P is a kernel and (as
already noted in the first step) by Proposition 2 unique.

In the first two steps we have shown that any integral I ∈ I(X,Y ) corre-
sponds with an unique kernel P ∈ P(X,Y ) and an unique extended integral
Ĩ. Further we know by equation (4) and (3) that this correspondence is given
by G−1. In the third step we show that any P ∈ P(X,Y ) corresponds with
an unique I = G(P ) ∈ I(X,Y ).

Step 3. We show that any kernel P corresponds with an unique con-
ditional integral I. We do this by showing that any kernel P corresponds
to a unique extended conditional integral. That any kernel P gives us
by formula (5) for any x an extended integral Ĩ(x, ·) is trivial. To show
that Ĩ is an extended conditional integral note that for any simple function
g =

∑n
i=1 γi1Bi ∈ Bsimp we have:

Ĩ(x, g) =
∑
i

γiP (x,Bi).

So for g ∈ Bsimp the function x 7→ Ĩ(x, g) is a finite sum of X -measurable
functions and thus itself X -measurable. It remains to be shown that
x 7→ Ĩ(x, g) is for any g ∈ Bb(Y ) a X -measurable function. We do this
by arguments analogous to the arguments provided in step 2 as will be
explained in the following.

Let T denote the operator defined in step 2. Recall that T is point-wise
sequentially continuous. Furthermore, f ∈ Bsimp(Y ) implies (by definition
of T and the fact that for g ∈ Bsimp(Y ) the function x 7→ Ĩ(x, g) is X -
measurable) that:

T (f) =
[
x→ Ĩ(x, f)

]
∈ B(X), (7)

i.e., we have that T (Bsimp(Y )) ⊆ B(X).
By (7) together with Lemma 1 (b) and point-wise sequential continuity

of T , we obtain that T (Bb(Y )) ⊆ B(X). In other words, we obtain that
g ∈ Bb(Y ) implies that x 7→ Ĩ(x, g) is X -measurable.

Now we define weak differentiability of conditional integrals and kernels.
By an interval we always mean an interval with nonempty interior. A func-
tion φ : Θ → R is called differentiable if it is differentiable in the interior
of Θ and one sided differentiable at the boundary points of Θ. Derivatives

and one sided derivatives, respectively, are denoted by
dφ(ϑ)
dϑ

.
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Definition 4. Let Θ be an interval in R and let ϑ 7→ Iϑ be a path in
(mapping from Θ to) the space I(X,Y ). We say that ϑ 7→ Iϑ is weakly
differentiable if

dIϑ(x, f)
dϑ

exists for all (x, f) ∈ X × C•c (Y ).

If ϑ → Iϑ is weakly differentiable then we say that it is bounded weakly
differentiable if

sup
f∈C•c (Y )
|f |≤1

∣∣∣∣dIϑ(x, f)
dϑ

∣∣∣∣ <∞,
for any x ∈ X.

We say that a path ϑ 7→ Pϑ in the space P(X,Y ) of kernels is bounded
weakly differentiable if the corresponding path ϑ 7→ G(Pϑ) in the space
I(X,Y ) of conditional integrals is bounded weakly differentiable.

Theorem 1. If the path ϑ 7→ Pϑ in the space P(X,Y ) is bounded weakly
differentiable, then the weak derivative can be represented by a path ϑ 7→ P ′ϑ
in the space P(X,Y ). The connection between ϑ 7→ Pϑ and ϑ 7→ P ′ϑ is given
by ∫

f(y)P ′ϑ(x, dy) =
d
∫
f(y)Pϑ(x, dy)

dϑ
for f ∈ C•c (Y ).

Proof. Let Iϑ = G(Pϑ) be the corresponding path in the space of condi-
tional integrals. Define for any (x, f) ∈ X × C•c (Y ) the function I ′ϑ(x, f)
by

I ′ϑ(x, f) :=
dIϑ(x, f)

dϑ
Let (hn)n∈N be an arbitrary sequence of positive reals which goes to 0 as n
tends to ∞. Then for f ∈ C•c (Y ) we have:[
x 7→ I ′ϑ(x, f)

]
=
[
x 7→ dIϑ(x, f)

dϑ

]
=
[
x 7→ lim

n→∞

Iϑ+hn(x, f)− Iϑ(x, f)
hn

]
.

Thus, x 7→ I ′ϑ(x, f) is for f ∈ C•c (Y ) a limit of a sequence of X -measurable
functions and therefore itself X -measurable. The fact that I is bounded
weakly differentiable implies that I ′(x, ·) is bounded for any x ∈ X. Thus,
I ′(x, ·) is for any x ∈ X an integral and I ′(·, ·) is thus itself a conditional
integral. By the correspondence between conditional integrals and kernels
(Lemma 2) we obtain a kernel P ′ = G−1(I ′). The formula connecting P ′

and P is clear from the correspondence between P ′, P and I ′, I and the
definition of I ′.
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3. Jordan decomposition of weak derivatives of Markov

kernels

Definition 5. Given a kernel P ∈ P(X,Y ) we define the absolute value
|P | of the kernel as follows:

|P |(x,B) = sup
A∈Y
A⊆B

2 · P (x,A)− P (x,B), x ∈ X, B ∈ Y.

Lemma 3. The absolute value |P | of a kernel P ∈ P(X,Y ) is again a
kernel.

Proof. That for any x ∈ X the absolute value |P |(x, ·) is a finite measure
is a well known fact and it remains to be shown that the function

x 7→ |P |(x,B) (8)

is X -measurable for any B ∈ Y. By a monotone class argument it suffices
to show that (8) holds for any B ∈ A for some set-field A that generates Y.

Thus let β be a countable basis of Y and let A be the set-field generated
by β. Then, A is countable and generates the σ-field Y. For any set C ∈ Y
and any measure µ on (Y,Y) there exists a sequence (An)n∈N of sets An ∈ A
such that limµ(An4C) = 0 (see [10, Lemma A.24]). Thus, the function

x 7→ |P |(x,B)

is for any B ∈ A the point-wise supremum over the countable family{
x 7→ 2 · P (x,A)− P (x,B) : A ∈ A and A ⊆ B

}
of X -measurable functions and thus itself X -measurable.

Definition 6. We say that a kernel is positive if P (x,B) ≥ 0 for all (x,B) ∈
X × Y. We say that a pair of kernels (P+, P−) forms a decomposition of
a kernel P if P+ and P− are positive kernels and P (x,B) = P+(x,B) −
P−(x,B). We say that this decomposition is minimal or Jordan if for any
other decomposition (Q+, Q−) of P we have P+(x,B) ≤ Q+(x,B) and
P−(x,B) ≤ Q−(x,B).

Corollary 1. Any kernel P ∈ P(X,Y ) possesses a Jordan decomposition.

Proof. For (x,B) ∈ X × Y define

P+(x,B) :=
|P |(x,B) + P (x,B)

2
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and

P−(x,B) :=
|P |(x,B)− P (x,B)

2
.

Then, P+(x,B), P−(x,B) ≥ 0, P+(x, ·), P−(x, ·) are measures, and by an
application of Lemma 3 the functions x 7→ P+(x,B) and x 7→ P−(x,B) are
X - measurable. It is also clear that the decomposition is minimal.

Theorem 2. Suppose that the path ϑ 7→ Pϑ in the space P(X,Y ) is bounded
weakly differentiable and that for any ϑ the kernel Pϑ is Markov. Then there
exist for any ϑ Markov kernels Q+

ϑ and Q−ϑ from X to Y and a X -measurable
function cϑ : X → R such that the weak derivative P ′ϑ of Pϑ decomposes in
the form

P ′ϑ(x,B) = cϑ(x)
(
Q+
ϑ (x,B)−Q−ϑ (x,B)

)
∀(x,B) ∈ X × Y.

Proof. By Theorem 1, the weak derivative P ′ϑ is for any ϑ a kernel and
by Corollary 1, P ′ϑ possesses a Jordan decomposition (P ′+ϑ , P ′−ϑ ), i.e., P ′ϑ =
P ′+ϑ − P

′−
ϑ with P ′+ϑ , P ′−ϑ positive kernels. Since the Pϑ are Markov kernels

and 1Y ∈ C•c , we have P ′+ϑ (x, Y ) = P ′−ϑ (x, Y ). Let cϑ : X → R be defined
by

cϑ(x) := P ′+ϑ (x, Y ) = P ′−ϑ (x, Y ).

Since P+
ϑ is a kernel, the function cϑ(·) is X -measurable. For B ∈ Y let

Q+
ϑ (x,B) :=

1
c(x)

P ′+ϑ (x,B) for all x with cϑ(x) > 0,

Q−ϑ (x,B) :=
1
c(x)

P ′−ϑ (x,B) for all x with cϑ(x) > 0.

For x ∈ X with cϑ(x) = 0 and B ∈ Y set

Q+
ϑ (x,B) = Q−ϑ (x,B) = µ(B),

where µ is an arbitrary probability measure. Then Q+
ϑ as well as Q−ϑ are

Markov kernels.

Remark 3. That P ′ϑ decomposes according to (2) is due to the fact that
the kernels Pϑ are Markov. Formula (2) is not any more true for the decom-
position of derivatives of general (non Markovian) kernel valued functions
ϑ 7→ Pϑ.
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4. Examples and an extension of our results

Weak differentiability with respect to C•c (Y ) is even in the case Y = R
not the same as differentiability with respect to the Baire σ-field as is shown
by the following example concerning just measures that can be interpreted
as constant Markov kernels.

Example 1. Let Θ = R and let νθ be the uniform distribution on [θ, 1 +
θ]. Then ν ′θ exists weakly and ν ′θ = −δθ + δ(1+θ), while the derivative
with respect to the Baire σ-field does not exist. Further examples of this
phenomenon are provided in [11], [12], [13] and [8].

Inspecting the proofs of Theorems 1 and 2 one may be under the impres-
sion that local compactness of Y is not essential for our analysis and that
Theorem 2 could be obtained via the Daniell-Stone theorem ([9, Theorem
3.3] or [2, Theorem 4.5.2]) instead of the Riesz representation theorem. In
the remainder of this section we will show that this is not true (not even for
probability measures). Moreover we will present an extension of our result
to products of infinitely many locally compact spaces.3

Definition 7. Let I be some set and let I0 ⊆ I be an arbitrary finite
subset. Let prI0 : Y I → Y I0 be the projection onto the coordinates in I0.
Let ⊗IY := σ(

⋃
i∈I pr−1

i (Y)) be the product σ-algebra on Y I . We call a
set Z ∈ ⊗IY a cylinder set if Z = pr−1

I0
(B) for some finite set I0 ⊆ I and

some arbitrary B ∈ ⊗I0Y ([6, Section 2.2]). We call a function f : Y I → R
a Cc-cylinder function if there exists a finite set I0 ⊆ I and a function
f0 ∈ Cc(Y I0) such that f = f0 ◦ prI0 .

Theorem 3. Let Θ ⊂ R be an interval and let for ϑ ∈ Θ Pϑ ∈ P(X,Y I)
and suppose that for any finite set I0 ⊆ I the path ϑ 7→ Pϑ ◦pr−1

I0
is bounded

weakly differentiable. Then the weak derivative can be represented by a path
ϑ 7→ P ′ϑ in the space P(X,Y ). The connection between ϑ 7→ Pϑ and ϑ 7→ P ′ϑ
is given by∫

f(y)P ′ϑ(x, dy) =
d
∫
f(y)Pϑ(x, dy)

dϑ
for Cc-cylinder functions f.

Moreover if Pϑ is a Markov kernel then the derivative decomposes in the
form

P ′ϑ(x,B) = cPϑ(x)
(
Q+
ϑ (x,B)−Q−ϑ (x,B)

)
∀(x,B) ∈ X × (⊗IY)

where Q+
ϑ and Q−ϑ are Markov kernels and cPϑ(·) is a measurable function.

3Note that the product of infinitely many locally compact spaces is locally compact if
and only if all but finitely many factors are compact ([14, 18.6]).
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Proof. This theorem is easily derived from Theorem 1 and Theorem 2
together with Kolmogorovs consistency theorem ([10, Theorem B.133]).

The following example illustrates that local compactness is necessary for
Theorem 2. More specifically, an example is provided where the derivative
of a path of probability measures ϑ 7→ νϑ on the Hilbert space `2 fails to be
a curve of signed measures, but incorporates cylindrical signed measures,
i.e., set-functions such that only their finite dimensional projections are σ-
additive.

Example 2. Let N(0, σ2) denote the normal distribution with mean 0 and
variance σ2. Let δ0 denote Dirac measure at the point (0, 0, 0, . . . ) ∈ RN.
Let for s ∈ [0, 1] measures ms on the Borel σ-algebra B of RN be defined by

ms(B) :=

[∏
n∈N

N
(

0, n−(1+s)
)]

(B).

Let Θ = [0, 1] and let measures µϑ be defined by

µϑ(B) :=
∫ 1

ϑ
ms(B) ds+ ϑ · δ0(B).

Then ϑ 7→ µϑ(Z) is for any cylinder set Z differentiable on [0, 1] and

µ′ϑ(Z) = −mϑ(Z) + δ0(Z).

By Kolmogorovs consistency theorem ([10, Theorem B.133]) the signed
cylinder measure µ′ϑ extends to a signed measure µ̃′ϑ.

Define further set-functions νϑ on `2 := {y ∈ RN |∑n∈N y2
n <∞} by

νϑ(Z ∩ `2) = µϑ(Z) for cylinder sets Z.

Then all set-functions νϑ extend uniquely to measures on the Borel σ-algebra
B(`2) of `2. We denote these measures again by νϑ. The measures νϑ are
differentiable with derivatives ν ′ϑ such that for restrictions of Cc-cylinder
functions f : RN → R to `2 we have that∫

f |`2 dν ′ϑ =
∫
f dµ′ϑ =

∫
f d[−mϑ + δ0]

and for cylinder sets Z we have that ϑ 7→ νϑ(Z ∩ `2) is differentiable and

ν ′ϑ(Z ∩ `2) = µ′ϑ(Z) = −mϑ(Z) + δ0(Z).

But ν ′0 does not extend to a signed measure ν̃ ′0 on the Borel sets of `2. An
extension ν̃ ′0 would have to coincide with µ̃′0 on the Borel sets of `2. Thus
we would obtain the contradiction

0 = µ′0(RN) = ν ′0(RN∩`2) = ν̃ ′0(`2) = µ̃′0(`2) = −m0(`2)+δ0(`2) = 0+1 = 1.
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Remark 4. All theorems, lemmas, propositions and examples remain true
if C•c (Y ) is replaced by a uniformly dense subspace of C•c (Y ).
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