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Abstract. We consider the accumulate costs over a cycle of a phase-homoge-
neous random walk. For this model we establish sufficient conditions for the
existence of the derivative of the cycle cost and we establish an unbiased gradient
estimator. The main stability condition for our analysis is that the expected
cycle costs are finite. We thereby improve the results known in the literature so
far, where usually finiteness of higher moments of the cycle length is assumed
in order to establish unbiasedness of a particular gradient estimator.
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1. Introduction

Let Xθ(n) be the waiting time of the nth customer in an G/G/1 queue,
depending on a (vector-valued) parameter θ ∈ Θ with Xθ(0) ∈ α, for some
measurable set α. We denote the drift of Xθ(n) by ξθ(n), in formula

Xθ(n + 1) = max( Xθ(n) + ξθ(n) , 0 ) n ≥ 1 . (1.1)

We assume that the drift sequence ξθ(n) is i.i.d. and that the system is stable,
i.e., we assume that E[ξθ(1)] < ∞. A broad class of problems can be modeled
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by

E

[

τα,θ(s)−1
∑

n=0

g(Xθ(n))
]

, (1.2)

where τα,θ denotes the first entrance time after n = 0 of Xθ into α and g is
some cost function.

In optimization and sensitivity analysis, one is interested in computing/
estimating the derivative of the overall performance in (1.2) with respect to θ.
It has already been observed in the literature that there are many situations
where the derivative of (1.2) can be obtained from observing the process up to
time τα,θ. However, for establishing unbiasedness of the estimator one usually
requires that the second or third moment of τα,θ has finite expected value. See,
for example, [1, 3, 8].

This moment condition on the cycle-length can be harmful in the presence of
heavy-tailed distributions. For example, if g in (1.2) is bounded by a polynomial
of degree p, then the derivative of the cycle performance exists if the (p + 1)st
moment of the drift is finite. For example, for g bounded, we require finiteness
of the expected value of τα,θ. Since finiteness of the expected value of τα,θ

is already necessary for the cycle performance in (1.2) to exist, our analysis
provides a set of minimal conditions for unbiasedness of a gradient estimator
for the derivative of the cycle cost. To summarize, we show that for waiting
times in the G/G/1 queue existence of the cycle performance already implies
unbiasedness of the gradient estimator for bounded cost functions.

The paper is organized as follows. In Section 2 preliminary results are pre-
sented. In particular, a brief introduction to the theory of measure-valued dif-
ferentiation is provided. The main result of the paper is presented in Section 3
and applications are discussed in Section 4. The technical analysis is provided
in Section 5 and Section 6.

The paper has two main contributions. The first contribution is that dif-
ferentiability of cycle costs of the G/G/1 queue is established that extends the
results in [6] to systems satisfying much weaker stability conditions. Specifi-
cally, heavy tailed distributions can be treated with the framework provided
in this paper, whereas this type of distribution is out ruled by the conditions
required for the analysis in [6]. The second contribution is that conditions for
unbiasedness of gradient estimators provided in this paper are minimal and it
is the first result of this type.

2. Preliminaries

2.1. Taboo kernels and the potential kernel

Let (S, T ) be a Polish measurable space. Let M(S, T ) denote the set of
finite (signed) measures on (S, T ) and M1(S, T ) that of probability measures
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on (S, T ). The mapping P : S ×T → [0, 1] is called a (homogeneous) transition

kernel on (S, T ) if (i) P (s; ·) ∈ M(S, T ) for all s ∈ S; and (ii) P (·; B) is
T measurable for all B ∈ T . If, in condition (i), M(S, T ) can be replaced
by M1(S, T ), then P is called a Markov kernel on (S, T ). Denote the set of
transition kernels on (S, T ) by K(S, T ) and the set of Markov kernels on (S, T )
by K1(S, T ). A transition kernel P ∈ K(S, T ) with 0 < P (s; S) < 1 for at least
one s ∈ S is called a defective Markov kernel, and terms “transition kernel” and
“defective Markov kernel” are synonyms.

Consider a family of Markov kernels (Pθ : θ ∈ Θ) on (S, T ), with Θ ⊂ R ,
and let L1(Pθ; Θ) ⊂ R

S denote the set of measurable mappings g : S → R, such
that

∫

S
Pθ(s; du) |g(u)| is finite for all θ ∈ Θ and s ∈ S. A kernel Pθ is called

D-preserving, with D ⊂ L1(Pθ; Θ), if g ∈ D implies
∫

S Pθ(·; du)g(u) ∈ D. To
simplify the notation, we set

(Pθg)(s) ,

∫

S

Pθ(s; du)g(u)

for g ∈ L1(Pθ; Θ) and s ∈ S.
For Pθ ∈ K1(S, T ) and V ∈ T , the taboo operator associated with Pθ for

some taboo set V is defined as

∀g ∈ L1(Pθ; Θ) : (V Pθg)(s) ,

∫

u/∈V

Pθ(s; du)g(u) ,

for s ∈ S. Note that if Pθ(s, V ) > 0 for some s ∈ S, then V Pθ is defective.
Taking α = V , the expression in (1.2) reads

E

[

τα,θ−1
∑

n=0

g(Xθ(n))
]

=

∞
∑

n=0

αP
n
θ g ,

provided that it exists. The operator

Hθ ,

∞
∑

n=0

αP
n
θ

is called the potential of αPθ. Note that the potential of αPθ yields the distri-
bution of a cycle of Xθ, in formula,

(Hθg)(s) = E

[

τα,θ−1
∑

n=0

g(Xθ(n)) | Xθ(0) = s
]

,

for any s ∈ S and for any g for which (1.2) exists. Denoting by e the mapping
that maps any s ∈ S onto 1, gives for any s ∈ S:

Pθ(τα,θ > n |Xθ(0) = s) = (αP
n
θ e)(s) (2.1)
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and

E[τα,θ |Xθ(0) = s] =

∞
∑

n=0

(αP
n
θ e)(s) = (Hθe)(s) .

2.2. Measure-valued differentiation

In what follows, we let Θ be an open neighborhood of θ0 and assume that
D ⊂ L1(Pθ; Θ).

Definition 2.1. We call Pθ ∈ K(S, T ) differentiable at θ with respect to D, or
D-differentiable for short, if P ′

θ ∈ K(S, T ) exists such that for any g ∈ D and
any s ∈ S:

d

dθ

∫

S

Pθ(s; du) g(u) =

∫

S

P ′
θ(s; du) g(u). (2.2)

If the left-hand side of equation (2.2) equals zero for all g ∈ D, then we say that
P ′

θ is not significant.

We denote the set of bounded continuous mappings from S to R by Cb(S)
and assume, unless stated otherwise, that Cb(S) ⊂ D. This implies that P ′

θ in
(2.2) is uniquely defined provided that Pθ is D-differentiable. For more details
on measure-valued differentiation (MVD), we refer to [5, 10, 12, 13].

Definition 2.2. Let Pθ ∈ K(S, T ) be D-differentiable at θ. Any triple (cPθ
(·),

P+
θ , P−

θ ), with P±
θ ∈ K1(S, T ) and cPθ

a measurable mapping from S to R such
that

∀g ∈ D :

∫

S

P ′
θ(s; du) g(u) = cPθ

(s)

(
∫

S

P+
θ (s; du) g(u) −

∫

S

P−
θ (s; du) g(u)

)

is called a D-derivative of Pθ.

Remark 2.1. If Pθ is D-differentiable, so is V Pθ provided that V is independent
of θ. Moreover, if (cPθ

(·), P+
θ , P−

θ ) is an instance of a D-derivative for Pθ, then
an instance of a D-derivative of V Pθ is given by

(

c
VPθ

,V P+
θ ,V P−

θ

)

,

with c
VPθ

(s) = cPθ
(s) for s ∈ S.

Let v : S → R be a measurable mapping such that

inf
s∈S

v(s) ≥ 1. (2.3)
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The set of mappings from S to R can be equipped with the so-called functional
v-norm, where

‖f‖v = sup
s∈S

|f(s)|

|v(s)|
.

For µ a (signed) measure the associated measure norm is

‖µ‖v = sup
‖f‖

v
≤1

|µf |

and for a kernel P the associated operator norm reads

‖P‖v = sup
s∈S

sup
‖f‖

v
≤1

∣

∣

∫

f(z) P (s; dz)
∣

∣

|v(s)|
.

If g has finite v-norm, then |g(s)| ≤ c v(s) for any s ∈ S and some finite constant
c. Let H be an arbitrary set of measurable mappings and let v ∈ L1(Pθ; Θ). We
denote the subset of H constituted out of the v-dominated functions by (H, v);
in formula:

(H, v) , {g ∈ H : ||g||v < ∞}.

Let vp(s) =
∑p

k=0 dk|s|
k for finite constants dk ≥ 0, for p ≥ k > 0 and d0 > 0,

then (H, p) , (H, vp) denotes the set of mappings g ∈ H that are bounded by a
polynomial of degree p, that is, g ∈ (H, p) implies that

|g(s)| ≤

p
∑

k=0

ck|s|
k

for some finite constants ck ≥ 0, k = 0, . . . , p.
We call (H, v) (resp. (H, p)) Banach if (H, v) (resp. (H, p)) is a Banach space

with respect to the v-norm.
Let Pθ be (H, v)-differentiable at θ ∈ Θ with (H, v) Banach. Then, for any

neighborhood U = [θ − ∆, θ + ∆] ⊂ Θ of θ ∈ Θ a finite constant M exists such
that

∀|h| ≤ ∆ : ‖Pθ+h − Pθ‖v ≤ |h|M, (2.4)

see [7]. In words, Pθ is locally v-norm Lipschitz. For a signed measure µ on
(S,S) we denote its positive part by [µ]+ and its negative part by [µ]−. The
absolute value of µ, in symbols |µ|, is defined by |µ| = [µ+] + [µ−] and it holds
that

∀|h| ≤ ∆ :

∫

g(u)|Pθ+h − Pθ|(du) ≤ ||Pθ+h − Pθ||vv(s) (2.5)

for all g such that ||g||v ≤ 1, see [7] for details.
For our analysis we require a set D of performance measures that satisfies

the following conditions:
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(i) There exists v ∈ L1(Pθ; Θ) such that D endowed with the || · ||v-norm
becomes a Banach space.

(ii) Pθ is D-differentiable.

In the following we discuss typical examples for D, where C(S) denotes the set
of all continuous mappings belonging to L1(Pθ; Θ).

• Let H = C(S) and let v ∈ L1(Pθ; Θ) such that v satisfies (2.3). Then,
D = (H, v) is the set of all continuous mappings bounded by v up to
multiplicative constant and D equipped with the || · ||v-norm becomes the
Banach space of continuous mappings with finite v-norm1. In particular,
for v ≡ 1, D becomes the set of bounded continuous mappings, denoted
by Cb(S).

• Let H = L1(Pθ; Θ) and let v ∈ L1(Pθ; Θ) such that v satisfies (2.3).
Then, D = (H, v) is the set of all measurable mappings bounded by v up
to a multiplicative constant and D equipped with the v-norm becomes the
Banach space of measurable mappings with finite v-norm.

The question whether (ii) is satisfied for D depends on Pθ. It may happen
that Pθ is only D-differentiable for a particular choice of D. Roughly speaking,
D-differentiability with respect to D = (L1(Pθ; Θ), v) is the most restrictive
condition, since it requires that indicator functions are differentiable. On the
other hand, D = Cb(S), that is, D = (C(S), v ≡ 1) is the least restrictive choice
for D, however, excluding the analysis of possibly unbounded cost functions.
See the discussion in [13] for details.

2.3. Random walks

For our analysis, we model the waiting times Xθ(n) in an G/G/1 queue as a
collection of Markov chains on the positive half-line with jump variables ξθ(x)
in state x. More specifically, let Sθ be a sample of the service time and let Aθ

be an independent sample of the interarrival time. Then, the drift of Xθ(n) is
denoted by ξθ = Sθ − Aθ. For x ∈ R

+ , {x ∈ R : x ≥ 0} let

ξθ(x) = max(ξθ + x, 0) = x + max(ξθ,−x), (2.6)

with E[ξθ] finite for any θ ∈ Θ. Hence, the (n+1)st waiting time is obtained from
Xθ(n + 1) = ξθ(x) = max(ξθ + x, 0) = max(Sθ − Aθ + x, 0), where Xθ(n) = x.
Observe that the very definition of ξθ(x) implies that

(S1) x ≤ y ⇒ ξθ(x) ≤ ξθ(y).

1One may slightly deviate from the requirement of continuity. For example, let g be
bounded by v and denote the set of discontinuities of g by Dg . Provided that Pθ(s, Dg) = 0
for any θ ∈ Θ and s ∈ S, we may consider D ∪ {g} for our analysis.
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Let M be the class of nonnegative non-decreasing functions on R
+. Standard

are the following notions for stochastic comparison; see, for example, [11]. For
stochastic variables X1, X2

X1 ≤st X2 ⇐⇒ E[f(X1)] ≤ E[f(X2)] for f ∈ M.

As shown in [11], X1 ≤st X2 is equivalent to X̃1 ≤ X̃2 a.s. for suitably chosen
versions X̃1 and X̃2. A possibly defective transition kernel Q is monotone if

Qf ∈ M for f ∈ M.

Let Θ be a neighborhood of θ, and assume that

ξθ ≤st ξθ′ for θ ≤ θ′.

Identifying the random variables with an appropriate version that translates
≤st-ordering to almost sure ordering, we assume that

(S2) ξθ ≤ ξθ′ for θ ≤ θ′

with probability one. Hence, in the following we will work with random map-
pings ξθ(x) that are a.s. monotone in both arguments, where (S1) is guaranteed
by definition and (S2) is an assumption that has to be verified in applications.

By (S2) it then holds with probability one that

sup
θ∈Θ0

ξθ = ξθr
, ξ (2.7)

and, since we have assumed that the expected value of the drift is finite, it
follows that

E
[

sup
θ∈Θ0

ξθ

]

= E[ξ] (2.8)

is finite.
On R+ we define a Markov kernel by

Pθ(x, B) , P(ξθ(x) ∈ B) = E[1B(max(ξθ + x, 0))], (2.9)

where x ∈ R+ and B a Borel-set. For given initial state x0, the above Markov
kernel defines a random walk on the positive half-line. The increment variable
ξθ in (2.6) represents the drift of the random walk. Note that one typically
assumes for stability that E[ξ] < 0.

The Markov kernel Pθ defined in (2.9) enjoys the following properties.

Lemma 2.1. The kernel is monotone, that is

Pθf ∈ M for f ∈ M.

If (S2) holds, then the kernel is monotone w.r.t. θ, that is

Pθf ≤ Pθ′f for θ ≤ θ′,

for any monotone integrable mapping f .



232 B. Heidergott and A. Hordijk

Proof. The definition of the kernel in (2.9) yields (Pθf)(s) = E[f(ξθ(s))] and
the first part of the lemma is a direct consequence of (S1), whereas the second
part of the lemma follows directly from (S2). 2

Lemma 2.2. Suppose that (S2) holds. Then

(i) for θ′ ≥ θ
ξθ′(x) − ξθ(x) ≤ ξθ′ − ξθ , x ∈ S;

(ii) for f ∈ M, it holds for θ′ ≥ θ,

f(ξθ′(x)) − f(ξθ(x)) ≤ f(x + ξθ′) − f(x + ξθ) , x ∈ S.

Proof. For the proof note that φ(x) = max(x, 0) is a non-decreasing contraction.
Hence, it holds that φ(x) ≤ φ(y) for x ≤ y, which proves (i). The second part
of the lemma follows from φ(f(y))−φ(f(x)) ≤ max(f(y)−f(x), f(y)−f(0), 0),
which stems from the fact that φ(y) = 0 implies φ(x) = 0. 2

Lemma 2.3. Let H ⊂ L1(Pθ; Θ). Provided that E[|ξ|k] is finite, for 1 ≤ k ≤ p,

it holds that P n
θ is D-preserving on Θ for all n, where D = (H, p).

Proof. Note that for g ∈ D it holds for all θ ∈ Θ0 that

|(Pθg)(x)| ≤ c0 +

p
∑

k=1

ckE
[

(max(ξθ + x, 0))k
]

≤ c0 +

p
∑

k=1

ckE
[

|ξθ + x|k
]

≤ c0 +

p
∑

k=1

ck

k
∑

l=0

(k
l )xl

E
[

|ξθ|
k−l

]

≤ c0 +

p
∑

k=1

ck

k
∑

l=0

(k
l )xl

E
[

|ξ|k−l
]

.

Hence, provided that E[|ξ|k ] is finite for 1 ≤ k ≤ p, it follows that Pθg ∈ D for
g ∈ D. The claim then follows from finite induction. 2

Lemma 2.4. Let D = (H, p), for H ⊂ L1(Pθ; Θ). If ξθ has D-derivative

(cθ, ξ
+
θ , ξ−θ ), then Pθ is D-differentiable and P ′

θ is D-preserving.

Proof. Let µθ denote the distribution of ξθ and let µ±
θ denote the distribution

of ξ±θ . The assumption that ξθ has a D-derivative implies that

∀g ∈ D :
d

dθ

∫

g(s)µθ(ds) =

∫

g(s)µ′
θ(ds),
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with µ′
θ = cθ(µ

+
θ −µ−

θ ). Note that g ∈ D = (H, p) implies that g(max(ξθ +x, 0))
as a function of ξθ lies in D as well. Hence, for g ∈ D it holds that

d

dθ

∫

Pθ(s; du)g(u) =
d

dθ

∫

g(max(u + s, 0))µθ(du)

=

∫

g(max(u + s, 0))µ′
θ(du).

For A ∈ T , set

P ′
θ(s; A) ,

∫

1A(max(u + s, 0)) µ′
θ(du),

then

∀g ∈ D :
d

dθ

∫

Pθ(s; du)g(u) =

∫

g(u)P ′
θ(s; du),

which establishes D-differentiability of Pθ.
We now show that P ′

θ is D-preserving. If ξθ has D-derivative (cθ, ξ
+
θ , ξ−θ ),

then E[|ξ+
θ |k] and E[|ξ−θ |k] are finite for 1 ≤ k ≤ p. Since g ∈ D implies that

g(max(ξθ + x, 0)) as a function of ξθ lies in D as well, D-differentiability of ξθ

yields

|(P ′
θg)(x)| = cθ

∣

∣E
[

g(max(ξ+
θ + x, 0))] − E

[

g(max(ξ−θ + x, 0))]
∣

∣

≤ cθ

p
∑

k=0

dkE
[

|ξ+
θ + x|k

]

+ cθ

p
∑

k=0

dkE
[

|ξ−θ + x|k
]

≤ cθ

p
∑

k=0

k
∑

l=0

(k
l )xl

(

E
[

|ξ+
θ |k−l

]

+ E
[

|ξ−θ |k−l
])

.

Since E[|ξ±θ |k] are finite for 1 ≤ k ≤ p, it follows that P ′
θg ∈ D. 2

3. Main result

In this section, we present the main result of this paper. The technical
analysis is postponed to Section 5. To simplify the presentation of results, we
summarize the stability conditions required for our analysis in the following
definition.

Definition 3.1. We say that a Lyapunov condition holds for p, with p ≥ 0, if

• condition (S2) holds,

• it holds that E[ξ] < 0 and

E
[

|ξ|
p+1]

< ∞,
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• for each x0 ∈ R
+ it holds that sups∈S, θ∈Θ Eθ[Nα(x0, s)] is finite, where

Nα(x0, s) denotes the number of visits to [0, x0] with Xθ(0) = s and
without hitting α.

As we will show in Section 5.2, if the Lyapunov condition holds for p, the
Hθg(x) is bounded as a function in x in the following way: if g is bounded by a
polynomial of order p, then Hθg(x) is bounded by a polynomial of order p + 1.
Surprisingly enough, as our analysis put forward in Section 5.3 shows, provided
that g is monotone, multiplying the expected cycle cost by the weak derivative of
the kernel reduces the order of the bound and P ′

θHθg is bounded by a constant,
i.e., a polynomial of degree 0. Hence, finiteness of Hθg for any monotone cost
function bounded by a polynomial of degree p implies that HθP

′
θHθg exists.

The precise technical conditions are put forward in the following theorem. The
proof of the theorem will be postponed to Section 6.

Theorem 3.1. Let (H, p + 1) be Banach, for p ≥ 0, and H ⊂ L1(Pθ; Θ). Let

Θ1 ⊂ Θ be a neighborhood of θ. Suppose that

(i) the Lyapunov condition holds for p,

(ii) ξθ is (H, p + 1)-differentiable on Θ1 and for l = 1, . . . , p + 1

sup
θ′∈Θ1

∣

∣

∣

d

dθ

∣

∣

∣

θ=θ′
E

[

(ξθ)
l
] ∣

∣

∣
< ∞,

(iii) for g ∈ (H, p) it holds that

sup
x

sup
θ̂∈Θ1

∣

∣P ′
θHθg(x) − P ′

θ̂
Hθg(x)

∣

∣ < ∞.

Then it holds for any nonnegative and monotone g ∈ (H, p) that

d

dθ

∞
∑

k=1

P k
θ g =

∞
∑

k=1

P k
θ P ′

θ

∞
∑

l=1

P l
θg ∈ (H, 1).

4. Applications

In this section, we apply our results to performance characteristics of the
G/G/1 queue. In the first example, we study the dependence of the overflow
probability of a certain level in a busy cycle with θ a parameter of the service
time distribution. In the second example, we consider the same performance
measure but this time for the M/G/1 queue where θ is the intensity of the
arrival stream. We will base the analysis of the second example on the thinning
model of Poisson processes.
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4.1. Service time dependence on θ

Let Wθ(n) be the waiting time of the nth customer in a G/G/1 queue. Let
{A(n)} be the i.i.d. sequence of interarrival times with finite expected value and
let {Sθ(n)} the i.i.d. sequence of service times, respectively. We assume that
the system is stable, i.e., supθ∈Θ E[Sθ(1)] < E[A(1)]. Set

ξθ(n) , Sθ(n) − A(n)

and
ξθ(n, w) = max(w + ξθ(n), 0),

for n ≥ 1. Lindley’s recursion yields:

Wθ(n + 1) = max( Wθ(n) + ξθ(n) , 0 ) = ξθ(n, Wθ(n)) , n ≥ 1 ,

and Wθ(1) = 0. Let α = {0} denote the event that the waiting times regenerate.
We assume that Sθ(n) follows a Pareto (θ,2) distribution, i.e.,

P(Sθ(n) > x) =
θ2

(θ + x)2
.

Then E[Sθ(n)] = θ, for any n, and the variance of Sθ(n) fails to exist. For U
uniformly distributed on [0, 1], a sample of Sθ(n) can be obtained by the inverse
probability function through θ((1 − U)(−1/2) − 1). From this construction it
follows that Sθ(n) is monotone with respect to θ which in turn implies (S2).

Let fθ,k with

fθ,k(x) = k
θk

(θ + x)k+1

denote the density of the Pareto (θ, k) distribution. Take as D = (L1(Pθ; Θ), 1)
the set of integrable measurable mappings. Then, the Pareto distribution is
D-differentiable and for k = 2 and g ∈ D, differentiating with respect to θ
yields,

d

dθ

∫

g(x)fθ,2(x) dx = 4

∫

g(x)
θ

(θ + x)3
dx − 6

∫

g(x)
θ2

(θ + x)4
dx

=
2

θ

(
∫

g(x)fθ,2(x) dx −

∫

g(x)fθ,3(x) dx

)

, (4.1)

for g ∈ D. Hence, the Pareto (θ,2) distribution has D-derivative

(2/θ, Pareto(θ, 2), Pareto(θ, 3)).

Note that the Pareto (θ,3) distribution has finite first and second moment.
Moreover, the positive part of the D-derivative of the Pareto (θ,2) distribution
is the Pareto (θ,2) distribution itself.
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We now apply Theorem 3.1 to D = (L1(Pθ; Θ), 0) (the set of bounded per-
formance measures). First we show that the Lyapunov condition holds for
p = 0. Note that E[|ξ|] is finite and E[ξ] < 0, since Sθ(n) and A(n) have fi-
nite expected values and supθ∈Θ E[Sθ(1)] < E[A(1)], by assumption. Moreover,
P(A(n) > x) > 0 for any x ≥ 0 implies the third condition in Definition 3.1, see
Lemma 5.4.

Condition (ii) of Theorem 3.1 follows from (4.1). It remains to be shown
that for g ∈ (H, 0) it holds that

sup
x

sup
θ̂∈Θ1

∣

∣P ′
θHθg(x) − P ′

θ̂
Hθg(x)

∣

∣ < ∞.

To see this note that P +
θ = Pθ and that P−

θ is the transition kernel with a
Pareto (θ,3) distributed service time. Hence,

|P ′
θHθg(x)−P ′

θ̂
Hθg|(x)=

2

θ
|PθHθg(x)−Pθ̂Hθg(x)|+

2

θ
|(P−

θ Hθg(x)−P−

θ̂
Hθg(x)|.

A direct application of Lemma 5.6 yields

sup
x

sup
θ̂∈Θ1

|PθHθg(x) − Pθ̂Hθg(x)| ≤ C.

Moreover, applying Lemma 5.6 to the version of the kernel with a Pareto (θ,3)
distributed service time yields

sup
x

sup
θ̂∈Θ1

|P−
θ Hθg(x) − P−

θ̂
Hθg(x)| ≤ Ĉ,

which yields condition (iii) of Theorem 3.1.
Hence, for a suitable neighborhood of θ, Theorem 3.1 applies and we obtain

for any nonnegative and monotone cost function g out of D′:

d

dθ
E

[

τα,θ−1
∑

n=1

g(Wθ(n))
]

=

∞
∑

k=0

P k
θ P ′

θ

∞
∑

l=0

P l
θg,

where Pθ denotes the taboo kernel of the waiting times with taboo set α = {0}.
In order to write the expression on the right-hand side in terms of random
variables, we introduce the following variant of the waiting time sequence. For
j ∈ N, set

W−
θ (j; n + 1) = max( W−

θ (j; n) + Sθ(n) − A(n) , 0 ) , n 6= j ,

with W−
θ (j; 1) = 0, and for j = n, let

W−
θ (j; n + 1) = max( W−

θ (j; n) + S−
θ (n) − A(n) , 0 ) , n ≥ 1 ,
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where S−
θ (n) follows a Pareto (θ,3) distribution. We denote the first time that

{Wθ(n)} and {W−
θ (j; n)} simultaneously hit α by τ±

α,θ(j). Then it holds that

d

dθ
E

[τα,θ−1
∑

n=1

g(Wθ(n)

]

=
2

θ
E

[τα,θ−1
∑

j=1

τ±

α,θ
(j)−1

∑

n=j+1

(

g(Wθ(n)) − g(W−
θ (j; n))

)

]

,

for details see [6]. For example, letting, for some b > 0, gb(x) = 1 for x ≥ b and
zero otherwise, Hθgb is the expected number of overflows of level b in a busy
cycle. Note that, on the one hand, Sθ(n) fails to have a finite second moment
which implies that τα,θ fails to have a finite second moment too. On the other
hand, τα,θ needs to have a finite first moment for the cycle cost to exists. Hence,
the key condition for applying Theorem 3.1 is the existence of the cycle cost.

4.2. Thinning of a Poisson process

In this section we consider the waiting time of the nth customer in a G/G/1
queue in a slightly different setting. Let {A(n)} be an i.i.d. sequence exponential
distributed random variables with rate λ constituting the interarrival times and
let {S(n)} be the i.i.d. sequence of service times, respectively. We introduce an
i.i.d. sequence of {0, 1} random variables {ηθ(n)} with distribution

P(ηθ = 1) = θ = 1 − P(ηθ = 0),

for θ ∈ Θ = [0, 1]. Set

ξθ(n) , ηθ(n)S(n) − A(n) and ξθ(n, w) = max(w + ξθ(n), 0),

for n ≥ 1. Note that for θ ∈ [0, 1] it holds

ξθ(n) ≤ ξ1(n) , S(n) − A(n), (4.2)

for n ≥ 1, and that (S2) holds. Lindley’s recursion yields:

Wθ(n + 1) = max( Wθ(n) + ηθ(n)S(n) − A(n) , 0 ) = ξθ(n, Wθ(n)) , n ≥ 1 ,

and Wθ(1) = 0. We assume that the system is stable for any θ ∈ [0, 1], i.e.,
E[Sθ(1)] < E[A(1)].

The above model has the following interpretation. Customers arrive accord-
ing to a Poisson-λ-process at the queue. An arriving customer is admitted to
the queue with probability 1 − θ. The total number of admitted customers out
of the first n arriving customers after the initial one is

m(n) ,

n
∑

k=1

ηθ(k).
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From this construction it follows that Wθ(n + 1) is the waiting time of the
(m(n) + 1)st customer in a single-server queue with Poisson-λ-arrival stream.
The above thinning of Poisson process yields again a Poisson process but with
intensity λθ. Hence, Wθ(n + 1) can also be interpreted as the waiting time of
the (m(n)+1)st customer in single-server queue with Poisson-λθ-arrival stream.

Let α = {0} denote the event that the waiting times regenerate and take
D = (L1(Pθ ; Θ), p). Provided that S(n) and A(n) have finite pth moments it
holds for any g ∈ D

d

dθ
E[g(ξθ(n))] =

d

dθ

(

E[g(ξθ(n)) | ηθ(n) = 1]θ + E[g(ξθ(n)) | ηθ(n) = 0](1 − θ)
)

=
d

dθ

(

E[g(S(n) − A(n))]θ + E[g(−A(n))](1 − θ)
)

= E[g(S(n) − A(n))] − E[g(−A(n))].

Since the right-hand side of the above equation is independent of θ and finite,
it holds that

sup
θ∈[0,1]

∣

∣

∣

d

dθ
E[g(ξθ(n))]

∣

∣

∣
< ∞.

It remains to be shown that for g ∈ D it holds that

sup
x

sup
θ̂∈Θ1

∣

∣P ′
θHθg(x) − P ′

θ̂
Hθg(x)

∣

∣ < ∞.

To see this note that P ′
θ = (P1 − P0) is independent of θ, which gives for all

x ∈ R+ and all θ, θ̂ ∈ [0, 1] that

∣

∣P ′
θHθg(x) − P ′

θ̂
Hθg(x)

∣

∣ = 0.

From the above it is straightforward to see that Theorem 3.1 applies to any
g ∈ D provided that S(n) and A(n) have finite (p + 1)st moments. Specifically,
for j ∈ N, set

W+
θ (j; n + 1) = max( W +

θ (j; , n) + ηθS(n) − A(n) , 0 ) , n 6= j ,

with W+
θ (j; 1) = 0, and for n = j

W+
θ (j; n + 1) = max( W +

θ (j; , n) + S(n) − A(n) , 0 ) ,

and define the ‘−’ version by

W−
θ (j; n + 1) = max( W−

θ (j; n) + ηθS(n) − A(n) , 0 ) , n ≥ 1 ,

with W−
θ (j; 1) = 0 and for j = n

W−
θ (j; n + 1) = max( W−

θ (j; n) − A(n) , 0 ) .
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We denote the first time that {W +
θ (j; n)} and {W−

θ (j; n)} simultaneously enter
α by τ±

α,θ(j), with α = {0}. Then, it holds that

d

dθ
E

[τα,θ−1
∑

n=1

g(Wθ(n)

]

= E

[τα,θ−1
∑

j=1

τ±

α,θ
(j)−1

∑

n=j+1

(

g(W+
θ (j; n)) − g(W−

θ (j; n))
)

]

,

for any g ∈ Dp, for details see [6].
For example, taking p = 0, it is sufficient that S(n) and A(n) have finite first

moment. Again, our result applies in the case that S(n) has no finite second
moment which in turn implies that τα,θ has no finite second moment. In [8]
finiteness of the second moment of τα,θ is required which is an improvement
on [1] where even the third moment has to be finite. For a first study of this
problem we refer to [4].

For example, letting, for some b > 0, gb(x) = 1 for x ≥ b and zero otherwise,

E
[
∑τα,θ−1

n=1 gb(Wθ(n))
]

is the expected number of overflows of level b in a busy
cycle.

5. Technical analysis

Section 5.1 establishes sufficient conditions for differentiability of the poten-
tial. In Section 5.2, we establish a bound for cost accumulated over a cycle.
This result will be used in Section 5.3 to establish bounds on the effect of a
perturbation of θ on the cost accumulated over a cycle. With the preliminary
results established in this section, the proof of Theorem 3.1 will then be given
in Section 6.

5.1. Differentiating the potential

Let (Pθ : θ ∈ Θ) be a collection of (possibly defective) Markov kernels on
(S, T ) , i.e. Pθ ∈ K(S, T ). For example, Pθ may be obtained through V Pθ for
Pθ ∈ K1(S, T ) and V ∈ T , as explained in the previous section. In this section,
we will compute the derivative of the potential of Pθ:

d

dθ

∞
∑

k=1

P k
θ g ,

where g ∈ D, for appropriately defined set of cost functions D. Note that since
g is independent of θ is holds that dg/dθ = 0, which implies that

d

dθ

∞
∑

k=0

P k
θ g =

d

dθ

∞
∑

k=1

P k
θ g.
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To simplify the notation, we write Hθ for the potential of Pθ even though Pθ

does not necessarily have to be a taboo kernel.
We will show that, under appropriate conditions, Hθg is differentiable with

derivative
HθP

′
θHθg . (5.1)

Starting point is a D-differentiable Markov kernel Pθ. Let Θ0 , (θl, θr) ⊂ Θ
be a neighborhood of θ such that (θl, θr] ⊂ Θ. The following theorem presents
minimal conditions for (5.1) to hold.

Theorem 5.1. For p ≥ 0, let H ⊂ L1(Pθ; Θ). Let Pθ be (H, p+1)-differentiable,

and assume that for θ̂ out of an open neighborhood of θ it holds that

(i) P n
θ̂

is (H, p)-preserving,

(ii) for all g ∈ (H, p) it holds that Hθ̂g ∈ (H, p + 1),

(iii) for all g ∈ (H, p + 1) it holds that P ′
θHθg ∈ (H, 0),

(iv) for all g ∈ (H, p + 1) it holds that (Pθ̂ − Pθ)Hθ̂g ∈ (H, 0).

A sufficient condition for

(Hθg)′ = HθP
′
θHθg ,

or, more explicitly,

d

dθ

∞
∑

k=1

P k
θ g =

∞
∑

k=1

P k
θ P ′

θ

∞
∑

l=1

P l
θg

is given in the following:

(B1) lim
∆→0

1

∆
|Hθ(Pθ+∆ − Pθ)Hθg − ∆HθP

′
θHθg| = 0,

(B2) lim
∆→0

1

∆
|Hθ(Pθ+∆ − Pθ)(Hθ+∆ − Hθ)g| = 0.

Proof. Note that by the conditions put forward in the theorem the expressions
on the right-hand side in the statement of the theorem are well-defined. By
calculation,

1

∆

∣

∣

∣

∞
∑

n=1

P n
θ+∆g −

∞
∑

n=1

P n
θ g − ∆

∞
∑

k=1

P k
θ P ′

θ

∞
∑

l=1

P l
θg

∣

∣

∣
(5.2)

=
1

∆

∣

∣

∣

∞
∑

n=1

n−1
∑

k=0

P k
θ (Pθ+∆ − Pθ)P

n−1−k
θ+∆ g − ∆

∞
∑

k=1

P k
θ P ′

θ

∞
∑

l=1

P l
θg

∣

∣

∣

=
1

∆

∣

∣

∣

∞
∑

k=0

P k
θ (Pθ+∆ − Pθ)

∞
∑

l=0

P l
θ+∆g − ∆

∞
∑

k=1

P k
θ P ′

θ

∞
∑

l=1

P l
θg

∣

∣

∣
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≤
1

∆

∣

∣

∣

∞
∑

k=0

P k
θ (Pθ+∆ − Pθ)

∞
∑

l=0

P l
θg − ∆

∞
∑

k=1

P k
θ P ′

θ

∞
∑

l=1

P l
θg

∣

∣

∣

+
1

∆

∣

∣

∣

∞
∑

k=0

P k
θ (Pθ+∆ − Pθ)

∞
∑

l=0

(P l
θ+∆ − P l

θ)g
∣

∣

∣
.

Hence, we arrive at

1

∆

∣

∣

∣

∞
∑

n=1

P n
θ+∆g −

∞
∑

n=1

P n
θ g − ∆

∞
∑

k=1

P k
θ P ′

θ

∞
∑

l=1

P l
θg

∣

∣

∣

≤
1

∆

∣

∣Hθ(Pθ+∆ − Pθ)Hθg − ∆HθP
′
θ − Hθg

∣

∣

+
1

∆

∣

∣Hθ(Pθ+∆ − Pθ)(Hθ+∆ − Hθ)g
∣

∣ = 0

and by assumptions (B1) and (B2) the last terms tend to 0 and thus the ex-
pression in (5.2) tends to 0. 2

5.2. Lyapunov conditions

Lemma 5.1. Let V ∈ T and g ∈ L1(Pθ ; Θ), with g(s) ≥ 0 for all s. Suppose

that there exists a Lyapunov function gλ ∈ L1(Pθ; Θ) such that

g + (V Pθg
λ) ≤ gλ, (5.3)

and moreover, suppose that for some c

sup
s∈V

gλ(s) ≤ c.

Then, for Nθ(s) the number of visits to the set V provided that Xθ(0) = s, it

holds

E

[

∞
∑

t=1

g(Xθ(t)) | |Xθ(0) = s
]

≤ gλ(s) + cE[Nθ(s)].

Proof. Let τ1 < τ2 < τ3 < . . . be the successive recurrence times to the set
V , and let τ0 = 0. Then rewriting the expected costs with direct cost function
g over the infinite horizon in blocks over the periods between the successive
recurrence times to the set V , we get

E

[

∞
∑

t=1

g(Xθ(t)) | Xθ(0) = s
]

= E

[

∞
∑

k=1

τk−1
∑

t=τk−1

g(Xθ(t)) | Xθ(0) = s
]

. (5.4)

In the following we show that the expected costs over the first cycle are
bounded by gλ. Multiplying the Lyapunov inequality (5.3) from the left by V Pθ

gives

V Pθg + (V P 2
θ gλ) ≤ V Pθg

λ .
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Adding g on both sides of the inequality and using the Lyapunov inequality for
the expression on the right-hand side of the inequality yields

g + V Pθg + V P 2
θ gλ ≤ gλ .

Repeating this argument n-times gives

n
∑

l=0

V P l
θg + V P n+1

θ gλ ≤ gλ .

Since gλ ≥ g ≥ 0, we find by taking the limit as n tends to infinity that

∞
∑

l=0

V P l
θg ≤ gλ. (5.5)

Note that the l-th term in this sum is operator notation for the expected costs
at time l on the event that the first recurrence time τ1 > l, i.e.

(V P l
θ g)(s) = E[g(Xθ(l))1(τ1 > l) | Xθ(0) = s],

where 1(τ1 > l) is the indicator function of the event that the first recurrence
time is larger than l. Hence,

∞
∑

l=0

(V P l
θ g)(s) =

∞
∑

l=0

E[g(Xθ(l))1(τ1 > l) | Xθ(0) = s]

= E

[

τ1−1
∑

t=1

g(Xθ(t)) | Xθ(0) = s
]

≤ gλ(s), (5.6)

where the last inequality follows from (5.5).
In a similar way, an upper bound for the expected costs over the kth cycle

can be obtained. Indeed, by using the Markov property we find with Nθ(s) the
number of recurrences to the set V (note that we will allow that Nθ(s) is equal
to infinity with positive probability, in this case the assertion is obvious true),
for k = 2, 3, . . .

E

[

τk−1
∑

t=τk−1

g(Xθ(t)) | Nθ(s) > k − 1, Xθ(τk−1) = s
]

=

∞
∑

l=0

(V P l
θ g)(s) ≤ gλ(s),

where the inequality follows from (5.5). Since τk−1 is a recurrence time to the
set V , we have Xθ(τk−1) ∈ V and, moreover, from the assumption

gλ(Xθ(τk−1)) ≤ c
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we obtain for any u ∈ V :

E

[

τk−1
∑

t=τk−1

g(Xθ(t)) | Nθ(s) > k − 1, Xθ(τk−1) = u
]

< c.

By the strong Markov property this yields

E

[

τk−1
∑

t=τk−1

g(Xθ(t)) | Nθ(s) >k−1, Xθ(τk−1) = u , Xθ(0) = s
]

< c , for all u ∈ V.

The above bound holds uniformly on V and since Xθ(τk−1) ∈ V , we can disre-
gard the condition Xθ(τk−1) = u in the above bound which yields

E

[

τk−1
∑

t=τk−1

g(Xθ(t)) | Nθ(s) > k − 1, Xθ(0) = s
]

< c

and we finally arrive at

E

[

τk−1
∑

t=τk−1

g(Xθ(t)) | Xθ(0) = s
]

≤ cP( Nθ(s) > k − 1 | Xθ(0) = s ). (5.7)

We now combine the above results in order to establish an upper bound for
the overall expected costs as given on the right-hand side of (5.4):

E

[

∞
∑

t=1

g(Xθ(t)) | Xθ(0) = s
]

= E

[

∞
∑

k=1

τk−1
∑

t=τk−1

g(Xθ(t)) | Xθ(0) = s
]

(5.6)

≤ gλ(s) + E

[

∞
∑

k=2

τk−1
∑

t=τk−1

g(Xθ(t)) | Xθ(0) = s
]

(5.7)

≤ gλ(s) + c

∞
∑

k=2

P( Nθ(s) > k − 1 | Xθ(0) = s)

≤ gλ(s) + cE[ Nθ(s) |Xθ(0) = s ],

which completes the proof. 2

Recall that we are interested in the cumulative cost until the Markov chains
hits a predefined set α. We will apply the above lemma to the particular defec-
tive Markov transition kernel αPθ.

Lemma 5.2. Let α ⊂ V and for Xθ(0) = s denote by Nα,θ(s) the number of

visits to V without hitting α. Suppose that for x /∈ V

g + (V Pθg
1) ≤ g1, (5.8)
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and

c , sup
x∈V

(g(x) + (V Pθg
1(x)) < ∞. (5.9)

Then

gλ(x) ,

{

g1(x) for x /∈ V,

c for x ∈ V,

satisfies the conditions in Lemma 5.1 and it holds that

E

[

τα−1
∑

t=1

g(Xθ(t)) | Xθ(0) = s
]

≤ gλ(s) + cE[Nα,θ(s)] , s ∈ S.

Proof. The proof follows from Lemma 5.1 by replacing Pθ with αPθ. 2

Remark 5.1. For verifying inequality (5.3) for gλ, it is sufficient to check it for
g1 for x /∈ V and to verify (5.9). In our applications we will verify (5.8) and
(5.9). Note that if g1 is bounded in absolute value by a polynomial of degree p
then so is gλ.

5.3. Bounds on the effect of a finite perturbation

The Lyapunov condition allows to bound Hθg(x) as a function in x. The
precise statement is given in the following lemma.

Lemma 5.3. Suppose that the Lyapunov condition holds for p, with p ≥ 0.

Let H ⊂ L1(Pθ; Θ), then for each g ∈ (H, p) a function f ∈ (H, p + 1) exists

such that supθ∈Θ0
Hθg ≤ f.

Proof. Suppose that g(x) ≤
∑p

k=0 ckxk, then

Hθg ≤

p
∑

k=0

ckHθgk

with gk(x) = xk. Hence, it suffices to show the assertion for gk. We will show it
for g(x) = xp for x ≥ 0, the proof for the other terms goes similarly. We try to
satisfy the condition of Lemma 5.2 with the function g1(x) = cxp+1 and so we
try to find V ⊂ [0,∞) such that

xp +

∫

y/∈V

g1(y)P(ξθ(x) ∈ dy) ≤ cxp+1.

Set ξ̂θ(x) , max(ξθ,−x), which gives ξ̂θ(x) + x = ξθ(x). By computation,

xp +

∫

y/∈V

c yp+1
P(ξθ(x) ∈ dy) ≤ xp +

∫

y≥0

c yp+1
P(ξθ(x) ∈ dy)
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≤ xp +

∫

y≥0

c(x + y)p+1
P(ξ̂θ(x) ∈ dy)

≤ xp + c

p+1
∑

k=0

(p+1
k )xp+1−k

E
[

ξ̂θ(x)k
]

.

To simplify the notation, set

h(x) ,

p+1
∑

k=2

(p+1
k )xp+1−k

∣

∣E
[

ξ̂θ(x)k
]∣

∣.

With this notation, we obtain

xp +

∫

y/∈V

c yp+1
P(ξθ(x) ∈ dy)

≤ xp + c
(

xp+1 + (p + 1)xp
E
[

ξ̂θ(x)
]

+ h(x)
)

. (5.10)

Recall that ξ̂θ(x) = max(ξθ,−x), which implies ξ̂θ(x) ≈ ξθ for x large. This
motivates the following line of argument. Choose ε > 0 small enough such that

E[ξ] + ε , γ < 0

and x′
0 large enough such that E[|ξ| 1ξ<−x′

0
] < ε. Then it holds for all x ≥ x′

0

that

∀θ : E[ξ̂θ(x)] = E[max(ξθ ,−x)]

≤ E[max(ξ,−x)]

≤ γ .

Inserting this into (5.10) yields

xp +

∫

y/∈V

c yp+1
P(ξθ(x) ∈ dy) ≤ xp + c

(

xp+1 + (p + 1)xpγ + h(x)
)

= cxp+1 + (1 + c(p + 1)γ)xp + ch(x). (5.11)

We now take c > 0 such that

1 + c(p + 1)γ < 0

and x0 ≥ x′
0 so large that for x ≥ x0

(1 + c(p + 1)γ)xp + ch(x) ≤ 0. (5.12)
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Inserting (5.12) into (5.11) yields

xp +

∫

y/∈V

c yp+1
P(ξθ(x) ∈ dy) ≤ cxp+1.

This establishes for V = {x |x ≤ x0} the inequality

∀θ : xp +

∫

y/∈V

g1(y)P(ξθ(x) ∈ dy) ≤ cxp+1.

By Lemma 5.2 we find a Lyapunov function of the type

gλ(x) =

{

cxp+1 for x 6∈ V,

c0 for x ∈ V,

where c0 is defined as in (5.9). Hence, by Lemma 5.2 and our assumption that
sups∈S, θ∈Θ Eθ[Nα(x0, s)] is finite, it follows that supθ∈Θ Hθg is bounded by a
polynomial of degree p + 1. 2

The following lemma provides a sufficient condition for supθ∈Θ Eθ[Nα(x0, s)]
to be finite for any s ∈ S.

Lemma 5.4. Let α = {0}. Suppose that for each x0 > 0

P(ξ ≤ −x0) , p(x0) > 0.

Then sups∈S, θ∈Θ Eθ[Nα(x0, s)] is finite.

Proof. For x0 > 0 set V = {x | x ≥ x0}. Note that for each x0 > 0 there is
p(x0) > 0 such that

inf
x∈V

inf
θ∈Θ

P(Xθ(t + 1) = 0 | Xθ(t) = x, Xθ = s)

= inf
x∈V

inf
θ∈Θ

P(ξθ ≤ −x)

≥ P(ξ ≤ −x0) = p(x0) > 0,

for any s ∈ S. In words, the probability that the process jumps from a state in
V immediately to α = {0} is at least p(x0). A simple geometrical trial argument
(with probability of success p(x0)) then shows that

sup
s∈S, θ∈Θ

Eθ[Nα(x0, s)] ≤
p(x0)

1 − p(x0)
, s ∈ S,

which completes the proof. 2
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Lemma 5.5. Let α = {0}. Let g ∈ L1(Pθ; Θ) ∩M and assume that

(i) Hθg is bounded by a function f in a neighborhood Θ1 of θ:

∀θ ∈ Θ1 : hθ(x) , Hθg(x) ≤ f(x);

(ii) (S2) holds.

Let θ, θ′ ∈ Θ1, then for θ ≤ θ′

|(Pθ′hθ)(x) − (Pθhθ)(x)| ≤ E
[

f
(

ξθ′ − ξθ

)]

(5.13)

and for θ ≥ θ′

|(Pθ′hθ)(x) − (Pθhθ)(x)| ≤ E
[

f
(

ξθ − ξθ′

)]

; (5.14)

moreover,

|hθ′(x) − hθ(x)| ≤ E
[∣

∣f
(

ξθ′ − ξθ

)∣

∣

]

∞
∑

n=0

P n
θ e. (5.15)

Proof. Since g is monotone, it follows from Lemma 2.1 by induction that

hθ =
∞
∑

k=0

P k
θ g ∈ M.

The coupling of two processes with the same transition operator but different
starting states, say x and x + y with y ≥ 0 gives that

hθ(x + y) ≤ hθ(x) + hθ(y),

since before absorbing in α = {0} the state of the process with starting state
x + y is always larger than that with starting state x and at absorption it is at
most y. With the monotonicity of hθ(x) in x we have the inequalities

hθ(x) ≤ hθ(x + y) ≤ hθ(x) + hθ(y),

and consequently
hθ(x + y) − hθ(x) ≤ hθ(y).

Condition (S2) implies ξθ′(x) − ξθ(x) ≥ 0 a.s. Substituting x + ξθ(x) for x and
(ξθ′(x) − ξθ(x)) for y in the above inequality yields

hθ(x + ξθ′(x)) − hθ(x + ξθ(x)) ≤ hθ(ξθ′(x) − ξθ(x))

≤ hθ(ξθ′ − ξθ), (5.16)
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where the last inequality follows from Lemma 2.2 (i). For θ ≤ θ′ we have
ξθ(x) ≤st ξθ′(x) and, since hθ ∈ M, we obtain

|Pθ′hθ − Pθhθ| (x) = |E [hθ(x + ξθ′(x)) − hθ(x + ξθ(x))]|

= E
[

hθ(x + ξθ′(x)) − hθ(x + ξθ(x))
]

≤ E
[

hθ(ξθ′ − ξθ)
]

,

where the last inequality follows from (5.16). Since hθ(x) ≤ f(x), we obtain

|Pθ′hθ − Pθhθ| (x) ≤ E
[

f(ξθ′ − ξθ)
]

. (5.17)

The proof for θ ≥ θ′ is similar.
The identity

P n
θ′ − P n

θ =

n−1
∑

k=0

P k
θ′(Pθ′ − Pθ)P

n−k−1
θ

can be proved by induction. This implies

Hθ′g − Hθg =

∞
∑

n=0

(P n
θ′ − P n

θ )g

=

∞
∑

n=0

n−1
∑

k=0

P k
θ′(Pθ′ − Pθ)P

n−k−1
θ g

=
∞
∑

n=0

P n
θ′(Pθ′ − Pθ)

∞
∑

k=0

P k
θ g

=

∞
∑

n=0

P n
θ′(Pθ′ − Pθ)hθ.

Hence, together with (5.17) we find,

|Hθ′g − Hθg| ≤ E
[

|f(ξθ′ − ξθ)|
]

∞
∑

n=0

P n
θ′e . (5.18)

Reversing the roles of θ′ and θ proves the last assertion. 2

Lemma 5.6. Suppose that the Lyapunov condition holds for p, with p ≥ 0.

Let Θ1 ⊂ Θ such that, for l = 0, . . . , p + 1,

sup
θ′∈Θ1

∣

∣

∣

d

dθ

∣

∣

∣

θ=θ′
E
[

(ξθ)
l
]

∣

∣

∣
, al < ∞.

Then for g ∈ (H, p) ∩M it holds for all θ, θ′ ∈ Θ1

|(Pθ′Hθg)(x) − (PθHθg)(x)| ≤ c0 + |θ′ − θ|C1, (5.19)
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where

C1 ,

p
∑

k=1

ckak.

Proof. Let θ′ > θ. By Lemma 5.3 together with Lemma 5.5, it holds that

|(Pθ′Hθg)(x) − (PθHθg)(x)| ≤ E[f(ξθ′ − ξθ)]

with f(x) =
∑p+1

k=0 ckxk. By calculation,

E
[

|f(ξθ′ − ξθ)|
]

≤ c0 +

p+1
∑

k=1

ckE
[

|ξθ′ − ξθ|
k
]

.

For θ′ > θ, it holds

E
[

|ξθ′ − ξθ|
k
]

= E
[

(ξθ′ − ξθ)
k
]

≤ E
[

ξk
θ′

]

− E
[

ξk
θ

]

,

where we use the fact that ξθ′ ≥ ξθ a.s., and, for θ′ < θ, we obtain

E
[

|ξθ′ − ξθ|
k
]

= E
[

(ξθ − ξθ′)k
]

≤ E
[

ξk
θ

]

− E
[

ξk
θ′

]

,

where we use the fact that ξθ ≥ ξθ′ a.s. Combining the above inequalities we
arrive at

E
[

|ξθ′ − ξθ|
k
]

≤
∣

∣E
[

ξk
θ′

]

− E
[

ξk
θ

]∣

∣ ,

and using the fact that ak is a Lipschitz-constant for E[ξk
θ ] proves the claim for

θ′ > θ. The proof for the case θ′ < θ follows from the same reasoning. 2

Lemma 5.7. Let the Lyapunov condition be satisfied for p, with p ≥ 0, and

let Θ1 ⊂ Θ be a neighborhood of θ. If

(i) ξθ is (H, p + 1)-differentiable on Θ1,

(ii) for g ∈ (H, p) it holds that

sup
x

sup
θ̂∈Θ1

∣

∣P ′
θHθg(x) − P ′

θ̂
Hθg(x)

∣

∣ < ∞,

then it holds for g ∈ (H, p) ∩M and θ′, θ ∈ Θ1 that

|(Pθ′ − Pθ)Hθg(x)| ≤ |θ′ − θ|f0(x)

for f1 ∈ (H, 0), and

|(Hθ′g(x) − Hθg(x)| ≤ |θ′ − θ|f1(x)

for f1 ∈ (H, 1).
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Proof. Let Hθg = hθ. We have assumed that g ∈ (H, p) and Lemma 5.3 yields
hθ ∈ (H, p + 1). The second part of the lemma is a direct consequence of the
first part. To see this, note that

hθ′ − hθ =

∞
∑

n=0

P n
θ′(Pθ′ − Pθ)hθ,

see the proof of Lemma 5.5 for details. The first part of the lemma implies

|hθ′ − hθ| ≤ |θ′ − θ|
∞
∑

n=0

P n
θ′f0 = |θ′ − θ|Hθ′f0,

for f0 ∈ (H, 0). By Lemma 5.3, Hθ′f0 ∈ (H, 1), which concludes the proof of
the second part of the lemma.

We now turn to the proof of the first part of the lemma. By (i), Pθ is
(H, p+1)-differentiable, see Lemma 2.4. The Mean Value Theorem implies that

(Pθ′ − Pθ)hθ(x) = (θ′ − θ)P ′
θ′+δ(x)hθ(x), (5.20)

for |δ(x)| ≤ |θ′ − θ| for |θ′ − θ| sufficiently small.
Suppose that

sup
x

|P ′
θhθ(x)| = ∞.

Then, a sequence (xk, ∆k) exists such that

lim
k→∞

∆k = 0 and lim
k→∞

∆k|P
′
θhθ(xk)| = ∞. (5.21)

Inserting this sequence into (5.20), we obtain

(Pθ+∆k
− Pθ)hθ(xk) = ∆kP ′

θ+δ(xk)hθ(xk),

= ∆kP ′
θhθ(xk) + ∆k(P ′

θ+δ(xk)hθ(xk) − P ′
θhθ(xk)).

Note that for k sufficiently large it holds that

|P ′
θ+δ(xk)hθ(xk) − P ′

θhθ(xk)| ≤ sup
x

sup
θ′∈Θ1

|P ′
θ′hθ(x) − P ′

θhθ(x)|.

Condition (ii) yields that

sup
x

sup
θ′∈Θ1

|P ′
θ′hθ(x) − P ′

θhθ(x)| < ∞,

which implies
lim

k→∞
∆k(P ′

θ+δ(xk)hθ(xk) − P ′
θhθ(xk)) = 0
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and we obtain from (5.21) that

lim sup
k→∞

(Pθ+∆ − Pθ)hθ(xk) ∈ {∞,−∞},

which contradicts equation (5.19) in Lemma 5.6. Hence,

sup
x

|P ′
θhθ(x)| < ∞,

and from condition (v) it thus follows that

sup
x

|P ′
θ̂
hθ(x)| < ∞

for any θ̂ such that |θ− θ̂| ≤ δ for δ sufficiently small. We have thus shown that

C
def
= sup

{θ̂:|θ−θ̂|≤δ}

sup
x

|P ′
θ̂
hθ(x)| < ∞.

Applying the Mean Value Theorem now gives

|(Pθ′ − Pθ)hθ(x)| ≤ |θ′ − θ|C

for |θ′ − θ| ≤ δ, which proves the claim. 2

6. Proof of Theorem 3.1

For the proof we will apply Theorem 5.1. To this end note that under
the assumptions of Theorem 3.1, Pθ is (H, p + 1)-differentiable according to
Lemma 2.4 and condition (i) in Theorem 5.1 follows from Lemma 2.3, condition
(ii) in Theorem 5.1 follows from Lemma 5.3, and conditions (ii) and (iii) in
Theorem 5.1 follow from Lemma 5.7. For the proof of Theorem 3.1 it therefore
remains to show that conditions (B1) and (B2) hold.

We now show (B1) for g ∈ (H, p) ∩ M. Let hθ , Hθg. By Lemma 5.7,
f0 ∈ (H, 0) exists such that

sup
{∆:θ+∆∈Θ1}

1

|∆|
|(Pθ+∆ − Pθ)hθ(x)| ≤ f0(x). (6.1)

We have already established that hθ ∈ (H, p + 1) and that Pθ is (H, p + 1)-
differentiable, which yields

lim
∆→0

1

∆
(Pθ+∆ − Pθ)hθ = P ′

θhθ.

Applying the dominated convergence theorem then yields

lim
∆→0

1

∆
Hθ(Pθ+∆ − Pθ)hθ = HθP

′
θhθ, (6.2)
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which establishes (B1). Moreover, by (6.1) together with (6.2) it follows from
Lemma 5.3 that HθP

′
θhθ ∈ (H, 1).

We now turn to condition (B2) for g ∈ (H, p) ∩M. By Lemma 5.7,

|hθ+∆ − hθ| ≤ |∆|f1,

for ∆ sufficiently small and f1 ∈ (H, 1). Recall that the positive part (of the
Hahn –Jordan decomposition) of a signed measure µ is denoted by [µ]+ and the
negative part by [µ]−. Note that

∣

∣

∣

1

∆
(Pθ+∆ − Pθ)(hθ+∆ − hθ)

∣

∣

∣

≤
1

|∆|

[

(Pθ+∆ − Pθ)
]+

|hθ+∆ − hθ| +
1

|∆|

[

(Pθ+∆ − Pθ)
]−

|hθ+∆ − hθ|

≤ [(Pθ+∆ − Pθ)]
+

f1 + [(Pθ+∆ − Pθ)]
−

f1.

It holds that

[(Pθ+∆ − Pθ)]
± f1 ≤ ||Pθ+∆ − Pθ||f1

f1 ≤ |∆|Mf1,

for some finite number M , see (2.4) together with (2.5). Hence,

∣

∣

∣

1

∆
(Pθ+∆ − Pθ)(hθ+∆ − hθ)

∣

∣

∣
≤ 2|∆|M f1

and

lim
∆→0

∣

∣

∣

1

∆
(Pθ+∆ − Pθ)(hθ+∆ − hθ)

∣

∣

∣
= 0. (6.3)

Note that

∣

∣

∣

1

∆
(Pθ+∆ − Pθ)(hθ+∆ − hθ)

∣

∣

∣
≤

1

|∆|
|(Pθ+∆ − Pθ)hθ+∆| +

1

|∆|
|(Pθ+∆ − Pθ)hθ|.

For |∆| sufficiently small, Lemma 5.7 yields

∣

∣

∣

1

∆
(Pθ+∆ − Pθ)(hθ+∆ − hθ)

∣

∣

∣
≤ f̃0,

for f̃0 ∈ (H, 0), which implies

Hθ

(

sup
|∆|

1

∆
(Pθ+∆ − Pθ)(hθ+∆ − hθ)

)

< ∞. (6.4)

By (6.3) together with (6.4), condition (B2) follows from the Dominated Con-
vergence Theorem, which completes the proof.
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