
OPERATIONS RESEARCH
Vol. 58, No. 4, Part 1 of 2, July–August 2010, pp. 918–932
issn 0030-364X �eissn 1526-5463 �10 �5804 �0918

informs ®

doi 10.1287/opre.1090.0786
©2010 INFORMS

An Approximation Approach for the Deviation Matrix
of Continuous-Time Markov Processes with

Application to Markov Decision Theory

Nicole Leder
Department of Mathematics, University of Hamburg, Hamburg 20146, Germany, nicole.leder@studium.uni-hamburg.de

Bernd Heidergott
Department of Econometrics and Operations Research, and Tinbergen Institute, Vrije Universiteit Amsterdam,

Amsterdam 1081 HV, The Netherlands, bheidergott@feweb.vu.nl

Arie Hordijk
Mathematical Institute, Leiden University, Leiden 2300 RA, The Netherlands, hordijk@math.leidenuniv.nl

We present an update formula that allows the expression of the deviation matrix of a continuous-time Markov process with
denumerable state space having generator matrix Q∗ through a continuous-time Markov process with generator matrix Q.
We show that under suitable stability conditions the algorithm converges at a geometric rate. By applying the concept to
three different examples, namely, the M/M/1 queue with vacations, the M/G/1 queue, and a tandem network, we illustrate
the broad applicability of our approach. For a problem in admission control, we apply our approximation algorithm to
Markov decision theory for computing the optimal control policy. Numerical examples are presented to highlight the
efficiency of the proposed algorithm.

Subject classifications : Markov decision processes; deviation matrix; algorithm; probability: Markov processes; queues:
algorithms.

Area of review : Stochastic Models.
History : Received September 2008; revision received July 2009; accepted September 2009. Published online in Articles

in Advance February 26, 2010.

1. Introduction
Continuous-time Markov processes are a common tool for
analyzing complex systems such as telecommunication net-
works, computer systems, or call centers. Typical models
are the M/Ph/1 queue, where Ph indicates a phase-type
distribution used for approximating a general service time
distribution, or a ·/M/1 tandem network. Whereas the sta-
tionary distribution of these systems is known, the deviation
matrix that yields the so-called value function, an important
tool in Markov decision theory, is only known for some
special queues that are in essence variations of the M/M/c/L
queue; see Koole (1998). In fact, the deviation matrix can
only be computed explicitly for Markovian queues with a
one-dimensional state space. Unfortunately, many impor-
tant systems have a multidimensional state space, and the
deviation matrix defies computation.
In this paper we provide an update formula that allows us

to approximately compute the deviation matrix of models
with a two-dimensional state space, and we illustrate our
approach by the M/M/1 queue with vacations, the M/Ph/1
queue, and a tandem network. Starting point of our three
examples is the M/M/1 queue, for which the deviation
matrix can be obtained in a closed form, see Koole (1998).

In order to approximate the deviation matrix of the, say,
M/Ph/1 queue, we initially enlarge the state space of the
M/M/1 queue by transient states, so that the M/M/1 and
the M/Ph/1 queue are defined on the same two-dimensional
state space. As we show in this paper, the deviation matrix
of an M/M/1 queue with additional transient states can still
be computed explicitly. By inserting this adjusted deviation
matrix into our update formula, we approximately compute
the unknown deviation matrix of the M/Ph/1 queue.
Series expansions for Markov processes, such as our

update formula, go back to Schweitzer (1968), where
discrete-time, finite-state Markov chains have been studied;
see also Heidergott et al. (2007). Our update formula is
derived for continuous-time Markov processes on denumer-
able state space, without assuming uniformizability. The
key contribution of our paper is that we can deal with two-
dimensional infinite state spaces, which is a breakthrough
in the computation of the deviation matrix for processes
like the M/Ph/1 queue, for which it had not been possi-
ble to give an explicit representation. We complement our
concept by the approximation approach for general dis-
tributions via phase-type distributions in order to extend
our algorithm to the M/G/1 queue. To illustrate the rele-
vance of the update formula for problems in control, we
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will embed our approach into Markov decision processes
(MDP). More specifically, we compute the average optimal
admission policy for a call center in which each admitted
customer raises a certain reward while the number of cus-
tomers in the system causes certain holding cost.
The paper is organized as follows. In §2 basic properties

of the deviation matrix are presented and v-norm ergodicity
is introduced. In §3 the update formula for the deviation
matrix is established and afterwards applied to three differ-
ent examples in §4. The application to admission control
is provided in §5. Eventually, we identify topics of fur-
ther research in §6. The more-technical results and deriva-
tions of the respective deviation matrices are provided in an
online companion available at http://or.journal.informs.org/.

2. Preliminaries

2.1. Basic Properties of the Deviation Matrix

Throughout this paper we will denote the infinitesimal gen-
erator of a continuous-time Markov process � that exists
on a denumerable state space S by Q and its stationary dis-
tribution by �. The associated transition probability matrix
with elements p�i� j� t� representing the probability to go
from state i to j within the time t will be denoted by P�t�.
The ergodic projector, i.e., a matrix with all rows equal to
�, will be represented by �. Furthermore, we elementwise
define by

d�i� j� =
∫ �

0
�p�i� j� t� − ��j��dt� i� j ∈ S� (1)

the deviation matrix D of � that is said to exist whenever
all integrals in (1) are finite. According to Coolen-Schrijner
and van Doorn (2002) and Heidergott et al. (2009), these
matrices satisfy the properties summarized in the following
lemma.

Lemma 1. If it exists, the ergodic matrix � of a
continuous-time Markov process � with infinitesimal gen-
erator Q satisfies
(i) A� = 0 for all conservative matrices A ∈ �S×S , and

even �Q = 0,
(ii) B� = � for all stochastic matrices B ∈�S×S .
If the corresponding deviation matrix exists, it holds that
(iii) �D = 0,
(iv) −QD = −DQ = I − �,
(v) D1= 0,

where I denotes the S×S identity matrix and 1 the column-
vector with all S entries equal to 1.

In this paper we focus on continuous-time processes. It is,
however, worth noting that our analysis carries over to the
so-called sampled, or subordinate, discrete-time chain by
using uniformization theory, see Kijima (1997) for details.
Moreover, any discrete-time Markov chain �� with tran-
sition matrix �P can be translated into a continuous-time
process on the same state space S with generator matrix

Q = �P − I , with I the identity matrix of appropriate size.
Furthermore it holds for the associated ergodic projectors
�̃ = � and the deviation matrices D̃ = D. Hence, all for-
mulas presented in this paper in terms of Q, D, and � can
be translated to a discrete-time chain.

2.2. Geometric Ergodicity

The main tool for our analysis is the weighted supremum
norm, also called v-norm, denoted by � · �v, where v is
some vector with elements vi � 1 for all i ∈ S, and for any
w ∈�S

�w�v

def= sup
i∈S

�w�i��
v�i�

�

For a matrix A ∈�S×S the v-norm is given by

�A�v

def= sup
i��w�v�1

∑S
j=1 �A�i� j�w�j��

v�i�
�

which implies

max
j∈S

�A�i� j��� �A�vv�i�� i ∈ S�

Note that v-norm convergence to 0 implies elementwise
convergence to 0. With the help of the above concepts,
v-geometric ergodicity (also called v-normed ergodicity)
of the transition matrix P�t� of a continuous-time Markov
process � can be introduced as follows.

Definition 1. The Markov process � is v-geometric
ergodic if c < � and 	 < 1 exist such that

�P�t� − ��v � c	t�

for all t � 0.

Note that

�D�v �

∫ �

0
�P�t� − ��v dt � c

∫ �

0
	t dt = − c

ln�	�

and it is straightforward to check that geometric v-norm
ergodicity implies existence of �D�v by assuring the finite-
ness of its elements. Unfortunately, geometric v-norm
ergodicity is almost impossible to check in a direct way.
One of the reasons is that P�t� is in general not known in
explicit form. Therefore, we use a different representation
for the deviation matrix, which follows directly from the
properties of � and D presented in Lemma 1

D = �� − Q�−1 − �� (2)

3. Series Representation of
Denumerable Markov Processes

In this section we will present the basic formula of our
concept. In §3.1 we derive the series expansion of the devi-
ation matrix, and in §3.2 we present the associated suffi-
cient condition assuring its convergence. Furthermore, in
§3.3 we present the algorithm that allows establishment of
a precision 
dev up to which the deviation matrix D∗ shall
be approximated.
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3.1. The Update Formula

Let Q and Q∗ be the infinitesimal generators of two differ-
ent continuous-time Markov processes. Denote by �, �∗,
D, and D∗ the respective ergodic matrices and deviation
matrices. We know from Lemma 1(iv) that it holds

−QD = I − ��

Adding Q∗D on both sides of the above equation gives us

�Q∗ − Q�D = Q∗D + I − �� (3)

which we multiply by D∗ to get

D∗�Q∗ − Q�D = D∗Q∗︸ ︷︷ ︸
=�∗−I

D + D∗ − D∗�︸︷︷︸
=0

�

By solving this equation for D∗, we obtain

D∗ = �I − �∗�D + D∗�Q∗ − Q�D� (4)

Inserting (4) repeatedly into its right-hand side yields

D∗ =�I −�∗�D
n∑

k=0

��Q∗−Q�D�k +D∗��Q∗−Q�D�n+1� (5)

which we separate into the series approximation of
degree n

H�n� = �I − �∗�D
n∑

k=0

��Q∗ − Q�D�k (6)

and the corresponding remainder term

R�n� = D∗��Q∗ − Q�D�n+1�

Equation (5) provides a useful tool to approximately com-
pute the deviation matrix of a process �∗ whenever the
remainder term tends to zero for n → �. Sufficient condi-
tions for the convergence of the remainder term, and there-
fore the convergence of the series approximation, will be
provided in the following section. We will show later on
that by finding a finite N and an associated constant �N < 1
such that it holds

���Q∗ − Q�D�N �v < �N �

we assure that �D∗−H�n��v tends to zero at an exponential
rate. Provided that �f �v < �, it holds that

��D∗f �i − �H�n�f �i�� �D∗ − H�n��v�f �v inf
i∈S

v�i�� (7)

see Heidergott et al. (2009) for details. In applications,
inf i∈S v�i� is typically equal to 1, and therefore (7)
reduces to

��D∗f �i − �H�n�f �i�� �D∗ − H�n��v�f �v�

From (7) we obtain that the convergence of the update for-
mula (6) directly implies that H�n�f tends to D∗f exponen-
tially fast for any finite-normed f . Now suppose that f is a
cost function bounded for some appropriate v. Then, find-
ing an approximation for D∗ yields an approximation of the
so-called value function D∗f , which is a basic tool in MDPs.

Remark 1. Common synonyms of the value function are
the bias (see, e.g., Feinberg and Shwartz 2002, Puterman
1994), the performance potential (see e.g., Cao 2007,
Zhang et al. 2008), or the relative cost (see e.g., Bertsekas
2005). According to Feinberg and Shwartz (2002) and
Koole (1998), the ith entry of the value function can be
interpreted as the total difference in costs between start-
ing in state i and the stationary version. This interpretation
corresponds to the definition of the deviation matrix given
by (1), where it can easily be seen that by multiplying
(1) with a cost vector f , one compares the costs arising
over the entire time frame caused by starting in a certain
state i given by

∑
j∈S p�i� j� t�f �j� with the stationary cost∑

j∈S ��j�f �j�.

3.2. Convergence of the Series Expansion

To ensure the efficiency of our approximation for the devi-
ation matrix, we demand geometric-fast convergence of the
remainder R�n� to zero as n tends to �. As we will show in
a subsequent lemma, geometric-fast convergence of R�n�
to zero is implied by the following condition.
[C] There exists a finite number N such that we can find

�N ∈ �0�1�, which satisfies

���Q∗ − Q�D�N �v < �N �

and we set

cv
�N

def= 1
1− �N

∥∥∥∥
N−1∑
k=0

��Q∗ − Q�D�k

∥∥∥∥
v

�

The factor cv
�N

in condition [C] allows establishment of an
upper bound for the remainder term that is independent of
D∗. Denote by T �k� = �I − �∗�D��Q∗ − Q�D�k the kth
element of the series in (6). Then we can summarize the
main conditions in the following lemma.

Lemma 2. Under [C] it holds that for any v � 1:
(i) �R�k − 1��v � cv

�N
�T �k��v for any k.

(ii) limk→� H�k� = �I −�∗�D
∑�

n=0��Q
∗ −Q�D�n = D∗.

(iii) � ∈� and � < 1 exist such that ���Q∗ −Q�D�k�v <
��k for all k.
(iv) For all k it holds that �T �k��v < ��k��I −�∗�D�v,

with � and � as in (iii).

These results have been introduced in Heidergott et al.
(2009) for finite-state discrete-time Markov chains and can
be extended to continuous-time Markov processes on denu-
merable state space using the same line of arguments.

3.3. The Algorithm

With Lemma 2 we arrive at the following numerical
approach. First we search for N such that 1 > �N

def=
���Q∗−Q�DN �v. In words, we establish the minimal power
of ��Q∗ − Q�D� that yields geometrical convergence of
H�n�. Then, we choose a precision 
dev up to which we
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want to approximate D∗. The algorithm computes the ele-
ments T �k� of H�k� until our upper bound for R�k�, given
by cv

�N
���Q∗ − Q�D�k+1�v, drops below 
dev. We can now

describe an algorithm that yields an approximation for D∗

with 
dev precision.

Algorithm 1
Choose precision 
dev > 0. Set k = 1 so that T �1� =
�I − �∗�D�Q∗ − Q�D and H�0� = �I − �∗�D.

Step 1: Find N such that ���Q∗ − Q�D�N �v < 1. Set
�N = ���Q∗ − Q�D�N �v and compute

cv
�N

= 1
1− �N

∥∥∥∥
N−1∑
k=0

��Q∗ − Q�D�k

∥∥∥∥
v

�

Step 2: If cv
�N

�T �k��v < 
dev, the algorithm terminates
and H�k −1� yields the desired approximation. Otherwise,
go to Step 3.
Step 3: Set H�k� = H�k−1�+T �k�. Set k 
= k+1 and

T �k� = T �k − 1��Q∗ − Q�D. Go to Step 2.

If condition [C] holds, then the above algorithm termi-
nates geometrically fast; see Lemma 2. In case S is finite,
condition [C] and (ii) in Lemma 2 are equivalent, which
allows us to empirically check whether condition [C] is sat-
isfied. Moreover, for finite S all norms are equivalent with
respect to norm ergodicity and, without loss of generality,
we take v ≡ 1, with 1 the vector with all elements equal to
one, for the algorithm.
If we again look at the value function D∗f instead

of simply approximating D∗, we have to slightly adjust
Algorithm 1 because the error term is no longer just
�D∗ − H�n��, but according to (7) the remainder becomes
�D∗ − H�n��v�f �v inf i∈S v�i�. To achieve precision 
value
for the approximation of the value function D∗f by
H�n�f , we have to choose 
dev in Algorithm 1 equal to

value/��f �v inf i∈S v�i��, because this implies

��D∗f �i −�H�n�f �i���D∗−H�n��v�f �v inf
i∈S

v�i�

<

value

�f �v inf i∈S v�i�
�f �v inf

i∈S
v�i�=
value�

For given precision 
value and by setting v ≡ 1 as we will do
in the finite state-space examples presented in this paper,
we obtain


dev = 
value
supi∈S f �i�

� (8)

where �f �1 = supi∈S �f �i�� follows from the definition of
the v-norm.

Remark 2. In case �f �1 is large, the precision 
dev used
in Algorithm 1 might become prohibitively small, i.e., the
value of the associated optimal degree k is such that com-
puting H�k� becomes numerical inefficient. In this case
it is advisable to adjust v such that �f �v, as well as
���Q∗ − Q�D�v, becomes sufficiently small.

4. Applications of the Update Formula
In this section we will present various examples illustrating
the broad applicability of our update formula. As the basic
system that serves as the approximation analogue, we use
the M/M/1 queue for which, beside Q and �, the deviation
matrix D also is well known (see Koole 1998). We will
add transient states to the basic system so that we can still
compute D in a closed form, but also get a sufficiently
fast convergence of the series expansion. Starting with an
M/M/1 queue with vacations in §4.1, we proceed with the
M/G/1 queue in §4.2 and provide the approximation of the
deviation matrix of a tandem network in §4.3. We support
our theoretical computations by several numerical examples
in §§4.1.2, 4.2.3, and 4.3.2.

4.1. Approximating the Deviation Matrix of
an M/M/1 Queue with Vacations

4.1.1. The M/M/1 Queue with Vacations. Our first
example is a slight variation of the M/M/1 queue for which
the deviation matrix already cannot be given in closed form
so far. Similar to the basic system, arrivals enter the queue
according to a Poisson-� process and are served by one
server with exponential-� distributed service time. How-
ever, whenever the queue is empty—that is, no customer is
waiting for service—the server will go on an exponential-�
distributed vacation. Another possible interpretation is that
of the server to shut down for a maintenance period. Such a
process �∗ exists on the state space S��i� j� ∈�0 × �0�1��,
where i denotes the number of customers in the system and
j indicates if the server is on vacation (=1) or not (=0).
�∗ has a generator matrix Q∗ with entries

q∗�i� j� k� l� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� i = k − 1� j = l

� i = k + 1� k > 0� j = l = 0

� i = 1� k = 0� j = 0� l = 1

� i = k� j = 1� l = 0

−�� + �� i = k� j = l = 0

−�� + �� i = k� j = l = 1

0 otherwise�

and a stationary distribution

�∗�k� l�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
��/��k − ��/�� + ���k

1− �/�� + ��

)
�∗�0�1� l = 0

(
�

� + �

)k

�∗�0�1� k > 0� l = 1

��� − ��

��� + ��
k = 0� l = 1�
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(see Chao and Zhao 1997) where the stability of the queue
and therefore the existence of �∗, is assured by �/� < 1
and � > 0. By its generator matrix Q with entries

q�i� j� k� l� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� i = k − 1� j = l

� i = k + 1� j = l = 0

� i = k� j = 1� l = 0

−�� + �� i = k� j = l = 0

−�� + �� i = k� j = l = 1

0 otherwise�

we define an approximation system � in which all states
�j�1� are transient while the ergodic class of states �j�0�
acts like an M/M/1 queue. The stationary distribution of� is

��k� l� =

⎧⎪⎪⎨
⎪⎪⎩

(
1− �

�

)(
�

�

)k

l = 0

0 l = 1�

and for the deviation matrix it holds

d�i� j� k� l�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��/��max�k−i�0� − �i + k + 1��1− �/����/��k

��1− �/��

j = l = 0

�k−i

�� + ��k−i+1
k � i� j = l = 1

1
��1− �/��

− �� + �k + i�����/��k

��

−
(

1
��1− �/��

+��1−�/����/��+���k−i+1−���/��k−i+1

��1−�/����−�+��

)

· 1�i−1<k� j = 1� l = 0

0 otherwise�

Because its entries are not obvious and, to the best of
our knowledge, have not been presented in the literature
so far, we provide the corresponding derivations in the
online companion associated with this paper. By inserting
the above expressions for Q, Q∗, �∗, and D into (6), we
can apply our algorithm to approximate D∗.

4.1.2. Numerical Approximation of the Deviation
Matrix of an M/M/1 Queue with Vacations. We will
illustrate our algorithm now by applying it to an M/M/1
queue with arrival rate � = 1, service rate � = 2, and a vaca-
tion rate � = 4, and restrict the maximal system capacity to

100 customers. First we compute the power N for which it
holds �N = ���Q∗ − Q�D�N �v < 1 and get N = 2. The cor-
responding constant c�N

is c�N
= 2�1164. Now we compute

the optimal k for which the upper bound of the remainder
term becomes smaller than the desired precision 
dev, which
we choose to be 0�1. According to Figure 1, the respective
value is kopt = 4.
The v-norm bound on the remainder term is shown on

the left-hand side of Figure 1 and the v-norm of the true
error is shown on the right-hand side of the figure. As can
be seen, the bound on the remainder term becomes rather
sharp after k = 4. Note that the bound on the remainder
term suggests kopt = 4, whereas the true error is already
less than 0�1 for k = 2.

4.2. Approximating the Deviation Matrix of an
M/G/1 Queue

A means of keeping the Markovian structure of the M/M/1
queue and also generalizing, say, the service time distribu-
tion, is to approximate the general service time distribution
by a phase-type distribution, such as the Cox or hyperex-
ponential distribution. It is well-known that phase-type dis-
tributions allow an arbitrarily close approximation of any
general service time distribution G, see Asmussen (1987).
Our approach to the approximate computation of the

deviation matrix of an M/G/1 queue is as follows. First, an
appropriate phase-type distribution, say Ph, is determined
that sufficiently approximates G. To this M/Ph/1 queue, we
then determine an M/M/1 system with additional transient
states and compute the stationary distribution and devia-
tion matrix of this related but simpler queue. Applying our
update formula, it is now possible to approximate the devia-
tion matrix of the M/Ph/1 queue via the deviation matrix of
the simple queue up to a precision 
dev, which in turn yields
an approximation of the deviation matrix of the M/G/1
queue.
Because it is common knowledge and shall not be the

focus of this paper we discuss details of the phase-type dis-
tribution approximation approach and motivate our choice
of the M/Cox/1 and M/Hyp/1 model as basic approxima-
tion of the M/G/1 queue in the online companion. In §4.2.1
we derive the update formula for the M/Cox/1 and in §4.2.2
for the M/Hyp/1 model.
A queueing system with one server serving with a phase-

type distribution known as the M/Ph/1 system can be
described on a state space S = ��i� j� ∈�0 ×�0� where the
first entry describes the number of customers in the system
and the second entry denotes the phase in which the server
is currently serving. Customers enter the system with rate
� and will be served according to a first-come-first-served
discipline. The various phase-type service time distributions
differ in the number of phases and the order according to
which a customer passes the phases. Each single phase is
exponentially distributed. Typical phase-type distributions
are the Cox, Erlang, and Hyperexponential distribution; see
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Figure 1. Convergence of the upper bound on remainder and the deviation matrix.
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Figure 2. For reasons of clarity, we will restrict our compu-
tations in this paper to phase-type distributions with three
phases. It is understood that by following the same line
of arguments as used in this paper, it is easy to extend
all formulas to more general phase-type distributions. Note
that for three phases the Erlang distribution equals the
Cox distribution with p1 = p2 = 1. For sake of com-
pleteness, we summarize the density functions of the Cox
and Hyperexponential distribution in Table 1 in the online
companion.

4.2.1. Approximation of the Deviation Matrix of the
M/Cox(3)/1 Queue. In this section we will apply the
update formula to derive the deviation matrix of the queue-
length process of the M/Cox(3)/1 queue, where we denote
the queue-length process by �∗, see Figure 3 for a depic-
tion of the queueing model. The state space of this queue
is S = ��i� j� ∈�0 × �1�2�3��. Customers arrive to the sys-
tem with rate �. The service is separated into three phases.
After a first �1-exponentially distributed time the customer
leaves the system immediately with probability 1− p1, or
will be served in a second phase with probability p1. The
second service phase lasts a �2-exponentially distributed

Figure 2. (a) Cox(r)-, (b) Erlang(r)-, and (c) Hyperexponential(r)-distributions.

(a) 1–p1 p1

p21–p2

p2

p1

...

(b)

...

(c)

...

1–
r –1
i = 1 pi

�1 �1

�2 �2

�r �r�r

�1

�2

time, and the customer leaves the system with probability
1 − p2 or will be served in a final exponentially-�3 dis-
tributed phase with probability p2. The generator matrix Q∗

of �∗ is given by

q∗�i� j� k� l�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� i = k − 1� j = l

�1− p1� · �1 i = k + 1� j = l = 1

p1 · �1 i = k� j = 1� l = 2

�1− p2� · �2 i = k + 1� j = 2� l = 1

p2 · �2 i = k� j = 2� l = 3

�3 i = k + 1� j = 3� l = 1

− ∑
�r� s� 
=�i� j�

q∗�i� j� r� s� i = k ∧ j = l

0 otherwise�
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Figure 3. M/Cox(3)/1 queue.
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1–p1

Server

1–p2

and in accordance with Neuts (1994), Riska and Smirni
(2002) the stationary distribution of �∗ is given by �∗�k� =
��∗�k�1���∗�k�2���∗�k�3�� with

�∗�k�

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1�2�3 − ���2�3 + p1�1�3 + p1p2�1�2�

�1�2�3

k = 0

�∗�0� · �1�0�0� · Rk k � 1�

where

R= �

�1−p1���
2+��3�+�1−p1p2���2+�2�3

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

��+�2���+�3�

�1

p1��+�3� p1p2p3

���+p2�2+�3�

�1

�+�3 p2�2

���+�2�

�1

p1� �1−p1��+�2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

Existence of the stationary distribution follows from

���2�3 + p1�1�3 + p1p2�1�2�

�1�2�3

< 1�

Now we apply our update formula by first defining a sec-
ond process � on the same state space S. Using the same
parameters as before and letting p1 and p2 be equal to 0,
we obtain a queueing system for which all states �i�2� and
�i�3�, with 1 � i, (i.e., service is in the second or third
phase), are transient states, whereas the remaining states
form an ergodic class. As soon as this process enters the
ergodic class, it acts like an M/M/1 queue with arrival
rate � and service rate �1. The process � has a generator

matrix

q�i� j� k� l�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� i = k − 1� j = l

�1 i = k + 1� j = l = 1

�2 i = k + 1� j = 2� l = 1

�3 i = k + 1� j = 3� l = 1

− ∑
�r� s� 
=�i�j�

q�i� j� r� s� i = k� j = l

0 otherwise�

The stationary distribution of � resembles the one of an
M/M/1 queue apart from the fact that its entries for tran-
sient states are 0, more specifically,

��k� l� =

⎧⎪⎨
⎪⎩
(
1− �

�1

)(
�

�1

)k

l = 1

0 l = 2�3�

where the condition �/�1 < 1 assures the existence of the
stationary distribution. As the last component of our update
formula, we present the deviation matrix of � with the
respective derivations provided in the online companion.

d�i� j� k� l�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��/�1�
max�k−i�0� − �i + k + 1��1− �/�1���/�1�

k

�1�1− �/�1�

j = l = 1

�k−i

�� + �2�
k−i+1

k � i� j = l = 2

�k−i

�� + �3�
k−i+1

k � i� j = l = 3

1
�1�1− �/�1�

− ��1 + �k + i��2���/�1�
k

�1�2

−
(

1
�1�1− �/�1�

+ �1�1−�/�1���/��+�2��
k−i+1−�2��/�1�

k−i+1

�1�1−�/�1���−�1+�2�

)

· 1�i−1<k� j = 2� l = 1

1
�1�1− �/�1�

− ��1 + �k + i��3���/�1�
k

�1�3

−
(

1
�1�1− �/�1�

+ �1�1−�/�1���/��+�3��
k−i+1−�3��/�1�

k−i+1

�1�1−�/�1���−�1+�3�

)

· 1�i−1<k� j = 3� l = 1

0 otherwise�

Inserting the above expressions for Q, Q∗, �∗, and D
into (6), we obtain an approximation for the deviation
matrix of an M/Cox(3)/1 queue.
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4.2.2. Approximation of the Deviation Matrix of the
M/Hyp(3)/1 Queue. Another well-known phase-type dis-
tribution is the hyperexponential one that, when applied to
the service time of a queueing system, is reflected by the
denotation M/Hyp(3)/1. In such a system the server pro-
vides service with an exponentially distributed service time,
either with probability p1 at rate �1, with probability p2

at rate �2, or with probability 1− p1 − p2 at rate �3, see
Figure 4. This system has generator matrix

q∗�i� j� k� l�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� i = k − 1� j = l

p1 · �1 i = k + 1� j = l = 1

p2 · �1 i = k + 1� j = 1� l = 2

�1− p1 − p2� · �1 i = k + 1� j = 1� l = 3

p1 · �2 i = k + 1� j = 2� l = 1

p2 · �2 i = k + 1� j = l = 2

�1− p1 − p2� · �2 i = k + 1� j = 2� l = 3

p1 · �3 i = k + 1� j = 3� l = 1

p2 · �3 i = k + 1� j = 3� l = 2

�1− p1 − p2� · �3 i = k + 1� j = l = 3

− ∑
�r� s� 
=�i� j�

q∗�i� j� r� s� i = k� j = l

0 otherwise�

and stationary distribution

�∗�k�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�1�2�3 − ��p1�2�3 + p2�1�3 + �1− p1 − p2��1�2�

�1�2�3

k = 0

�∗�0� · �p1� p2�1− p1 − p2� · Rk k � 1�

Figure 4. M/Hyp(3)/1 queue.
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with

R = � · ��2�p1�1 + p2�2 − p2�3�

+ �1− p1����2�3 + �2�3� + �1− p2���1�3

+ �p1 + p2���1�2 + �1�2�3�
−1

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1���+�2�+�1−p2���3+p2��2+�2�3

p1���+�3�

p1���+�2�

p2���+�3�

p2���+�1�+�1−p1���3+p1��1+�1�3

p2���+�1�

�1−p1−p2���
2+��2�

�1−p1−p2��1+�1−p1��
2−p2�

�1−p1−p2��
2+�1−p1���2

+�1−p2���1+�1�2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

Existence of this stationary distribution follows from

��p1�2�3 + p2�1�3 + �1− p1 − p2��1�2�

�1�2�3

< 1�

Analogously to §4.2.1, we can approximate the general sys-
tem by the system with p1 = 1 and p2 = 0, i.e., every new
arrival will be served at rate �1. It can be easily seen that
such a Markov process � has the same generator matrix,
stationary distribution, and deviation matrix as the process
used to approximate the deviation matrix of the M/Cox(3)/1
queue. Hence, we just have to exchange Q∗ and �∗ in (6)
and we obtain the update formula for the deviation matrix
of the M/Hyp(3)/1 queue.

4.2.3. Numerical Approximation of the Deviation
Matrix of an M/LogN/1 Queue. One of the most com-
mon examples for real-world queueing systems are call
centers in which statistical analyses provide evidence for
lognormal distributed service times, see, for example,
Brown et al. (2005). The density of the lognormal distribu-
tion is given by

f LogN�x� = 1

x
√
2��2

exp
[
− �ln�x� − ��2

2�2

]
�

with � and � the mean and standard deviation of the
variable’s logarithm. Now we can determine the vari-
ables of the phase distributions by applying the EM
algorithm. In the following we will apply the EMpht
programme (for a manual, see Olsson 1998) for fitting
distributions.
Suppose that �Log N is the queue-length process of an

M/LogN/1 queue with customers arriving according to a
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Figure 5. Density functions of the lognormal, Cox(3),
and Hyp(3) distributions.
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Poisson arrival stream with rate � = 2 and being served
by a server having lognormal distributed service times with
parameters � = 0�48 and �2 = 1�40. By using the EM
algorithm we find an M/Cox(3)/1 queue with p1 = 0�50,
p2 = 0�30, �1 = 0�50, �2 = 9�00, and �3 = 10�00 as
approximation, or, alternatively, an M/Hyp(3)/1 queue hav-
ing parameters p1 = 0�07, p2 = 0�43, �1 = 0�45, �2 = 0�45,
and �3 = 0�45. By comparing the three density functions
in Figure 5, we can already see that the density of the Cox
distribution fits better to the original lognormal distribution.
Additionally, the fitted hyperexponential distribution with
all phases having equal service behaves like an exponential
distribution. Nevertheless, the resulting M/Hyp(3)/1 differs
from the simple M/M/1 queue due to the enlarged state
space.
In our further computations we will restrict the wait-

ing room of our queue to 49 places, which gives us an
M/LogN/1/50 queue. For such a queueing system, we apply
our algorithm now and first compute the respective powers

Figure 6. Convergence of upper bounds on remainders for Cox(3) and Hyp(3) distribution.
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denoted by N Cox and N Hyp, respectively, for which it holds
�N = ���Q∗ − Q�D�N �v < 1. It turns out that

N Cox = 1� N Hyp = 2�

The corresponding constants, denoted by c
Hyp
�N

and c
Hyp
�N

,
respectively, are

cCox
�N

= 3�5714� c
Hyp
�N

= 9�2667�

Now it remains to identify the optimal k for which the
upper bound of the remainder term becomes smaller than
our desired precision of 0�1. According to Figure 6, the
respective values are

kCox
opt = 5� kHyp

opt = 2�

These findings are supported by Figure 7, in which we plot
the norm convergence of H�k − 1� given by the update
formula in (6) to the true deviation matrix D∗, which, in
case of a finite state space, can be computed directly by (2).

4.3. Approximation of the Deviation Matrix of a
Tandem Network

4.3.1. The Tandem Network. Another common exam-
ple in queueing theory for which the deviation matrix can-
not be computed directly is the tandem queue displayed in
Figure 8(a). In such a system, customers enter a first queue
according to a Poisson process with rate �, and after an
exponentially-�1 distributed service time are routed to a sec-
ond queue where they are served by a second exponential
server with rate �2. This system has generator matrix

q∗�i� j� k� l� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� i = k − 1� j = l

�1 i = k + 1� j = l − 1

�2 i = k� j = l + 1

−�� + �1 + �2� i = k� j = l

0 otherwise�
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Figure 7. Norm convergence of the deviation matrices of Cox(3) and Hyp(3) distribution.
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and stationary distribution

�∗�k� l� =
(
1− �

�1

)(
�

�1

)k(
1− �1

�2

)(
�1

�2

)l

�

with its existence assured by the condition

�

�1

< 1 and
�1

�2

< 1�

The deviation matrix of such a tandem network cannot
be computed directly using common tools so that we
will apply our update formula to approximate it. First we
define a second process � on the same state space S =
��i� j� ∈ �0 × �0�, where i and j denote the number of
customers queueing in the first and second queue, respec-
tively. We model the first queue as an M/M/1 queue with
exponential-� distributed interarrival and exponential-�1

distributed service times. We furthermore do not allow for
any arrivals in queue 1 as long as there are customers in
the second queue, which is defined as an M/M/1 system
without arrivals but with exponential-�2 service times. That
is, all states �i� j� with j > 0 are transient while the states
�i�0� form the system’s ergodic class (see Figure 8(b)).
Such a system is determined by its generator matrix

q�i� j� k� l� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� i = k − 1� j = l = 0

�1 i = k + 1� j = l

�2 i = k� j = l + 1

−�� + �1 + �2� i = k� j = l = 0

−��1 + �2� i = k� j = l > 0

0 otherwise�

and has the stationary distribution

��k� l� =

⎧⎪⎪⎨
⎪⎪⎩

(
1− �

�1

)(
�

�1

)k

l = 0

0 l > 0�

where the condition �/�1 < 1 assures its existence. The
deviation matrix of � is provided by

d�i� j� k� l�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��/�1�
max�k−i�0� − �i + k + 1��1− �/�1���/�1�

k

�1�1− �/�1�

j = l = 1

�i − k + j − l�!
�i − k�!�j − l�!

�i−k
1 �

j−l
2

��1 + �2�
−�i−k+j−l+1�

j � l > 0� i � k

�1�2 − ���1 − ���2�2k + 1� + j��1 − ��2���/�1�
k

�1�2��1 − ��

− �i
1�

j
2��/�1�

k

��1 + �2�
i+j

i∑
r=0

(
i − r + j − 1

j − 1

)(
�1 + �2

�1

)r

·
(

r − k

�1

+
(

��1/��r − ��1/��k

�� − �1�

)
· 1�r<k�

)

j > 0� l = 0

0 otherwise�

Figure 8. (a) Tandem queue, (b) independent manipu-
lated M/M/1 queues.
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Figure 9. Convergence of upper bounds on remainders and deviation matrices.
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with the derivations presented in the online companion of
this paper. Inserting Q, Q∗, �∗, and D into (6), we obtain
an approximation for the deviation matrix of the tandem
network.

4.3.2. Numerical Approximation of the Deviation
Matrix of a Tandem Network. Let �∗ be a tandem net-
work with Poisson-0�5 arrival stream and exponentially-2
and exponentially-10 distributed service times in server 1
and 2, respectively. Each queue is supposed to have a max-
imal capacity of 20 customers. For this system we first
calculate N for which it holds �N = ���Q∗ −Q�D�N �v < 1,
the associated constant c�N

, and the optimal k for which
the remainder becomes smaller than our given precision

 = 0�1, and get

N = 2� c�N
= 9�4665� kopt = 7

(see Figure 9). By lowering the service rate of the second
server to �2 = 5 and repeating our calculations, we get a
slightly slower convergence

N = 4� c�N
= 26�9075� kopt = 13�

whereas an increase of the second service rate leads to an
improvement of the respective parameters

N = 2� c�N
= 3�2592� kopt = 5

(see Figure 9). Even in the case of a relatively slow ser-
vice, we can still approximate the deviation matrix by our
update formula, but will need more summands to reach
our desired precision. That is due to the fact that the for-
mula is sensitive towards the traffic rates �1 = �/�1 and
�2 = �1/�2. Nevertheless, even traffic rates close to 1 will
allow for an application of the update formula. To reduce
the number of approximation steps necessary to reach the
desired precision, it remains, however, to look for related
processes � that are closer to the tandem queue than our
exemplary M/M/1 queues, but still satisfy the condition of
a given deviation matrix D. This will be a topic of further
research.

5. Application to Markov
Decision Theory

We revisit the M/G/1 queue and extend the basic Markov
model by a certain set of actions �. A stationary (deter-
ministic) policy, say f , prescribes in each state i the action
f �i� taken by the controller of the system. The infinites-
imal generator depends on the chosen policy f , which is
reflected by writing Qf for the generator. Moreover, there
is a cost vector cf , where cf �i� is the cost rate in state i
under policy f . For an introduction to Markov decision pro-
cesses (MDP), we refer to Dynkin and Yushkevich (1979),
Puterman (1994), Ross (1970), Tijms (1994). MDPs are
used to derive the structure of the optimal policy and,
moreover, to compute it. There are several cost criteria,
e.g., discounted and average costs. In our application we
will consider average expected costs over an infinite time
horizon.
A basic reference on MDPs is the monograph Puterman

(1994); applications to the control of queueing systems can
be found in Ross (1970), Stidham (1985), Tijms (1994).
There are numerous papers on MDPs. Papers in which the
condition of geometric ergodicity is introduced and used
are Dekker and Hordijk (1988, 1991, 1992), Dekker et al.
(1994), and Hordijk and Yushkevich (1999, 2002). The
papers Bather (1976), Guo (2007), Guo and Cao (2005),
Guo and Hernndez-Lerma (2003), Guo and Liu (2001),
Hordijk and van der Duyn Schouten (1983), Kakumanu
(1975), and Yushkevich (1977) deal with continuous-time
decision processes.

5.1. Admission Control

A basic model in the control of communication networks
is the admission control of a single server queue. For an
overview of the application of Markov decision models in
the control of communication networks we refer to Altman
(2002). We assume here that there is a reward rate r for
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each customer admitted to the queue, and that there are
holding costs h�i� per unit time when there are i customers
in the queue. For this model, the optimal policy for dis-
counted as well as average costs is of threshold type, that
is, there is a critical level, say L, such that customers are
allowed when there are at most L − 1 customers in the
queue and rejected when there are L or more. The literature
on admission control separates into two groups, depend-
ing on the amount of information on which the controls
are based. In case of full state information, the problem is
approached as an MDP, a Markov decision drift process, or
a Markov game; see Altman and Hordijk (1995), Hordijk
and van der Duyn Schouten (1983), Stidham (1985). It is
shown in Stidham (1985) that the average optimal policy is
a critical-level policy. For the continuous-time process, this
follows from results in Hordijk and van der Duyn Schouten
(1983). In Hordijk and Spieksma (1989), the constrained
admission control is considered. Therein, the throughput
is maximized while the expected delay of jobs has an
upper bound. In this case the optimal policy is of threshold
type too, but randomizes the admission at the critical level.
A similar result is proven for worst-case optimal control in
Altman and Hordijk (1995) and Altman et al. (1997). The
customer admission model in a rather general setting with
no state information is studied in Chapter 4 of Altman et al.
(2003). A balanced policy is optimal in this case. The com-
putation of the optimal policy was hindered by the fact that
the deviation matrix could not be computed. The analysis
put forward in this paper overcomes this problem. For the
admission control model studied in this paper, there is an
equivalence between the discrete-time and continuous-time
models (see Serfozo 1979). For further study, we also refer
to the survey papers Arapostathis et al. (1993) for discrete-
time case and the recent one Guo et al. (2006) and the
references therein for the continuous-time case.
Using the same notation as before, but adding sub-

script L to reflect the current admission level, we can
express the average long-term costs by

�
def= �LcL�

where cL is the respective cost vector defined as

cL�i� = h�i� − r� · 1�i<L�� i ∈ S�

We will then consider a certain admission policy L1 supe-
rior to L if long-term costs are lower so that it holds

�L1
cL1

− �LcL < 0�

From (3) multiplied by �L1
, we get

�L1
�cL1

− cL� + �L1
cL − �LcL

= �L1
�cL1

− cL� + �L1
�QL1

− QL�DLcL < 0�

and because �L1
has no negative entries, this inequality is

implied by

�cL1
− cL� + QL1

DLcL − QLDLcL < 0�

From Lemma 1 we have QLDL = �L − I so that we obtain

�cL1
− cL� + QL1

DLcL + �I − �L�cL < 0�

which simplifies to the basic Poisson inequality used in
MDPs

cL1
− �LcL + QL1

DLcL < 0�

Then the policy improvement step on critical level L policy
in state i � L is admitting the customer if

−r� + h�i� − �LcL + Qi+1�i�DLcL < 0� (9)

where Qi+1�i� is the ith row of the generator matrix for
the increased threshold i +1. Similarly, one better rejects a
customer in state i < L if

h�i� − �LcL + Qi�i�DLcL < 0� (10)

The following algorithm allows for the iterative computa-
tion of the optimal threshold L′.

Algorithm 2
Start with an initial policy, say level L0.

Step 1: Compute the largest i > L0 for which (9) holds,
say L1.

Step 2: Compute �L1
and DL1

and insert them into (10).
Step 3: Compute the smallest i < L1 for which (10)

holds, say L2.
Step 4: Compute �L2−1 and DL2−1 and insert them

into (9).
Step 5: Repeat Steps 1 to 4 until there is no improve-

ment.
Step 6: The algorithm ends when no further improve-

ment can be found.

5.2. Numerical Example: Applying the Update
Formula to Admission Control

Recall the example introduced in §4.2.3, but now with
threshold L. The infinitesimal generators of the original
system �∗

L and the approximation process �L remain the
same except for the fact that qL�i� j� i + 1� l� = 0 for every
i � L. Hence, we create transient states �i� j� > L. Then
the stationary distribution �∗

L�k� l� is equal to 0 whenever
k > L. And for k � L it resembles the one of a finite
M/Ph/1/L. According to Neuts (1994), �∗

L of such a queue
equals the denumerable one except for

�∗
L�k�=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎝�1�0�0�

(L−1∑
i=0

Ri +�RL−1S−1

)⎛⎜⎝
1

1

1

⎞
⎟⎠
⎞
⎟⎠

−1

k=0

�∗�0��1�0�0��RL−1S−1 k=L�
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with

S−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
�1

p1

�2

p1p2

�3

0
1
�2

p2

�3

0 0
1
�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

in case of the M/Cox(3)/1/L queue and

�∗
L�k�

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝�p1� p2�1− p1 − p2�

(L−1∑
i=0

Ri + �RL−1S−1

)⎛
⎜⎝
1

1

1

⎞
⎟⎠
⎞
⎟⎠

−1

k = 0

�∗�0��p1� p2�1− p1 − p2��RL−1S−1 k = L�

with

S−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
�1

0 0

0
1
�2

0

0 0
1
�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for the M/Hyp(3)/1/L system, and for the stationary distri-
bution of �L we have

��k� l� =

⎧⎪⎪⎨
⎪⎪⎩

1− �/�1

1− ��/�1�
L+1

(
�

�1

)k

l = 1

0 l = 2�3�

Although in the case of a denumerable state space S a
stability condition is needed to assure the existence of a
stationary distribution, this is not needed for the finite state
space. The derivation of the deviation matrix is for reasons
of clarity provided in the online companion (see §6 of the
online companion).
Suppose that the systems arrival rate is still � = 2�00

and customers are served by one server having lognor-
mal distributed service times with parameters � = 0�48 and
� 2 = 1�40. This leads to the approximation system of an
M/Cox(3)/1 queue with p1 = 0�50, p2 = 0�30, �1 = 0�50,
�2 = 9�00, and �3 = 10�00 and an M/Hyp(3)/1 queue hav-
ing parameters p1 = 0�07, p2 = 0�43, �1 = 0�45, �2 = 0�45,
and �3 = 0�45. Like in §4.2.3 the waiting room is restricted
to a maximum capacity of 49 waiting customers. Let the
holding costs of our example be defined as h�i� = e0�01i −1,
and let each accepted customer create a reward of r = 9.
We know from the example in §4.2.3 that in case of the

M/Cox(3)/1 queue we need H�4� to approximate the devi-
ation matrix sufficiently precisely, and for the M/Hyp(3)/1
system, H�1� given by (6) has the right degree to compute

the deviation matrix up to a precision 0�1. However, because
we no longer want to approximate D∗

L but the value function
D∗

LcL, we use (8) to assure the desired precision 0�1


dev = 
value
supi∈S �cL�i�� = 0�1

10�0
≈ 0�01�

and by applying Algorithm 1 get H�5� for the Cox model
and H�1� in case of hyperexponential service times. Addi-
tionally, it is no longer sufficient to use (9) and (10), but we
have to consider the two-dimensional state space. Hence,
each state with i customers inside the system is reflected
by three states—namely, �i�1�, �i�2�, and �i�3�. Checking
if (9) holds for a certain customer level i allows for several
interpretations: (i) demanding that it holds for all service
phases, which is quite conservative, (ii) demanding that the
condition (9) is valid for only one service phase, which is
too optimistic, (iii) weighting the phases by the stationary
probability that the server serves in the respective phase.
In the following, we chose approach (iii) and, using the
PASTA property (Poisson arrivals see time averages), we
obtain

−r� + h�i� − �∗
LcL + 1

�∗
i+1�i�1� + �∗

i+1�i�2� + �∗
i+1�i�3�

· ��∗
i+1�i�1�Q

∗
i+1�i�1� + �∗

i+1�i�2�Q∗
i+1�i�2�

+ �∗
i+1�i�3�Q

∗
i+1�i�3��HL�k�cL < 0 (11)

for (9) and replace (10) by

h�i� − �∗
LcL + 1

�∗
i+1�i�1� + �∗

i+1�i�2� + �∗
i+1�i�3�

· ��∗
i+1�i�1�Q

∗
L�i�1� + �∗

i+1�i�2�Q∗
L�i�2�

+ �∗
i+1�i�3�Q

∗
L�i�3��HL�k�cL < 0� (12)

Now we start Algorithm 2 with the initial step assuming
L = 10, i.e., no customers are accepted to enter the system
if there are already 10 or more inside. The results of the
following improvement steps are summarized in Table 1,
where L0 and �0 denote the initial values of L and �, and
Li and �i denote the values of L and � in the ith itera-
tion of the algorithm. Although the M/Cox(3)/1 needs one
improvement step fewer, both approximations suggest the
same optimal policy level L′ = 4. Recall that both models
represent the same M/LogN/1 queue, so this result is not
surprising. In principle, level L is dependent on the traffic
rate � given by

�Cox = ���2�3 + p1�1�3 + p1p2�1�2�

�1�2�3

= 4�14

Table 1. Policy improvement steps.

L0 �0 L1 �1 L2 �2 L3 �3

Cox(3) 10 −4�2449 3 −4�2802 4 −4�3004
Hyp(3) 10 −3�9480 3 −3�9866 6 −3�9908 4 −4�0041
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Figure 10. Comparison of thresholds depending on the traffic rate.
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for M/Cox(3)/1 and

�Hyp = ��p1�2�3 + p2�1�3 + �1− p1 − p2��1�2�

�1�2�3

= 4�44

in the case of an M/Hyp(3)/1 queue. This rate compares the
average number of arrivals within a certain time interval to
the number of served customers. In our example we have
a � that is somewhat larger than one so that in the case of
an unrestricted entrance policy the system would overflow.
Even in the case of a restriction this has to be small so
that holding costs do not exceed the rewards. Figure 10
illustrates the dependence of the optimal threshold L on the
traffic rate.

5.3. Extension to Denumerable State Spaces

In the previous section we documented the adaptability of
our update formula to MDPs by presenting a numerical
example on finite state space. Naturally, in such a case one
can easily compute the real deviation matrix by (2). In the
following we will discuss an application of our update for-
mula to the denumerable state space. Consider the Coxian
model and assume that a Cox distribution has been fit-
ted to the general service time. As the next step, use the
update formula (6) to approximate the deviation matrix of
an M/Cox/1 system. Suppose that the series is only devel-
oped for the first n elements, that is, take

HCox�n� = �I − �Cox�D
n∑

k=0

�I + �QCox − Q�D�n

as an approximation of DCox, where D, Q are obtained from
the simple M/M/1 queue with transient states; §§4.2.1, 5.2,

Table 2. Optimal policy L.

Exact D∗cL Opt. appr. HCox�5�cL HCox�2�cL 2HCox�1�cL

� L � L � L � L �

0.1 158 −0�4488 158 −0�4488 158 −0�4488 153 −0�4488
0.5 113 −2�2393 113 −2�2393 113 −2�2393 112 −2�2393
1.0 22 −4�0902 22 −4�0902 22 −4�0902 23 −4�0901
1.5 10 −4�2384 10 −4�2384 10 −4�2384 10 −4�2384

and 6 of the online companion. Provided that n is small, for
example, n = 1, inserting the given formulas into (11) and
(12) one can easily determine the optimal threshold policy
even for denumerable state space S. For values of n larger
than, say 3, the analytical application of (6) is surely still
possible but a lot less convenient because formulas become
way too complex. However, because our current intention is
no longer the exact approximation of the deviation matrix
but the determination of the optimal policy, we do not nec-
essarily need to compute an HCox�n� for n > 2. For our
numerical example, we have kCox = 5, and Table 2 displays
the optimal policy L for our Cox model depending on the
chosen approximation parameter n for HCox�n�. The table
suggests that HCox�2� already reveals the optimal thresh-
old level L, and even HCox�1� provides fairly cost-optimal
policies, even though the deviation matrix of the M/Cox/1
queue is only roughly approximated.
We performed various numerical experiments, all of

which suggest that the approximation HCox�2�cL already
yields the optimal policy, despite the fact that the approxi-
mation HCox�2�cL differs in norm from the real value func-
tion given by D∗cL by more than the desired precision

value. Hence, we expect that even if the convergence of
HCox�k� to D∗ is too slow to work with n = 2, a series
expansion of degree 2 is already sufficient to derive optimal
policies. We conjecture that for denumerable state spaces
the application of

H�2� = �I − �∗�D�I + �Q∗ − Q�D + ��Q∗ − Q�D�2�

in MDPs yields optimal policies. Further investigation into
this matter is a topic of future research.
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6. Conclusion
In this paper we presented an approach to efficiently
approximate the deviation matrix of continuous-time
Markov processes and applied it to three different types of
examples. For a problem in admission control, we com-
bined our approximation scheme with Markov decision the-
ory and computed the optimal admission policy. Our three
examples are all related to a certain kind of manipulation
of the M/M/1 queue as the approximation system. In future
research it will be of particular interest to extend these find-
ings to more elaborate approximation models that increase
the speed of convergence of our algorithm. Although our
approach is the first step towards higher-dimensional state
spaces, it will be of special interest to apply the concept to
larger networks.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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