
Valuing certainty in a consensus-based water allocation mechanism

Saket Pande1,2 and Mac McKee1

Received 10 December 2004; revised 30 August 2006; accepted 12 October 2006; published 28 February 2007.

[1] We present an interdisciplinary approach to attach economic value to model certainty.
The central theme of this paper concerns valuing certainty in water resource management,
specifically resource allocation. A conceptual framework is developed to study
(1) a hypothetical scenario of three water users attempting to mutually agree on allocation
of some fixed amount of water amongst themselves and (2) California water policy
negotiations along the lines of Adams et al. (1996). We attempt to answer how uncertainty
in a policy variable affects the ‘‘allocation solution’’ in such consensus-based decision-
making processes. This study finally evolves into economic valuation of uncertainty
reduction and willingness to pay for the same.
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1. Introduction

[2] Efficient use of water resources is becoming increas-
ingly important. Globally, many researchers have expressed
concerns over depleting freshwater sources or accumulating
demands [Israel et al., 1994; Whittington and McClelland,
1992; Parros, 1999; Utton, 1996; Rogers, 1993; Giannias
and Lekakis, 1997] and have called for a cooperation-based
framework to ameliorate conflicts. Water is often a scarce
and precious resource in semiarid regions [Tarboton, 1995;
Supalla, 2000]. Even when this is the case, water is often
allocated economically inefficiently under the doctrine of
‘‘appropriative’’ rights [Burness and Quirk, 1979]. Optimal
apportionment would follow if the marginal benefit realized
by using a certain amount of resource is equal to its
marginal value [Lyon, 1999]. However, such a rule might
be difficult to impose when users are uncertain about the
available stock of water resource. It therefore brings forth
two specific but interconnected issues: uncertainty in the
amount of water to be apportioned, and how this uncertainty
influences an otherwise efficient allocation amongst com-
peting users. We therefore focus on how a consensus
mechanism is influenced by uncertainty and on the value
of reducing uncertainty based on consensus building.
[3] Though an allocation mechanism should be designed

to address the problem at hand [Hurwicz, 1973], many
authors have discussed the applicability of different alloca-
tion mechanisms in various water resources management
problems. Examples include cost allocation to accommo-
date environmental externalities [Frisvold and Caswell,
2000; Loehman and Dinar, 1994; Dinar and Xepapadaes,
2002; Dinar and Howitt, 1997], cost allocation of multi-
agency water treatment projects [Dinar et al., 1992; Lejano
and Davos, 1999], water diversions from the Great Lakes

[Becker and Easter, 1995, 1997], etc. While some of these
applications included allocation mechanisms based on the
social planner problem or dynamic games, cooperative
game theory appeared to be a more popular allocation
mechanism. However, few researchers have dealt with the
effect of uncertainty in policy variables on allocation
solutions.
[4] The two most common solutions employed from coop-

erative game theory are the nucleolus solution [Schmeidler,
1969] and the Nash-Harsanyi solution [Harsanyi, 1963]. The
nucleolus concept provides an equitable solution to the core
allocation problem. Given a set of players, the core of the game
identifies a solution set that all the players should be willing to
accept. While the nucleolus solution is more social equity
based [Lejano and Davos, 1995], the Nash solution is coop-
eration to achieve efficiency in allocation [Nash, 1953].
Furthermore, empirical tests on the acceptability and stability
of various solution concepts to cooperative allocation of
environmental control cost [Dinar and Howitt, 1997] suggest
that the Nash-Harsanyi solution is more stable than the
nucleolus when both the solutions were considered acceptable
in the sense that solution lies in the core of the game.
[5] The choice of solution concept that is selected here

for our case studies depends not just on stability or
efficiency issues but also on an explicit framework to
accommodate consensus building. We base our analysis of
the allocation mechanism on the Rausser-Simon multilateral
bargaining model [Adams et al., 1996]. It is an extension of
Rubinstein’s model [Rubinstein, 1982] in which two players
take turns in proposing a division of a pie. However, on the
basis of the treatment of Binmore et al. [1986], it can be
shown that the Rausser-Simon model provides a solution
similar to the Nash-Harsanyi bargaining solution. The
solutions achieved from these approaches are exactly the
same when all the players in the game have the same
bargaining power. Given that the bargaining solution is
Pareto efficient, any solution that is perturbed due to the
presence of uncertainty provides an incentive to reduce such
uncertainty. We show this in our case studies and derive an
economic value for reduction in uncertainty.

1Utah Water Research Laboratory, Utah State University, Logan, Utah,
USA.

2Now at Center for World Food Studies, Faculty of Economics and
Business Administration, Vrije Universiteit, Amsterdam, Netherlands.

Copyright 2007 by the American Geophysical Union.
0043-1397/07/2004WR003890$09.00

W02427

WATER RESOURCES RESEARCH, VOL. 43, W02427, doi:10.1029/2004WR003890, 2007
Click
Here

for

Full
Article

1 of 13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15461852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1029/2004WR003890


[6] The major contribution of this paper is twofold. First,
it studies how uncertainty due to physical processes can be
accommodated in a consensus-based decision-making
(CBDM) process. Such uncertainties are incorporated
through a collection of a player’s decision sets (a decision
set of a player is defined as a set that contains his ‘‘potential’’
choices), where a collection corresponds to different states of
his belief of the underlying processes. The agent then bases
his decision via expected utility maximization. Second, the
use of a multilateral bargaining model allows for a concep-
tualization of individual player’s behavior in a sequence of
subdecisions to finally arrive at a solution that is acceptable
to all other players. This conceptualization allows a modeler
or a policy maker to picture how uncertainty due to physical
processes affects the final solution of a CBDM process via
effects on the players involved.
[7] The following section sheds light on the importance

of consensus building in decision making and discusses the
multilateral bargaining model. Section 3 presents the im-
plementation of the model to a hypothetical case study
wherein three farmers negotiate for a share of some surplus
amount of water under conditions of uncertainty. Our
emphasis is placed on the value of certainty in benefits
due to conveyance loss conditions. Section 4 examines
another case study based on California water policy nego-
tiations. Here, we analyze how the bargaining solution shifts
when all the negotiating parties face uncertainty in a policy
variable. Section 5 discusses the applicability of the model
in policy making, its strengths and weaknesses. The paper
concludes with observations on how the bargaining solu-
tions under conditions of uncertainty distort the preference
structure of players and results in a net willingness to pay
for a reduction in uncertainty.

2. Multilateral Bargaining Model

[8] In a conflict model of decision making, the strongest
player (legally, politically or otherwise) takes as much of an
available surplus of water as he or she desires, leaving other
players with little or no water. This form of social inequity
has been a topic of debate in the environmental movement
strategy literature [Pellow, 1999]. CBDM provides a new
definition of power sharing and policymaking in which all
interested parties are given a place at the negotiating table.
The framework provides for a sustained negotiation process
in which the parties look for cooperative solutions to issues
common to them. While conflict cannot be entirely avoided,
the attempt to reach consensus, rather than setting negotia-
tions in a winner-take-all framework, can sometimes allow
for significant gains for all parties involved.
[9] Before consensus-based decision making can be

employed, appropriate legal measures must be in place. As
noted by Lejano and Davos [1995] and Adams et al. [1996],
there is often a long bargaining period over the bargaining
rules before the substantive bargaining begins. In this paper,
we assume that such rules of negotiations have been set a
priori. This is reflected in the parameters assumed in the
examples we present, as well as the assumed allocation
mechanisms that will be followed if the bargaining fails.

2.1. Model Specification and Convergence

[10] We employ the Rausser-Simon [Rausser and Simon,
1991] multilateral bargaining approach to model such a

CBDM process. The specification of the multilateral bar-
gaining problem includes a finite number of profit-maxi-
mizing players,{P1, P2, . . ., P1}, who bargain to select a
policy vector from some set of possible alternatives, @@. The
set @@ is assumed to be compact in <<N. A policy vector x 2 @@
yields the ith player a payoff of pi(x) (or ui (x)). The
incentive for the ith player not to disagree is defined by a
disagreement payoff, pi

o(or ui
o) (i.e., the payoff the ith player

would realize if the negotiations fail). Players obtain ideal
payoffs if, individually, they experience no water scarcity.
All the players want to achieve payoffs that are as close to
their ideal points as possible. It is further assumed that
decisions are reached by unanimity under the CBDM
framework. That is, all parties must agree to an allocation
before it is implemented.
[11] The structure of the Rausser-Simon bargaining

model is replicated by first identifying disagreement and
ideal payoff points of all the players in the policy space.
Then a bargaining game is defined such that all the players
want to achieve an agreement unanimously but they have
to do so by making proposals in turns. A cycle of
proposals is then defined as one round-robin round.
[12] In the context of consensus building, we define

‘‘expected’’ payoff of a player as what he can realize after
a cycle of proposals. It is expressed as a weighted sum of
payoffs in a cycle of proposals, where the weights represent
individual bargaining power. All other players therefore
enforce a part of a player’s ‘‘expected’’ payoff via their last
proposal and emphasize it by their bargaining power. If any
consensus is to be built, a player has to accept that a part of
his ‘‘expected’’ payoff is being enforced by other players
(otherwise he is not considering the wishes of other players).
Also, other players have to accept his ‘‘expected’’ payoff as
what he will at least accept from future rounds of proposals
(if they want their wishes to be considered by this player).
These acceptance conditions on ‘‘expected’’ payoffs are
therefore important elements of consensus building and
cooperation. If we assume that players are rational, they
might not want to disagree with such conditions. This is most
likely when they face serious consequences if the negotia-
tions fail. In other cases, extra legal instruments can be
brought into the game to ensure that these conditions are
followed, say by penalizing the players guilty of disobeying
the rules. The players can also agree upon such ‘‘parame-
ters’’ and penalties within some legal framework before the
start of bargaining.
[13] Therefore if we say that a bargaining game is

consensus based, a player in his turn makes a proposal that
yields payoffs (from this proposal) to other players that are
no less than the ‘‘expected’’ payoffs that they can obtain
from the last cycle of proposals. Otherwise some non-
proposing player objects to such a proposal and the nego-
tiations break. Note that the game is deterministic once the
bargaining weights have been fixed. Each player, in his turn,
makes a proposal that gets him the most favorable deal
while making sure that other players get at least as much as
their ‘‘expected’’ payoffs from the previous cycle of pro-
posals. Thus a player in his first opportunity proposes as
close to his ideal point as possible while making sure that
others do not fall below their disagreement payoffs. This
holds for other players too. The ‘‘expected’’ payoffs of all
the players can then be defined as a weighted sum of

2 of 13

W02427 PANDE AND MCKEE: VALUING MODELING CERTAINTY W02427



possible payoffs from the first cycle of proposals. Over
successive cycles of proposals, these ‘‘expected’’ payoffs
increase for all the players (see Figure 1). This follows from
the fact that all the players get an opportunity to make a
proposal that is favorable to them in any cycle, while during
the turn of others within the same cycle they get at least
their ‘‘expected’’ payoff. This makes their ‘‘expected’’
payoffs in the next cycle of proposals greater than their
‘‘expected’’ payoffs in the last cycle, putting a tighter
constraint on the proposer’s options.
[14] It can be shown that this game converges to a

solution under certain rationality assumptions on the players
(that they never prefer less of something they like, and the
more they have of what they like, the less they like to have
more). An assumption of quasi-concave preference structure
of the players is sufficient for the convergence of the game.
The quasi-concave preference structure of the players leads
to a convex set (a convex set is a set where any linear
combination of any two elements belongs to the same set)
of feasible points (a set of feasible points is a set of points
that obey a certain ‘‘feasibility’’ condition) such that they
don’t fall below a certain level of ‘‘expected’’ payoffs (see
the definition of level sets of quasi-concave functions by
Avriel [1976]). We define this set of feasible policy points as
a ‘‘no-worse-than-expected’’ set. Since each player’s deci-
sion problem, when it is his turn to propose, is to maximize
his payoff subject to other players’ ‘‘expected’’ payoff
constraints, he is effectively thinking of a maximizing
proposal in the intersection space of other players’ ‘‘no-
worse-than-expected’’ set (an intersection of sets is a set that
contains only those elements that are common to all the
sets). Also, an intersection of convex sets is a convex set
[see Avriel, 1976]. Thus he finds a proposal that uniquely

maximizes his payoff, and uses it to update his ‘‘expected’’
payoff for the next round of proposals. Similarly, others also
decide about their proposals and update their ‘‘expected’’
payoffs. Since ‘‘expected’’ payoffs in each cycle of pro-
posals are higher than those in the last cycle, the constraint
set for any player’s maximization problem shrinks over
successive cycles. Finally if the number of cycles is finitely
large, the proposals of all the players lie sufficiently close to
all others’ ‘‘expected’’ payoffs simultaneously, proving
convergence of the model.
[15] To formalize the game and closely follow the termi-

nology of the Rausser-Simon bargaining model, we reverse
the labels on the rounds of proposals (we call the last round
as the first and vice versa). We say that the game ends when
the players face disagreement payoffs and begins at a
solution point. The intent is to characterize a set of equi-
librium strategy profiles of the players, or in simpler terms
to identify what (and why) a player will not want to propose
in any round and why the players will agree with the
solution.

2.2. Characterization of the Set of Equilibrium
Strategy Profiles

[16] The proposal made by Pi in the last period, T, is
accepted if and only if it yields each player Pj a utility level
at least as great as the player’s disagreement payoff, pj

o. In
each round t < T, a proposal by Pi is accepted if and only if
it yields each Pj 6¼ Pi a payoff level at least as great as Pj’s
expected utility from playing the subgame starting from
round t + 1, or his reservation utility in round t (pj

o,t). Thus
Pi maximizes his utility, subject to the constraint that for
each Pj 6¼ Pi, the vector xpi yields Pj no less than pj

o for t = T,
or Pj’s expected utility conditional on reaching the next

Figure 1. Rausser-Simon multilateral bargaining model, an example.
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round. If the solution to the proposer’s (Pi) constrained
maximization problem yields Pi at least the expected utility
from proceeding to the next round, he proposes this solution
to his maximization problem. Otherwise, he proposes a
vector that is rejected by one or more players.

2.3. An Example

[17] Consider a three-player bargaining problem over a
two-dimensional policy variable [Adams et al., 1996;
Thoyer et al., 2001]. The two-dimensional policy variable
plane identifies the space of possible agreement policy
vectors. Each player has a most preferred location, called
his ideal point. The game is assumed to be long but finite,
with a total of T possible rounds of bargaining. At each
round t < T, nature chooses at random a player Pi with
probability wi (this identifies a player’s access probability
and is interpreted as the player’s bargaining power), such
that

P
Iwi = 1. Player Pi, chosen at random, makes a

proposal xPi 2 @@. If the proposal is acceptable to all, the
proposal forms the solution vector. Otherwise, the bargain-
ing moves to the next round. The game continues until
period T, where if the proposal propounded is not accepted
all the players get their disagreement payoffs. I j,t identifies
the reservation payoff in round t of each player Pj. This can
also be seen as a player’s expected payoff from playing the
subgame from the t + 1 period onward. Pj’s reservation
payoff in some round T � t is also his disagreement payoff,
when the players fail to agree upon a solution if the
negotiations go to round T.
[18] For Pi’s proposal to be accepted in any arbitrary

round t, it has to yield other players a payoff level greater
than their expected payoff (obtained by playing the sub-
game t + 1 from then onward). At t = T in Figure 1, P2

proposes x2,T with probability w2, yielding P1 his disagree-
ment payoff (xi,Tis the solution to Pi’s constrained maximi-
zation problem in round T). Similarly, P1 would get his
disagreement payoff when P3 proposes x

3,Twith probability
w3. P1 realizes a strictly higher payoff when he proposes
x1,T with positive probability w1. Thus the payoff that P1

expects in the final round when he is in the penultimate
round, and hence his reservation payoff in round T � 1, is
greater than his reservation payoff in the final round (or his
disagreement payoff). By backward induction, P1’s reser-
vation utility in round t will then be greater than that in
round t + 1. Similarly, this can be shown to be the same for
all the other players. Accordingly, the distance between the
players’ proposals will be closer in round t than in round
t + 1. Thus if T is large enough, the distance between the
proposals of players in round 1 will be arbitrarily small, and
in the limit as T ! 1, the solution to the game is
deterministic and x* is implemented with probability one.

2.4. Specific Remarks

[19] From the above example it may appear that only the
first round has any meaning. This is true if players imple-
ment the game in the same way, but it assumes they are
sufficiently smart to calculate all the possible moves of all
the other players up to some finitely large number of rounds
into the future. The calculation of other players’ moves is
equivalent to knowing their equilibrium strategies in any
round, where a strategy of a player is defined as how he
would react to a proposal. The players therefore propose a

solution in first round itself, since they would know (by their
own convergence argument) that the solution is the only
proposal agreeable to all. However the assumption of suffi-
cient far sightedness and capacity to know others’ strategies
is too strict. Thus by inverse labeling proposal rounds in the
model specification (with the round when a solution is
achieved labeled as the last round of proposals and the
round when players face their disagreement payoffs as the
first round), we have assumed that the game is implemented
from a round of disagreement and the players propose
onward to a solution. This implicitly assumes that they can
only calculate other players’ strategies one round at a time.
[20] Note that both the kinds of round labeling have the

same set of equilibrium strategies in each round, irrespective
of its label. Hence the arguments of convergence to a solution
are the same in a mathematical sense and the solution of the
game is the same. Thus labeling does not matter if the
solution point is of interest, though it is important in defining
how the game is implemented. Therefore, by relabeling the
proposal rounds as in the subsection of model specification
and convergence, we can also follow from the above example
why the game converges to a solution.
[21] The following two case studies show how uncertainty

influences the equilibrium solution. The first case study is a
simple three-farmer problem under uncertainty. It shows
how uncertainty due to conveyance loss enters the param-
eters of a player’s profit function. This modification in the
preference structure is not due to a change in the player’s
preference, but to his belief of uncertainty in conveyance
loss. It therefore shows, in simple and explicit terms, that
the final allocation solution is affected by a change in
preference parameters of a player (in addition to second-
order effects on other players) due to the presence of
uncertainty. This similarly happens in the second case study.
Here we consider the effect of uncertainty (at different
levels) in the degree of water right transferability on the
bargaining solution of California water policy negotiations
as studied by Adams et al. [1996]. However unlike the first
case study, the effect of change in preference parameters
(due to uncertainty) of one player on the bargaining solution
is not dominant because second-order effects on other
players are stronger. Thus these two case studies serve as
complimentary examples for clear exposition of the effects
of uncertainty on consensus-based decision making and the
value that can be derived by reducing such uncertainty.

3. Case Study I: Three-Farmer Problem

[22] In this case study, we consider bargaining between
three farmers, {F1, F2, F3}, over sharing some surplus
amount of water, X. Their production functions are assumed
to be quadratic in water input [Chakravorty and Roumasset,
1991; Burness and Quirk, 1979]. There is a surplus of
water, X, from which the farmers bargain to obtain a share,
and which is available at a constant price k. The farmers sell
their products at an exogenously fixed and given price p.
The profit function for player i is therefore given by,

pi xið Þ ¼ p a1i x
2
i þ b1i xi þ c1i

� �
� kxi

¼ aix
2
i þ bixi þ ci; and

X3
i¼1

xi ¼ X ð1Þ
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Since the profit functions are concave in water input, ai  0.
[23] One of the three farmers also faces a conveyance loss

from the source of the surplus to his point of use. Such a
loss in conveyance is stochastic in nature. In a bargaining
situation, the farmer facing such a loss then bargains for an
amount such that, after the loss of a physical quantity of
water in conveyance to his cropland, he receives the profit
he expected at the bargaining table. Let g represent the
percentage of water arriving at the farm so that the absolute
loss in conveyance is given by (1 � g)xi. Thus, during
discussions at the bargaining table the profit (or payoff)
function of the loss-facing farmer, Fi, would take the form
(along the lines of Chakravorty and Roumasset [1991]):

pi xi; gð Þ ¼ aig2x2i þ pb1i g � k
� �

xi þ ci

[24] The loss-facing farmer attempts to maximize his
expected profit over various values of g, where the true
value of g is unknown. Therefore the farmer’s expected
profit function depends solely on his perception of the
chances with which various losses can occur. This can
further be translated, for simplicity, to a continuous proba-
bility density function yi(g,a) as a ‘‘model’’ to predict
losses. Here a denotes some abstract parameter set to
describe the density function. We further assume that the
expectation of loss using yi(g,a) is unbiased, or the true
expectation of loss coincides with the predicted expectation.
Thus a farmer’s expected profit function yields the form:

pia xið Þ ¼ E pi xið Þ;a½ � ¼
Z

pi xi; gð Þyi g;að Þ@g

¼ aix
2
i

Z
g2yi g;að Þ@g þ pb1i

Z
gyi g;að Þ@g � k

� �
xi þ ci

¼ ai m2 að Þ þ �g2 að Þ
� �

x2i þ pb1i �g að Þ � k
� �

xi þ ci ð2Þ

Here

m2 að Þ ¼
Z

g � x½ �2yi g;að Þ@g � 0

�g að Þ ¼
Z

gyi g;að Þ@g

where g(a) is the expected loss over the density defined by
the parameter a. If the true expected loss is denoted by x,
then by assumption g(a) = x. m2 (a) is the variance of the
density function defined by a. The variance describes the
spread of the distribution about the expectation, which in
turn explains the uncertainty in the modeled loss being close
to the expectation. The larger the variance, the greater will

be the uncertainty that the predicted loss is close to the
expected. Note that g = 0 (a is a null set) for the case when
none of the farmers is facing a conveyance loss.

3.1. Payoffs

[25] Ideal payoffs are defined as the payoffs that the farmers
receive if there is no scarcity condition. Thus the ideal payoff
of any farmer Fi is his maximized profit, the solution to the
unconstrained profit maximization problem:

pideal
i ¼ max

xi
pi xið Þ : 0  xi;

or

pideal
i;a ¼ max

xi
pia xið Þ : 0  xi;

for the case with uncertainty in xi. Their ideal point
allocation, xi

ideal, in the set of possible alternatives is defined
as the solution to the first-order necessary condition of the
above maximization problem. Disagreement payoffs are
calculated using an unbiased lottery system to allocate the
available surplus.

3.2. Simulations

[26] To investigate and demonstrate the effect of uncer-
tainty in conveyance loss on the bargaining solution for this
case study, we choose the coefficient values (in equations (1)
and (2)) as {ai

1, bi
1, ci, p, k, X} = {�1,3,1,1,1,1}. It is

assumed that each of the three farmers has perfect knowl-
edge about the payoff functions of the other two and that
there is in place an enforcement mechanism under the
CBDM framework that requires all the farmers to be honest
about their payoff functions. All the farmers have equal
representation in the sense that they all have equal bargain-
ing power (w1 = w2 = w3 = 1/3). If the negotiations fail, they
will get their disagreement payoffs. Therefore it is assumed
that if the negotiations fail, the surplus is allocated through a
lottery system. To simplify matters, we consider the farmers
to have the same payoff function coefficients.
3.2.1. Bargaining Under No Loss Conditions
[27] As one would expect, the farmers share the total

surplus equally and each receives an equal allocation of
water under ideal conditions, disagreement conditions, and
equilibrium conditions.
[28] The first row of Table 1 shows the ideal payoffs and

ideal allocations. Payoffs in this row are unconstrained
maximized profits, and the water allocations are its max-
imizers. The second row contains the disagreement payoffs
and corresponding certainty equivalent water allocation. The
third row shows the equilibrium solution. Although the
reservation payoffs are not that low (since we have N = 3),
risk neutral farmers still negotiate because their equilibrium
payoffs are higher than their disagreement payoffs. More-
over, due to the limited quantity of surplus water (because, in
order to achieve ideal payoffs, they would require a total of
three units of surplus), their equilibrium payoffs are less than
their ideal payoffs.
3.2.2. Bargaining Under Loss Conditions With
No Uncertainty
[29] We now suppose that the first farmer faces an

uncertain loss in conveyance. His expectation of the amount

Table 1. Results Under No Loss Conditions: Symmetric Casea

Allocation Payoffs Certainty Equivalent Water Allocation

Ideal 2 1
Disagreement 1.333 0.1835
Equilibrium 1.556 0.3333

aCertainty equivalent water allocation to farmer i is xi
o,T�t in round T � t

when the expected payoff in round T � t + 1 is pi
o,T�t. For t = 1, the

certainty equivalent water allocation is the disagreement certainty water
allocation. Here xi

o,T�t = arg{pi(xi) � po,T�t = 0}.
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of water delivered to the cropland is assumed to have a
value of x = 0.9. Characterization of uncertainties in
conveyance of water must accommodate the possibility of
either seepage losses from a conveyance system or ground-
water return flows entering the conveyance system. There-
fore the variation in losses is assumed to be greater than 1 to
allow for both losses or gains in conveyance. While
counterintuitive, in practice gains are occasionally observed
in canal flows. m2(a) = 0, as we are considering no
uncertainty in loss predictions.
[30] The ideal payoff for the first farmer is reduced

because of these conveyance losses. The entry of loss in
his payoff function changes his expected payoff such that
his ideal allocation is greater than when he faces no losses.
Moreover, his equilibrium payoff also decreases.
[31] Another interesting observation for this simulation is

that the equilibrium payoffs of farmers 2 and 3 are lower
than their equilibrium payoffs when farmer 1 does not face a
loss condition (Table 1). The loss affects all farmer profits,
even though only one of the farmers faces a loss in
conveyance. This observation, however, is subject to the
choice of parameters identifying the profit functions of the
farmers used in the simulations. Table 2 shows that the total
social benefit (sum of equilibrium payoffs of all the farmers),
which is 4.587 units, is less than the total social benefit under
the no-loss condition (4.668 units, from Table 1). This
reduction is due to both the reduced equilibrium payoff of
farmer 1 and to a reduction in equilibrium payoffs of the
other two farmers. It is from this reduction of equilibrium
payoffs that we find the economic utility of reducing
modeling uncertainty, as the next section explains.
3.2.3. Bargaining Under Loss Conditions
With Uncertainty
[32] We now extend the previous section by varying the

level of uncertainty in the losses that farmer 1 may face, to
show how farmer 1’s equilibrium payoff varies with uncer-
tainty. We vary m2 from 0.1 to 0.9. Varying m2 is equivalent
to varying a, which defines a particular probability density
of losses. In essence, varying m2 provides various percep-
tions of loss uncertainty and therefore a loss ‘‘model’’ with
varying prediction uncertainty. These perceptions mathe-
matically represent the estimated density functions of los-
ses. Estimation in turn is never a reality but only an
approximation to it. A better approximation explains reality
better, and hence a better estimated density is closer to the
‘‘true’’ density function. Even though the smallest achiev-
able uncertainty would be bounded from below by the
actual uncertainty (which exists in nature), we have arbi-
trarily selected this lower bound to be 0.1. The previous
assumption that the expected predicted loss coincides with
the actual expectation is maintained for all predictor densi-

ties (g(a) = x = 0.9). This means that the loss expected (in a
mathematical sense) under a particular model (defined by a)
is the same as the ‘‘true’’ loss expectation.
[33] Not surprisingly, the larger the variance in farmer 1’s

prediction of his loss, the lower is his equilibrium profit.
Both the equilibrium total profit and the marginal profit
decline as the variance of predicted losses in conveyance
increases. This can be partially attributed to farmer 1’s ideal
payoff. The greater the uncertainty, the smaller is his ideal
payoff. This in turn reduces his disagreement payoff, which
causes his equilibrium payoff to fall. Figure 2 illustrates this
behavior of equilibrium payoff of farmer 1.
[34] If we assume that a unit increment in the equilibrium

payoff for all the farmers increases their indirect utility by
the same amount, the increment in farmer 1’s equilibrium
payoff with some decrement in uncertainty is the maximum
that he is willing to pay for that decrement in uncertainty.
Thus Figure 2, in a way, plots the willingness to pay off
farmer 1 for certainty when in negotiation for a share in the
available surplus of water.

3.3. Specific Remarks

[35] Some readers may ponder, Why not have the farmers
auction off the surplus water and split the revenues amongst
themselves? This may fetch a better price and thus a larger
revenue surplus to be shared rather than bargain over the
division of surplus at some a priori fixed price. Note that we
have not assumed in the paper that the players have a priori
partial ownership of the surplus. Thus farmers have to
unanimously agree to auction off the surplus first, before
splitting the revenues. However, then this collective deci-
sion will depend heavily upon a later process of revenue
distribution. The players therefore still have to go through a
process that ‘‘fairly’’ distributes the revenue, such as a
consensus-based decision-making process.
[36] What if the owner of the surplus decides to auction

the surplus to a farmer with the highest bid rather than
allowing the farmers to bargain for a share at some fair
price? Though economically efficient, this option will be in
stark contrast to the intent of this paper (which is to provide
a modeling framework for consensus-based decision mak-
ing). Auctions are the purest form of markets. While a
bargaining approach leads to a Pareto inferior (option A is
Pareto inferior to option B when option A, in comparison to
option B, makes at least one party worse off even if all the
other parties are better off) solution to auctions, the latter
totally ignores the equity dimension of revenue distribution
[Thomas and Wilson, 2002]. This lack of equity dimension
in auctions is evident in its monopolistic nature [Bulow and
Klemperer, 1996]. Multilateral bargaining at least allows for
a platform where possible arrangements for equitable dis-
tribution can be discussed [Krishna and Serrano, 1996].

4. Case Study II: California Water Policy
Negotiations

[37] Here we study a more realistic scenario of California
water policy negotiations as considered by Adams et al.
[1996]. In the early 1990s, representatives from agricultural
water agencies, urban water agencies, and environmental
groups attempted to forge a consensus-based solution over
issues relating to California water policy. The major issues
in the negotiations included degree of water right transfer-

Table 2. Results Under Loss Conditions: No Uncertainty

Allocation Farmer Payoffs
Certainty Equivalent
Water Allocation

Ideal 1 1.892 1.0494
Ideal 2 ( = 3) 2 1
Disagreement 1 1.296 0.1921
Disagreement 2 ( = 3) 1.333 0.1835
Equilibrium 1 1.485 0.3403
Equilibrium 2 ( = 3) 1.551 0.3299
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ability, degree of environmental protection and degree of
infrastructure development. A case study by G. Adams
(1993, discussed by Adams et al. [1996]) indicates that all
three groups have distinct preferences over the three issues,
with each group strongly in favor of one issue, strongly
opposed to a second and moderately opposed to the third. In
the following study we consider the effect of uncertainty (at
different levels) in the degree of water right transferability
(due to uncertainty in understanding the underlying physical
processes governing any amount of water transferred after a
policy decision has been made), and how it distorts the
bargaining solution.

4.1. Payoffs

[38] The bargaining (or policy) space for the three interest
groups is three-dimensional. The level of utility that each
player receives from any point in this space is defined by a
constant elasticity of substitution (CES) utility function of
the form [Adams et al., 1996]:

ui xð Þ ¼
P3
k¼1

gi;k qi � xk � xideali;k

� 	2� �xi ! 1�rið Þ=xi

;

x ¼ x1; x2; x3f g; i ¼ 1; 2; 3:

ð3Þ

[39] Here the utility function forms are risk averse,
defined by ri. Again, the players considered are representa-
tives of the farmer group (i = 1), the urban group (i = 2), and
the environmentalists (i = 3). The core issues on the
negotiation table are degree of infrastructure development
(x1), degree of water right transferability (x2), and degree of
environmental protection (x3). xi

ideal is the ideal solution that
the ith player favors the most, while gi,k is the weight that
the ith player attaches to the kth policy variable. xi is the

substitutability coefficient responsible for substitution be-
tween the three policy variables for player i, and qi ensures
that the utility term in the square bracket is always positive.
[40] While Adams et al. [1996] consider the effects of

variation in policy space and coalition breaking on the
negotiation outcomes, we here consider how uncertainty
(at various levels) along one of the dimensions of policy
space affects the outcome of the negotiations. Adams et al.
[1996] consider deterministic games. They draw their con-
clusions by varying the parameters of players’ utility
functions and then repeating the deterministic game, an
approach different from the one that we present here.
However, like Adams et al. [1996], we consider normalized
policy space (feasible policies lying in a unit cube) with the
various parameters of the utility functions (equation (3))
given in Table 3.
[41] Additionally, we consider an uninformed prior (rep-

resented as a uniform distribution) on uncertainty in x2.
Furthermore, this uncertainty is heteroscedastic such that all
players face larger uncertainty in x2 if any of the players,
in any round of bargaining, proposes a higher degree of
rights transferability. In effect, we consider a new variable

Figure 2. Variation of equilibrium profits of farmer 1 with m2 (second central moment).

Table 3. Parameters for CES Utility Form for the Three Players in

the California Water Policy Negotiations

Parameters P1 P2 P3

xi,1
ideal 0.9 0.25 0.1

xi,2
ideal 0.9 1.0 0

xi,3
ideal 0 0.5 0.9

gi,1 0.9 0.9 0.75
gi,2 0.25 0.9 0.5
gi,3 0.75 0.25 0.9
xi �6.0 �6.0 �6.0
qi 1.0 1.0 1.0
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x02 = x2r, where the random variable r � U[1 � p/2,1 + p/2],
which all three players see as effective degree of water right
transferability. Assuming all the players are expected utility
maximizers, their transformed utility functions are of the
form:

u0i x; pð Þ ¼ E
r�U 1�p=2;1þp=2½ �

 X
k¼1;3

gi;k qi � xk � xideali;k

� 	2� �xi 

þ gi;2 qi � rx2 � xideali;2

� 	2� �xi! 1�rið Þ=xi!
;

rx2 2 0; 1½ �8x2
ð4Þ

Here p identifies a level of uncertainty in exact knowledge
of the attainable degree of water rights transferability, x2.
For p = 0, we have our base case, i.e., a case with no
uncertainty. In order to obtain disagreement utility levels for
all the players, we assume that under the bargaining
breakdown condition, all three players receive their least
feasible utility levels ui

o(xi
o,p), where

uoi xoi ; p
� 

¼ min
x2 0;1½ �3

u0i x; pð Þ

[42] Since the ideal policy solution for each player is
considered as a parameter (given in Table 3), it is straight-
forward to note that ui

ideal(xi
ideal, p) is the ideal utility level

for each of the players.

4.2. Simulations

[43] We first demonstrate the convergence of the bargain-
ing game for the base case (p = 0). In all the simulations that
follow, we assume equal bargaining power for all the
players (w1 = w2 = w3 = 1/3). Figure 3 shows the evolution
of the game in pairwise two-dimensional projection of the
policy space. In the policy space showing the degree of
infrastructure development versus the degree of water right
transferability (Figure 3a) and the degree of water right
transferability versus degree of environment protection
(Figure 3b), the proposals of all the players converge from
their ideal points (indicated by circles). In Figures 3a and 3b
the players’ ideal points are located far apart from each
other. Also, their ideal points form their proposals in the last
round. The players are able to propose their ideal points in
the last round, as their disagreement utility levels are the
minimum utility levels that they can achieve within the
feasible policy space. It shows that the policy pairs that each
player proposes are not in good agreement with other

Figure 3. Evolution of the bargaining game under no uncertainty between three players projected in
two-dimensional policy space. Solid lines trace the proposals made by the farmer group, dashed lines
trace the proposals made by the urban group, and dot-dashed lines trace the proposals made by the
environmental group. Circles indicate a player’s ideal allocation point, and pluses indicate the bargaining
solution reached by all three players.
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players’ proposals. However, in the policy pair space of
degree of environmental protection versus degree of infra-
structure development (Figure 3c), the policy pairs proposed
by the farmer and urban groups almost coincide. However,
those are in disagreement with proposals made by the
environmental group.
[44] Such behavior is due to the preference structure of all

the players over the issues. Farmer and urban groups are
identical in their preference for degree of infrastructure devel-
opment, moderately differ over degree of environment protec-
tion, and strongly differ over water right transferability. On the
other hand, the environmental group’s preference over all of
the three issues disagrees with both the farmer group and the
urban group. This is the reasonwhy the proposals of the farmer
and urban group closely agree with each other in Figure 3c and
disagree in Figures 3a and 3b, while proposals of the environ-
mental group never agree with the other two groups.
[45] We now simulate the bargaining game under varying

uncertainty levels, p > 0. Uncertainty levels considered range
from p = 0.02 to p = 0.5, with increments of 0.02. The
expected utility level for each player is numerically calcu-
lated by uniformly sampling r from the interval [1� p/ 2,1 +
p/2] 10,000 times and then evaluating the mean of u00i (x, p) as
an estimate, û0i (x, p), of ui

0(x, p) (equation (4)). Here

u00i x; p; rj
� 

¼
 X

k¼1;3

gi;k qi � xk � xideali;k

� 	2� �xi 

þ gi;2 qi � rjx2 � xideali;2

� 	2� �xi! 1�rið Þ=xi!

û0i x; pð Þ ¼ 1

10000

X10000
j¼1

u00i x; p; rj
� 

rj � U 1� p=2; 1þ p=2½ �; rjx2 2 0; 1½ �

[46] Figure 4 shows the trace of each element of the policy
solution of the bargaining game under varying uncertainty.
Figure 5 shows the trace of the equilibrium utility levels that
the three players thus achieve. With an increasing level of
uncertainty, players agree to a higher degree of infrastructure
development but to lower degrees of water rights transfer-
ability and environmental protection. The urban group has
the highest preference for the degree of water right transfer-
ability, followed by the environmental group and then the
farmer group. However, the farmer and urban groups have
identical preferences for the degree of infrastructure devel-
opment in contrast to the preference of the environmental
group for the same policy variable. Observing increasing
uncertainty in the degree of water right transferability, the
urban group attempts to compensate the loss in its utility by
substituting it with a higher degree of infrastructure devel-
opment than when not facing any uncertainty. This makes
the farmer group stronger in bargaining for a higher degree
of infrastructure development (due to the implicit coalition
with the urban group over the issue). While on one hand this
leads to a higher degree of infrastructure development as an
accepted policy, on the other hand it makes the environmen-
tal group weaker and therefore leads to a lower degree of
environmental protection as an accepted policy.
[47] Figure 5 further supports such an argument. At lower

levels of uncertainty, the urban group is able to increase its
level of equilibrium utility, from the equilibrium utility level
for the base case (p = 0), by substituting it with a higher
degree of infrastructure development. However, at higher
levels of uncertainty it receives lower equilibrium utility
levels, as a higher degree of infrastructure development is
not able to completely compensate for loss in utility levels
due to a lower degree of water right transferability. Also, the
equilibrium utility level of the farmer group increases with

Figure 4. Bargaining solution sets (policy set solutions) under varying uncertainty levels.
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increasing uncertainty level, while the equilibrium utility
level realized by the environmental group decreases.
[48] Therefore, under increasing uncertainty over the

realizable degree of water rights transferability, the biggest
loser is the environmental group and the biggest gainer is
the farmer group; further, the urban group is responsible for
such an observation. Since the preferences of the farmer
group are more closely aligned with the urban group than
the environmental group, it implicitly supports the cause of
the former rather than the latter.
[49] Figures 6a–6c shows how the solution of the bar-

gaining game distorts with increasing level of uncertainty. It
shows, in pairwise projected policy space, that the solutions
get further away from the base case (p = 0) as p increases,
with solution at p = 0.5 (indicated by crosses) at a maximum
distance from the base case solution (p = 0, indicated by
pluses). This distortion leads to an increasing loss in total
equilibrium utility levels (the sum of all three players’
equilibrium utility levels) with increasing uncertainty level.
From Figure 5, we then obtain net willingness to pay for a
reduction in uncertainty level as shown in Figure 6d. Thus
as emphasized earlier, uncertainty adds a form of cost on the
players depending upon their preference structure and how
uncertainty enters into the policy space.
[50] Figures 5 and 6 provide some insight into implica-

tions for water resource management and policy making.
Under a given negotiation structure, the farmer and the
urban groups are, knowingly or unknowingly, collaborators
against the environmentalist group. Just because the first
two groups are more like-minded than the last group, the
environmental group has a weaker say in seeking a higher
degree of environmental protection and against more infra-
structure development. Also, this situation worsens with
increasing uncertainty, in spite of the fact that all three

groups were allowed the same bargaining power in propos-
ing their agendas. Such a situation can lead to unintended
underrepresentation of the environmental group and policies
that lead to higher environmental degradation when lesser
may have been more socially desirable. In such a situation,
additional players such as some government agencies can
weigh in to support the underrepresented group. Another
alternative can be the willingness of the environmental
group to pay for better understanding on water transferability.
Additional policy variables can also be added to dilute the
tradeoff between infrastructure development and environ-
mental protection.

5. Discussion

[51] Cooperative game theory has been used frequently in
various water resource management problems, especially
cost allocation problems. Giglio and Wrightington [1972]
were among the first authors to employ cooperative game
theory in a cost allocation problem. On the basis of the
treatment of Binmore et al. [1986], it can be shown that the
Rausser-Simon model presented in this paper provides a
solution similar to the Nash-Harsanyi solution concept. This
solution concept, in addition to other concepts, has been
important in cooperative game theory applications in cost
allocation problems. For example, Frisvold and Caswell
[2000] discuss these possible mechanisms to allocate costs
of constructing pollution control projects between cities.
Lejano and Davos [1995] compare variants of the nucleolus
concept as a mechanism for cooperative cost allocation of a
joint multiagency water project. One should note, however,
that the use of cooperative game theory (and various
solution concepts within) is not only restricted to cost
allocation problems. After all, cost allocation problems are

Figure 5. Log of equilibrium utility levels for all the players under varying uncertainty levels.
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equivalent to benefit allocation problems (with benefits
accrued by the players defined as the negative of costs
incurred). Thus the same solution concepts can be carried
over to cooperative surplus allocation problems. For
example, Dinar et al. [1992] explores the same solution
concepts for cooperative allocation of benefits from an
irrigation project.
[52] In a similar spirit, this paper employs a variant of the

Nash-Harsanyi solution concept for a general class of
decision problems. The players are modeled to decide
collectively and the dimension of cooperation comes via
consensus building. It subsumes the problems of cost as
well as benefit allocation problems (where a decision
problem is how to divide costs or benefits amongst the
players). It is general because it also allows for hybrid
decision problems such as situations when any decision
harms one party while others benefit and the players want to
arrive at a consensus-based solution. The Rausser-Simon
bargaining model can also ‘‘conceptualize’’ real-world
negotiations where the parties involved may have to accrue
intangible costs or benefits, or even negotiations wherein a
player is a silent observer to negotiations (that is when he
cannot propose a solution but can disagree to others’
proposals).
[53] The richness in the Rausser-Simon bargaining model

is due to its dynamic conceptualization of a consensus-
based decision-making process and its notion of ‘‘power’’.

Any player with a voice in negotiations has nonzero power
and by definition this power partially affects what others
realize (since no one should disagree). This implicitly
models a player’s consideration of other players’ needs in
his proposal. Decomposition of an entire game (negotiation)
into subgames, or rounds, then provides a possible concep-
tualization of negotiations in ‘‘slow motion.’’ This brings
out interaction between the players, their preferences and
powers. Utility maximizing proposals of the players can be
traced over different rounds or subgames, further allowing
for flexibility in representing time as another factor in
negotiations, representing various rounds. Overall, it is thus
possible to understand how and why various players behave
under different settings via their proposals in different
rounds.
[54] For example, when a player has much more to lose

than others if the negotiations fail and is quite different from
others in his preferences, it can be expected that he will
receive a worse deal from any consensus-based decision
making. The paper specifically studies this effect via the
Rausser-Simon multilateral bargaining model. Common to
both the case studies is how uncertainty, which does not
have any explicit associated cost, can make a player weaker
in negotiations than otherwise. One important implication is
that negotiating parties should attempt to reduce such
uncertainties by technological innovations before entering
negotiations. This point has already been discussed in the

Figure 6. (a–c) Distortion in the equilibrium policy solution with varying uncertainty levels. Pluses
indicate the solution for the base case (p = 0), and crosses indicate the solution for p = 0.5. (d) Total
equilibrium utility levels, sum of utility levels for all three players, for p = [0,0.5].
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case studies. Another point is the degree to which it affects
the players and who else (among the players) may benefit
from their investments in uncertainty reduction. This is
where the study of game dynamics becomes important.
Both the case studies show that there are some second-
order effects on the payoffs of other parties that are not
experiencing uncertainties. This is attributable to implicit
coalition formations due to correlated preference structures.
Some parties have a preference structure similar to the
affected party or some parties have correlated preferences
but different from the affected party. While the former set of
parties loses, the latter set collectively gains due to implicit
cooperation against the former. Therefore a cost-sharing
mechanism for uncertainty reduction in negotiations for
water resource policy making can be devised on the basis
of this model dynamics. Then we can infer uncertainty costs
(or implicit benefits) afflicted upon the players and justify
cooperation (at least partially for the correlated set of
affected parties) for cost sharing. For example, unaffected
farmers may want to partially finance canal lining for
reducing conveyance loss for the first farmer, when they
realize it leads to a win-win situation for all. They can even
approximate how much they should invest to be net gainers.
[55] Uncertainty, especially in decision making in water

resource management, can easily occur due to natural
causes. In both our case studies, it can enter due to losses,
insufficient measurement information or approximate model
estimation that disallows exact quantification of water
resource. These case studies additionally show that it can
reduce the overall (total) benefits that can be accrued. Thus
if no party, especially the affected one, is fully capable of
financing uncertainty reduction measures, some government
agency may want to weigh in for overall benefit. Then this
model can help those government agencies to ascertain the
appropriate level of involvement. It also provides some
insight into other roles that such agencies can play. For
example, in the second case study the environmental group
is the party most affected by uncertainty in water rights
transferability, when it is not the party that is directly facing
uncertainty. Further the farmers’ group gains with increas-
ing uncertainty levels. It is obvious that the gaining party
will not have any interest in reducing uncertainty and this
may lead to undesirable consequences for the environment
under increasing uncertainty (in spite of the presence of an
environmental group in negotiations). A government agen-
cy may then want to enter the game dynamics to avoid such
consequences. It can do so (1) by entering the game as a
player, (2) by supporting uncertainty reduction measures, or
(3) indirectly by making other players aware of the negative
consequences on the environment and attempt to change
their attitudes toward the environmental dimension of
policy making. Specific interests within a consensus-based
decision-making process can also be promoted by better
representation of interests at the bargaining table. Uncer-
tainty can also be incorporated as an additional policy issue
in decision making. A player or an interest group cannot be
held responsible for uncertainty when it is due to natural
causes. Thus, if uncertainty (faced by some due to natural
causes) is incorporated as another dimension of decision
making, its isolated effects on specific parties can be
partially removed via the game dynamics. However, such

an arrangement is highly unlikely as those players who are
not directly affected by uncertainty (and they know it) will
be reluctant to include it as one of the topics of bargaining.
[56] It has to be stressed that the dynamics of the Rausser-

Simon model is of use in modeling consensus-based deci-
sion making (with or without uncertainty) when the players
are rational and honest, can be represented as utility max-
imizers, and follow the rules (which are set a priori) of
bargaining. The notion of rationality and honesty cannot
always be ensured, since they are hard to quantify. Related
to the same point is the interpretation of model results. It is
limited by the level of accuracy with which its parameters,
such as default power, bargaining power, ideal points,
perception of uncertainty by various players, each player’s
level of information about other players’ preference, etc. can
be quantified. Bargaining solutions via a multilateral bar-
gaining model are sensitive to these parameters in varying
degree. These sensitivities further depend on the allocation
problems in hand. Thus solutions can be highly uncertain
due to uncertainty in the estimation of model parameters.
Also, improvements in the model need to be made by
including temporal dynamics over successive rounds in
players’ behavior [Thoyer et al., 2001]. This additional
structure may help accommodate the pace at which real-
world negotiations take place. Finally, bargaining itself
cannot always be recommended as the most appropriate
institution to facilitate consensus-based decision making. In
real-world situations, bargaining may not start if all the
players do not agree upon the terms and conditions of
bargaining (‘‘the parameters’’). Even if bargaining starts, it
can take significant time before any solution is reached, or it
may not even converge. To allay such disadvantages of
bargaining, hybrid institutions can be formulated [Milgrom,
1989; Elyakime et al., 1997]. For example, the players may
collectively decide to auction off the surplus in the three-
farmer case study, provided they have already negotiated on
how to share future revenues from the sell-off. The players
then have an additional incentive to reach an agreement on
the shares if they do not want to miss high market prices due
to scarcity.

6. Conclusions

[57] Rausser and Simon’s multilateral bargaining model
was utilized to simulate the CBDM processes. Two case
studies were analyzed under this framework. Though the
success of such a framework crucially depends on the
institutional structure of the negotiations, it was assumed
that a sufficient legal and institutional framework was in
place to address this requirement. In both case studies, we
observed that the bargaining solution under uncertainty
deviates from the solution under no uncertainty. Moreover,
the deviation increases with higher levels of uncertainty.
This increasing deviation with uncertainty also quantified
the willingness to pay for a reduction in uncertainty.
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