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[1] In the tropics and subtropics, most fires are set by humans for a wide range
of purposes. The total amount of burned area and fire emissions reflects a complex
interaction between climate, human activities, and ecosystem processes. Here we
used satellite-derived data sets of active fire detections, burned area, precipitation, and
the fraction of absorbed photosynthetically active radiation (fAPAR) during 1998–2006
to investigate this interaction. The total number of active fire detections and burned
area was highest in areas that had intermediate levels of both net primary production
(NPP; 500–1000 g C m�2 year�1) and precipitation (1000–2000 mm year�1),
with limits imposed by the length of the fire season in wetter ecosystems and by
fuel availability in drier ecosystems. For wet tropical forest ecosystems we developed a
metric called the fire-driven deforestation potential (FDP) that integrated information
about the length and intensity of the dry season. FDP partly explained the spatial
and interannual pattern of fire-driven deforestation across tropical forest regions.
This climate-fire link in combination with higher precipitation rates in the interior
of the Amazon suggests that a negative feedback on fire-driven deforestation
may exist as the deforestation front moves inward. In Africa, compared to the Amazon, a
smaller fraction of the tropical forest area had FDP values sufficiently low to prevent
fire use. Tropical forests in mainland Asia were highly vulnerable to fire, whereas forest
areas in equatorial Asia had, on average, the lowest FDP values. FDP and active fire
detections substantially increased in forests of equatorial Asia, however, during El Niño
periods. In contrast to these wet ecosystems we found a positive relationship between
precipitation, fAPAR, NPP, and active fire detections in arid ecosystems. This relationship
was strongest in northern Australia and arid regions in Africa. Highest levels of fire
activity were observed in savanna ecosystems that were limited neither by fuel nor by the
length of the fire season. However, relations between annual precipitation or drought
extent and active fire detections were often poor here, hinting at the important role
of other factors, including land managers, in controlling spatial and temporal
variability of fire.
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1. Introduction

[2] In the tropics and subtropics, fire is used for several
purposes including the clearing of forest for pasture or
agriculture [Goldammer, 1990; Cochrane, 2003], for nutri-
ent cycling, pest control, and grassland maintenance in

savanna ecosystems [Scholes and Archer, 1997], and for
the removal of agricultural waste [Yevich and Logan, 2003].
The only areas without fires are deserts where fuels are not
available and in equatorial tropical forests where precipita-
tion is high year-round. Savanna ecosystems with their
alternating wet and dry seasons when fuels respectively
build-up and dry out provide ideal fire conditions and
observations of fire from space have shown that these
ecosystems have the highest fire frequencies [Cahoon et
al., 1992; Barbosa et al., 1999; Stroppiana et al., 2000].
[3] Fire dynamics in deforestation areas of tropical forests

have received considerable attention because of, including
the large impact of fire on regional biodiversity [Phillips,
1997; Curran et al., 2004] and because emissions from
these fires are an important driver of climate change
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[Forster et al., 2007]. Deforestation is a human-driven
process, and deforestation rates are partly dependent on
political and economic incentives [Murdiyarso et al., 2004;
Morton et al., 2006]. Climate, however, may provide
additional constraints because the use of fire in the land
clearing process is more effective when fuels dry out for
longer periods. Emissions in deforestation areas are there-
fore usually higher in drought years [Siegert et al., 2001;
Page et al., 2002; Nepstad et al., 2004; van der Werf et al.,
2004; Randerson et al., 2005] and the use of fire may
increase in the future as a result of regional and global
climate change [Hoffmann et al., 2003]. Once burned,
fragmentation and partial loss of canopy cover allow for a
more rapid drying of fuels. This initiates a positive feedback
loop that may increase fire activity in tropical forests
[Cochrane et al., 1999; Nepstad et al., 1999].
[4] In most savanna ecosystems, the length of the dry

season is not a limiting factor for fire. The amount of fuel is
much lower than in forested regions. Fires here primarily
consume herbaceous vegetation and thus fuel loads depend
on the productivity of the preceding wet season. In principle,
higher precipitation rates allow for higher rates of net
primary production (NPP) and biomass at the onset of the
dry season [Griffin et al., 1983]. In Kruger National Park,
van Wilgen et al. [2000] observed a strong positive corre-
lation between precipitation rates during the wet season and
fire activity during the following dry season. Spessa et al.
[2005] and Randerson et al. [2005] found the same positive
precipitation - fire activity relationship in northern Australia
using different satellite data sets.
[5] Besides precipitation, grazing and land use also in-

fluence fuel loads so the precipitation–fire relation may not
be uniform. Grazing may lower the amount of fuel and the
intensity of fires, allowing for woody encroachment which
would not occur with more intense fires [van Langevelde et
al., 2003]. These interactions may influence the relationship
between climate and fire activity. In the absence of fire,
most current savanna regions would have a vastly different
composition with substantial increases in tree cover [Bond
et al., 2005].
[6] Regional studies like the ones mentioned above have

convincingly highlighted the important role of climate in
shaping spatial and interannual variability in fire activity. A
global analysis of the tropics and subtropics that systemat-
ically examines the sensitivity of fire activity across mois-
ture and productivity gradients is now feasible with almost
10 years of satellite-derived fire activity and precipitation
from the Tropical Rainfall Measuring Mission (TRMM)
satellite.
[7] Here we investigate relations between climate, NPP,

and fire activity in the global tropics and subtropics. We
used observations of fires derived from TRMM Visible and
Infrared Scanner (TRMM-VIRS) [Giglio et al., 2003] and
burned area derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) [Giglio et al., 2006]. We also
used TRMM satellite retrieved precipitation rates, and Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) fraction of
absorbed photosynthetically active radiation (fAPAR) as
input to the Carnegie-Ames-Stanford-Approach (CASA)
biogeochemical model to estimate NPP. We show fire

activity was highest in ecosystems with intermediate levels
of productivity and that fires limited by fuel availability in
arid regions and by the length of the dry season in moist
regions. We also show how climate partly regulated the
amount of burning in tropical forests with important impli-
cations for future deforestation rates. Our quantitative
assessment of the role of climate in shaping spatial and
temporal variability in fire activity may be beneficial for
further improving and testing fire modules in dynamic
global vegetation models (DGVMs) aiming to predict
future fire patterns.

2. Data Sets and Methods

[8] For our analysis we used several data streams from
sensors on-board the TRMM satellite, which has an orbit
inclined at 35� and a spatial coverage between 38�N and
38�S [Kummerow et al., 1998]. The orbital properties of
TRMM were designed to allow for a progressing overpass
time, spanning over one complete diurnal cycle within a
month. This allows for a comprehensive assessment of
rainfall and fire activity, both of which show pronounced
diurnal cycles [Prins and Menzel, 1992; Negri et al., 2002;
Giglio, 2007]. The platform carries several instruments,
including the Precipitation Radar (PR) and TRMM Micro-
wave Imager (TMI) that were primarily designed to study
rainfall [Kummerow et al., 1998], and the Visible and
Infrared Scanner (VIRS) that is used to observe fires [Giglio
et al., 2003] in addition to its use for other purposes. We used
fAPAR from SeaWiFS on the SeaStar satellite to estimate
NPP. TRMMwas launched in November 1997 and SeaWiFS
in August 1997, and both satellites are still in operation. We
used data from January 1998–November 2007, but focused
on the 1998–2006 period for those analyses where annual
data was needed (e.g., trends in fire activity). Analysis of
burned area was confined to the 2001–2006 period because
of the availability of MODIS observations. Tropical forest
extent was based on the IGBP land cover classification
scheme using the MODIS MOD12Q1 land cover type data
set for 2001 [Friedl et al., 2002].

2.1. Active Fire Detections

[9] Active fire detections are pixels where a fire was
observed during the satellite overpass. Most algorithms to
detect fires are based on the strong radiance from fires in
the mid-infrared [Dozier, 1981]. Active fire products have
been developed for several sensors including the Advanced
Very High-Resolution Radiometer (AVHRR), Along Track
Scanning Radiometer (ATSR), MODIS, and VIRS. Here we
used the TRMM-VIRS product that includes corrections for
missing observations due to cloud cover [Giglio et al.,
2003]. TRMM-VIRS active fire detections are available on
a monthly time step with a 0.5� � 0.5� spatial resolution
from http://daac.gsfc.nasa.gov/precipitation/trmmVirsFire.
shtml and shown in Figure 1a.

2.2. Burned Area

[10] Active fire detections indicate the presence of fire at
the time of overpass, but these detections give no direct
information about fire size. Although active fires are useful
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to detect spatial and temporal variability in fire activity,
information on burned area is necessary to estimate the
spatial extent. Two global burned area data sets exist for
the year 2000 (GBA2000 described byGrégoire et al. [2003]
and GLOBSCAR described by Tansey et al. [2004]). Multi-
year products based onMODIS [Roy et al., 2005] and SPOT-
VGT [Tansey et al., 2008] recently have become available.
Here we used data from the global burned area product
developed by Giglio et al. [2006]. This product relates Terra
MODIS fire hot spots to 500 meter Terra MODIS burned area
for selected regions, using ancillary data on vegetation
continuous fields and the ‘‘cluster’’ size of the hot spots. A
region-specific ‘‘burned area per active fire detected’’ scalar
is derived as a function of these ancillary data, and extrap-
olated in time and space to estimate burned area during the
MODIS era (starting in 2001) [Giglio et al., 2006]. For
clarity, we will use the term burned fraction, which is the
fraction of the total area of a grid cell that burned during a
given time interval.

2.3. Precipitation

[11] We used the 3B43 time series from TRMM that is
based on accumulations of the direct TRMM measurements
from both PR and TMI sensors in combination with global
gridded rain gauge data. The time series has a monthly time
step and a 0.25� � 0.25� spatial resolution [Huffman et al.,
1995]. A map with mean annual precipitation (MAP) is
shown in Figure 1b.

2.4. fAPAR and NPP

[12] To estimate the fraction of photosynthetically active
radiation that is absorbed by plant canopies (fAPAR), we
used the SeaWiFS-derived product developed by Gobron et
al. [2002]. This product uses information from the blue
spectral band, which is sensitive to the aerosol loading in
the atmosphere, to account for atmospheric effects. The
algorithm follows two steps: (1) the spectral bidirectional
reflectance factors measured in the red and near-infrared
are first rectified for atmospheric contamination using the
blue band and adjusted to account for angular effects, and
(2) the rectified red and near-infrared bands are then
combined to derive fAPAR [Gobron et al., 2006].
[13] For NPP we used a submodule from the CASA

biogeochemical model [Potter et al., 1993]. NPP was
calculated for each grid cell and month as the product of
photosynthetically active radiation (PAR), fAPAR, and a
light use efficiency (LUE) that depended locally on temper-
ature and moisture [Field et al., 1998]. PAR was derived
from Bishop and Rossow [1991] and we used GISTEMP
temperature anomalies [Hansen et al., 1999] in combination
with the CRU 1961–1990 temperature climatology [New et
al., 1999] and TRMM precipitation as data sources to
calculate the moisture and temperature controls on the
LUE. In our analysis we used a maximum unstressed LUE
of 0.5 g C/MJ PAR that was derived from a comparison of
modeled and observed NPP [van der Werf et al., 2006]. In
Figure 1c a map of mean annual NPP is shown. Mean annual

Figure 1. (a) TRMM-VIRS active fire detections (year�1, color scale capped at 500 detections year�1),
(b) TRMM-derived precipitation rates (mm year�1, capped at 3000 mm year�1), and (c) net primary
production (g C m�2 year�1) based on SeaWiFS fAPAR. Fire data were summed, and precipitation and
NPP were averaged to a 1� � 1� spatial resolution. All panels show the mean over 1998–2006.
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NPP was 40 Pg C year�1 for our study region (between
38�N and 38�S).

2.5. Fire-Climate Metrics

[14] Our main objective was to determine the role of
climatic controls on spatial and interannual variability in fire
activity. For this, fire activity was quantified as the total
number of active fire detections or the burned fraction during
each fire season. For each grid cell, we defined the fire season
as the period starting 3 months before and ending 4 months
after the average peak fire month (Figure 2). In most areas
fires were confined to a seasonal interval that was consider-
ably shorter than the 8 month fire season we defined here.
Thus, over 98% of all TRMM active fires were included in
our analysis. The remaining active fire detections were
associated with volcanoes, gas flares, and fires burning
outside the regular fire season. In Australia, where interan-
nual variability in the peak fire month is relatively large, our
approach still captured 94% of the fire detections. We defined
the peak fire month as the month with the maximum number
of active fire detections over 9 annual fire cycles. We defined
a fuel accumulation period as the 13 month period starting 12
months before the average peak fire month. We chose this
period to include most of the precipitation available for the
growth of annual (herbaceous) plant functional types during
the preceding wet season (Figure 2).
[15] We defined a fire-driven deforestation potential

(FDP) scalar to investigate the role of drought on fire
activity in tropical forests. The FDP scalar combines infor-
mation about both the length and the intensity of the dry
season:

FDPx;y;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#DMx;y;t=8
� �

� 1� PPTDMx;y;t
=100

� �� �q
ð1Þ

where #DM is the number of dry months within the 8 month
fire season. Dry months were defined as a month with
precipitation (PPT) below 100 mm month�1 [Phillips et al.,
1994; Saleska et al., 2003]. PPTDM represents the mean
precipitation during these dry months. This scalar was
calculated for each grid cell (x,y) and fire season (t) and
yielded a value that was 1 for grid cells with 8 months with
zero precipitation, and 0 when precipitation never dropped
below 100 mm month�1 during the fire season. For the
tropical forest grid cells that did not have any active fire
observations to define a peak fire month, we extrapolated
the peak fire month from neighboring grid cells, taking into
account shifts in PPT expected near the equator.

3. Results

[16] In deforestation areas within Southeast Asia and
the Amazon, fire activity increased during dry years
(Figure 3a, areas in red with a positive correlation between
FDP and active fire detections), whereas in arid ecosystems,
including the Sahel, the Kalahari Desert in southern Africa,
and northern Australia, fire activity increased during wet
years (Figure 3b, areas in red with a positive correlation
between precipitation rates during the fuel accumulation
season and active fire detections). In Figure 3c these two
different responses are summarized for different p-levels,
areas in red are grid cells where FDP and fire activity were
positively correlated, while areas in blue are grid cells where
precipitation during the growing season and fire activity were
positively correlated. Areas having a negative or positive
relation between fire and both FDP and PPT during the
growing seasonwere assigned the limiting factor that resulted
in the lowest p-value.
[17] The difference in response to drought is shown inmore

detail for a wet (southern Borneo) and an arid (northwest
Australia) ecosystem in Figure 4. Fire activity in wet eco-
systemswas limited by the length of the dry season, while fire
activity in arid ecosystems was limited by the amount of
precipitation during the wet season, which partly governed
fAPAR and the amount of fuel available to burn (Figure 4c).
[18] Areas receiving about 1000 mm year�1 MAP were

neither limited by fuel nor by the length of the dry season,
but there was no clear MAP threshold separating the two
limiting factors. In wet ecosystems where interannual
variability in FDP explained more than 50% of the
variance in interannual fire activity the 10th percentile,
median, and 90th percentile MAP values were 881, 1564,
and 2717 mm year�1. In arid ecosystems where IAV in
growing season precipitation was a better predictor these
MAP values were 408, 658, and 1377 mm year�1, respec-
tively. Maximum fire activity occurred at intermediate levels
of precipitation and NPP (Figures 5 and 6). Below we further
describe results for deforestation regions, ecosystems with
intermediate productivity, and arid ecosystems.

3.1. Tropical Forest Ecosystems

[19] In southern Borneo, we found a strong relationship
between fire and the length and intensity of the dry season
as represented by FDP (Figures 3a and 4a). FDP and fire
activity were also positively correlated in most of the arc of
deforestation in the Amazon (the south-eastern edge of the

Figure 2. Mean monthly precipitation rates and active fire
detections for all grid cells where fire activity was observed.
The fire season is defined here as the 8-month period starting
3 months before and ending 4 months after the peak fire
month (PFM). The 13-month period preceding and including
the peak fire month was used to estimate precipitation
levels during the period when herbaceous fuels typically
accumulate.
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Amazon where most deforestation takes place) and in
Africa, but to a lesser degree than in Borneo.
[20] The mean annual FDP scalar varied substantially

within the tropical forest biome (Figure 7a). In tropical
America FDP values were high in the arc of deforestation
(Figure 1a). Further into the interior FDP values were lower
indicating that future fire use may not be as effective or
prevalent as it is at the current deforestation front. A similar
gradient was observed in Africa, but the total area with low
FDP values was smaller, and areas having high precipitation
year-round were limited as compared with the Amazon
(Table 1). In Southeast Asia, all tropical forests on the
mainland had high FDP values whereas the tropical forests
areas closer to the equator (Malaysia, Indonesia, Papua New
Guinea [PNG]) had low FDP values. Exceptions occurred
on the island of Java and the southern part of PNG; these
regions experienced an extended dry season annually. Asia
had the highest area (both actual area and percentage) of
forest with FDP values below 0.3 suggesting that from a
climate perspective these forests may be less vulnerable
than those in America or Africa (Table 1). Nevertheless,
even in low FDP regions of Asia fires were detected (Figure
1a).

[21] The maximum FDP over the 1998–2006 period
(Figure 7b) had a similar pattern as the mean FDP
(Figure 7a), except for the north-eastern Amazon and
equatorial Asia. These regions are influenced by interannual
variations in weather patterns related to the El Niño-
Southern Oscillation (ENSO) [Ropelewski and Halpert,
1987]. This variability is most apparent from Figure 7c,
where the FDP standard deviation over 1998–2006 is
shown. One implication of this variability is that although
southern Borneo had a low mean annual FDP indicating
that climate typically limits human use of fire, during El
Niño years the region may be as vulnerable to fire as fire-
prone regions in the arc of deforestation in Brazil.

3.2. Ecosystems With Intermediate Productivity

[22] In all regions, fire activity peaked between 1000
and 2000 mm year�1 of annual precipitation, or 500–
1000 g C m�2 year�1 of annual NPP. In Africa, the peak
was more clearly defined and fire activity decreased when
precipitation exceeded 1500 mm year�1 (Figures 5 and 6).
These areas correspond mostly to productive savannas, but
also include some forests in Africa and South America
(Figure 1). Within these ‘‘optimal’’ precipitation or NPP

Figure 3. (a) Correlation between annual FDP and the sum of active fire detections during each fire
season, showing positive correlations in deforestation areas (Central and South America, southeast Asia)
and other regions with high biomass loads (e.g., wooded areas in Africa south of the Congo basin).
(b) Correlation between cumulative precipitation over the fuel accumulation season (defined in Figure 2
as the wet season preceding the fire season) and active fire detections during the fire season showing
positive correlations in fuel-limited ecosystems, most notably northern Australia. (c) p-values for grid
cells showing a positive relation between FDP and active fire detections during the fire season (in red)
and for grid cells showing a positive relation between cumulative precipitation over the fuel accumulation
season and active fire detections during the fire season (in blue). Note that red grid cells in Figure 3b
correspond to blue grid cells in Figure 3c.
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bands, interannual variability in fire activity was often not
related to climate indicating that other factors were equally
important for explaining the spatial and interannual variabil-
ity of fire activity here (see the discussion section).
[23] Africa had on average the highest burned fraction in

these intermediate precipitation and productivity ecosys-
tems, followed by Australia (Figures 5 and 6). It is impor-
tant to note that the data plotted in Figures 5 and 6 were
averaged over whole continents for the precipitation or NPP
bins, and that variability between grid cells was large.

3.3. Arid Ecosystems

[24] At the low end of the precipitation range fire activity
increased with increasing levels of precipitation or NPP

(Figures 5 and 6). The relation between precipitation or
NPP and burned fraction was often close to linear in these
arid ecosystems, except in Africa where there seemed to be
a threshold above which fires occurred that is higher than in
other regions.
[25] Northern Australia provided the clearest example of

the dependence of fire activity on climate in arid ecosys-
tems, both spatially (Figures 1a and 1b) and temporally
(Figures 3b, 4b, and 4c). In the interior where precipitation
rates were low, fires were non-existent. Toward the northern
coast, precipitation increases (Figure 1a) were linked with
increases in both active fire (Figure 1a) and burned area
(Figure 6d). The same gradient was observed in northern
Africa, where no fires occurred in the Sahara but substantial

Figure 4. Time series of monthly precipitation and active fire detections for (a) a wet ecosystem
(southern Borneo, latitude 2�S–4�S, longitude 110�E–116�E) where fire activity was higher during
drought periods, (b) an arid ecosystem (northwest Australia, latitude 17�S–20�S, longitude 114�E–
131�E) where fire activity was higher after a wet season with abundant rainfall, and (c) the same region as
Figure 4b with average monthly fAPAR (not available for 2006) plotted instead of monthly precipitation.
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fire activity occurred in the Sahel. Moving into more
productive ecosystems further south, the positive correlation
between precipitation and active fire detections decreased.

3.4. Trends in Fire Activity

[26] Active fire detections decreased during 1998–2006
in all major biomass burning regions in the tropics and
subtropics, except in the arc of deforestation and in Indo-
nesia (Figure 8). This result did not change when we
excluded 1998 (a high fire year) from the time series,
although the decrease in eastern Borneo and Central Amer-
ica -both of which burned extensively in 1998- was smaller.
In the arc of deforestation in the southern Amazon the
northward movement of the fire front (toward the interior of
the basin) is clearly visible. Due to high fuel loads,
deforestation fires lead to a higher number of active fire
detections per unit of burned area than fires in land uses
that follow deforestation, such as agriculture or pasture [van
der Werf et al., 2003]. A clear deforestation front was not
visible in the main deforestation regions in Indonesia
(northeast Sumatra and southern Borneo), suggesting a
more distributed pattern of development.
[27] In many savanna regions year-to-year variability was

large and limited our ability to detect long-term trends.
Especially in Australia where interannual variability was
large the statistical significance was poor (Table 2). How-
ever, also in other regions significant decreasing trends (with
p less than 0.05) was observed in only a small percentage of
grid cells �14% for America, 17% for Africa, and 10% for

Asia (Table 2). We did a similar trend analysis using ATSR
active fire detections, which allowed for analysis of an
11 year period (July 1996–June 2007, not shown). This
gave similar results with decreasing fire activity in savanna
ecosystems in South America and Africa, but the decrease in
Australia was not as widespread as when only taking the
1998–2006 or 1999–2006 period into account because of
low fire activity in 1997. Within Africa, the trend was
stronger and more robust in northern Africa than in southern
Africa.

4. Discussion

4.1. Tropical Forest Ecosystems

[28] In wet tropical forest ecosystems the number of
detected active fires was closely linked with the length
and intensity of the dry season (Figure 9). Not all fires
detected in this biome were necessarily deforestation fires;
some fires may have resulted from pasture or agricultural
waste burning in areas already deforested. For this study,
however, we assumed that all or at least most of the fire
detections were deforestation fires because they occurred in
areas previously classified as tropical forest and because
they are associated with the progressing fire front (Figure 8).
Using higher resolution data, it may be possible in the future
to more quantitatively partition active fire detections and
burned area into deforestation and other land use activities.
[29] Interannual variability in climate was largest in Asia,

having a marked impact on fire activity from year to year

Figure 5. Mean burned fraction over a precipitation gradient for (a) North and South America
between 38�N and 38�S, (b) Africa, (c) Asia south of 38�N, and (d) Australia. Values were averaged
over 200-mm year�1 precipitation bins.
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(Figure 3a). Although in America and Africa the majority of
the grid cells showed dependence of active fires on climate
(Figure 3a), this relation was not as clear and uniform as in
Asia with its larger interannual variability. Past work has
shown that fire activity increases during drought years in
specific regions undergoing deforestation [Cardoso et al.,

2003; Nepstad et al., 2004]. Our results indicate, however,
that the drought–fire relation is not uniform and is weaker
in the Amazon and Africa than in Asia (Figure 3a). In the
Amazon most fire-driven deforestation occurs in the south-
ern part of the basin. Here, the relatively long dry season
may never fully limit the use of fire, so that fires can be

Figure 7. (a) Mean, (b) maximum, and (c) standard deviation of fire deforestation potential (FDP) for
all tropical forest grid cells for 1998–2006. High FDP values indicate climate conditions suitable for the
use of fire.

Figure 6. Mean burned fraction over a net primary production (NPP) gradient for (a) North and South
America between 38�N and 38�S, (b) all of Africa, (c) Asia south of 38�N, and (d) Australia. Values were
averaged over 100-g C m2 year�1 NPP bins.
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ignited each year.Morton et al. [2006] showed that the price
of soy and deforestation rates was positively correlated in
the state of Mato Grosso in the southern Amazon, suggest-
ing that socio-economic factors play an important role in
interannual variability of deforestation rates. On the basis of
the results presented here, climate also drives interannual
variability in deforestation rates, although more research is
needed to quantify the relative importance of these two sets
of drivers and interactions between them. The role of
climate in determining variability in fire activity, however,
may increase in the future in the southern Amazon as the
deforestation front moves to regions which experience a
shorter dry season (Figure 7a).
[30] Our results have several implications for future fire-

driven deforestation rates. Projections of future deforesta-
tion are generally based on the construction of roads,
population densities, and other socio-economic incentives
[e.g., Laurance et al., 2004]. However, if fire is used as a
primary tool in the clearing process, then climate (and
specifically the moisture balance of tropical forests) should
also be included in these scenarios. Our FDP scalar provides
a measure of the potential vulnerability of forests to human
fire use, solely considering climate effects. The actual rate
of deforestation will depend on many other factors in
addition to climate, including nearby infrastructure, eco-
nomic incentives, and changes in global markets [Cardoso
et al., 2003].
[31] If the deforestation front in the Amazon progresses

further into the interior with time, the dry season will be
shorter and fire will not be as useful as a tool in the land
clearing process. This has the potential to limit rates of land
clearing, although the importance of this limitation may

vary regionally and will depend on the availability of
mechanized equipment and access to international markets
(and thus to variability in global commodity prices). More-
over, Hoffmann et al. [2003] showed that in most tropical
forest areas future climate may increase fire risk because
droughts may become more severe.
[32] Future fire conditions at the deforestation front thus

depend partly on the balance between the pace of global and
regional climate change and the speed of deforestation. In
the Amazon, most models indicate reduced precipitation
during the dry season [Christensen et al., 2007; Malhi et al.,
2008] which would increase fire risk, although some models
predict an increase in available moisture (precipitation
minus evapotranspiration) in the future which has the
potential to lower fire risk [Held and Soden, 2006]. Models
predicting lower precipitation during the dry season show
that the interior of the Amazon will be less impacted than
the fringes; this indicates that areas having low FDP values
now may continue to have low vulnerability during the
remainder of the 21st century. Key to regional climate
change may be the patchiness of deforestation; complete
deforestation will lead to a stronger reduction in precipita-
tion than if patches of forest remain [Chagnon et al., 2004].
[33] The largest area of forest with low mean FDP values

was in Asia. In Indonesia, FDP was generally low and
periods with high fire activity coincided with El Niño
periods. In this region, most of the variability occurred in
the southern part of Borneo, which was severely impacted
by ENSO and where widespread fires burned during 2002
and 2006. In the future, fire-driven deforestation rates here
will be depend on how the ENSO regime changes. ENSO
may intensify with climate warming, increasing fire vulner-
ability during the El Niño phase [Li et al., 2007] although
this is still a point of contention [Christensen et al., 2007].
[34] Forests in the Congo basin had a greater vulnerability

to fire use as compared with tropical forests in South
America and Asia. In the Congo basin, however, fewer

Figure 8. Linear trend of TRMM-VIRS active fire detections (active fire detections per year) during
1998–2006. Fire activity decreased in most savanna ecosystems in Central and South America, Africa,
and Australia. The inward movement of the fire front is visible in the arc of deforestation in the Amazon,
and fire activity has increased in deforestation regions in Indonesia.

Table 1. Total Area (Million km2) or Percentage of Tropical

Forest Area Below FDP Thresholds for Tropical America, Africa,

and Asia

FDP
Threshold

Total Forest Area (M km2) Percent of Forest Area

America Africa Asia America Africa Asia

<0.1 1.09 0.02 1.58 11 1 21
<0.2 1.73 0.10 2.58 18 3 34
<0.3 2.56 0.26 3.15 26 8 41
<0.4 3.32 0.56 3.66 34 18 48
<0.5 4.71 1.11 4.10 48 36 53
<0.6 6.74 1.97 4.47 69 64 58
<0.7 8.45 2.70 5.04 87 87 66
<0.8 9.21 3.05 5.69 95 98 74
<0.9 9.26 3.07 5.82 95 99 76
<=1.0 9.72 3.09 7.68 100 100 100

Table 2. Percentage of Grid Cells With an Increasing (Positive) or

Decreasing (Negative) Trenda

Statistical
Significance

America Africa Asia Australia

+ � + � + � + �
All grid cells 33 67 22 78 42 58 25 75
Cells with p < 0.05 4 10 1 16 4 6 1 4

aOnly grid cells with a slope greater than 5% per year were taken into
account.
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fires were observed in tropical forest areas as indicated by
the number of fire detections per grid cell (Figure 9b),
providing qualitative evidence for less fire-driven defores-
tation than in the Amazon.

4.2. Intermediate and Low Productivity Ecosystems

[35] Savanna ecosystems with intermediate levels of pro-
ductivity had the highest fire frequency. During the annual
prolonged dry season these ecosystems experience, herba-
ceous fuels dry out and the landscape becomes vulnerable to
fire. Although our results clearly showed that these were the
most frequently burning regions because they were neither
limited by fuel loads nor by the length of the dry season,
variability in this region could not be explained solely by
variability in climate (Figures 5 and 6).
[36] In savanna ecosystems, the seasonal timing of igni-

tion by humans probably varies with different land use and
fire practices. Fires may be set late in the dry season to
increase their intensity and effectiveness in removing shrubs
and saplings. In contrast, fires may also be set in the
beginning of the dry season to limit erosion and loss of soil
nutrients [Williams et al., 1998]. These different practices
may contribute to the large spread and high standard devia-
tions (usually exceeding the mean values plotted in Figures 5
and 6) we found in these intermediate productivity ecosys-
tems. These intermediate ecosystems may also contain
patches of intact forest as is the case, for example, in the
southern Amazon. Here, economic and political incentives
may be important drivers of interannual variability of fire
activity (see above). In Africa where we found less fire in
tropical forests than in the Amazon (Figure 9) and where the
majority of the fires were detected in savanna areas, the
relation between precipitation and active fire detections was
less variable than in other regions. Here, when precipitation
rates exceeded 1500 mm year�1 fire activity decreased
substantially. This was less evident in America and Asia,
where fires are used extensively in the deforestation process
[Morton et al., 2006; Langner et al., 2007].
[37] Interactions between climate, grazing, agriculture,

and fire are complex and can vary regionally with different
patterns of land use. In northern Africa, for example, grid
cells with a strong positive response between precipitation

and fire activity were immediately adjacent to grid cells
with a negative response, despite having similar climate and
plant functional type distributions. In the more productive
parts of these intermediate ecosystems, interannual variabil-
ity in fire activity was partly linked to climate. In the
woodlands in southern Africa fire activity increased during
drought years (Figure 3a), probably because fires not only
combusted the herbaceous layer but also shrubs and trees so
that fuel loads depended less on precipitation rates during
the preceding wet season.
[38] In semi-arid ecosystems, the underlying mechanisms

for the strong positive correlation between precipitation and
fire activity are not fully understood. Many of these areas
experience intensive grazing, including northern Australia
[Fensham et al., 1999]. An important question for future
research is to identify the degree to which land managers in
arid ecosystems modify ignition patterns in response to
drought. In the absence of year-to-year differences in igni-
tion, greater herbaceous fuel accumulation during wet years
may allow for larger fire sizes and more burned area during
the following dry season [Griffin et al., 1983; Swetnam and
Betancourt, 1990; van Wilgen et al., 2000]. An alternative
explanation, however, is that land managers ignite more fires
during wet years than during dry years. This could occur for
several reasons; setting fewer fires during dry years for
example may preserve a larger fraction of the remaining
aboveground biomass as forage for livestock and wild game.
Igniting more fires during wet years (when there is an excess
of forage for livestock) may be part of a broader strategy to
avoid woody encroachment within grasslands.
[39] Representing fire dynamics in tropical ecosystems

with intermediate productivity in land use models or
DGVM’s may be challenging because of the multiple ways
humans use fire in land management. In these areas, human
decisions on whether and when to use fire may change
seasonally and regionally– influencing interactions with
climate. In arid and high productivity ecosystems, human
regulation of the fire regime is probably no less important,
but the role of climate may be more easily represented in
climate-carbon models. Our quantitative assessment indi-
cated that climate is a main controlling factor of fire
processes in these two extreme ecosystems, although also

Figure 9. Observed TRMM-VIRS active fire detections as a function of FDP for all tropical forest grid
cells in (a) tropical America, (b) Africa, and (c) Asia (solid lines). Dashed lines indicate the distribution of
tropical forest area over FDP bins. Values were averaged over 0.1 FDP bins.
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here variations occur spatially and regionally, indicating that
other factors besides climate are important to include in fire
models aiming to better understand the role of fire under
future climate conditions.
[40] The decreases in active fire detections over 1998–

2006 coincided with decreasing precipitation rates in fuel
limited areas (northern Africa, Australia) and increasing
precipitation rates in several areas which normally burn
more extensively during drought periods (most notably the
southern Africa woodlands). The increasing trend in south-
ern Borneo was the result of the relatively short time period
considered here, with La Niña conditions in 1999 and 2000
and a weak and moderate El Niño in 2002 and 2006.

4.3. Uncertainties

[41] The satellite record showed that although climate
limits fire activity at the extreme ends of the precipitation
range, it can account for only part of the observed spatial
and temporal variability of fires in ecosystems with inter-
mediate levels of productivity. The standard deviations of
the values plotted in Figures 5 and 6 usually exceeded the
absolute value, and our conclusions are most robust when
averaging observations at a regional or continental scale. In
the grid-by-grid analyses, many cells did not show a
significant relationship between climate and fire in interme-
diate productivity ecosystems. This indicates that, although
climate plays an important role in providing boundary
conditions for fires, there is a relatively large range of
climate conditions for which other factors including vege-
tation type, grazing, agriculture, and fire management are
equally or more important in explaining observed patterns.
[42] Active fire detection algorithms primarily rely on

observations in the visible and infrared part of the electro-
magnetic spectrum and therefore cannot detect fires during
periods of abundant, optically thick cloud cover [Schroeder
et al., 2008]. This may partly contribute to the observed
decline in active fire detections in areas with high PPT (and
thus clouds). The TRMM-VIRS fire data, however, are
adjusted for this effect via a correction factor derived from
the monthly mean cloud fraction [Giglio et al., 2003]. Future
analyses could further circumvent this issue using new,multi-
year burned area data sets which have recently become
available [Roy et al., 2005; Tansey et al., 2008] and which
are not partly based on active fire observations as is the case
with the burned area product used here.
[43] We performed a similar analysis using ATSR night

time fires [Arino et al., 1999]. This somewhat strengthened
the drought-fire link in high productivity tropical forest
ecosystems, with in general lower p-values than when using
TRMM-VIRS derived fire activity (not shown). Fire activity
peaks during the mid to late afternoon because of lower
humidity, increased wind speeds, and higher human activity
[Giglio, 2007]. Several classes of fire that occur during the
daymay have weaker climate regulation than fires that persist
over a full diurnal cycle. Agricultural waste burning, for
example, will mostly take place during daytime and may not
be detected by ATSR. This contrasts with forest fires that are
likely to burn in many places during day and night for a
period of days to weeks. We choose to base our analysis on
TRMM-VIRS because our main climatic factor -precipita-

tion- was also derived from the TRMM satellite and because
including the whole diurnal cycle may give a more complete
representation of fire activity. The trade off is a shorter time
series; ATSR currently provides the longest continuous fire
record starting mid 1996 against 1998 for TRMM-VIRS.
[44] Finally, we assumed that fire activity depended on

drought defined solely by PPTanomalies during the same dry
season, or alternately, fuel build-up defined solely by PPT
anomalies during preceding wet season. As a consequence,
multi-year effects were not captured by our approach. One
example is the positive feedback which has been reported for
closed canopy forests, where fires lead to higher fuel loads
and to an opening of the canopy which increases the
susceptibility of the forests to fire [Cochrane et al., 1999;
Nepstad et al., 1999]. Another example may be that in arid
regions, two consecutive years with intermediate rainfall
rates may provide fuel loads similar to one wet year, leading
to similar fuel conditions under different climatic conditions.
Some of these processes also operate on finer resolutions than
our 1� analysis, and further investigation is needed to better
understand these more complex interactions between fire
processes, climate, and fire activity.

5. Conclusions

[45] We used satellite observations of precipitation (PPT),
fAPAR, and fire activity during 1998–2006 in the tropics
and subtropics to study climatic controls on fire activity.
Although fire has largely become a human-driven phenom-
enon in the tropics and subtropics, we found that because
climate regulates the amount of dry fuel available for
ignition, it has a strong impact on the spatial and interan-
nual variability of fire activity. In arid regions, fire activity
was limited by the density of available fuels, governed
largely by the amount of precipitation during the preceding
wet season. In wet ecosystems, fires occurred in years that
had extended dry seasons, allowing fuels to dry out. Fire
frequencies were highest in savanna ecosystems with inter-
mediate levels of productivity (net primary production
between 500–1000 g C m�2 year�1).
[46] We found that the highest interannual variability in

fire activity occurred in Indonesia and northern Australia
where climate and PPT were closely tied to ENSO. During
El Niño periods, drought in forested regions in Indonesia
allowed humans to use fire more effectively and led to an
increase of active fire detections. At the same time drought
lowered the number of active fire detections in arid regions
in Australia. The decrease in Australian fires may have been
caused by lower fuel loads (and thus smaller fires) and by the
decision by land managers to set fewer fires to preserve
forage for grazing by livestock.
[47] In tropical forests in the Amazon and Congo basins,

spatial variability in precipitation rates and fires were closely
linked but interannual variability in precipitation rates was
not as large as in Indonesia. Interannual variability in fire
activity was also lower and correlations between climate and
fire were not as uniform over the region as in Indonesia. A
large part of the deforestation takes place in the southern part
of the Amazon where the dry season is much longer than in
Indonesia. Therefore other (socio-economic) factors may be
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equally important in driving interannual variability. In the
future, however, the gradient toward increasing precipitation
in the interior of the forest may slow fire-driven deforesta-
tion. Future deforestation projections should take this neg-
ative feedback into account, although its effect may be
limited as several climate models have indicated a decrease
in precipitation over the Amazon due to global and regional
climate change, the latter partly depending on the effects of
deforestation on surface biophysical properties.
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