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Performance of a fully close-coupled wave packet method
for the H 21LiF(001) model problem
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We have investigated the performance of a fully close-coupled wave packet method and its
symmetry-adapted version for a model problem of H2 scattering from LiF~001!. The computational
cost of the fully close-coupled methods scales linearly with the number of rotation-diffraction states
present in the basis set, provided that the sparseness of the potential coupling matrix is taken into
account. For normal incidence, the symmetry adapted version is faster than the conventional
close-coupling wave packet method by almost an order of magnitude. An extension of the method
to more realistic molecule-surface problems is considered. ©1995 American Institute of Physics.
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I. INTRODUCTION

The wave packet method has become an important t
for performing calculations on molecule-surface scatterin
Examples of applications are scattering of molecules fro
surfaces which contain isolated impurities1–3 or are other-
wise disordered,2,4,5 phonon-inelastic atom-surface
scattering,2,6 rotationally2,7–16 or vibrationally17 inelastic
molecule-surface scattering, and reactive molecule-surf
scattering.18–33

The applicability of wave packet methods to an ev
wider range of problems is clearly desirable and, in rec
years, much effort has been directed11,13,32,34–59at inventing
wave packet techniques which are more efficient in terms
either computer time or central memory usage. The num
cal efficiency of a wave packet method depends on the nu
ber of basis functions used, the spectral range of the Ham
tonian, and the manner in which the matrix-vector produ
associated with the action of the Hamiltonian on the wa
function are carried out.59,60 Here, we will focus on the
matrix-vector products. Depending on the representation
the wave function, improvements in efficiency can b
achieved in at least in two ways. This will be illustrated b
considering the treatment of the molecular rotations
molecule-corrugated surface scattering as an example.

The first calculations on rotationally inelastic molecul
surface scattering to emerge7–9 employed a hybrid represen
tation, using a close-coupling, variational bas
representation61 ~VBR! for the molecular rotations, and a
grid representation for the translational motion of the cen
of mass. The method thus obtained was called the clo
coupled wave packet~CCWP! method. In the ‘‘raw’’ form of
the CCWP method, the evaluation of the action of the pot
tial energy operator on the wave function scales withNrot

2 ,
whereNrot is the number of rotational states included in th
basis set. In a wave packet calculation, most of the com
tational effort goes into evaluating the action of the Ham
tonian on the wave function through the evaluation of mat
vector products. In the case that many rotational wave fu
tions need to be included in the expansion, most of the co
puter time is then spent in evaluating potential matrix-vec
5512 J. Chem. Phys. 102 (13), 1 April 1995 0021-9606/95aded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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products. Large increases in efficiency can thus be obtai
if the evaluation of the action of the potential energy opera
on the wave function is made cheaper.

In considering improvements to the CCWP metho
Lemoine and Corey have concentrated their efforts
achieving a higher factorisability of the potential energy o
eration on the wave function.13,58,59 This was achieved by
changing the representation of the rotational part of the wa
function from a variational basis representation to a fin
basis representation~FBR!. Very generally, an FBR method
using the spectral~momentum! representation corresponds t
a VBR method in conjunction with the approximation tha
the potential matrix coupling elements are calculated us
an N-point quadrature rule in caseN basis functions are
used.61 In a FBR method the spectral basis is chosen su
that an efficient and accurate method can be used to tra
form the wave function from the momentum representati
to the coordinate representation and back.62–64The most ef-
ficient implementation used by Lemoine and Corey for t
rotational degrees of freedom employs the spectral repres
tation as the primary representation and has been called
finite basis wave packet~FBWP! method.58–59 In this imple-
mentation, the potential energy operation is performed in
coordinate or discrete variable representation~DVR!, and
Gauss–Legendre–Fourier transforms are used to switch f
the FBR in spherical harmonics to the DVR inu andf, and
back. The Gauss–Legendre–Fourier transforms facto
into two separate matrix-vector multiplications, one of th
transformations being block diagonal in the magnetic ro
tional quantum number. As a result, the potential energy o
eration on the wave function scales withNrot

3/2 rather than
with Nrot

2 , and compared to the conventional CCWP meth
large increases in efficiency can be obtained for proble
requiring a large rotational basis set and involving
molecule-surface potential which is dependent on the a
muthal coordinatef.

It is also possible to increase the efficiency of the CCW
method and stay with the variational basis representati
For a typical molecule-surface problem, the anisotropy of t
potential should be small, except maybe at short range. T
/102(13)/5512/13/$6.00 © 1995 American Institute of Physicsnse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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only spherical harmonics required to describe the long rang
C3 interaction of a homonuclear molecule with a surface a
theY00 andY20 harmonics.

65 The frequently used model po-
tential devised by Wolken for the H21LiF~001! system only
contains these two spherical harmonics.66 The resulting po-
tential coupling matrix, which is labeled by final and initia
rotational states in the CCWP method, is tridiagonal! Onc
the sparseness of the potential coupling matrix is taken in
account, in the CCWP method the potential energy operati
scales linearly withNrot rather than quadratically. The size o
the prefactor in the scaling relation will depend on just ho
anisotropic the potential is at short range, which will in tur
determine whether the CCWP method or the FBWP meth
will be more efficient for a given problem.

In this work we investigate to what extent the sparsene
of the potential coupling matrix can be used to increase t
efficiency of a wave packet method which uses a VBR~Ref.
61! or close-coupling representation. Rather than consideri
the CCWPmethod, we take it one step further, using a clos
coupled representation also for the diffractive degrees
freedom, as is done in the time-independent close-coupli
method.66 This representation allows one to take maximum
advantage of the symmetry relations which exist for norm
incidence.67 While scattering experiments typically do no
employ normal incidence, many H21metal reaction systems
obey ‘‘normal energy scaling,’’68–70meaning that to a good
approximation the measured reaction probabilities depe
only on the kinetic energy associated with the translation
motion normal to the surface. Of course, this dependence c
then be obtained from calculations with normal incidence
the wave packet.

For the proposed method to be efficient, it will be nec
essary that the potential coupling matrix is also sparse in t
diffractive degrees of freedom. This is known to be true fo
potentials constructed from pair interactions,71,72 and model
potentials used in calculations on elastic atom-surface sc
tering usually employ Fourier terms to order no higher tha
two.73–75Previously, the sparseness of the potential couplin
matrix in atom-surface problems has been used
calculations76 on the He1LiF~001! model system73 that em-
ployed the log derivative version of the Kohn variationa
principle. The work showed that a very efficient algorithm i
obtained if the resulting sparse system of linear equations
solved iteratively. Here, we investigate the influence of th
sparseness on the efficiency of a wave packet method e
ploying the fully close-coupled representation for an adm
tedly simple and favorable case, the Wolken H21LiF~001!
model problem.66 Future research will investigate the merit
of the proposed method for more realistic potentials.

In Sec. II we summarize the CCWP method and prese
the new method. We give brief consideration to the mod
potential used, and discuss the numerical details associa
with the calculations. Section III presents and discusses
numerical results of the calculations. Our findings are sum
marized in Sec. IV.
J. Chem. Phys., Vol. 102aded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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II. THEORY

A. Outline of wave packet methods

The Hamiltonian describing the dynamics of a rigid ro-
tor, diatomic molecule interacting with a static corrugated
surface can be written as

Ĥ52
1

2M
¹R
21H rot1V~X,Y,Z,u,f!. ~1!

Atomic units were used in Eq.~1!. Furthermore,M is the
mass of the diatomic molecule,R5(X,Y,Z) is the position
vector of the molecular center of mass,H rot is the Hamil-
tonian describing the rotational motion of the molecule, an
V is the molecule-surface interaction potential which de
pends onR and the orientation anglesu andf. TheX andY
axes are taken to lie in the plane of the surface along th
direction of the lattice vectors~we only consider the case
where the surface unit cell is either rectangular or square!, Z
is taken to be positive above the surface, andu andf are the
polar and azimuthal angles defining the orientation of th
molecular axis with respect toZ andX.

Because the Hamiltonian is independent of time, the for
mal solution to the time-dependent Schro¨dinger equation can
be written as

C~R,u,f,t !5exp@2 iĤ ~ t2t0!#C~R,u,f,t0!, ~2!

whereC~R,u,f,t0! represents the initial state of the system
Equation~2! represents an initial value problem. To solve it,
we first define an initial wave function

C~R,u,f,t0!

5b~Z!@1/~LxLy!#
1/2 exp~ iK0r!Yj 0mj0

~u,f! ~3!

which is taken as a Gaussian wave packet inZ

b~Z!5@2pj2#21/4 exp@2~Z2Z0!
2/4j21 ikZ0Z0# ~4!

times the product of a normalized plane wave describing th
initial parallel translational motion and a spherical harmonic
describing the initial rotational state of the molecule. In Eq
~3!, Lx andLy are the magnitudes of the lattice vectors along
X andY, r5(X,Y), andK0 is the vector of initial parallel
momenta (kX0,kY0). In Eq. ~4!, j represents the width of the
wave packet which is centered onZ0 and traveling in theZ
direction with an average translational momentumkZ0.

The wave function can then be propagated in time usin
a numerical algorithm like the Chebychev propagation
method77 or the short iterative Lanczos~SIL! method.78 Ei-
ther method involves the repeated evaluation of the action
the Hamiltonian on the wave function. In either method, the
upper bound to the size of the timestep that can be used
the propagation is determined by the spectral rangeW of the
Hamiltonian,60 defined as

W5lmax2lmin , ~5!

wherelmax and lmin are the maximum eigenvalues associ-
ated with the products of eigenfunctions in which the wave
function is expanded. The computational cost of the wav
packet propagation depends on the number of basis fun
tions, the spectral range of the Hamiltonian~through the size
, No. 13, 1 April 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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of the timestep that can be used! and the efficiency with
which ĤC is evaluated.59,60All of these in turn depend on
the method used to expand the wave function, which is d
cussed in Sec. II B.
The calculation ofS-matrix elements involves the projection
of the wave function on diffraction-rotation eigenstates. In a
elegant method devised by Balint-Kurtiet al.,41,45,79 the
wave function is analyzed at a fixed value of the scatterin
coordinate~Z`!, analogous to what is done in the time
independent close-coupling method.73 The wave function is
projected on rotation-diffraction eigenstates at fixed time i
tervals, obtaining time-dependent coefficients

Cj 8mj8nm
~Z` ,t !5@1/~LxLy!#

1/2E
r
E

V
C~Z` ,r,u,f,t !

3exp@2 i ~K01Gnm!r#

3Yj 8mj8
* ~u,f!dr dV. ~6!

In Eq. ~6!, n andm are the diffraction quantum numbers
associated with the final translational state of the molecu
andGnm is the reciprocal lattice vector given by

Gnm5S 2pn

Lx
,
2pm

Ly
D . ~7!

Furthermore,j 8 andmj8 are the rotational quantum number
associated with the final rotational state of the molecule. T
S-matrix elementsSj 8mj8nmj0mj0

(E) for a (j 0mj0→ j 8mj8nm)

transition can be calculated from theCj 8mj8nm
(Z` ,t) using

time-energy Fourier transforms as outlined in Refs. 41, 4
and 79. The probabilitiesP( j 0mj0→ j 8mj8nm) are related to
theseS-matrix elements through

P~ j 0mj0→ j 8mj8nm!5uSj 8mj8nmj0mj0
~E!u2. ~8!

A nice feature of the asymptotic analysis method discuss
earlier is that the scattered wave function is not needed b
yond the analysis value of the scattering coordinateZ` .
Methods which share this feature and also rely on time-t
energy Fourier transforms are methods due to Hoffm
et al.80 and Neuhauseret al.81 In the method of Hoffman
et al.,80 T-matrix elements are obtained using time-to-energ
transforms of the time-dependent amplitude density, which
nonzero only over the range of the potential. Because th
scheme uses the amplitude density, it is best used in conju
tion with a time-dependent integral equations approach. Ne
hauser’s method81 also involves time-to-energy Fourier
transforms and analysis of the wave function at a particu
value of the scattering~reaction! coordinate. It involves the
calculation of fluxes through the surface defined by th
analysis value of the scattering~reaction! coordinate, and is
in a sense more general in that it can also be used to calcu
probabilities which are resolved with respect to one quantu
number and averaged over another.

Because the scattered wave function is not needed
yondZ` , the grid in the scattering coordinate needs to co
tain only the range over which the potential is nonzero plus
small interval used to absorb the scattered wave packet a
J. Chem. Phys., Vol. 102ded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬licen
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lying beyondZ` . To absorb the outgoing wave packet, we
add an optical potential of the quadratic form82

VI~Z!52 iA2~
3
2 Z̄

2!, ~9a!

Z̄5~Z2ZI
min!/L, ~9b!

to the Hamiltonian of Eq.~1!, the optical potential being
defined over the range@ZI

min ,ZI
min 1 L#.

B. Description of individual wave packet methods

1. The CCWP method

In the CCWP method,7–9,14 the wave function is written
as an expansion in a set of rotational basis functions an
represented on a rectangular grid of regularly spaced poin
in X, Y, andZ:

C~ t !5(
jmj

x jmj

j 0mj0~R,t !Yjmj
~u,f!. ~10!

Along Z, Y, andX, Nz , Ny andNx regularly spaced grid
points are used. For a square lattice, a square grid of points
X andY is used (Ny5Nx). In the rotational expansion,Nrot
rotational states are included,j ranging from 0 tojmax.

Using the expansion of Eq.~10!, the action of the kinetic
energy operator associated with the translational motion o
the molecule can be efficiently evaluated using consecutiv
FFT’s ~Refs. 62 and 63! of the x jmj

j 0mj0(R,t) alongZ, Y, and

X. The associated computational cost scales a
NzNxyNrot3~logNz1logNy1logNx!, where Nxy is the
product ofNy andNx . The actual kinetic energy operation is
performed in momentum space by performing simple multi
plications, which scale asNzNxyNrot . Because the expansion
is in rotational eigenfunctions, the evaluation of the rota
tional energy operator simply involves the multiplication of
eachx jmj

j 0mj0(R,t) with B0 j ( j11) on each grid point, scaling

asNzNxyNrot ~B0 is the rotational constant of the molecule!.
A similar scaling is obtained for the multiplication with the
optical potential, except that this operation is only performe
for a limited number of points inZ.

The potential energy operation is performed by premul
tiplying the vectorx jmj

j 0mj0(R,t) with the potential coupling

matrix on each point (Z,Y,X). The elements of the matrix
are given by

Vj 8mj8 jmj
~R!5E Yjm

j8
* ~u,f!V~R,u,f!Yjmj

~u,f!dV.

~11!

If no attention is paid to the possible sparseness of the m
trix, the potential energy operation scales asNzNxyNrot

2 . If,
on the other hand, the potential coupling matrix is sparse a
upper bound to the scaling is given byNzNxyNrotNcoup

rot ,
whereNcoup

rot is the maximum number of rotational states the
potential can couple with a given initial state on any poin
(X,Y,Z). In the case of a homonuclear diatomic molecule
interacting with a surface through a potential containing n
azimuthal dependence,Ncoup

rot is equal to j V
max 1 1, where

j V
max is the maximum order of the spherical harmonicsYj0
occurring in the expansion of the potential.
, No. 13, 1 April 1995se¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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Taking the sparseness of the potential into account th
leads to a scaling of the potential energy operation which
linear withNrot , the prefactor being dependent on how man
spherical harmonics need to be used in the potential exp
sion. A modified CCWP method which takes sparseness in
account should then scale especially favorable for syste
requiring a large rotational basis set~due to a small rotational
constant! while possessing little anisotropy in the molecule
surface interaction potential.

The propagation of the wave function involves addition
and ~in the case of the SIL propagator78! the calculation of
overlap integrals which all scale asNzNxyNrot . The scaling
of the operations involved in propagating the wave functio
in time using the CCWP method are summarized in Table

In the CCWP method, the calculation of the initial wav
function @Eqs. ~3! and ~4!# can be performed trivially by
calculatingb(Z)x exp@iK0r# on the grid inX, Y, and Z.
Arbitrary angles of incidence can be handled by extendin
the FFT scheme using the shifting theorem of Fourier ana
sis, as described in Ref. 54. The extra~shifting! operations
required scale asNzNxyNrot . In performing the asymptotic
analysis, the projection of the wave function on the rotatio
diffraction eigenstates can be done using consecutive FF
of x jmj

j 0mj0(Z` ,Y,X,t) alongY andX for all rotational states

present in the basis set@see Eq.~6!#. The associated compu-
tational cost is negligibly small when compared to the cost
evaluating the action of the Hamiltonian on the wave fun
tion.

The amount of central memory required in the CCW
method depends on which propagation method is used. T
Chebychev algorithm77 requires four storage arrays,83 where
the memory taken up by one storage array is the amount
memory required to hold the full wave function. The SIL
method78 of orderNlan requires~Nlan11! storage arrays.83 In
the CCWP method, the memory required to store the wa
function is 23NzNxyNrot ~the factor 2 is from the wave func-
tion being complex!. If the sparseness of the potential cou
pling matrix is used, an upper bound to the memory requir
to store this matrix isNzNxyNrotNcoup

rot in case the potential
shows no azimuthal dependence~the coupling matrix being
real symmetric!, otherwise it is 23NzNxyNrotNcoup

rot ~the factor
2 arises from the coupling matrix being complex Hermitian!.
The memory requirements of the CCWP method are summ
rized in Table II.

TABLE I. Scaling of the operations used in evaluating the Hamiltonian an
propagating the wave function. We have omitted a common factor ofNz in
all the scale factors collected in the table, andMxy5logNx1logNy .

Operation CCWP RDWP SAWP

Propagation NxyNrot NdifNrot Ndif
a1Nrot

VI NxyNrot NdifNrot Ndif
a1Nrot

K, multiplications NxyNrot NdifNrot Ndif
a1Nrot

Kz , FFT’s NxyNrot logNz NdifNrot logNz Ndif
a1Nrot logNz

Kdif , FFT’s NxyNrotMxy

Potential NxyNrotNcoup
rot NdifNrotNcoup

rot Ncoup
dif Ndif

a1NrotNcoup
rot Ncoup

dif
J. Chem. Phys., Vol. 102aded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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2. The rotationally and diffractionally close-coupled
wave packet method

It is also possible to expand the wave function on a grid
in Z and in rotation-diffraction eigenfunctions as is done in
the time-independent close-coupling method.73 The expan-
sion is

C~ t !5 (
jmjnm

f jmjnm
j 0mj0 ~Z,t !@1/~LxLy!#

1/2

3exp@ i ~K01Gnm!r#Yjmj
~u,f!. ~12!

We will call the resulting method the rotationally and diffrac-
tionally close-coupled wave packet~RDWP! method.

In the RDWP method,Nz points are used for the depen-
dence of the wave function onZ, andNrot rotational states
are included in the rotational basis set,j ranging from 0 to
jmax. One advantage of the RDWP method over the CCW
method is that there is an enhanced freedom in the choice
diffraction eigenstates to expand in. The spectral diffractio
basis which is effectively used in the CCWP method is a
square grid ofNxy points in the two-dimensional (px ,py)
momentum space. In calculations employing the close
coupling method often good results can be obtained by in
cluding diffraction states up to diffraction orderMdif , where
the diffraction order5unu1umu. The resulting spectral ‘‘grid’’
is ‘‘diamond shaped’’ in momentum space, containing
Ndif5Mdif

2 1~Mdif11!2 diffraction eigenstates. In previous
work54 on scattering from a surface possessingC4v symme-
try, which compared results of CCWP calculations with re
sults of~time-independent! close-coupling~CC! calculations,
we found the number of diffraction states needed to get con
vergence employing a diamond shaped~in momentum space!
grid to be much less~61, Mdif55! than the number of dif-
fraction states effectively required for convergence in a
CCWP calculation~100,Nx5Ny510!.

Using the expansion of Eq.~12!, the action of the kinetic
energy operator associated with the translational motion o
the molecule alongZ can be evaluated using FFT’s alongZ
for each rotation-diffraction eigenstate. The computationa
effort involved scales asNzNdifNrot logNz rather than as
NzNxyNrotlogNz as is the case in the CCWP method. This
will usually give some enhancement of efficiency because, a
explained above, the number of diffraction statesNdif re-
quired to obtain converged results will usually be less tha
Nxy . More importantly, an additional advantage of the
RDWP method over the CCWP method is that the FFT’

dTABLE II. The memory required to store the wave function using the Che
bychev propagation method (C) and the SIL method of order 9 (L) is given
for the different wave packet methods discussed in Sec. II B. Also given
the amount of memory required to store the potential coupling matrix for
potential which does not depend on the azimuthal anglef. A common factor
of Nz3Nrot has been omitted in all cases.

Storage for: CCWP RDWP SAWP

Wave function (C) 83Nxy 83Ndif 8 3 Ndif
a1

Wave function (L) 203Nxy 203Ndif 20 3 Ndif
a1

Potential Nxy3Ncoup
rot Ndif3Ncoup

rot 3Ncoup
dif Ndif

a1 3 Ncoup
rot 3 Ncoup

dif
, No. 13, 1 April 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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alongY andX can now be avoided in the evaluation of th
Laplacian operator, because the wave function is already
panded in diffraction eigenfunctions. In the RDWP metho
the potential energy operation is performed by premultipl
ing the vectorf jmjnm

j 0mj0 (Z,t) with the rotation-diffraction po-

tential coupling matrix on each point inZ. The elements of
the matrix are given by

Vj 8mj8n8m8 jmjnm
~Z!

51/~LxLy!E Yjm
j8

* ~u,f!exp@2 i ~K01Gn8m8!r#

3V~R,u,f!exp@ i ~K01Gnm!r#

3Yjmj
~u,f!dr dV. ~13!

If no advantage is taken of the sparseness of the poten
coupling matrix, the potential energy operation will scale a
NzNdif

2 Nrot
2 , which would be very unfavorable. On the othe

hand, the computational cost will scale no worse tha
NzNdifNrotNcoup

rot Ncoup
dif if the sparseness of the potential cou

pling matrix is taken into account, whereNcoup
dif is the maxi-

mum number of diffraction states to which the potential wi
couple a given rotation-diffraction state~the rotational state
of the coupled states being the same!. Comparing this to the
cost of the potential energy operation in the CCWP meth
~see Table I!, we find that in the RDWP method we should
expect the potential energy operation to be more expens
by a factor of Ndif/Nxy3Ncoup

dif . An approximate realistic
value ofNdif/Nxy is 0.6 ~see preceding text and Sec. II F!,
andNcoup

dif is 5 in case the potential contains Fourier terms
order up to 1, which means that for such a potential w
should expect the potential energy operator evaluation to b
come more expensive by a factor of 3. Whether the RDW
method will be more efficient than the CCWP method wi
then depend on to what extent the loss in efficiency in pe
forming the potential energy operation is offset by gains
efficiency in evaluating the action of the kinetic energy op
erator. The scaling behavior of the other operations requir
to propagate the wave function in time are summarized
Table I.

In the RDWP method, the calculation of the initial wave
function @Eqs. ~3! and ~4!# is even more trivial than in the
CCWP method, and simply involves settingf j 0mj000

j 0mj0 (Z,t0)

equal tob(Z). Arbitrary angles of incidence can be handle
just as easily as in the CC method. In the RDWPmethod, t
asymptotic analysis is even more easy than in the CCW
method, and simply involves settingCjmjnm

(Z` ,t) equal to

f jmjnm
j 0mj0 (Z` ,t).

An advantage of any method doing a full expansion
molecular eigenstate channels is that, if the collision ener
distribution is not too broad, the energy of the translation
motion in the scattering coordinate will be reasonably we
defined for a given scattered channel. This makes it possi
to use an optimal procedure to absorb the scattered wa
function, by making the optical potential channel depende
In practical calculations, one will typically assign a fixed
value toL, the range over which the optical potential acts
J. Chem. Phys., Vol. 102aded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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enabling one to work with a grid of fixed size. The propor-
tionality constant of the optical potential@A2 for a quadratic
potential, see Eq.~9a!# can then be adjusted to the transla-
tional energy with which the scattered channel is expected t
emerge, using procedures described in Ref. 82.

In the RDWP method, the amount of memory required
to store the wave function is 23NzNdifNrot . If the sparseness
of the potential coupling matrix is used, an upper bound to
the memory required to store this matrix is
NzNdifNrotNcoup

rot Ncoup
dif in case the potential shows no azi-

muthal dependence, otherwise it is 23NzNdifNrotNcoup
rot Ncoup

dif .
Compared to the CCWP method~see Table II!, we find that
usually less memory will be required to store the wave func
tion ~we will typically haveNdif,Nxy! while more memory
will be required to store the potential coupling matrix
~NdifNcoup

dif .Nxy!.

3. The symmetry adapted rotationally and
diffractionally close-coupled wave packet method

In the case that the molecule is incident along a symme
try direction of the crystal,84,85 and especially in the case of
normal incidence,67 a much more efficient method than the
RDWP method is obtained if the wave function is expanded
in symmetry adapted diffraction-rotation eigenfunctions. We
will call the method thus obtained the symmetry adapted
rotationally and diffractionally close-coupled wave packet
~SAWP! method. Here, we limit ourselves to a discussion of
the case of normal incidence on a crystal surface which ha
C4v point group symmetry, as is the case for the LiF~001!
surface, with the molecule-surface potential being indepen
dent of the azimuthal anglef. Extensions tof-dependent
molecule-surface potentials and incidence along a symmet
direction will be made in future work.

In the case of normal incidence and af-independent
molecule-surface potential, we need to include only paralle
translational eigenfunctions which are totally symmetric un-
derC4v symmetry.

67 The resulting expansion is

C~ t !5(
jnm

gjmj0nm
j 0mj0 ~Z,t !Hnm~r!Yjmj0

~u,f!, n>m>0

~14!

and the symmetry adapted eigenfunctions are given by67

Hnm~r!5~ 1
8!
1/2@1/~LxLy!#

1/2@Gnm~r!

1Gn2m~r!1G2n2m~r!1G2nm~r!

1Gmn~r!1Gm2n~r!1G2m2n~r!

1G2mn~r!#, n.m.0 ~15a!

Hnm~r!5 1
2 @1/~LxLy!#

1/2@Gnm~r!

1G2nm~r!1Gmn~r!

1Gm2n~r!#, n.m50 ~15b!

Hnm~r!5 1
2 @1/~LxLy!#

1/2@Gnm~r!

1Gn2m~r!1G2m2n~r!

1G2mn~r!#, n5m.0 ~15c!
, No. 13, 1 April 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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Hnm~r!5@1/~LxLy!#
1/2, n5m50 ~15d!

where

Gnm~r!5exp~ iGnmr!. ~15e!

For the case of a molecule-surface potential showing no
pendence on the azimuthal anglef, the scaling relations
found for the RDWP method are also valid for the SAW
method, except that now we can replaceNdif by the number
of totally symmetric parallel translational eigenstates,Ndif

a1

~see also Table I!. Considering once more the diamond
shaped grid of momentum eigenstates discussed in cons
ing the RDWP method,Ndif

a1 is the number of momentum
eigenstates contained in a triangle which is obtained by
tersecting the ‘‘diamond’’ with a line that makes a positiv
angle of 45° with thepx axis and passes through the origin o
the two-dimensional (px ,py) space. The numberNdif

a1 for
such a ‘‘triangular’’ grid is ~Mdif11!~Mdif13!/4 for odd
maximum diffraction orderMdif , and ~Mdif12!2/4 for even
maximum diffraction orderMdif . For selected values ofMdif

we give the values ofNdif
a1,Ndif and the expected gain in

efficiencyNdif /Ndif
a1 if symmetry is used in the SAWPmetho

in Table III.
As can be seen from Table III, the expected gain in

ficiency obtained by using symmetry only slowly approach
the upper bound of 8. In practical situations, in case of n
mal incidence one will have to be satisfied with gains of t
order of 5 or 6 when using symmetry. Nevertheless, wh
considering the computational cost of performing the pote
tial energy operation on the wave function using the exam
previously discussed~Mdif55, Nx5Ny510, Fourier terms
present in the potential up to order 1! we now find that the
SAWP method should be cheaper than the nonsymme
adapted CCWP method even for this operation~Ndif

a1/Nxy

3 Ncoup
dif 5 0.6, see Tables I and II!.
In the SAWP method, the calculation of the initial wav

function @Eqs. ~3! and ~4!# is just as easy as in the RDWP
method, and simply involves settinggj 0mj000

j 0mj0 (Z,t0) equal to

b(Z). The asymptotic analysis is also performed ana
gously, and involves settingCjmj0nm

(Z` ,t) equal to

gjmj0nm
j 0mj0 (Z` ,t). The coefficients are calculated forn>m>0

TABLE III. For selected values of the maximum diffraction orderM dif of
diffraction states included in the basis set, we give the values ofNdif

a1, Ndif

and the expected gain in efficiency~compared to the RDWP method!
Ndif /Ndif

a1 when symmetry is used in the SAWP method. For the meaning
the parametersNdif

a1 andNdif , see the text.

Mdif Ndif
a1 Ndif Gain

1 2 5 2.50
2 4 13 3.25
3 6 25 4.17
4 9 41 4.55
5 12 61 5.08
6 16 85 5.31
8 25 145 5.80
10 36 221 6.14
15 72 481 6.68
25 182 1301 7.15
100 2601 20201 7.77
J. Chem. Phys., Vol. 10loaded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lic
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only. From these coefficients,S-matrix elements also labeled
by the symmetry indexA1 are calculated for the same values
of n andm. The actualS-matrix elements for arbitraryn, m
can then be obtained from

Sj 8mj0nm j0mj0
~E!5Sj 8mj0mn j0mj0

~E!

5A 1
8 SA1 j 8mj0unuumu j 0mj0

~E!, unu.umu.0

~16a!

Sj 8mj0nm j0mj0
~E!

5Sj 8mj0mn j0mj0
~E!5 1

2 SA1 j 8mj0unuumu j 0mj0
~E!,

unu.umu50 or unu5umu ~16b!

Sj 8mj000j 0mj0
~E!5SA1 j 8mj800j 0mj0

~E!. ~16c!

The amount of memory required in the SAWPmethod can b
obtained from that required by the RDWP method by subs
tuting Ndif

a1 for Ndif in all the expressions given in Table II.
Comparing to the CCWP method~see Table II!, we find that
much less memory will be required to store the wave func
tion. We expect that the amount of memory required to sto
the potential coupling matrix will usually not be very differ-
ent for the SAWP and CCWP methods (Ndif

a1Ncoup
dif ' Nxy).

4. A symmetry adapted close-coupling wave packet
method

Another approach to the use of point group symmetry i
molecule-surface scattering was recently considered
Lemoine.57 The approach is to retain the minimum numbe
of symmetry-needed diffraction states rather than set up
basis of symmetry-adapted states. In the method thus o
tained, the action of the potential energy operator is eval
ated in the coordinate representation. For normal inciden
the diffractive kinetic energy can be evaluated using fast c
sine transforms~FCT’s! alongX andY, or using a symmetry
adapted DVR method. In the case that few diffractive stat
are required, the latter scheme will usually be more efficien
because the FCT scheme cannot take full advantage of
symmetry relations arising from normal incidence forC4v
symmetry of the surface.57

The scheme discussed by Lemoine can be easily e
tended to rotationally inelastic molecule-surface scatterin
Actually, Lemoine has already used it in calculations on sca
tering of N2 using the finite basis representation method fo
the molecular rotations.59We will call the method that would
be obtained if the close-coupling representation~VBR! for
the rotational states would be retained the symmetry adap
CCWP method, and abbreviate it as SNWP method, to em
phasize that symmetry needed rather than symmetry adap
states are used in the basis set. In this work, we do n
present any numerical results of the SNWP method, thou

of

2
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estimates of its computational cost will be given in Sec. I
However, we will discuss the scaling relations for th
method briefly here.

Because a grid representation is retained for the diffr
tive degrees of freedom, the number of rotation-diffracti
states effectively present in the basis set will beNxy

a1Nrot

rather thanNdif
a1Nrot . Here,Nxy

a1 is the number of momentum
states contained within the triangle that is obtained by int
secting the square containing the momentum eigenstates
thepx axis by a line making a positive angle of 45° with th
axis and passing through the origin. ForNx5Ny510,
Nxy
a1521 is obtained, which is considerably more than t

value ofNdif
a1(12) obtained forMdif55. The scaling relations

of the SNWP method for the propagation of the wave fun
tion, the multiplications with the optical potential and th
kinetic energy for motion alongZ, and the FFT’s alongZ can
then be obtained from those of the SAWP method by sub
tuting Nxy

a1 for Ndif
a1 in the expressions given in Table I. Th

evaluation of the diffractive kinetic energy should scale a
proximately as 1/53Nxy

2 in case a symmetry adapted DVR
method is used~the factor 1/5 is from 21/100 forNx5Ny!.
As was discussed before, the calculation of the diffract
energy in the SAWPmethod is much cheaper because it d
not require any transformations.

While the SNWP method should be less efficient th
the SAWP method for all the operations discussed above
should be more efficient in performing the potential ener
operation, which scales asNxy

a1NrotNcoup
rot in the SNWP

method. Thus, in evaluating the action of the potential ene
operator the SNWP method will be more effective than t
SAWP method by a factorNdif

a1/Nxy
a1 3 Ncoup

dif . For the ex-
ample we have been discussing so far~Ncoup

dif 55! the gain in
efficiency is a factor of 2.86. As will be seen in Sec. II
where we compare estimated costs of using the SN
method with the actual cost of the SAWP method, for t
example discussed in Sec. III this gain is more than offset
the losses in efficiency occurred for the other operations.
what extent this will hold for other molecule-surface pro
lems will depend on the extent of corrugation of the surfa
~this determines the value ofNcoup

dif ! but also on the anisot-
ropy of the molecule-surface potential~this determines the
value ofNcoup

rot !. The degree of anisotropy of the potential wi
determine how expensive the potential energy operation
relative to the diffractive kinetic energy operation. The mo
expensive the potential energy operation will be relative
the diffractive kinetic energy operation, the more efficient t
SNWP method will be compared to the SAWP method.

The amount of memory required by the SNWP meth
can be obtained by that required for the CCWP method
substitutingNxy

a1 for Nxy in all expressions given in Table II
We expect that in terms of memory usage the SNWP meth
will generally the most efficient method, especially in th
case that the Chebychev propagator is used.

C. The spectral range associated with the different
methods

The amount of Hamiltonian operations which are r
quired to propagate the wave function over some given ti
Dt is linearly proportional to the spectral range of the Ham
J. Chem. Phys., Vol. 102ded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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tonian for all propagation methods.60 In a wave packet cal-
culation, the spectral range can be calculated using

lmax5Tmax
z 1Tmax

y 1Tmax
x 1Tmax

rot 1Vmax, ~17a!

lmax5Vmin , ~17b!

in Eq. ~5!. In Eq. ~17a!, the maximum kinetic energies for
translational motion along a particular direction can b
straightforwardly calculated from the grid spacing along tha
direction. The calculation of the maximum rotational kinetic
energy is likewise straightforward. However, as discusse
later the calculation of the maximum potential energy on th
grid is not so straightforward if the potential energy opera
tion is not performed in the coordinate representation.
In a VBR method, one can approximateVmax by the spectral
radiusr(V), which is the largest eigen value of the potentia
coupling matrix. An upper bound to the spectral radius i
given by9

r~V!5<maxi(
j

uVi j u. ~18!

In the CCWP or SNWP method,r(V) would be calculated
for all points (X,Y,Z) and the maximum value would be
used forVmax. In the RDWP and SAWP method,r(V) is
calculated for all the grid values ofZ, and the maximum
taken. Because in all cases an upper bound estimate wo
be used to calculateVmax, one would typically use a timestep
that would be smaller than necessary.

It is a long standing practice to impose a maximum o
the potential energy in order to reduce the spectral range. It
likewise useful to impose a maximum on the total kineti
energy.59,86 Imposing a maximumTcut on the total kinetic
energy is straightforward in the CCWP, RDWP, and SAW
methods. In the RDWP and SAWP methods, the wave fun
tion is first transformed from the coordinate representation
Z to the momentum representation inZ. In the CCWP
method, the same is done, also transforming alongX andY.
Once the wave function is obtained in the fully spectral rep
resentation, is is multiplied with the total kinetic energy on
each ‘‘grid point’’ in momentum space, taken into accoun
the imposed cutoff valueTcut. ImposingTcut in the SNWP
scheme is likewise easy if FCT’s are employed in the calc
lation of the diffractive kinetic energy. However, it should be
noted that if one wants to impose a cutoff value on the tot
kinetic energy the use of the symmetry adapted DVR metho
to transform from theX,Y coordinate space to momentum
space becomes less favorable, because two DVR transform
tions have to be performed rather than one matrix-vect
multiplication which includes both the transformations an
the multiplication with the kinetic energy in momentum
space.

A great advantage of a FBR method like the FBWP
method58,59 is that in this method it is also easy to impose
maximum on the potential energy operator, since the pote
tial energy operation is performed in the coordinate represe
tation. This advantage is not shared by methods employi
the close-coupling representation or VBR. What one can d
is use a procedure that ensures that the potential is n
changed if its value is less than the maximumVmax

co that
, No. 13, 1 April 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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would be imposed in case the potential energy operati
would be performed in the coordinate representation. Th
can be ensured by expanding the molecule-surface poten
in symmetry adapted functions that are normalized in such
way that their maximum absolute value is 1, i.e.,

V~Z,Y,X,u,f!5(
j>0

Cj~Z,Y,X!Vj~u,f! ~19a!

or

V~Z,Y,X,u,f!5(
j>0

Cj~Z!Vj~X,Y,u,f!. ~19b!

In Eqs. ~19!, V0 will always beA2pY00 for all methods
discussed in Sec. II B. One then calculates

Vmax
cut 5Vmax

co CV , ~20a!

CV5maxgridS 11(
j>1

uCj u/C0D , ~20b!

considering grid points close to the surface.
Next, before calculating the potential coupling matrix, i

all cases where we find thatC0.Vmax
cut , we impose a cutoff

on the potential energy expansion by setting

C05Vmax
cut , ~21a!

Cj50, j>1. ~21b!

A safe estimate ofVmax is then obtained by setting it to the
square ofVmax

cut . In the case of a weakly anisotropic potentia
like the example considered in Sec. II E, we will typically
haveVmax

cut ' 1.4 3 Vmax
co , so that the calculatedVmax will

be twice the one that would be used in a FBR method. A
suming the minimum value of the potential to be small, if w
use the same cutoff value for the total kinetic energy as t
value we would use forVmax in an FBR calculation, the
spectral range associated with a method employing the VB
or close coupling representation is roughly 1.5 that of
method employing the FBR.

D. Initial wave packet propagation

In a wave packet calculation, the grid in the scatterin
coordinate can be made smaller if a separate grid~we call
this grid the elastic grid! which extends to larger values ofZ
is used to bring in the initial wave function.38 This technique
was used in all the methods discussed in Sec. II B. The el
tic grid is used to hold the diffractionally and rotationally
elastic channel defined byh(Z), until this channel can be
accommodated on the part of the ‘‘regular’’ grid not affecte
by the optical potential, which does not act on the ‘‘elastic
grid. In practice, we check whether the value of the norm
the wave packet, as calculated over the range ofZ starting
with ZI

min ~where the optical potential starts to act, see Se
II A ! becomes less than some tolerance parameter tolsp , or
whether this norm starts increasing again. Once this is t
case, the wave function is transferred to the regular grid a
propagation continues on this grid only.

In the initial propagation on both the regular grid and th
elastic grid, the kinetic energy operation is performed sep
J. Chem. Phys., Vol. 102aded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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rately on each grid. To evaluate the action of the potentia
energy operator in the range of the scattering coordina
where the potential energy is not zero, the elastic part of th
wave function is first transferred to the regular grid. This is a
trivial operation if the RDWP or SAWP method is used. If
the CCWP method is used, at each point inZ contained in
the regular grid it involves a multiplication ofh(Z) with
[1/(LxLy)]

1/2exp~iK0r! to obtain the wave function on the
grid points inX andY. Next, the potential energy operation
is performed on the regular grid. The resulting elastic part o
the wave function is then transferred back to the elastic grid
which is once again a rather trivial operation in the RDWP
and SAWP methods. In the CCWP method, the new value o
the elastic wave functionh8(Z) is first calculated from

h8~Z!5E
r
@1/~LxLy!#

1/2 exp~2 iK0r!x j 0mj0

j 0mj0~R,t !dr.

~22!

The transfer of the elastic part from the regular grid to the
elastic grid is then completed by subtractingh8(Z)
3 A1/(LxLy) exp(iK0r) from x j 0mj0

j 0mj0(R,t), thus projecting

out the elastic part of the wave function.
The method of bringing in the elastic part of the wave

function on a separate grid is easy to apply and, in favorab
cases, may save up to a factor of 2 of computer time. An
other method to reduce the grid size is the use of a floatin
grid, the range of which can be adjusted to contain the wav
packet as it moves in time.11 This method may allow for even
larger reductions in computer time in favorable cases11 ~high
collision energy, little energy transfer to the rotational and
diffractive degrees of freedom, no trapping!, but is more dif-
ficult to implement.

E. Model potential

The model potential we use in this work is that devised
by Wolken66 for H21LiF~001!. It can be written as

V~X,Y,Z,u!5V~X,Y,Z!3V2~u!, ~23a!

where

V2~u!511lP2~cosu!, ~23b!

V~X,Y,Z!5V0~Z!1V1~Z!Q~X,Y!, ~23c!

V0~Z!5D exp@a~ZV02Z!#3$exp@a~ZV02Z!#22%,
~23d!

V1~Z!522bD exp@2a~ZV02Z!#, ~23e!

Q~X,Y!5cos~2pX/a!1cos~2pY/a!. ~23f!

The parameters used in this study are the parametersa52.84
Å, a51.18 Å21, D538 meV, andl50.24 also used by
Wolken, while for the corrugation parameterb we use 0.03.
The choice of the parameterZV0 is arbitrary, and we set it to
5 bohr. The parametera is simply the LiF~001! lattice con-
stant.

The Wolken potential@Eq. ~23!# contains no dependence
on the azimuthal angle of orientationf. The maximum value
of j in the potential expansionj V

max is 2 and, therefore, we
haveNcoup

rot 53. In the potential expansion, Fourier terms are
present up to order 1@through the symmetry adapted func-
, No. 13, 1 April 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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TABLE IV. Numerical parameters used as input in the calculations are given.

parameter CCWP RDWP SAWP

Initial wave packet
Width j ~bohrs! 1.118 1.118 1.118
Initial positionZ0 ~bohrs! 17.0 17.0 17.0
Average initial momentumkZ0 ~atomic units! 7.349 7.349 7.349
Basis set parameters
Nx , Ny 10
Mdif 5 5
Ndif ~Nxy for CCWP! 100 61 12
Nz 80 80 80
Grid spacingDZ ~bohr! 0.25 0.25 0.25
Lattice parametera ~Å! 2.84 2.84 2.84
Maximum value ofj in basisjmax 6 6 6
Time propagation
Size time step~atomic units! 240 240 240
Number of time steps 255 255 255
Order of SIL methodNlan 9 9 9
Optical potential
Initial value of rangeZI

min ~bohrs! 15.75 15.75 15.75
Proportionality constantA2 ~hartrees! 0.01 0.01 0.01
RangeL ~bohrs! 4.0 4.0 4.0
Other
Analysis value ofZ, Z` ~bohrs! 15.75 15.75 15.75
Tolerance norm elastic grid tolsp 10210 10210 10210

Number of grid points elastic grid 128 128 128
Cutoff potential expansionVmax

cut ~eV! 0.5 0.6 0.6
Cutoff kinetic energyTcut ~eV! 0.6 0.6 0.6
s
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tion Q(X,Y) of Eq. ~23f!# and, therefore,Ncoup
dif 55. For the

Wolken potential,CV511l123b123b3l51.32 for the
RDWP and SAWP methods~see Sec. II C!, yielding a spec-
tral range which is larger than that of a FBR method by
factor of 1.37. For the CCWP and SNWP method
CV511l51.24, and the associated spectral range is 1.
times the spectral range of the FBWP method.59

F. Numerical details

Calculations using the CCWP, RDWP, and SAWP met
ods were performed with the input parameters as given
Table IV. Most of these parameters have already been d
cussed in Secs. II A–II D. The average initial momentum
kZ0 given in Table IV corresponds to a collision energy of 0.
eV, and all calculations were performed for normal incidenc
of the wave packet. The SIL method78 was used to propagate
the wave function in time. We made no systematic attempt
optimize the value ofVmax

cut for the different methods, because
the spectral range obtained from using one specific value
Vmax
co would not differ much for the CCWP method on the

one hand and the RDWP and SAWP methods on the oth
hand~see Secs. II C and II E!.

In all calculations, we use the empirical H2 rotational
energies as obtained from Ref. 87, rather than treating H2 as
a rigid rotor. In the RDWP and SAWP calculations, theA2
parameters given in Table IV represent maximum values, a
we obtain channel dependent optimalA2 values using linear
interpolation of Table III of Ref. 82. In this procedure,E and
l as defined in Table III of Ref. 82 are calculated usin
E5Ecol-channel energy, whereE is the translational energy
J. Chem. Phys., Vol. 102aded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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of the scattered channel that is associated with the trans
tional motion normal to the surface.

In the CCWP method, when performing the FFT’s for
given rotational state the wave function is held in an arra
ar(nz,ny,nx), where the first dimension is forZ, etc. The
FFT’s were performed consecutively using the scilib Cra
routine MCFFT, vectorizing alongY andX when performing
the FFT’s inZ, vectorizing alongZ when performing FFT’s
along Y, and vectorizing alongZ and Y when performing
FFT’s alongX. Care was taken to avoid memory bank con
flicts. The three-dimensional~3D! FFT routine CFFT3D is
very inefficient for low values ofNx andNy ,

88 but the effi-
ciency of the algorithm outlined above and using MCFFT
comparable89 to that of a sophisticated algorithm using rota
tions to obtain optimized vector lengths.88 For Nz580 and
Nx ,Ny510 the algorithm using MCFFT is faster than
CFFT3D by a factor 4. For these values ofNz andNx andNy

~80,10,10!, on a Cray C-90 about 37% of the cpu time re
quired for a full 3D FFT is spent on the transforms alongZ,
the transforms alongX andY taking the remainder of the cpu
time.

III. RESULTS AND DISCUSSION

Results of scattering calculations employing the CCW
RDWP, and SAWP methods are given in Table V. As shou
be the case, identical results were obtained using the RDW
method and its symmetry adapted version~SAWP!. The re-
sults of the CCWP method, on the one hand, and the ot
two methods, on the other hand, differ slightly because, e
fectively, a different diffractive basis set is used in th
CCWP calculations~see Sec. II B!. The number of diffrac-
, No. 13, 1 April 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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tive states effectively present in the CCWP calculation
100, whereas only 61 states are present in the RDWP cal
lation employing a diamond shaped grid, the diffraction bas
containing states of diffraction order up to 5. Nevertheles
we find that using a maximum diffraction order of 5 in the
basis set is good enough for obtaining converged results
diffractive scattering where the diffraction order is 0–3, a
was found previously in CC calculations employing the sam
collision energy, but a different angle of incidence. Thus, a
advantage of the method employing a full close-couplin
representation is that fewer diffractive states can be used
the basis set.

The cpu times as obtained for calculations on a Cra
C-90 are given in Table VI for the CCWP, RDWP, and
SAWP methods. The numbers given for the SNWP meth
are estimates based on the scaling relations discussed in
II B. As can be seen from Table VI, in the CCWP calculatio
the cpu time spent on performing the potential energy ope
tion is much less than the cpu time spent in performing th
FFT’s alongX andY. In such a case, the full close-coupling
RDWPmethod may be expected to be faster, which indeed
the case for the present example: The RDWP method
faster by a factor 1.8. The gain is much more spectacu
when use is also made of symmetry, the SAWPmethod be
faster by a factor 8.6.

TABLE V. Probabilities for rotationally and diffractionally inelastic scatter-
ing of H2 ~initial rotational statej50! from LiF~001! are given for the
CCWP, RDWP, and SAWP methods. The collision energy is 0.2 eV. T
results are for normal incidence.

j 8 n m CCWP RDWP, SAWP

0 0 0 0.8367~21!a 0.8362~21!
1 0 0.6284~21! 0.6282~21!
2 0 0.7382~22! 0.7382~22!
1 1 0.4521~21! 0.4520~21!
3 0 0.2774~23! 0.2778~23!
2 1 0.5028~22! 0.5026~22!

2 0 0 0.6167~21! 0.6169~21!
1 0 0.4427~21! 0.4426~21!
2 0 0.4849~22! 0.4850~22!
1 1 0.3030~21! 0.3031~21!
3 0 0.1585~23! 0.1585~23!
2 1 0.3128~22! 0.3128~22!

aThe notation~21! means31021

TABLE VI. CPU times~on a Cray-C90, in seconds! are given for calcula-
tions on rotationally and diffractionally inelastic scattering using the CCW
the RDWP, and the SAWP methods. The numbers given for the SNW
method are estimates.

Operation CCWP RDWP SAWP SNWP

SIL algorithm 5.43 3.02 0.68 1.14
VI 0.90 0.49 0.11 0.19
K, multiplications 0.96 0.56 0.12 0.20
Kz , FFT’s 7.88 4.52 1.15 1.65
Kdif , FFT’s 13.43 3.36
Potential 2.99 8.41 1.40 0.63
Overhead 1.01 0.97 0.32 0.30
Total 32.60 17.97 3.78 7.47
J. Chem. Phys., Vol. 102aded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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In general, the scaling relations of Table I are wel
obeyed. For instance, in the RDWP method the cost of pe
forming the FFT’s alongZ should be 61% of the cost in the
CCWP method, the actual number is 57%. The deviation
probably due to the difference in vector length, the length
the RDWP method~61! being nearly optimal~64 on a Cray
C-90!. In the SAWP method, the cost of performing the
FFT’s is 14% that of the cost in the CCWP method, com
pared to a value of 12% predicted by the scaling relations.
the SAWP calculation, the vector length is 48, the FFT’
being performed for all rotation-diffraction states together.

In performing the potential energy operation, the scalin
of the RDWP and SAWP methods is somewhat more favo
able than that predicted in Table I, the expressions in Table
being upperbounds. The numberNcoup

dif represents the maxi-
mum number of diffraction states a diffraction state ma
couple to. The actual number of states coupled to may be le
for a given state, if it lies on a ‘‘border’’ of the momentum
grid. If we consider for a moment a diffraction only calcula-
tion ~one rotational state!, the scaling relation predicts that
53615305 multiplications should be carried out per grid
point inZ, the actual number~of nonzero matrix elements in
the diffractional potential coupling matrix! is 261. Therefore,
while the scaling relation predicts the potential energy oper
tion to be 3.05~530.61! times more expensive in the RDWP
method than in the CCWPmethod, the actual number is 2.8

For all operations, except the transformations alongX
and Y and the overhead, reliable estimates of the cost
these operations in the SNWP method can be calculated
multiplying the CCWP values by a factor 0.21~see Sec.
II B !. The overhead of the SNWP method was taken as th
of the SAWP method. The cost of performing the symmetr
adapted DVR transformation to calculate the diffractive ki
netic energy was estimated as follows. ForNx58, a compari-
son of the cost of transforming alongX using the FFT
method~0.16! and using the DVR method~0.43! is given by
Lemoine in Table I for the case that symmetry is not used. T
get the cost of also transforming alongY using no symmetry,
multiply the cost of the FFT method by a factor of 2. To ge
the cost of the DVR method using symmetry, divide by 5
We then find that using the symmetry adapted DVR metho
should be less expensive by a factor of 4 than performin
FFT’s alongX andY as is done in the CCWP method. Thus
the cost of transforming alongX andY is calculated by di-
viding the cost of the CCWP method for this operation by 4
The resulting total cpu time required by the SNWPmethod
approximately twice that of the SAWP method. Thus, fo
normal incidence, and for the admittedly favorable case
the H21LiF~001! Wolken problem, it is more advantageous
to use symmetry adapted functions within a full VBR than
using only symmetry needed functions in a mixed approac
~FBR for the diffractive degrees of freedom and VBR for the
rotations!.

An estimate of how efficient the methods are for prob
lems for which a basis set of different size is needed can
obtained from the scaling relations. All CPU times for prob
lems in which a different value ofNrot needs to be used can
be obtained by multiplying with one and the same factor. Fo
problems in which more diffraction states need to be used

e
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the basis set, the fully close-coupled methods beco
slightly more favorable, because the transformations alonX
andY are avoided in these methods.

An idea of how efficient the methods are relative to o
another in case a different, more anisotropic or more co
gated, potential is used~where the potential is still indepen
dent off, however! can also be obtained from the scalin
relations. Here we only consider the case where the s
numbers can be used forNxy , Ndif , andNrot .

To work out the relative efficiency of the methods for
more anisotropic or more corrugated potential, all we hav
do is calculate how the cost of performing the potential
ergy operation changes. To do so, we first scaled all
numbers of Table VI by multiplying all numbers with 3.06
so that the total cost of the CCWP method comes out as
Next, we apply the scaling relations to the calculation of
cost of the potential energy operation. Results are given
Table VII for Ncoup

rot 55 ~spherical harmonics present in th
potential expansion up to order 4! and in Table VIII for
Ncoup
dif 513 ~fourier terms present up to order 2!. As can be

seen from Table VII, the methods using the full clos
coupling representation are still much more efficient for
creased anisotropy of the potential. As can be seen f
Table VIII, the full VBR methods are also slightly more e
ficient for a more corrugated potential.

If the potential is both more corrugated and more ani
tropic, the methods employing a VBR only for the rotation
degree of freedom will be more efficient, also because th

TABLE VII. Estimated CPU times~on a Cray-C90, in seconds! are given
for calculations on rotationally and diffractionally inelastic scattering
Ncoup
rot 55 andNcoup

diff 55 using the CCWP, the RDWP, the SAWP, and SNW
methods. All results are scaled so that the total cpu time in the CC
method is 100 forNcoup

rot 53 andNcoup
dif 55.

Operation CCWP RDWP SAWP SNWP

SIL algorithm 16.65 9.26 2.09 3.50
VI 2.76 1.50 0.34 0.58
K, multiplications 2.94 1.72 0.37 0.61
Kz , FFT’s 24.17 13.86 3.53 5.06
Kdif , FFT’s 41.19 10.31
Potential 15.28 43.07 7.16 3.22
Overhead 3.10 2.97 0.98 0.92
Total 106.1 72.38 14.47 24.2

TABLE VIII. Estimated CPU times~on a Cray-C90, in seconds! are given
for calculations on rotationally and diffractionally inelastic scattering
Ncoup
rot 53 andNcoup

dif 513 using the CCWP, the RDWP, the SAWP, and SNW
methods. All results are scaled so that the total cpu time in the CC
method is 100.

Operation CCWP RDWP SAWP SNWP

SIL algorithm 16.65 9.26 2.09 3.50
VI 2.76 1.50 0.34 0.58
K, multiplications 2.94 1.72 0.37 0.61
Kz , FFT’s 24.17 13.86 3.53 5.06
Kdif , FFT’s 41.19 10.31
Potential 9.17 67.0 11.15 1.93
Overhead 3.10 2.97 0.98 0.92
Total 100.0 96.4 18.5 22.9
J. Chem. Phys., Vol. 102aded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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methods need less memory to store the potential coupli
matrix. However, even in realistic molecule-surface poten
tials, Fourier terms of order 2 and higher are likely to b
significant only at short range. Similarly, one would also ex
pect terms associated with spherical harmonics of ord
higher than 2 to become significant only close to the surfac
This suggests that a fully close-coupled method could still b
more efficient if, in the construction of the potential coupling
matrix, one would take into account that the higher orde
terms in the potential expansion are important at short ran
only. Alternatively, one could also consider mixed ap
proaches. One could use a VBR only in the rotations close
the surface, and a full VBR further away. In many cases,
may be even better to use a method employing the full fini
basis representation close to the surface, as it is much ea
to impose a cutoff on the potential energy in this method.59

Imposing this cutoff should only be necessary at short rang
and problems with imposing this maximum in a VBR
method will be removed completely if an FBR is used a
short range.

The memory requirements of the different methods fo
the present computational problem are given in Table IX
both for the Chebychev propagation method~four storage
arrays! and the SIL method of order 9~ten storage arrays!.
For the Lanczos scheme, the fully close-coupled methods a
more favorable. The rotationally close-coupled and full
close-coupled methods are of comparable efficiency in ca
the Chebychev propagation scheme is used. In a calculat
requiring large amounts of memory~like a full 6D calcula-
tion on dissociative chemisorption of H2 on a metal surface!,
one would typically want to use the Chebychev method, b
cause it is cheaper in memory usage.

All results presented in this section are for a potentia
containing no azimuthal dependence. Applying symmetry u
ing a symmetry adapted full close-coupling representation
not easy in case the azimuthal dependence is also pres
since the dependence onf has also to be considered. How-
ever, the techniques used should be fully applicable to cod
employing the time-independent CC method, where larg
gains should be expected from using symmetry, as the co
putational cost scales with the cube of the number of stat
present in the basis set. Moreover, we have demonstrated t
a considerable gain in efficiency can be obtained using sym
metry adapted functions for a model problem containin
little anisotropy and corrugation in the potential. It is likely
that gains in efficiency can be made for realistic problems
well, either by constructing the potential coupling matrix in

r

P

r

P

TABLE IX. Central memory requirements~in words! are given for calcula-
tions on rotationally and diffractionally inelastic scattering using the CCWP
RDWP, SAWP, and SNWP methods.

Memory for CCWP RDWP SAWP SNWP

V 80 000 208 800 33 600 16 800
Wave function (L) 640 000 390 400 76 800 134 400
Wave function (C) 256 000 156 160 30 720 53 760
Total (L) 720 000 599 200 110 400 151 200
Total (C) 336 000 364 800 64 320 70 560
, No. 13, 1 April 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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such as way as to take into account that higher order terms
the potential expansion will be significant only at sho
range, or by applying the fully close-coupled method only
medium and long range~not close to the surface!, in a mixed
approach. It now remains to test the usefulness of the meth
for more realistic molecule-surface problems where the p
tential also contains af dependence. We hope to report o
such studies in the near future.

IV. CONCLUSIONS

We have tested the performance of a fully rotational
and diffractionally close-coupled wave packet method, an
the performance of its symmetry adapted version~the SAWP
method!. The cost of the potential energy operation scale
semilinearly with the number of rotation-diffraction state
present in the basis set, provided that the sparseness of
potential coupling matrix is taken into account in performin
the matrix-vector multiplications required to evaluate the a
tion of the Hamiltonian on the wave function.

The method was tested on an admittedly favorable sy
tem, i.e., the H21LiF~001! Wolken model system. The model
potential used contains no azimuthal dependence, and li
anisotropy and corrugation. For this model system and usi
no symmetry, we find the fully close-coupled method to b
twice as efficient as the method employing a close-coupli
representation only in the rotational degree of freedom, t
close-coupling wave packet~CCWP! method. Likewise, it is
more advantageous to use symmetry adapted functio
within the full close-coupling presentation than using onl
symmetry needed functions in a mixed approach~FBR for
the diffractive degrees of freedom and VBR for the rota
tions!, the SAWP method being twice as fast as the symm
try adapted version of the CCWP method. For normal inc
dence, the SAWP method is faster than the conventional~not
symmetry adapted! CCWP method by almost an order o
magnitude.

In this work, we do not investigate the efficiency of the
SAWP method for molecule-surface potentials also conta
ing a dependence on the azimuthal angle of orientation.
realistic molecule-surface problems, the anisotropy and c
rugation may be large close to the surface, and the full clos
coupling representation may be less favorable at short ran
In such a case, the fully close-coupled method may still b
more efficient, provided that the construction of the potenti
coupling matrix is done in a way which takes into accoun
that higher order terms are likely to be significant only a
short range. Moreover, it may be useful to combine differe
representations for different ranges of the scattering grid
wave packet calculations. It is our plan to address these m
ters in the near future, by performing additional research
more realistic molecule-surface problems.
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