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Performance of a fully close-coupled wave packet method
for the H ,+LiF(001) model problem
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We have investigated the performance of a fully close-coupled wave packet method and its
symmetry-adapted version for a model problem gfsdattering from LiF001). The computational

cost of the fully close-coupled methods scales linearly with the number of rotation-diffraction states
present in the basis set, provided that the sparseness of the potential coupling matrix is taken into
account. For normal incidence, the symmetry adapted version is faster than the conventional
close-coupling wave packet method by almost an order of magnitude. An extension of the method
to more realistic molecule-surface problems is consideredl985 American Institute of Physics.

I. INTRODUCTION products. Large increases in efficiency can thus be obtained

) if the evaluation of the action of the potential energy operator
The wave packet method has become an important toQl,, ihe wave function is made cheaper.

for performing calculations on molecule-surface scattering. |, considering improvements to the CCWP method

sgrfaces Wh'Ch contain isolated _|mpur|ﬁe%or are other- achieving a higher factorisability of the potential energy op-
wise d|s%ordere&,4*5 PQ‘Q”O”"”e'aS“C a7tom-surface eration on the wave functiol?:>*° This was achieved by
scattering; rotatlonallyz'. or wbraﬂqnallyl inelastic changing the representation of the rotational part of the wave
gﬂggﬁfﬁgﬁa"e scattering, and reactive mOIECU|e'SurfaCT%nction from a variational basis representation to a finite
The abplicability of wave packet methods to an everba.S Is representatioffBR). Very generally_, an FBR method
psing the spectraimomentum representation corresponds to

wider range of problems is clgarly degsz'gi‘?éﬁ arld, m_recena VBR method in conjunction with the approximation that
years, much effort has been directetf3224-%t inventing . . ; ;
%he potential matrix coupling elements are calculated using

wave packet techniques which are more efficient in terms o . . . )
an N-point quadrature rule in casd basis functions are

either computer time or central memory usage. The numeri- 1 L
cal efficiency of a wave packet method depends on the nunﬂsed(? In a FBR method the spectral basis is chosen such

ber of basis functions used, the spectral range of the Hamifl'at an efficient and accurate method can be used to trans-

tonian, and the manner in which the matrix-vector productéormh the wave function from the momggré;[gp hrepresent;::mon
associated with the action of the Hamiltonian on the wave® the coordinate representation and back: " The most ef-

function are carried ot Here, we will focus on the ficient implementation used by Lemoine and Corey for the
matrix-vector products. Depending on the representation diotational degrees of freedom employs the spectral represen-
the wave function, improvements in efficiency can betgt'lon as .the primary representation a?é:i 5r;as bgep called the
achieved in at least in two ways. This will be illustrated by finite basis wave pack¢FBWP) method™"In this imple-
considering the treatment of the molecular rotations inMentation, the potential energy operation is performed in the
molecule-corrugated surface scattering as an example. ~ coordinate or discrete variable representati@VR), and

The first calculations on rotationally inelastic molecule- Gauss—Legendre—Fourier transforms are used to switch from
surface scattering to emefgé employed a hybrid represen- the FBR in spherical harmonics to the DVR érand ¢, and
tation, using a close-coupling, variational basis back. The Gauss—Legendre—Fourier transforms factorize
representatioeH (VBR) for the molecular rotations, and a into two separate matrix-vector multiplications, one of the
grid representation for the translational motion of the centefransformations being block diagonal in the magnetic rota-
of mass. The method thus obtained was called the closdional quantum number. As a result, the potential energy op-
coupled wave packédCCWP method. In the “raw” form of ~ eration on the wave function scales wilj,? rather than
the CCWP method, the evaluation of the action of the potenwith N7, and compared to the conventional CCWP method
tial energy operator on the wave function scales wi,,  large increases in efficiency can be obtained for problems
whereN,, is the number of rotational states included in therequiring a large rotational basis set and involving a
basis set. In a wave packet calculation, most of the compumolecule-surface potential which is dependent on the azi-
tational effort goes into evaluating the action of the Hamil-muthal coordinatep.
tonian on the wave function through the evaluation of matrix It is also possible to increase the efficiency of the CCWP
vector products. In the case that many rotational wave funcmethod and stay with the variational basis representation.
tions need to be included in the expansion, most of the comFor a typical molecule-surface problem, the anisotropy of the
puter time is then spent in evaluating potential matrix-vectompotential should be small, except maybe at short range. The
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only spherical harmonics required to describe the long rangdl. THEORY

C; interaction of a homonuclear molecule with a surface arey gytline of wave packet methods
the Yo and Y, harmonic$® The frequently used model po-
tential devised by Wolken for the HLiF(001) system only
contains these two spherical harmorfitghe resulting po-
tential coupling matrix, which is labeled by final and initial
rotational states in the CCWP method, is tridiagonal! Once
the sparseness of the potential coupling matrix is taken into
account, in the CCWP method the potential energy operatiomomiC units were used in Eqd). FurthermoreM is the
scales linearly wittN, rather than quadratically. The size of 1,555 of the diatomic molecul®=(X,Y,Z) is the position

the prefactor in the scaling relation will depend on just howyector of the molecular center of mads,, is the Hamil-
anisotropic the potential is at short range, which will in turntonian describing the rotational motion of the molecule, and
determine whether the CCWP method or the FBWP metho& is the molecule-surface interaction potential which de-
will be more efficient for a given problem. pends orR and the orientation anglesand ¢. TheX andY

In this work we investigate to what extent the sparsenesgxes are taken to lie in the plane of the surface along the
of the potential coupling matrix can be used to increase thélirection of the lattice vectoréwe only consider the case
efficiency of a wave packet method which uses a VIBRf. yvhere the surfacg gnit cell is either rectangular or squdre
61) or close-coupling representation. Rather than considerinbs taken to be_ positive above the_sgrface, ﬁm.hd(b are the
the CCWP method, we take it one step further, using a closé?OIalr and az_lmufchal angles defining the orientation of the
coupled representation also for the diffractive degrees O%nolecular axis with re_spe(_:t tZS a_ndX. ,

) X i ) i Because the Hamiltonian is independent of time, the for-
freedom, as_|s done in thg time-independent close—cc_>upl|ng1a| solution to the time-dependent Sotirger equation can
method®® This representation allows one to take maximuMpe \written as
advantage of the symmetry relations which exist for normal A
incidence®” While scattering experiments typically do not Y (R.6:¢.)=exg—iH(t—t))]¥(R,0,¢.1o), )
employ normal incidence, many,Hmetal reaction systems whereW(R,6,¢,t,) represents the initial state of the system.
obey “normal energy scaling®~"°meaning that to a good Equation(2) represents an initial value problem. To solve it,
approximation the measured reaction probabilities depenwe first define an initial wave function
only on the kinetic energy associated with the translationa{I,(R,a,(b,to)
motion normal to the surface. Of course, this dependence can
then be obtained from calculations with normal incidence of ~ =P(Z)[1/(L,L,)]"? expi Kop)Ygm, (0, ) )
the wave packet.

For the proposed method to be efficient, it will be nec-
essary that the potential coupling matrix is also sparse in the b(Z)=[2m&?]'* ex —(Z—Zo)?/4&*+ iI‘Zozo] (4)
diffractive degrees of freedom. This is known to be true fortimes the product of a normalized plane wave describing the
potentials constructed from pair interactidii$? and model jpjtig| parallel translational motion and a spherical harmonic
potentials used in calculations on elastic atom-surface scaftescribing the initial rotational state of the molecule. In Eq.
tering usually employ Fourier terms to order no higher than(3), L, andL, are the magnitudes of the lattice vectors along
two.”*~"®Previously, the sparseness of the potential couplingd andY, p=(X,Y), andK is the vector of initial parallel
matrix in atom-surface problems has been used irmomenta kxo,kyo). In EQ. (4), & represents the width of the
calculationé® on the HerLiF(001) model systerff that em-  wave packet which is centered &g and traveling in theZ
ployed the log derivative version of the Kohn variational direction with an average translational momentklfgl
principle. The work showed that a very efficient algorithm is ~ The wave function can then be propagated in time using
obtained if the resulting sparse system of linear equations i8 numerical algorithm like the Chebychev propagation
solved iteratively. Here, we investigate the influence of themethod’ or the short iterative Lanczo$IL) method?® Ei-
sparseness on the efficiency of a wave packet method erther method involves the repeated evaluation of the action of
ploying the fully close-coupled representation for an admitthe Hamiltonian on th_e wave funlction. In either method, thg
tedly simple and favorable case, the WolkegHiF (001) upper bound_ to j[he size qf the timestep that can be used in
model problenf® Future research will investigate the merits the p'ropa}gaets:)on 'S determined by the spectral rangef the

I ) Hamiltonian;"” defined as
of the proposed method for more realistic potentials.
In Sec. Il we summarize the CCWP method and present W=\ max— Amin: )

the new method. We give brief consideration to the mode _ i i i
potential used, and discuss the numerical details associatgl@zzr?,\,)ﬂnﬂa}(haenz::)naa(i;eotch:igrgﬁﬂ:;:gneﬁﬁ r:,:,/y?ilgy? Sthzsj\gi,le
with the calculations. Section Il presents and discusses thfinction is expanded. The computational cost of the wave
numerical results of the calculations. Our findings are sumpacket propagation depends on the number of basis func-
marized in Sec. IV. tions, the spectral range of the Hamiltoni@hrough the size

The Hamiltonian describing the dynamics of a rigid ro-
tor, diatomic molecule interacting with a static corrugated
surface can be written as

.1
A= orr Va+Hort VXY, Z,0,¢). @

which is taken as a Gaussian wave packeZ in
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of the timestep that can be ugednd the efficiency with lying beyondZ... To absorb the outgoing wave packet, we

which H¥ is evaluated®®® All of these in turn depend on add an optical potential of the quadratic f&fm

the method used to expand the wave function, which is dis- 35

cussed in Sec. I B. Vi(Z)=—iAy(3 29, (93

The calculation o_S-matri>_< elements inv_olves_ the projection 7= (Z—Z{“‘")/L, (9b)

of the wave function on diffraction-rotation eigenstates. In an

elegant method devised by Balint-Kurét al,***>® the  to the Hamiltonian of Eq(1), the optical potential being

wave function is analyzed at a fixed value of the scatteringlefined over the rangez™,Z™" + L].

coordinate(Z.,), analogous to what is done in the time-

independent close-coupling methGdThe wave function is  B. Description of individual wave packet methods

projected on rotation-diffraction eigenstates at fixed time in-l The CCWP method

tervals, obtaining time-dependent coefficients ’
In the CCWP method;®**the wave function is written

as an expansion in a set of rotational basis functions and

- - 1/2
< mj“m(z“’ D=[1/(LLy)] LJQ\P(Zw .0, b.) represented on a rectangular grid of regularly spaced points

) in X, Y, andZ:
xexd —i(Kot Gnm)p]
XY (6,6)dp A0, ®) V(=2 X" (RO Yjm, (6.6). (10)
i jmj

In Eqg. (6), n and m are the diffraction quantum numbers Along Z, Y, and X, N,, N, and N, regularly spaced grid
associated with the final translational state of the moleculepoints are used. For a square lattice, a square grid of points in
andG,,, is the reciprocal lattice vector given by X andY is used Ny=N,). In the rotational expansiom,
rotational states are includefyanging from 0 t0j jax-
Using the expansion of E¢L0), the action of the kinetic
(7) . X . )
energy operator associated with the translational motion of

. , ) the molecule can be efficiently evaluated using consecutive
FurthgrmoreJ_ and m; are the_: rotational quantum numbers g (Refs. 62 and 680f the y!°™°(R,t) alongZ, Y, and
associated with the final rotational state of the molecule. The m;

Srma_tr_|x element§j/mjrnmjomj0(E) for a (jomjo—j’m; nm) N Ny NX(log N, +log Ny +log N,), where N,, is the
transition can be calculated from t@’m{“m(z‘” 1) using product ofN, andN, . The actual kinetic energy operation is
time-energy Fourier transforms as outlined in Refs. 41, 45perf0rmed in momentum space by performing Simp|e multi-
and 79. The probabilitie®(jom;o—j’'m;nm) are related to  plications, which scale a,N,,N . Because the expansion
theseS-matrix elements through is in rotational eigenfunctions, the evaluation of the rota-
tional energy operator simply involves the multiplication of
eachX}OmTiO(R,t) with Boj(j+1) on each grid point, scaling

B 27n 27m
nm Ly’ Ly

The associated computational cost scales as

P(jomj0—>j’mj’nm):|Sj’mj'nmjoij(E)|2- (8

A nice feature of the asymptotic analysis method discusse@SNzNxyNrot (Bg is the rotational constant of the molecule

earlier is that the scattered wave function is not needed be? Similar scaling is obtained for the multiplication with the

yond the analysis value of the scattering coordinZte optical potential, except that this operation is only performed

Methods which share this feature and also rely on time-tofor @ limited number of points ir.

energy Fourier transforms are methods due to Hoffman The potential energy operation is performed by premul-

etal®® and Neuhauseet al®" In the method of Hoffman tiplying the vectorx[o"°(R,t) with the potential coupling

et al.®® T-matrix elements are obtained using time-to-energymatrix on each pointﬁ,Y,X). The elements of the matrix

transforms of the time-dependent amplitude density, which igre given by

nonzero only over the range of the potential. Because this

;cheme uses the amplitudg density, it is pest used in conjunc- Vjrmrjm (R)= j Ytkm.’( 0,H)V(R,0,6)Ym (0,4)dQ.

tion with a time-dependent integral equations approach. Neu- 17 Im ]

hauser's methdd also involves time-to-energy Fourier (11)

transforms and analysis of the wave function at a particulatf no attention is paid to the possible sparseness of the ma-

value of the scatteringreactior) coordinate. It involves the trix, the potential energy operation scalesl\da,_.nyerot. If,

calculation of fluxes through the surface defined by theon the other hand, the potential coupling matrix is sparse an

analysis value of the scatterifgeaction coordinate, and is upper bound to the scaling is given byszmetN’C‘(’,‘up,

in a sense more general in that it can also be used to calculMereNL?}up is the maximum number of rotational states the

probabilities which are resolved with respect to one quantunpotential can couple with a given initial state on any point

number and averaged over another. (X,Y,Z). In the case of a homonuclear diatomic molecule
Because the scattered wave function is not needed bénteracting with a surface through a potential containing no

yondZ.., the grid in the scattering coordinate needs to con-azimuthal dependencdyg,, is equal toj® + 1, where

tain only the range over which the potential is nonzero plus gy is the maximum order of the spherical harmonitg

small interval used to absorb the scattered wave packet aratcurring in the expansion of the potential.
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TABLE |. Scaling of the operations used in evaluating the Hamiltonian andTABLE Il. The memory required to store the wave function using the Che-

propagating the wave function. We have omitted a common factot, af bychev propagation metho®} and the SIL method of order 4§ is given

all the scale factors collected in the table, ag,=log N,+log N, . for the different wave packet methods discussed in Sec. Il B. Also given is
the amount of memory required to store the potential coupling matrix for a

Operation CCwP RDWP SAWP potential which does not depend on the azimuthal agighe common factor
of N,X N, has been omitted in all cases.

Propagation Ny Nror NgitN ot N3N o,

Vi NxyNrot NaitNrot N3N ot Storage for: CCWP RDWP SAWP

K, multiplications Ny Ny NgitN ot NN -

K, FETs NNoot I0g N, NagNieelog N, NEIN,, log N, Wave functfon €) 8xN,, 8X Nt 8 X N&

_ , Wave function L) 20xN, 20X Nt 20 x N
Kar, FFT's NyyNrotM xy ' ) ; ot rot dif a1 o dif
Potential nyNrotNgup NdifNrotNL%tu ggup Ngi}NrotN[:%turJ\lggup Potential nyX NCOUP NdifXNCOUPXNCOUP Nait NCOUP ~ NCOUP

2. The rotationally and diffractionally close-coupled
wave packet method
Taking the sparseness of the potential into account thus

leads to a scaling of the potential energy operation which is Itis also possible to expand the wave function on a grid

linear withN,, the prefactor being dependent on how manym 4 _and in rotation-diffraction elg_enfunctlons as is done in
: ) : . the time-independent close-coupling metfddhe expan-

spherical harmonics need to be used in the potential expar: -

sion. A modified CCWP method which takes sparseness into

account should then scale especially favorable for systems o
u u p lally V Y \I’(t): 2 f!OmJO (Z,t)[l/(LXLy)]l/Z

requiring a large rotational basis gdtie to a small rotational _ jmjnm
constant while possessing little anisotropy in the molecule- jmjnm
surface interaction potential. xXexdi(Kg+ Gnm)p]Yij( 0,9). (12

The propagation of the wave function involves additions ) . . ]
and (in the case of the SIL propagaf®yr the calculation of We will call the resulting method the rotationally and diffrac-
overlap integrals which all scale &N, N,. The scaling tionally close-coupled wave pack@@DWP) method.
of the operations involved in propagating the wave function N the RDWP methodN, points are used for the depen-
in time using the CCWP method are summarized in Table 19€nce Of the wave function af, and N, rotational states
In the CCWP method, the calculation of the initial wave @€ included in the rotational basis sptianging from 0 to

function [Egs. (3) and (4)] can be performed trivially by Jmax- One advantage of the RDWP method over the CCWP
calculating b(Z)x exdiKgp] on the grid inX, Y, and Z.

method is that there is an enhanced freedom in the choice of
Arbitrary angles of incidence can be handled by extendinggiﬁraCtion eigenstates to expand in. The spectral diffraction
the FFT scheme using the shifting theorem of Fourier analy-

asis which is effectively used in the CCWP method is a
sis, as described in Ref. 54. The ex{shifting) operations square grid ofN,y points in the two-dimensionalp,py)
required scale adl,N, N. In performing the asymptotic

momentum space. In calculations employing the close-
analysis, the projection of the wave function on the rotation-

coupling method often good results can be obtained by in-
diffraction eigenstates can be done using consecutive FFT luding diffraction states up to diffraction ordbt;, where

of X}gﬂ‘w(zm ,Y,X,t) alongY andX for all rotational states
]

the diffraction orde#=|n|+|m|. The resulting spectral “grid”

is “diamond shaped” in momentum space, containing
present in the basis setee Eq(6)]. The associated compu- N =M3;+(My+1)? diffraction eigenstates. In previous
tational cost is negligibly small when compared to the cost ofyork®* on scattering from a surface possessyy symme-
evaluating the action of the Hamiltonian on the wave func-try, which compared results of CCWP calculations with re-
tion. sults of(time-independentclose-coupling CC) calculations,

The amount of central memory required in the CCWPwe found the number of diffraction states needed to get con-

method depends on which propagation method is used. Thgrgence employing a diamond shaggdmomentum spage
Chebychev algorithﬁ? requires four storage arra%where grid to be much les$61, M 4:=5) than the number of dif-
the memory taken up by one storage array is the amount dfaction states effectively required for convergence in a
memory required to hold the full wave function. The SIL CCWP calculatior(100, N,=N,=10).
method® of orderN,,, requires(N,,,+1) storage array®’ In Using the expansion of EGL2), the action of the kinetic
the CCWP method, the memory required to store the wavenergy operator associated with the translational motion of
function is 2<N,N,, N, (the factor 2 is from the wave func- the molecule along can be evaluated using FFT’s alo#g
tion being complex If the sparseness of the potential cou-for each rotation-diffraction eigenstate. The computational
pling matrix is used, an upper bound to the memory requireaffort involved scales a®N,NyN,,logN, rather than as
to store this matrix isN,N, NN, in case the potential N,N, N,JogN, as is the case in the CCWP method. This
shows no azimuthal dependenitke coupling matrix being will usually give some enhancement of efficiency because, as
real symmetrig, otherwise it is %NZNXerotNL‘gup(the factor explained above, the number of diffraction statég re-
2 arises from the coupling matrix being complex Hermitian quired to obtain converged results will usually be less than
The memory requirements of the CCWP method are summaN,,. More importantly, an additional advantage of the
rized in Table Il. RDWP method over the CCWP method is that the FFT’s
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alongyY and X can now be avoided in the evaluation of the enabling one to work with a grid of fixed size. The propor-
Laplacian operator, because the wave function is already exionality constant of the optical potentigh, for a quadratic
panded in diffraction eigenfunctions. In the RDWP method,potential, see Eq(9a)] can then be adjusted to the transla-
the potential energy operation is performed by premultiply-tional energy with which the scattered channel is expected to
ing the vectorf}gﬂﬁn(z,t) with the rotation-diffraction po- emerge, using procedures described in Ref. 82.

! In the RDWP method, the amount of memory required
to store the wave function iSX2N,NgiN,;. If the sparseness
of the potential coupling matrix is used, an upper bound to
the memory required to store this matrix is
N NgitN N, N in case the potential shows no azi-

muthal dependence, otherwise it i%&,NN;oNfo, N -
= 1/(LXLy)i Yj?*m,(e, d)exd —i(Ko+ Gpim)pl Compared to the CCWP methgsee Table I, we find that
! usually less memory will be required to store the wave func-
XV(R,6,p)exdi(Ko+ Gnm) p] tion (we will typically haveNy;<N,,) while more memory
will be required to store the potential coupling matrix
XY]mJ(e’ ¢)dp de. (13) (Nd|nggup>ny)

If no advantage is taken of the sparseness of the potential
coupling matrix, the potential energy operation will scale as3. The symmetry adapted rotationally and
N,N3¢NZ, which would be very unfavorable. On the other diffractionally close-coupled wave packet method

hand, the Computational cost W|” Scale no worse than In the case that the moiecuie iS incident aiong a Symme_
N NgitNoNEuNEoup if the sparseness of the potential cou-try direction of the crysta*® and especially in the case of
pling matrix is taken into account, wheN&g,,is the maxi-  normal incidencd’ a much more efficient method than the
mum number of diffraction states to which the potential will Rp\wP method is obtained if the wave function is expanded
couple a given rotation-diffraction statthe rotational state jn symmetry adapted diffraction-rotation eigenfunctions. We
of the coupled states being the san@omparing this to the || call the method thus obtained the symmetry adapted
cost of the potential energy operation in the CCWP methogotationally and diffractionally close-coupled wave packet
(see Table), we find that in the RDWP method we should (sawp) method. Here, we limit ourselves to a discussion of
expect the potential energy operation to be more expensiye case of normal incidence on a crystal surface which has
by a factor of Ngi/N,, X NG, An approximate realistic c, point group symmetry, as is the case for the (DI
value of Ngi/Ny, is 0.6 (see preceding text and Sec. W F syrface, with the molecule-surface potential being indepen-
and Nggup is 5 in case the potential contains Fourier terms ofgent of the azimuthal angle. Extensions to¢-dependent

order up to 1, which means that for such a potential wemolecule-surface potentials and incidence along a symmetry
should expect the potential energy operator evaluation to bgiirection will be made in future work.

come mor-e eXpenSiVe bya factor of 3. Whether the RDWP In the case of normai incidence and@independent
method will be more efficient than the CCWP method will molecule-surface potential, we need to include only parallel
then depend on to what extent the loss in efficiency in perransjational eigenfunctions which are totally symmetric un-

forming the potential energy operation is offset by gains inderc, symmetry?” The resulting expansion is
efficiency in evaluating the action of the kinetic energy op-

erator. The scaling behavior of the other operations required — JoMjo _ >m=
to propagate the wave function in time are summarized in Yo WEm 9 (Z.DH0n(P)Yjm,g( 0, 4),  n=M=0
Table I. (14)
In the RDWP method, the calculation of the initial wave
function [Egs. (3) and (4)] is even more trivial than in the
CCWP method, and simply involves settirﬁg’gmj:goo(z,to) Hom(p) = (DY /(L L) 1Y Gl p)
equal tob(Z). Arbitrary angles of incidence can be handled
just as easily as in the CC method. In the RDWP method, the

tential coupling matrix on each point iA. The elements of
the matrix are given by

Vj’mj’n’m’jmjnm(z)

jmjonm

and the symmetry adapted eigenfunctions are givéh by

+Gh-m(P)+G_ (P + G ()

asymptotic analysis is even more easy than in the CCWP +Gmn(P) T Gm_n(P) +G_m—n(p)
method, and simply involves settir@,, ,m(Z-,t) equal to
oo 0 ply r(gjmjnm( ) eq LG (p)], n>m>0 (153

jm.nm
JAn advantage of any method doing a full expansion in Hom(p)=3 [1/(|—x'-y)]1/2[Gnm(P)
molecular eigenstate channels is that, if the collision energy 4G (p)+ Gl p)
distribution is not too broad, the energy of the translational —nm(P mnt.f
motion in the scattering coordinate will be reasonably well +Gp-n(p)]l, Nn>m=0 (15b)
defined for a given scattered channel. This makes it possible . 142

to use an optimal procedure to absorb the scattered wave Hom(p) =2 [1/(LiLy) 17T Gnm(p)

function, by making the optical potential channel dependent. +G, (p)+G (p)

In practical calculations, one will typically assign a fixed nem -men
value toL, the range over which the optical potential acts, +G_ (@], n=m>0 (150
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Hom(p) =[1/(LLy) 1Y, n=m=0 (15d  only. From these coefficientS-matrix elements also labeled
by the symmetry indel; are calculated for the same values
where of n andm. The actualS-matrix elements for arbitrarg, m
Gum(p)=exp(iG mp). (15e  can then be obtained from

For the case of a molecule-surface potential showing no de-
pendence on the azimuthal angfe the scaling relations Si’mjonmjomjo(E):SJ’mjomnjomjo(E)
found for the RDWP method are also valid for the SAWP

method, except that now we can repldég; by the number = \/% SAli’mjolnI\mliomjo(E)’ [n|>[m[>0
of totally symmetric parallel translational eigenstatb@# (163
(see also Table)l Considering once more the diamond-

shaped grid of momentum eigenstates discussed in consider-

ing the RDWP methodN3} is the number of momentum  Sj'm;gnmjom;,(E)
eigenstates contained in a triangle which is obtained by in-

tersecting the “diamond” with a line that makes a positive

angle of 45° with thep, axis and passes through the origin of =Sy MjoMNioMjo (B)= SAlJ mJD\n\Imhom,o(E)
the two-dimensional ff,,p,) space. The numbelNﬁ# for
such a “triangular” grid is (M g¢+21)(My¢+3)/4 for odd In|>|m|=0 or |n|]=|m| (16b

maximum diffraction ordeM 4, and (M 4;+2)%/4 for even
maximum diffraction ordeM ;. For selected values & 4

we give the values oN3t Ny and the expected gain in Simy 0001 gyl B) = Sy my00jgm;o(E)- (169
efficiencyN; /N3t if symmetry is used in the SAWP method
in Table III. The amount of memory required in the SAWP method can be

As can be seen from Table llI, the expected gain in ef-obtained from that required by the RDWP method by substi-
ficiency obtained by using symmetry only slowly approacheguting N3i for Ng; in all the expressions given in Table II.
the upper bound of 8. In practical situations, in case of norComparing to the CCWP methddee Table I), we find that
mal incidence one will have to be satisfied with gains of themuch less memory will be required to store the wave func-
order of 5 or 6 when using symmetry. Nevertheless, wheriion. We expect that the amount of memory required to store
considering the computational cost of performing the potenthe potential coupling matrix will usually not be very differ-
tial energy operation on the wave function using the exampl@nt for the SAWP and CCWP methodNﬁ(nggup Nyy) -
previously discussedM =5, N,=N,=10, Fourier terms
present in the potential up to orde} We now find that the
SAWP method should be cheaper than the nonsymmetr ) .
adapted CCWP method even for this operatidifi/ Nyy i;;g/clf metry adapted close-coupling wave packet

Nggup 0.6, see @bles | and I).

In the SAWP method, the calculation of the initial wave ~ Another approach to the use of point group symmetry in

function [Egs. (3) and (4)] is just as easy as in the RDWP molecule- surface scattering was recently considered by

method, and simply involves setUrg;’O 0 o(Zto) equal to Lemoine’ The approach is to retain the minimum number
of symmetry-needed diffraction states rather than set up a

basis of symmetry-adapted states. In the method thus ob-
i talneq, the actlon_ of the potential energy operator .IS avalu—
Jjm,gnm(Z= 1) The coefficients are calculated fa=m=0  ated in the coordinate representation. For normal incidence

the diffractive kinetic energy can be evaluated using fast co-
TABLE IIl. For selected values of the maximum diffraction orddy; of sine transform¢FCT's) alongX andY, or using a Symmetry
diffraction states included in the basis set, we give the valud$pf N adapted _DVR method. In the cas_e that few diffractive _St_ates
and the expected gain in efficiendgompared to the RDWP methpd are required, the latter scheme will usually be more efficient,
Ngir /N3t when symmetry is used in the SAWP method. For the meaning ofbecause the FCT scheme cannot take full advantage of the
the parameterslgi and Ny, see the text. symmetry relations arising from normal incidence oy,
symmetry of the surfac¥.

b(Z). The asymptotic analysis is also performed analo-
gously, and involves settlngCJm nm(Z,t) equal to

Mar Nii Nar cain The scheme discussed by Lemoine can be easily ex-
1 2 5 250 tended to rotationally inelastic molecule-surface scattering.
g g ;g ji? Actually, Lemoine has already used it in calculations on scat-
4 9 a1 455 tering of N, using the finite basis representation method for
5 12 61 508 the molecular rotation® We will call the method that would
6 16 85 5.31 be obtained if the close-coupling representatioiBR) for
8 25 145 5.80 the rotational states would be retained the symmetry adapted
1(5’ 32 igi g-ég CCWP method, and abbreviate it as SNWP method, to em-
25 182 1301 715 phasize that symmetry needed rather than symmetry adapted
100 2601 20201 777 states are used in the basis set. In this work, we do not

present any numerical results of the SNWP method, though
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5518 Kroes, Snijders, and Mowrey: CC wave packet method for H,+LiF(001)

estimates of its computational cost will be given in Sec. lil.tonian for all propagation metho88In a wave packet cal-
However, we will discuss the scaling relations for this culation, the spectral range can be calculated using
method briefly here. i y X rot

Because a grid representation is retained for the diffrac- N max™ Tmaxt Tinax™ Tmanc™ Tma Vmax: (173
tive degrees of freedom, the number of rotation-diffraction =\ .

. . . . )\max lenv (17b)

states effectively present in the basis set will mé;Nmt ) ) o )
rather tharNgiN . Here,Ng; is the number of momentum N Eq. (5. In Eq. (178, the maximum kinetic energies for
states contained within the triangle that is obtained by interiranslational motion along a particular direction can be

secting the square containing the momentum eigenstates afiff@ightforwardly calculated from the grid spacing along that
the p, axis by a line making a positive angle of 45° with this direction. The calculation of the maximum rotational kinetic

axis and passing through the origin. Fdh=N,=10, €nergy is likewise straightforward. However, as discussed

N§)1,=21 is obtained, which is considerably more than thelat_er_the calculatio_n of the ma>_<imum poten_tial energy on the
vaiue ofN3}(12) obtained forM 4¢=5. The scaling relations grld is not so stralghtforward if th.e potential energy opera-
of the SNWP method for the propagation of the wave func-ion is not performed in the coordmate representation.

tion, the multiplications with the optical potential and the I @ VBR method, one can approximatg,, by the spectral
kinetic energy for motion along, and the FFT’s along can rad|u§p(V), Whlch is the largest eigen value of the potgntla}l
then be obtained from those of the SAWP method by substicOUPling matrix. An upper bound to the spectral radius is
tuting N2 for N§ in the expressions given in Table I. The 9/Ven by

evaluation of the diffractive kinetic energy should scale ap-

proximately as 1/%NZ, in case a symmetry adapted DVR p(V)=<max>, |Vil. (18
method is usedthe factor 1/5 is from 21/100 foN,=N,). j

As was discussed before, the calculation of the diffractivg, the CCWP or SNWP methogi(V) would be calculated
energy in the SAWP method is much cheaper because it doggs, o points (X,Y,Z) and the maximum value would be

not require any transformations. used forV, ... In the RDWP and SAWP methog(V) is

While the SNWP method should be less efficient than_calculated for all the grid values &, and the maximum

the SAWP method for all the operations discussed above, it o, Because in all cases an upper bound estimate would
should be more efficient in performing the potential energy, . \,sed to calculateé one would typically use a timestep

; ; al rot maxs
operation, which scales abliyNNcoyp in the SNWP o\ 0lid be smaller than necessary.

method. Thus, in evaluating the action of the potential energy It is a long standing practice to impose a maximum on
operator the SNWP method will be more effective than theye potential energy in order to reduce the spectral range. It is
SAWP method by a factoNgi/Nyy X Neouy FO the ex- jiewise useful to impose a maximum on the total kinetic
ample we have been discussing so(f&lggup=5) the gain in energy?®® Imposing a maximumir,, on the total kinetic
efficiency is a factor of 2.86. As will be seen in Sec. lll, energy is straightforward in the C(CZUWP, RDWP, and SAWP
where we compare estimated costs of using the SNWR,ei04s. 1n the RDWP and SAWP methods, the wave func-

method with the actual cost of the SAWP method, for theyjq, is first transformed from the coordinate representation in
example discussed in Sec. Il this gain is more than offset byz to the momentum representation @ In the CCWP

the losses in efficiency occurred for the other operations. T‘i’hethod, the same is done, also transforming abrand Y.
what extent this will hold for other molecule-surface prob- e the wave function is obtained in the fully spectral rep-
lems will depend on the extent of corrugation of the surfacgggentation, is is multiplied with the total kinetic energy on
(this determines the value &,y but also on the anisot- ¢, “grid point” in momentum space, taken into account
ropy of the molecule-surface potentighis determines the . imposed cutoff valu@ .. Imposing T in the SNWP
value ofNcy,). The degree of anisotropy of the potential will ¢ -peme is fikewise easy if FCT's are emC;L)Joned in the calcu-
determine how expensive the potential energy operation ifyjon of the diffractive kinetic energy. However, it should be
relative to the diffractive kinetic energy operation. The MOrep oted that if one wants to impose a cutoff value on the total
expensive the potential energy operation will be relative %inetic energy the use of the symmetry adapted DVR method
the diffractive kinetic energy operation, the more efficient theto transform from theX,Y coordinate space to momentum
SNWP method will be compared to the SAWP method.  g506 hecomes less favorable, because two DVR transforma-
The amount of memory required by the SNWP methodijong have to be performed rather than one matrix-vector
can be obtained by that required for the CCWP method b¥nultiplication which includes both the transformations and

substitutingNy, for N, in all expressions given in Table II. e multiplication with the kinetic energy in momentum
We expect that in terms of memory usage the SNWP method

will generally the most efficient method, especially in the = 5 .great advantage of a FBR method like the FBWP

case that the Chebychev propagator is used. method®%is that in this method it is also easy to impose a

maximum on the potential energy operator, since the poten-
tial energy operation is performed in the coordinate represen-
tation. This advantage is not shared by methods employing

The amount of Hamiltonian operations which are re-the close-coupling representation or VBR. What one can do
quired to propagate the wave function over some given timés use a procedure that ensures that the potential is not
At is linearly proportional to the spectral range of the Hamil-changed if its value is less than the maximwff,, that

C. The spectral range associated with the different
methods
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would be imposed in case the potential energy operatiomately on each grid. To evaluate the action of the potential
would be performed in the coordinate representation. Thignergy operator in the range of the scattering coordinate
can be ensured by expanding the molecule-surface potentialhere the potential energy is not zero, the elastic part of the
in symmetry adapted functions that are normalized in such aave function is first transferred to the regular grid. This is a

way that their maximum absolute value is 1, i.e., trivial operation if the RDWP or SAWP method is used. If
the CCWP method is used, at each poinZirtontained in
V(Z,Y,X,G,d)):E Ci(Z,Y,X)V,(6,¢) (199 the regular grid it involves a multiplication di(Z) with
i=0 [1/(LLy)]"%expiKop) to obtain the wave function on the
or grid points inX andY. Next, the potential energy operation

is performed on the regular grid. The resulting elastic part of
the wave function is then transferred back to the elastic grid,
V(Z,Y,X,0,¢)=2 Ci(2)Vj(X,Y,6,¢). (19b) which is once again a rather trivial operation in the RDWP
1=0 and SAWP methods. In the CCWP method, the new value of
In Egs. (19), V, will always be y27Y for all methods the elastic wave functioh’(Z2) is first calculated from
discussed in Sec. Il B. One then calculates

’ _ ; m;
Ve o o (209 h'(Z)= fp[1/(|_x|_y)]1/2 exp(—i KoP)Xigm}g(R,t)dp-
(22)
CV:max;rid( 1+ [CilICo], (20D The transfer of the elastic part from the regular grid to the
j=1 elastic grid is then completed by subtractiny (Z)
considering grid points close to the surface. X V1/(LLy) exp(Kop) from X}EQ}E(R,I), thus projecting
Next, before calculating the potential coupling matrix, in out the elastic part of the wave function.
all cases where we find th&l,> Vi, We impose a cutoff The method of bringing in the elastic part of the wave
on the potential energy expansion by setting function on a separate grid is easy to apply and, in favorable
Co=VeU | 213 cases, may save up to a factqr of 2 pf computer time. An-
other method to reduce the grid size is the use of a floating
C;=0, j=1. (21b grid, the range of which can be adjusted to contain the wave

packet as it moves in time.This method may allow for even
larger reductions in computer time in favorable ca5ésigh
collision energy, little energy transfer to the rotational and

A safe estimate o¥ . is then obtained by setting it to the
square oVSe . In the case of a weakly anisotropic potential
like the example considered in Sec. Il E, we will typically ~. . . :
haveVet, ~ 1.4 x VE,, So that the calculately,, will  O1imactive degrees of freedom, no trappingut is more dif-
be twice the one that would be used in a FBR method. As- P '
suming the minimum value of the potential to be small, if we E. Model potential
\ljzﬁntahsv:ax:uﬁjufgev?g:\? fori;hzrfofzaé;'nce;:gu?gt?;gy f\hsethe The model potential we use in this work is that devised
T max - Wolkerf® for H,+LiF(00J). | i
spectral range associated with a method employing the VBII-\?y olker?™ for HpLiF(00D). It can be written as
or close coupling representation is roughly 1.5 that of a  V(X,Y,Z,0)=V(X,Y,Z)XV,(6), (233
method employing the FBR.

where
D. Initial wave packet propagation V,(60)=1+APy(cos6), (23b
In a wave packet calculation, the grid in the scattering  V(X,Y,Z)=V,(Z)+V1(Z)Q(X,Y), (230

coordinate can be made smaller if a separate @i call

this grid the elastic gridwhich extends to larger values Bf Vo(2)=D exp[a(ZVO—Z)]x{exp[a(ZVO—Z)]—Zééd)

is used to bring in the initial wave functiofi This technique

was used in all the methods discussed in Sec. Il B. The elas- V(Z)=—-28D exd2a(Zyy—2)], (23¢9

tic grid is used to hold the diffractionally and rotationally

elastic channel defined bly(Z), until this channel can be Q(X,Y)=cod2wX/a)+cog27Y/a). (231)

accommodated on the part of the “regular” grid not affectedThe parameters used in this study are the paramate®s84

by the optical potential, which does not act on the “elastic’ A, «=1.18 A™!, D=38 meV, and\=0.24 also used by

grid. In practice, we check whether the value of the norm ofWolken, while for the corrugation paramet@mwe use 0.03.

the wave packet, as calculated over the rang& starting  The choice of the paramet&s,, is arbitrary, and we set it to

with Z™" (where the optical potential starts to act, see Sec5 bohr. The parametex is simply the LiK001) lattice con-

Il A) becomes less than some tolerance parametgy,tof  stant.

whether this norm starts increasing again. Once this is the The Wolken potentialEq. (23)] contains no dependence

case, the wave function is transferred to the regular grid andn the azimuthal angle of orientati@h The maximum value

propagation continues on this grid only. of j in the potential expansiof{)® is 2 and, therefore, we
In the initial propagation on both the regular grid and thehaveNL%‘up:& In the potential expansion, Fourier terms are

elastic grid, the kinetic energy operation is performed sepapresent up to order fithrough the symmetry adapted func-

Downloaded-15-Mar-2011-to~130.37.129.78.~RedistributiorReMie Y8 - Bl Q% Moo L3 ch ARSI 1998 - htp: /ljcp.aip.org/about/rights_and_permissions



5520 Kroes, Snijders, and Mowrey: CC wave packet method for H,+LiF(001)

TABLE IV. Numerical parameters used as input in the calculations are given.

parameter CCwP RDWP SAWP
Initial wave packet
Width ¢ (bohrg 1.118 1.118 1.118
Initial position Z,, (bohrg 17.0 17.0 17.0
Average initial momentunkZO (atomic unit3 7.349 7.349 7.349
Basis set parameters
N, Ny 10
M gif 5 5
Ndif (ny for CCWB 100 61 12

2 80 80 80
Grid spacingAZ (bohi 0.25 0.25 0.25
Lattice parametea (A) 2.84 2.84 2.84
Maximum value ofj in basisj yax 6 6 6
Time propagation
Size time stegatomic unit$ 240 240 240
Number of time steps 255 255 255
Order of SIL methodN,, 9 9 9
Optical potential
Initial value of rangeZ™" (bohrg 15.75 15.75 15.75
Proportionality constand, (hartrees 0.01 0.01 0.01
RangeL (bohrg 4.0 4.0 4.0
Other
Analysis value ofZ, Z,. (bohrg 15.75 15.75 15.75
Tolerance norm elastic grid tgl 10710 10710 10710
Number of grid points elastic grid 128 128 128
Cutoff potential expansiolS4, (eV) 0.5 0.6 0.6
Cutoff kinetic energyT ., (eV) 0.6 0.6 0.6

tion Q(X,Y) of Eq. (23f)] and, thereforeNggup=5. For the of the scattered channel that is associated with the transla-
Wolken potential,C,=1+A+2XB+2XBX\=1.32 for the tional motion normal to the surface.
RDWP and SAWP methodsee Sec. Il § yielding a spec- In the CCWP method, when performing the FFT's for a
tral range which is larger than that of a FBR method by agiven rotational state the wave function is held in an array
factor of 1.37. For the CCWP and SNWP methods,ar(nzny,nx), where the first dimension is f&£, etc. The
Cy=1+\=1.24, and the associated spectral range is 1.2FFT’s were performed consecutively using the scilib Cray
times the spectral range of the FBWP metRdd. routine MCFFT, vectorizing alony andX when performing
the FFT's inZ, vectorizing alongZ when performing FFT'’s
along Y, and vectorizing along andY when performing
F. Numerical details FFT’s alongX. Care was taken to avoid memory bank con-

Calculations using the CCWP, RDWP, and SAWP meth_flicts. The three-dimensiondBD) FFT routine CFFT3D is
1 1 . . - 88 .
ods were performed with the input parameters as given ierY inefficient for low values oN, andN, ,* but the effi-
Table IV. Most of these parameters have already been di&i€ncy of the algorithm outlined above and using MCFFT is
cussed in Secs. Il A—ll D. The average initial momentumcomparabl%g to that of a sophisticated algorithm using rota-

kZo given in Table IV corresponds to a collision energy of 0.2tions to obtain optimized vector lengtAFor N,=80 and

eV, and all calculations were performed for normal incidence'\lx’l\ly:10 the algorithm using MCFFT s faster than

of the wave packet. The SIL meth@dvas used to propagate CFFT3D by a factor 4. For these valuestofandN, anc_iNy
NN ' 80,10,10, on a Cray C-90 about 37% of the cpu time re-
the wave function in time. We made no systematic attempt t(S

optimize the value o¥/<%, for the different methods, because quired for a full 3D FFT is spent on the transforms alahg

the spectral range obtained from using one specific value tpe transforms along and¥ taking the remainder of the cpu

Vi would not differ much for the CCWP method on the 'me.

one hand and the RDWP and SAWP methods on the othq[
hand(see Secs. Il C and IE

In all calculations, we use the empirical, Hotational Results of scattering calculations employing the CCWP,
energies as obtained from Ref. 87, rather than treatipgH RDWP, and SAWP methods are given in Table V. As should
a rigid rotor. In the RDWP and SAWP calculations, the  be the case, identical results were obtained using the RDWP
parameters given in Table IV represent maximum values, anthethod and its symmetry adapted versi®\WP). The re-
we obtain channel dependent optindgl values using linear sults of the CCWP method, on the one hand, and the other
interpolation of Table Il of Ref. 82. In this proceduig,and  two methods, on the other hand, differ slightly because, ef-
\ as defined in Table Il of Ref. 82 are calculated usingfectively, a different diffractive basis set is used in the
E=E.,-channel energy, wheré is the translational energy CCWP calculationgsee Sec. Il B The number of diffrac-

I. RESULTS AND DISCUSSION
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TABLE V. Probabilities for rotationally and diffractionally inelastic scatter- In general, the scaling relations of Table | are well
ing of H, (initial rotational statej=0) from LiF(001) are given for the  obeyed. For instance, in the RDWP method the cost of per-
CCWP, RDWP, and SAWP methods. The collision energy is 0.2 eV. Theforming the FFT’s anngZ should be 61% of the cost in the
results are for normal incidence. . .. .
CCWP method, the actual number is 57%. The deviation is

i’ n m CCWP RDWP, SAWP probably due to the difference in vector length, the length in
a the RDWP method61) being nearly optima{64 on a Cray

° ;’ 8 g:gggz_g 8:2222_1; C-90. In the SAWP method, the cost of performing the
2 0 0.7382-2) 0.7382-2) FFT's is 14% that of the cost in the CCWP method, com-
1 1 0.4521-1) 0.4520-1) pared to a value of 12% predicted by the scaling relations. In
3 0 0.2774-3) 0.2778-3) the SAWP calculation, the vector length is 48, the FFT’s

) g é 8'2%%:3 8'2222:3 being performed for all rotation-diffraction states together.
1 0 0.4427—1) 0.4426—1) In performing the potential energy operation, the scaling
2 0 0.4849-2) 0.485@—2) of the RDWP and SAWP methods is somewhat more favor-
1 1 0.3030-1) 0.3031-1) able than that predicted in Table I, the expressions in Table |
8 0 0.158%-3) 0.158%-3) being upperbounds. The numbiEy,, represents the maxi-
2 1 0.3128-2) 0.312§-2)

mum number of diffraction states a diffraction state may
The notation(—1) meansx 107! couple to. The actual number of states coupled to may be less
for a given state, if it lies on a “border” of the momentum
grid. If we consider for a moment a diffraction only calcula-
tive states effectively present in the CCWP calculation istion (one rotational staje the scaling relation predicts that
100, whereas only 61 states are present in the RDWP calc®x61=305 multiplications should be carried out per grid
lation employing a diamond shaped grid, the diffraction basigoint in Z, the actual numbe(of nonzero matrix elements in
containing states of diffraction order up to 5. Neverthelessthe diffractional potential coupling matpixs 261. Therefore,
we find that using a maximum diffraction order of 5 in the while the scaling relation predicts the potential energy opera-
basis set is good enough for obtaining converged results fdion to be 3.055%0.61) times more expensive in the RDWP
diffractive scattering where the diffraction order is 0—3, asmethod than in the CCWP method, the actual number is 2.81.
was found previously in CC calculations employing the same  For all operations, except the transformations aléhg
collision energy, but a different angle of incidence. Thus, arand Y and the overhead, reliable estimates of the cost of
advantage of the method employing a full close-couplingthese operations in the SNWP method can be calculated by
representation is that fewer diffractive states can be used imultiplying the CCWP values by a factor 0.4%ee Sec.
the basis set. II B). The overhead of the SNWP method was taken as that
The cpu times as obtained for calculations on a Crayf the SAWP method. The cost of performing the symmetry
C-90 are given in Table VI for the CCWP, RDWP, and adapted DVR transformation to calculate the diffractive ki-
SAWP methods. The numbers given for the SNWP methodetic energy was estimated as follows. Rg=8, a compari-
are estimates based on the scaling relations discussed in Sgon of the cost of transforming alony using the FFT
II B. As can be seen from Table VI, in the CCWP calculation method(0.16 and using the DVR metho.43) is given by
the cpu time spent on performing the potential energy opera-emoine in Table | for the case that symmetry is not used. To
tion is much less than the cpu time spent in performing theyet the cost of also transforming alo¥gusing no symmetry,
FFT's alongX andY. In such a case, the full close-coupling multiply the cost of the FFT method by a factor of 2. To get
RDWP method may be expected to be faster, which indeed ithe cost of the DVR method using symmetry, divide by 5.
the case for the present example: The RDWP method igve then find that using the symmetry adapted DVR method
faster by a factor 1.8. The gain is much more spectaculaghould be less expensive by a factor of 4 than performing
when use is also made of symmetry, the SAWP method beingFT's alongX andY as is done in the CCWP method. Thus,
faster by a factor 8.6. the cost of transforming along andY is calculated by di-
viding the cost of the CCWP method for this operation by 4.
The resulting total cpu time required by the SNWP method is
TABLE VI. CPU times(on a Cray-C90, in seconplare given for calcula-  gpproximately twice that of the SAWP method. Thus, for
tions on rotationally and diffractionally inelastic scattering using the CCWP,norma| incidence, and for the admittedly favorable case of
tmhztrizvzz :Qt?mt:tZS_SAWP methods. The numbers given for the SNWRpo 1y 11 iF(001) Wolken problem, it is more advantageous
to use symmetry adapted functions within a full VBR than
Operation CCWP RDWP SAWP SNWP using only symmetry needed functions in a mixed approach
(FBR for the diffractive degrees of freedom and VBR for the

SIL algorithm 5.43 3.02 0.68 1.14 X

v, 0.90 0.49 0.11 0.19 rotations.

K, multiplications 0.96 0.56 0.12 0.20 An estimate of how efficient the methods are for prob-
K, FFT's 7.88 4.52 115 1.65 lems for which a basis set of different size is needed can be
Kgi, FFT's 13.43 3.36 obtained from the scaling relations. All CPU times for prob-
g(\’/t;r;gd 21'_%91 %‘_4;17 %’_43% %g% lems in which a different value dfl,,, needs to be used can

Total 32.60 17.97 3.78 747 be obtained by multiplying with one and the same factor. For
problems in which more diffraction states need to be used in
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TABLE VII. Estimated CPU timegon a Cray-C90, in secondare given TABLE IX. Central memory requirementin words are given for calcula-
for calculations on rotationally and diffractionally inelastic scattering for tions on rotationally and diffractionally inelastic scattering using the CCWP,
Ng%‘up=5 andNSg[,p=5 using the CCWP, the RDWP, the SAWP, and SNWP RDWP, SAWP, and SNWP methods.

methods. All results are scaled so that the total cpu time in the CCWE

method is 100 foN{,=3 andNg,=5. Memory for CCWP RDWP SAWP SNWP

Operation CCwP RDWP SAWP sNnwp oV 80000 208 800 33600 16 800
Wave function () 640000 390400 76800 134400

SIL algorithm 16.65 9.26 2.09 3.50 Wave function C) 256000 156 160 30720 53 760

Y 2.76 1.50 0.34 0.58 Total (L) 720000 599200 110400 151200

K, multiplications 2.94 1.72 0.37 0.61 Total (C) 336 000 364 800 64 320 70560

K,, FFT's 2417 13.86 3.53 5.06

Kgr, FFT's 41.19 10.31

Potential 15.28 43.07 7.16 3.22

Overhead 3.10 2.97 0.98 0.92

Total 106.1 72.38 14.47 24.2 methods need less memory to store the potential coupling

matrix. However, even in realistic molecule-surface poten-
tials, Fourier terms of order 2 and higher are likely to be
the basis set, the fully close-coupled methods becom@ignificant only at short range. Similarly, one would also ex-
slightly more favorable, because the transformations alng Pect terms associated with spherical harmonics of order
andY are avoided in these methods. higher than 2 to become significant only close to the surface.
An idea of how efficient the methods are relative to one! NiS suggests that a fully close-coupled method could still be
another in case a different, more anisotropic or more corruMore efficientif, in the construction of the potential coupling
gated, potential is use@vhere the potential is still indepen- Matrix, one would take into account that the higher order
dent of ¢, howevey can also be obtained from the scaling terms in the potential expansion are important at short range

relations. Here we only consider the case where the sanfly: Alternatively, one could also consider mixed ap-
numbers can be used fdk,,, Ng;, andN,q;. proaches. One could use a VBR only in the rotations close to

To work out the relative efficiency of the methods for a the surface, and a full VBR further away. In many cases, it
more anisotropic or more corrugated potential, all we have tg"ay be even better to use a method employing the full finite
do is calculate how the cost of performing the potential en_ba_5|s representation close to the_ surface, as it is much easier
ergy operation changes. To do so, we first scaled all th&? Impose a cutoff on the potential energy in this metfibd.
numbers of Table VI by multiplying all numbers with 3.067, !MPosing this cutoff should only be necessary at short range,
so that the total cost of the CCWP method comes out as 1081d Pproblems with imposing this maximum in a VBR
Next, we apply the scaling relations to the calculation of theethod will be removed completely if an FBR is used at
cost of the potential energy operation. Results are given i§hort range. . ,

Table VII for N2,,,=5 (spherical harmonics present in the The memory requirements of the different methods for
potential expansion up to orden 4nd in Table VIII for the present computational problem are given in Table IX,
Nggup:13 (fourier terms present up to ordej. s can be both for the Chebychev propagation meth@dur storage
seen from Table VII, the methods using the full close-2rays and the SIL method of order @en storage arrays
coupling representation are still much more efficient for in-FOr the Lanczos scheme, the fully close-coupled methods are
creased anisotropy of the potential. As can be seen froffiore favorable. The rotationally close-coupled and fully
Table VIII, the full VBR methods are also slightly more ef- ¢lose-coupled methods are of comparable efficiency in case
ficient for a more corrugated potential. the Qhebychev propagation schemg is used. In a calculation

If the potential is both more corrugated and more aniso/€auiring large amounts of memotjke a full 6D calcula-
tropic, the methods employing a VBR only for the rotational tion on dissociative chemisorption of,lén a metal surfage

degree of freedom will be more efficient, also because thesgn€ would typically want to use the Chebychev method, be-
cause it is cheaper in memory usage.

All results presented in this section are for a potential
TABLE VIIl. Estimated CPU timegon a Cray-C90, in secontare given ~ CONtaining no azimuthal dependence. Applying symmetry us-
for calculations on rotationally and diffractionally inelastic scattering for ing a symmetry adapted full close-coupling representation is

— dif _ H . . .
Ngous=3 andNgg,;=13 using the CCWP, the RDWP, the SAWP, and SNWP ot easy in case the azimuthal dependence is also present,
methods. All results are scaled so that the total cpu time in the CCWP

method is 100 since the dependence @nhas also to be considered. How-

ever, the techniques used should be fully applicable to codes
Operation CCWP RDWP SAWP SNWP  employing the time-independent CC method, where larger
SIL algorithm 16.65 9.26 209 250 gains should be expecte'd from using symmetry, as the com-
v, 276 1.50 0.34 0.58 putational cost scales with the cube of the number of states
K, multiplications 2.94 1.72 0.37 0.61 present in the basis set. Moreover, we have demonstrated that
K., FFT's 24.17 13.86 3.53 5.06 a considerable gain in efficiency can be obtained using sym-
K, FFT's 41.19 10.31

NN 517 670 1115 o3 metry qdapted functions for_ a model problt_em cqntz_aining
Overhead 210 297 0.98 0.92 little anisotropy and corrugation in the potential. It is likely
Total 100.0 96.4 185 229 that gains in efficiency can be made for realistic problems as
well, either by constructing the potential coupling matrix in
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