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Density functional calculations of nuclear quadrupole coupling constants
in the zero-order regular approximation for relativistic effects

Erik van Lenthe and Evert Jan Baerends
Afdeling Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083,
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~Received 29 November 1999; accepted 10 February 2000!

The zeroth-order regular approximation~ZORA! is used for the evaluation of the electric field
gradient, and hence nuclear quadrupole coupling constants, in some closed shell molecules. It is
shown that for valence orbitals the ZORA-4 electron density, which includes a small component
density~‘‘picture-change correction’’!, very accurately agrees with the Dirac electron density. For
hydrogen-like atoms exact relations between the ZORA-4 and Dirac formalism are given for the
calculation of the electric field gradient. Density functional~DFT! calculations of the electric field
gradients for a number of diatomic halides at the halogen nuclei Cl, Br, and I and at the metallic
nuclei Al, Ga, In, Th, Cu, and Ag are presented. Scalar relativistic effects, spin–orbit effects, and
the effects of picture-change correction, which introduces the small component density, are
discussed. The results for the thallium halides show a large effect of spin–orbit coupling. Our
ZORA-4 DFT calculations suggest adjustment of some of the nuclear quadrupole moments to
Q(79Br)50.30(1) barn,Q(127I) 520.69(3) barn, andQ(115In)50.74(3) barn, which should be
checked by future highly correlatedab initio relativistic calculations. In the copper and silver
halides the results with the used gradient corrected density functional are not in good agreement
with experiment. ©2000 American Institute of Physics.@S0021-9606~00!30517-7#
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I. INTRODUCTION

In a recent article1 the zeroth-order regular approxima
tion ~ZORA!2–5 to the Dirac equation was used for the ca
culation of the magnetic dipole hyperfine interaction, whi
is the interaction between the~effective! electronic spin of a
paramagnetic molecule of interest and a magnetic nucleu
the molecule. In this article we will consider the electr
quadrupole hyperfine interaction, which is the electrosta
interaction between an electric quadrupole of a nucleus
all other charges in the compound. This interaction can l
to splitting of lines in spectroscopic studies and the measu
splittings are often reported as the nuclear quadrupole c
pling constants~NQCC!. Such a NQCC, which can be me
sured for example with microwave and nuclear quadrup
resonance spectroscopy, is proportional to the electric fi
gradient~EFG! at the nucleus and the electric nuclear qua
rupole moment~NQM! of that nucleus. The EFG, whic
gives valuable information about the electron distributi
surrounding the nucleus, is the property that we will calc
late in this article.

One of the most accurate ways to determine the NQM
a certain nucleus is to combine the calculation of the EFG
that nucleus with the measured NQCC.6 Highly correlatedab
initio calculations can give accurate EFGs for open shell
oms or small closed shell molecules, see for example R
7–12. In these references relativistic effects in the molecu
were often approximated with the Douglas–Kroll–He
Hamiltonian.13,14 Fully relativistic all-electron~correlated!
ab initio calculations of EFGs start to appear,15,16 but they
are still computationally demanding even for small m
ecules if they contain heavy elements.
8270021-9606/2000/112(19)/8279/14/$17.00
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An alternative toab initio calculations is the use of den
sity functional theory~DFT!, since for many properties it ca
provide accurate results at a low computational cost. In R
17, for example, results of scalar relativistic DFT calcu
tions of the EFG at iron in various solids were compar
with Mössbauer spectroscopic data for the NQCC to obt
the NQM of57Fe. On the other hand, recently Schwerdtfeg
et al.18 questioned the use of DFT for the calculation
EFGs in transition metal compounds, since they found a p
performance of many of the presently used functionals
the Cu EFG in CuCl. We will test one of those functionals
our calculations on a number of closed shell diatomic m
ecules. We use the~nonrelativistic! local density functional
~LDA ! with gradient correction~GGC! terms added, namely
the Becke correction for exchange~Becke88!,19 and the Per-
dew correction for correlation.20

Recently DFT was also used for the calculation of t
EFG at iron in some iron porphyrins and other molecules
Refs. 21, 22, for a comparison with Mo¨ssbauer spectroscopi
data, and in Ref. 23, nonrelativistic DFT calculations we
performed of the EFG at iodine in some iodine compoun
In fact there are many articles with results of nonrelativis
DFT and nonrelativisticab initio calculations of EFGs in
molecules, but only few with results from fully relativisti
calculations.

An alternative to such fully relativistic calculations i
molecules can be the use of approximate relativistic me
ods, like the mentioned Douglas–Kroll–Hess method or
ZORA method, which is used in this article. These are b
two-component relativistic methods, for which it is impo
tant to include picture-change effects when evaluating exp
9 © 2000 American Institute of Physics
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tation values.24,25 We will discuss such effects in the ZOR
case. It will be demonstrated that the proper evaluation of
EFG in the ZORA method requires the introduction of t
density from the small components, leading to what we c
the ZORA-4 density. The precise relation of the use of
ZORA-4 density with the picture-change correction to ord
c22 will be explicitly discussed.

Several other technical aspects of the calculation
EFGs will also be considered. In view of the heavy weig
ing of the near-nuclear region by the EFG operator, due to
1/r 3 behavior, polarization of the core, even if only slightl
may lead to nonnegligible effects. The possibility of a froz
core treatment therefore needs to be investigated. A rel
issue is the quality of the basis sets that are required
particular in the core region. It should be possible to desc
the core-orthogonality wiggles of the valence orbitals ac
rately with the basis set used. We will also discuss separa
the scalar relativistic and spin–orbit effects on the calcula
EFGs.

We calculate the EFG at the position of the halog
nuclei in the hydrogen halides, the interhalogens and in so
metal halides, where the metals are aluminum, gallium,
dium, thallium, copper, and silver. For these diatomic halid
we also calculated the EFG at aluminum, gallium, and
dium. Some of these molecules were also discussed in re
reviews by Palmeret al.26–28 on experimentally observe
halogen nuclear quadrupole coupling constants andab initio
calculations on a whole range of molecules.

II. THE ZORA EQUATION AND ELECTROSTATIC
PERTURBATION

If only a time-independent electric field is present, t
one-electron Dirac Kohn–Sham equations can be written
atomic units (p52 i“), as an equation for the large comp
nent which after elimination of the small component~esc!,
reads

Hescf i
D5S V1s•p

c2

2c21e i
D2V

s•pDf i
D5e i

Df i
D , ~1!

and a companion equation which generates the small c
ponent from the large component

x i
D5

c

2c21e i
D2V

s•pf i
D . ~2!

The normalization is such that the four-component Di
electron densityr i

D ,

r i
D5~f i

D!†f i
D1

c2

~2c21e i
D2V!2 ~s•pf i

D!†s•pf i
D ,

~3!

integrates to 1. In cases where spin–orbit~SO! coupling is
not important one can use the scalar relativistic~SR! equa-
tion suggested in Refs. 29, 30,

HSRf i
SR5S V1p•

c2

2c21e i
SR2V

pDf i
D5e i

SRf i
SR, ~4!

with the normalized electron densityr i
SR defined as
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SR5~f i

SR!†f i
SR1

c2

~2c21e i
SR2V!2 ~pf i

SR!†
•pf i

SR. ~5!

This is not the only possible scalar relativistic equation,
was discussed in Ref. 31, where several scalar relativ
equations are compared.

The~SR! ZORA equation is the zeroth-order of the reg
lar expansion of the~SR! relativistic equation,

HSR
ZORAC i5~V1T@V# !C i5e iC i , ~6!

with

TZORA@V#5s•p
c2

2c22V
s•p

5p•
c2

2c22V
p1

c2

~2c22V!2 s•~“V3p!, ~7a!

TSR
ZORA@V#5p•

c2

2c22V
p. ~7b!

The effective molecular Kohn–Sham potentialV used in
our calculations is the sum of the nuclear potential, the C
lomb potential due to the total electron density and
exchange-correlation potential, for which we will use nonr
ativistic approximations. The ZORA kinetic energy opera
TZORA depends on the molecular Kohn–Sham potential. T
scalar relativistic~SR! ZORA kinetic energy operatorTSR

ZORA

is the ZORA kinetic energy operator without spin–orbit co
pling. For convenience we will refer to the~SR! ZORA ki-
netic energy asT~SR!@V#.

An improved one-electron energy can be obtained
using the scaled ZORA energy expression32

e i
scaled5

e i

11^C i uQ@V#uC i&
, ~8!

with

QZORA@V#5s•p
c2

~2c22V!2 s•p, ~9a!

QSR
ZORA@V#5p•

c2

~2c22V!2 p. ~9b!

The scaled ZORA method is the basis of~bond! energy
evaluations, since it remedies the gauge dependency pro
of the unscaled ZORA method, see the discussion in Ref.

Let us now consider the effect of a small electric fie
described by the perturbing potentialV8(r), such as the po-
tential due to a nuclear quadrupole. It is not possible to w
the first-order perturbation energy simply as

e i
~1!'E r i

ZV8dr, ~10!

wherer i
Z is the ZORA density defined as

r i
Z~r!5C i

†~r!C i~r!. ~11!

The reason is that the ZORA wave functionsC i(r) are ap-
proximations to the relativistic two-component wave fun
tions that result after a Foldy–Wouthuysen transformationU
of the Dirac Hamiltonian and wave functions,C i(r)
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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'C i
FW(r)5UCD(r). The Dirac electron density that ough

to be integrated againstV8 is therefore r i
D(r)

5(U†C i(r))
†(U†C i(r)) rather thanr i

Z(r). The effect ofU†

is the introduction of small components as well as addin
first order~in c22! correction to the ‘‘large component’’C i ,
cf. Ref. 24. We will discuss in the next section in more det
the effect of the picture-changeU to orderc22. The ZORA
approach itself, however, does not follow a strict separa
of the relativistic effects in orders ofc22, and we derive the
ZORA expression for the perturbation energy by apply
first-order perturbation theory using the ZORA method
cluding the perturbationlV8,

~V1lV81T8@V1lV8# !C i85e i8C i8 , ~12!

where we have introduced the perturbation parameterl.
Equation~12! will be solved using ordinary perturbatio

theory,

C i85C i1lC i
~1!1¯ , ~13!

e i85e i1le i
~1!1¯ . ~14!

If we use that

c2

2c22V2lV8
5

c2

2c22V
1lV8

c2

~2c22V!2 1O~l2!,

~15!

it is not difficult to see that the first-order energye i
(1) can be

described as the interaction of the external potentialV8 with
an unnormalized density,

e i
~1!5

]e8

]l U
l50

5E ~r i
Z1r i

S!V8 dr. ~16!

Here r i
S is an ~unnormalized! small component density de

fined as

r i
S5

c2

~2c22V!2 ~s•pC i !
†s•pC i , ~17a!

rSR
S 5

c2

~2c22V!2 ~pC i !
†
•pC i . ~17b!

We note that a gauge dependency problem arises f
the densityr i

Z1r i
S being unnormalized: ifV8 is a small con-

stant potentialD, the first-order one-electron energye i
(1) is

not exactlyD. Again we have to invoke the scaled ZOR
method to avoid gauge dependency problems. The sc
one-electron energy is

e i8
scaled5

e i8

11^C i8uQ@V1lV8#uC i8&
, ~18!

for which we have to use a perturbation expansion inl,

e i8
scaled5e i

scaled1le i
~1!scaled1¯ . ~19!

Now the first-order scaled ZORA one-electron ener
e i

(1)scaled is, apart from some terms which are of ord
O(c24), equal to

e i
~1!scaled5

]e i8
scaled

]l
U

l50

'E r i
Z4V8 dr, ~20!
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which is the electrostatic interaction of the external poten
V8 with the normalized one-electron densityr i

Z4 , which we
call the ZORA-4 density and which is defined as

r i
Z45

r i
Z1r i

S

11^C i uQ@V#uC i&
. ~21!

Note that

E r i
S dr5^C i uQ@V#uC i&, ~22!

which means that ifr i
Z is normalized to one, then accordin

to Eq. ~21! also r i
Z4 is normalized to one. The fact that w

can describe the interaction with a normalized electron d
sity is desirable, and we will therefore completely discard
small O(c24) terms. If we take forV8 a small constant po-
tential D, the first-order scaled one-electron energye i

(1)scaled

in this approximation isD, sincer i
Z4 is normalized to one.

In conclusion we make two remarks. First, we ha
given a derivation of the ZORA EFG using the analytic
derivative with respect to the perturbation. This is of cou
equivalent to taking the numerical derivative by explicit
calculating the energy for a few discrete values of the p
turbation strength parameterl. This procedure has been pro
posed by Pernpointner, Seth, and Schwerdtfeger12 for the
calculation of EFGs, employing a point-charge model for t
nuclear quadrupole. It has been applied with standard qu
tum chemical methods for total energy calculations, such
CCSD~T!, but also with the two-component Douglas–Kro
relativistic method.9–12,25Avoiding the erroneous direct us
of the density of the two-component wave function by taki
the derivative with respect to the energy is commonly d
noted as taking into account the picture change that has
curred in going from the four-component Dirac to a tw
component formalism. However, such a picture chan
correction does, to orderc22, not only consist of introduc-
tion of small components, which is what we find taking t
derivative amounts to, but also entails correction of the la
component, see Ref. 24. We will detail in the next sect
the full effect of picture-change correction to orderc22.

In the second place we note that one may simply c
sider the ZORA equation as an approximate equation for
Dirac large component, in which the energy in the denom
nator has been neglected with respect to 2c2, cf. Eqs.~1! and
~6!. One then naturally has to take into account the sm
components, which may again be approximated by negl
ing the energy in the denominator in Eq.~2!. One then never
leaves the Dirac picture. It has been shown by Sadlejet al.33

that this approximation to the Dirac equation arises as
first-order treatment~denoted CPD4! in a special perturba-
tion scheme. Natural extensions of this approach consis
taking, after a ZORA self-consistent field calculation, t
ZORA ~or preferably the scaled ZORA! one-electron energy
~instead of the exact Dirac energy! in these equations an
performing a single diagonalization for each orbital to obta
an improved approximation to the Dirac solution, or ev
iterating this procedure to self-consistency to obtain a
Dirac solution.33,34

An accurate approximation to the scaled ZORA meth
for the calculation of molecular bond energies is the ZOR
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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electrostatic shift approximation~ESA!, described in Ref. 32
The first-order electrostatic interaction energye i

(1)ESA in this
method is

e i
~1!ESA5E r i

ZV8 dr. ~23!

This is exactly the electrostatic interaction of the normaliz
one-electron densityr i

Z , which was already defined in Eq
~11!, with the external potentialV8. If we take forV8 a small
constant potentialD, the first-order one-electron energy isD,
as it should be. The ZORA ESA method was derived for, a
applied in cases where the external potentialV8 is close to a
constant over the region ofr i

Z ~specifically, electrostatic po
tential of neighboring atoms over an atomic core sta!.
However, this approximation need not be accurate, as
will demonstrate, with external potentials which do not ha
this property, like for example an electric quadrupole field
a nucleus.

III. PICTURE-CHANGE EFFECTS

In two-component relativistic methods the calculation
a property like the field gradient using total energy deriv
tives does not entail a picture-change error while a simpli
calculation of the expectation value from the two-compon
wave functions would. This does not imply that the pictu
change effects are rigorously accounted for even to low
order in c22. In order to obtain the picture-change effec
fully to a certain order one needs the wave functions accu
to at least that order.24 In this section we will obtain the full
picture-change effect to orderc22 @rather 1/(2c22V)# using
the first-order regularly approximated ~FORA!
Hamiltonian,35 which is

H ~SR!
FORA5H ~SR!

ZORA1H ~SR!
1 5H ~SR!

ZORA2 1
2 Q@V#H ~SR!

ZORA

2 1
2 H ~SR!

ZORAQ@V#. ~24!

A different possibility is to use the closely related IOR
~infinite-order regular approximated! Hamiltonian, see Ref
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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36. The Hamiltonians and wave functions in this section m
be taken to be scalar relativistic ones or to include SO c
pling. The developments of this section apply in both cas
The FORA Hamiltonian is the Foldy–Wouthuysen37 trans-
formed Dirac Hamiltonian correct to order 1/(2c22V),
which contains all terms to orderc22, but also includes
some higher-order terms. We will now use first-order pert
bation theory, where we take as zeroth-order the ZO
equation with solutionC i , to obtain expressions forC i

FORA,
the Foldy–Wouthuysen transformed Dirac wave functi
correct to order 1/(2c22V). This allows us to obtain the
FORA density. In order to establish the picture-change e
we compare this density with the density obtained afte
Foldy–Wouthuysen~FW! back transformation ofC i

FORA to
order 1/(2c22V). The FW transformation matrix to this or
der is available from Ref. 5. This FW back transformati
will yield the Dirac large component, and generate the sm
component, both to the required order. We will denote th
asf i

DFORA andx i
DFORA, respectively.

C i
FORA5C i1(

kÞ i

^CkuH1uC i&
e i2ek

Ck

5C i2
1

2 (
kÞ i

e i1ek

e i2ek
^CkuQ@V#uC i&Ck

5S 12
1

2
^C i uQ@V#uC i& DC i1

1

2
Q@V#C i

2e i(
kÞ i

^CkuQ@V#uC i&
e i2ek

Ck . ~25!

Here use has been made of the resolution of the identity

uC i&^C i u1(
kÞ i

uCk&^Cku51. ~26!

The electron density in the Foldy–Wouthuysen~or Schrö-
dinger! picture correct to order 1/(2c22V) is
the FW
r i
FW FORA5~C i

FORA!†C i
FORA5~12^C i uQ@V#uC i&!r i

Z2e i(
kÞ i

^CkuQ@V#uC i&C i
†Ck1^C i uQ@V#uCk&Ck

†C i

e i2ek

1
1

2
~Q@V#C i !

†C i1
1

2
C i

†Q@V#C i . ~27!

We now calculate the Dirac density to the same order by first obtaining the Dirac large and small components from
back transformation:

f i
DFORA5C i

FORA2
1

2
Q@V#C i5S 12

1

2
^C i uQ@V#uC i& DC i2e i(

kÞ i

^CkuQ@V#uC i&
e i2ek

Ck , ~28!

x i
DFORA5

c

2c22V
s•pC i , ~29!

and then obtaining the density in the Dirac picture as
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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r i
DFORA5~f i

DFORA!†f i
DFORA1~x i

DFORA!†x i
DFORA

5~12^C i uQ@V#uC i&!r i
Z2e i(

kÞ i

^CkuQ@V#uC i&C i
†Ck1^C i uQ@V#uCk&Ck

†C i

e i2ek
1r i

S , ~30!

with r i
S defined in Eq.~17!. Correct to the same order this can also be written as

r i
DFORA5r i

Z42ei(
kÞ i

^CkuQ@V#uC i&C i
†Ck1^C i uQ@V#uCk&Ck

†C i

e i2ek
. ~31!
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Thus the Dirac electron density is the ZORA-4 electron d
sity r i

Z4 plus a correction term, which is first-order i
e i /(2c22V). This means that the ZORA-4 density can ve
accurately agree with the Dirac density, especially for
lence orbitals which have small energy eigenvalues.

Up to first-order in 1/(2c22V) the picture-change ef
fects in the density can now be obtained from the differe
between the FW~FORA! and Dirac~FORA! densities,

r i
FW FORA2r i

DFORA5 1
2 ~Q@V#C i !

†C i1
1
2 C i

†Q@V#C i2r i
S .
~32!

Thus the picture change effect is more than the effect of
adding a small component density, and then renormalize,
for this point also Ref. 24. In order to obtain the pictur
change effect consistently to order 1/(2c22V), one has to
calculate besides the small component density the terms

1

2
~Q@V#C i !

†C i1
1

2
C i

†Q@V#C i5
e i2V

2c22V
r i

Z1O~c24!.

~33!

This means that for the calculation of the picture-change
fect, and for the calculation of the electron density in t
Foldy–Wouthuysen~or Schrödinger! picture as well, we
need to calculate terms which are of order (e i2V)/(2c2

2V), which can be important for the density close to
nucleus. However, our primary goal is not to calculate
picture change effects very accurately. We need to obtain
electron density~in the Dirac picture! to sufficient accuracy.
In fact, if we use the ZORA-4 electron densityr i

Z4 , which
we have seen is consistent within the ZORA scheme,
have not fully accounted for picture-change effects to or
c22, but we do have a very accurate approximation, es
cially for valence orbital densities, since the missing ter
are of ordere i /(2c22V), see Eq.~31!. For the hydrogen-
like atom we already know exactly how large these miss
terms are~to all orders!, since the exact relation between th
ZORA eigenfunctions and the Dirac eigenfunctions
known.35 In this case the missing terms are of ordere i /2c2;
see also next section.

IV. ELECTRIC FIELD GRADIENTS IN HYDROGEN-
LIKE ATOMS

In Ref. 35 it has been shown for the hydrogenic on
electron atoms, that the ZORA eigenfunctionsC i are propor-
tional to scaled Dirac large component spinorsf i

D
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C i~r!5
1

m2 f i
DS r

m D , ~34!

where the scaling factorm depends on the energy

m5
2c21e i

D

2c2 5
2c2

2c22e i
. ~35!

In this case the ZORA-4 electron densityr i
Z4 and the Dirac

electron densityr i
D are related as

r i
Z4~r!5

1

m3 r i
DS r

m D . ~36!

Similar exact relations also exist between the SR ZO
equation and the SR Eq.~4!.

For the calculation of the electric field gradient~EFG! at
the origin we need to calculate matrix elements of

Vkl8 5
dkl

r 3 23
xkxl

r 5 , ~37!

with xk a Cartesian coordinate. In the case of a hydrogen-
atom it is not difficult to show that

E r i
DVkl8 dr5m3E r i

Z4Vkl8 dr, ~38!

wherer i
D is the Dirac electron density,r i

Z4 is the ZORA-4
electron density, andm was given in Eq.~35!. Application of
this equation for Xe531 gives that the EFG due to th
ZORA-4 electron density of the 2p3/2 spinor for a given
mj -value is approximately 3% larger than the EFG due to
corresponding Dirac electron density. This difference
duces to 0.5% if we compare the EFGs due to the elec
density of the 5p3/2 spinor. Note that for spherical electro
densities the EFG at the origin is zero.

We can do the same exercise in the spin-free formali
where SR ZORA~24! results are compared with the resu
of the SR Eq.~4!. In Table I the results are given for th
numerically calculated EFGs~zz-component! due to a
p-orbital with ml50. This table allows various comparison
In the first place it is clear from Table I that introduction
the small component density~correcting for the picture-
change error! is important: the ZORA density gives an ap
proximate 6% deviation from the ZORA-4 density for all o
the p-orbitals. In the second place we can see that the E
due to the SR ZORA-4 electron density of the ‘‘valence
5p-orbital is approximately 0.5% larger than the exact EF
of the SR calculation. The difference increases to 3% if
compare the ZORA-4 and Dirac EFGs due to the elect
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE I. The electric field gradient~a.u! at the nucleus in the one-electron ion Xe153 due to ap-orbital with
ml50 as calculated with different spin-free models.

NRa SR SR SR MVDb DKb

ZORAc ZORA-4c Diracc,d No. P.C.e P.C.f No. P.C.e P.C.f

2p 25248.8 26518.5 26150.1 25968.7 26549.4 25786.5 26777.9 25760.4
3p 21552.2 21963.0 21835.6 21811.5 22010.9 21742.6 22100.0 21734.9
4p 2656.1 2821.3 2773.3 2767.6 2856.1 2736.8 2896.1 2733.2
5p 2335.9 2419.6 2395.0 2393.1 2439.7 2377.0 2460.4 2375.0

aThe exact nonrelativistic result is24Z3/15n3.
bValues taken over from Ref. 25. MVD is the spin-free mass-velocity Darwin method and DK is the spin
Douglas–Kroll method.

cThis work.
dSR Dirac according to Eq.~4!.
eNo change of picture taken into account.
fPicture-change effects taken into account.
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density of the 2p-orbital. These findings numerically confirm
the relation given in Eq.~38!. Since the 5p orbital is in this
highly charged ion of course at much lower energy and m
more contracted than the real valence 5p-orbital in the neu-
tral Xe atom, we may conclude that the ZORA-4 error f
valence orbitals will be very small. It will be larger for th
deep core orbitals, but since the cores are spherical and
exhibit only small polarizations, the core contribution to t
total EFG will probably be so small that the ca. 3% diffe
ence between ZORA-4 and SR Dirac EFGs for the deep c
is unimportant. This point will be explicitly verified later
Table I also shows results of Kello¨ and Sadlej25 of mass-
velocity Darwin~MVD !, and spin-free Douglas–Kroll~DK!
calculations. They calculated the picture-change effects
the EFGs for these methods with the help of a finite nucl
quadrupole model. We note that in both cases but in part
lar in the Douglas–Kroll case the uncorrected EFGs
larger in an absolute sense~more negative! than the ZORA
values. On the other hand the picture-change correction i
much larger~over 20% in most cases, i.e., more than tw
times larger than the differences between the ZORA
ZORA-4 results! that the corrected values are considera
smaller than the ZORA-4 values. They also differ more fro
the SR benchmark values and are smaller than these by
5%, while the ZORA-4 values were 0.5%–3% larger~refer-
ring all the time to absolute values!. Of course, the various
two-component methods all yield approximations to the r
orous two-component Foldy–Wouthuysen solutions. Th
may not be expected to give identical answers. Moreover
was discussed before, the results obtained by taking the
ergy derivative do not provide the complete picture-chan
effects, see Eq.~33!. One also has to remember that there
not a unique spin-free Dirac equation,31 and different spin-
free Dirac equations will give different results, although it
at present unknown to what extent. For the SR ZORA eq
tion it is convenient to compare with the conventional S
Eq. ~4!, since for hydrogen-like atoms there exist exact re
tions between the solutions of these equations.35

There is no ambiguity when making comparisons ba
on full ZORA and Dirac calculations, including SO cou
pling. Pyykköand Seth38 calculated the EFG due to an o
bital which consists of an arbitrary combination ofp1/2 and
p3/2 Dirac spinors. The combination
 to 130.37.129.78. Redistribution subject to AIP licens
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Cp
QSR52A1

3 p1/2,1/21A 2
3 p3/2,1/2 ~39!

is of special interest, since in case the spin–orbit coupl
has no effect~spatial parts ofp1/2 andp3/2 equal! this orbital
is a p-orbital with ml50 and spina. In general we may
denote the orbital of Eq.~39! as quasiscalar relativistic, QSR
The orbital in Eq.~39! is not an eigenfunction of the Hamil
tonian including spin–orbit coupling, but a linear combin
tion of such eigenfunctions. It can however serve as a mo
for the explanation of effects of spin–orbit coupling in m
lecular calculations, as was done by Pyykko¨ and Seth.38

They showed that any other normalized combination o
p1/2,1/2andp3/2,1/2spinors than the QSR combination given
Eq. ~39! will ~almost always! lead to a lower EFG. For ex
ample, the EFG due to a purep3/2,1/2 spinor is less than
one-half times the calculated EFG due to the QSR comb
tion, and the EFG due to a purep1/2,1/2 spinor is zero. Here
we use the QSR orbital for a comparison of ZORA and Dir
results. In Table II the results are given for the numerica
calculated EFGs at the origin of the hydrogen-like ato
Xe531 due to the QSRp-orbital given in Eq.~39!. These
results can be compared with those given in Table I. T
calculated EFGs of the QSR orbitals in Table II are only
few percent larger than the calculated EFGs of the SR or
als in Table I. The conclusions drawn from Table I can
seen to hold basically unmodified for the QSR results. T
effect of the small component in the ZORA calculations~dif-
ference between ZORA and ZORA-4 results in Table II! is
ca. 4%, a little bit smaller than the 6% effect of the sm
component in the scalar relativistic ZORA calculations~dif-

TABLE II. The electric gradient~a.u.! at the nucleus in the one-electron io
Xe153 due to the quasiscalar relativistic~QSR! combination of ap1/2 and
p3/2 spinor as given in Eq.~39!, which closely resembles ap-orbital with
ml50 and spina.

QSR ZORA QSR ZORA-4 QSR DIRAC

2p 26641.1 26366.5 26178.9
3p 21986.8 21908.0 21882.9
4p 2837.5 2804.8 2798.9
5p 2427.8 2411.3 2409.3
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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ference between SR ZORA and SR ZORA-4 results in Ta
I!. @In the ZORA case the effect of the small compone
would be larger~smaller! if a normalized combination o
p1/2,1/2 and p3/2,1/2 spinors would have relatively more~less!
p1/2,1/2 character than the QSR combination used here.# The
difference between the ZORA-4 and the Dirac EFGs for
QSR orbitals is very similar to the SR case, the ZORA
EFGs being larger~in an absolute sense! by 0.5% for the 5p
to 3% for the 2p.

V. BASIS SET EFFECTS AND THE FROZEN CORE
APPROXIMATION

In this section the effect of the basis set and the fro
core approximation on the calculated EFGs is investiga
We will first demonstrate some points using atomic calcu
tions, and will then turn to molecular calculations. The AD
~Amsterdam density functional! program39–41 is used for
electronic structure calculations on molecular systems.
one-electron equations arising in the Kohn–Sham formu
tion of density functional theory, are solved by se
consistent field calculations. In the calculations a Slater-t
orbital ~STO! basis set is used. The ADF program can p
form nonrelativistic and~SR! ZORA calculations.32,42 We
applied a numerical integration procedure40 for the evalua-
tion of the integrals needed for the calculation of the elec
field gradient.

In the present calculations the same large basis sets
used as in Ref. 42. These all-electron basis sets are triplez in
the core and quadruple-z in the valence with at least thre
polarization functions added. The exponents of the ST
were fitted to numerical scalar relativistic ZORA orbita
For the heavier atoms, these basis sets contain extra 1s and
2p STO functions, in order to describe the core orbitals
curately. In basis setB extra polarization functions wer
added. The size of the STO basis setB is (5s3p3d1 f ) for
H, (9s5p3d3 f ) for F, (12s8p4d4 f ) for Cl,
(15s11p7d4 f ) for Br, and (18s14p9d4 f ) for I. Basis setA
is basis setB plus one extra-tight 1s STO plus three extra
tight 2p STOs. Basis setC is the standard ADF ZORA all-
electron basis set IV, which is double-z in the core and
triple-z in the valence. The size of the STO basis setC is
(3s1p) for H, (5s3p1d) for F, (7s5p1d) for Cl, (8s7p4d)
for Br, and (12s10p6d) for I. Basis setD is the same as
basis setC, except that the core orbitals are kept frozen d
ing the calculation. Separate SR ZORA atomic calculatio
were performed to generate these frozen core orbitals. B
set E is the standard ADF SR ZORA frozen-core basis
IV, in which the basis set of the valence orbitals is the sa
as in basis setC or D. However, this basis setE only con-
tains a single-z core description of the core wiggles of th
valence orbitals, whereas in basis setD this is a double-z
description. In the frozen core calculations the orbitals up
(n21)s and (n21)p were kept frozen, including the 3d for
I.

Calculations on the EFG of the valence 5p-electron of
the neutral iodine atom, employing the simpleXa approxi-
mation to the exchange-correlation potential witha50.7, are
used to illustrate the effects of basis sets~Table III!. The
orbitals~spinors! of the open shell I atom were calculated
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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spin-restricted average-of-configuration calculation, wh
during the self-consistency cycles the electrons are dist
uted equally over the subspecies of the open shell irreps.
atoms this will ensure a spherical density. If spin–orbit co
pling is present the electrons are divided in a spin–orbit
eraged way over the different open shell irreps such tha
the spin–orbit coupling is zero the occupation would be
same as in the scalar relativistic case. For the neutral iod
atom with ap5 configuration this means that 5/3 of an ele
tron is placed in thep1/2 shell and 10/3 in thep3/2 shell. The
EFG is subsequently calculated for the QSR combination
a 5p1/2 and 5p3/2 spinor as given in Eq.~39!.

We note in Table III that the EFG in neutral I, which
dominated by the hole in the 5p-shell, is much smaller than
that of the 5p-orbital of the highly charged hydrogeni
Xe531 as given in Tables I and II. The differences in the fir
column of Table III between the numerically calculated QS
ZORA and SR ZORA results for the neutral iodine close
resemble the differences in the hydrogen-like case, cf. Ta
II vs. Table I. Again the QSR ZORA results are slight
larger than the SR ZORA results, whereas the effect of
small component is larger in the SR ZORA case than in
QSR ZORA case. Note that in this case the numerically c
culated ZORA-4 result agrees within 0.1% with the nume
cal Dirac result.

In Table III the numerically calculated EFGs are al
compared with results from basis set calculations that w
obtained with an atomic basis set program. The main diff
ence between the molecular basis set program ADF and
atomic basis set program is that for the evaluation of
Coulomb potential in ADF an auxiliary basis set is used
the fitting of the charge density. The atomic and molecu
basis set programs give results within 0.1% of each oth
This difference gives an estimate of the accuracy of the
merical integration and charge fitting procedure used in
ADF program.

Table III shows that basis setA gives very small basis
set errors. Results from this basis set will therefore be u
as benchmark values in molecular calculations, where fu
numerical calculations are not available. Basis setB, which
lacks some of the tight 2p STOs compared to basis setA,
still gives very accurate nonrelativistic results, but is le

TABLE III. Calculated EFGs due to a 5p-orbital with ml50 ~NR and SR
ZORA case! or due to the combination of a 5p1/2 and 5p3/2 spinor as given
in Eq. ~39! ~ZORA and DIRAC case! of the neutral iodine at the origin spin
restrictedXa(a50.7) calculations. The numerically calculated values a
given in a.u.; the basis set results are given in percent difference with res
to the numerical value. The basis sets are described in the text. ColumD
andE refer to frozen core calculations.

Numerical~a.u.!

Basis set error~%!

A B C D E

NR 213.509 0.0 0.0 0.2
SR ZORA 216.002 0.0 20.6 21.4 21.4 217.6
SR ZORA-4 215.225 0.0 1.1 0.8 0.8 215.2
QSR ZORA 216.302 20.1 21.4 22.6
QSR ZORA-4 215.773 0.0 21.0 22.0
QSR DIRAC 215.782
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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accurate in the relativistic case. This can be understood if
look at the radial behavior of ap-orbital near the origin35 ~the
Dirac large component is denotedfD!,

CNR;r 1,

fSR,CSR
ZORA;rA32~z2/c2!21,

~40!
fD,CZORA~p1/2!;rA12~z2/c2!21,

fD,CZORA~p3/2!;rA42~z2/c2!21,

which apart from the nonrelativistic case is difficult to d
scribe with integer STOs. For an accurate calculation of
EFG it is necessary to describe this inner part of the orb
accurately, which means that one needs a large STO b
set, like for example basis setA. On the other hand, if one i
satisfied already with an accuracy of a few percent one
also use the much smaller standard ADF all-electron b
set C, which does not perform much worse than the larg
basis setsB andA.

A preliminary test of the accuracy of the frozen co
approximation is carried out in the SR ZORA case in cal
lations with basis setsD andE. In this case the all-electron
basis setC and the frozen core basis setD give the same
results, since the valence orbitals are calculated in the s
basis and only the 5p contribution to the EFG is calculated
Direct contributions to the EFG from core polarization
not show up in this table and will be investigated belo
Table III shows that basis setD which has a double-z de-
scription of the core wiggles of the 5p-orbital gives reason-
able results, whereas basis setE which only has a single-z
core wiggles description gives large errors~15%–20%!. The
standard ADF frozen core basis sets which have this singz
core wiggles description are not adequate for EFG calc
tion.

The EFGs of the valencep-electrons of the neutral chlo
rine, bromine, aluminum, gallium, and indium atoms we
also calculated with the use of the spin-restrictedXa ap-
proximation to the exchange-correlation potential witha
50.7. The calculated results that were obtained with
largest basis setsA for these atoms agree within a few tent
of a percent with the corresponding fully numerical resu
Other atomic DFT calculations can be found in the review
Lindgren and Rose´n,43 for example.

We now turn to molecular calculations. In Tables IV a

TABLE IV. Basis set effects on the calculated EFGs at the iodine nucl
The frozen core approximation is applied in columnsD andE. The differ-
ences of the results for a given basis set~frozen core! with respect to the
all-electron large basis setA results are given in percentage of the basis
A results. See text for description of basis sets.

NR SR ZORA ZORA

B C B C D E B C

HI 0.0 3.6 20.6 0.1 25.8 224.1 21.3 20.9
I2 0.0 4.1 20.5 1.8 25.0 220.6 21.1 0.6
IBr 0.0 2.3 20.6 20.5 26.8 222.8 21.2 21.5
ICI 0.0 1.0 20.6 21.2 27.2 223.4 21.1 22.1
IF 0.0 0.5 20.6 21.5 26.8 222.6 21.1 22.3
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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V the previously mentioned basis sets and the frozen c
approximation are further tested in molecular ADF calcu
tions of the EFG at the iodine nucleus in diatomic interha
gens and HI. In Ref. 44 it was observed that replacing
molecular potential by the sum of the potentials of the n
tral spherical reference atomsVSA in the ZORA kinetic en-
ergy operator is not a severe approximation. This proced
was called the sum of atoms potential approximat
~SAPA! and is used in the ADF calculations. This has t
advantage that when the ZORA Kohn–Sham equations
solved self-consistently~SCF! using a basis set, one onl
needs to calculate the ZORA kinetic energy matrix on
instead of in every cycle in the SCF scheme if the full m
lecular potential is used. In the calculations SAPA is us
both for T@V# and forQ@V#.

In the molecular calculations the~nonrelativistic! density
functionals for the exchange-correlation energy are used
cal density functionals~LDA ! with generalized gradient cor
rection~GGC! terms added, namely the Becke correction
exchange ~Becke88!19 and the Perdew correction fo
correlation.20 The calculations are performed at the expe
mental geometries.45

Table IV shows that in the nonrelativistical case t
extra-tight STOs in basis setA compared to basis setB do
not change the results much. In the relativistic case the r
tive difference between the results of basis setA and those of
basis setB are larger and almost systematic. They are clo
to the error that was found in Table III for the EFG due to t
valence 5p-orbital of the neutral iodine. The basis set erro
of the results with basis setC are larger and they are not s
systematic. The errors of basis setC are larger in the nonrel-
ativistic case, probably due to the fact that the exponent
the STOs were fitted to SR ZORA orbitals, which is impo
tant especially for the smaller basis sets.

The errors in the results with the frozen core and ba
setC ~columnD! are approximately 6%. We may therefo
estimate the contribution of core polarization due to the p
tial 5p-hole on I at approximately 6% of the valence cont
bution. This certainly is too large to be neglected, but it
very much smaller than the contribution from a singly occ
pied core orbital as given in Table I. The small errors th
were observed in Table I between the ZORA-4 and Di
EFGs ~3% maximum, for the 2p! become insignificant if
there is so little core polarization. The errors in the froz
core results with the standard frozen core basis setE that
only contains a single-z description of the core wiggles o

s.

t

TABLE V. Effects of small component density~picture-change correction!
on the calculated EFGs at the iodine nucleus, defined as the differ
between the~SR! ZORA-4 and the~SR! ZORA results, for different basis
sets in percentage of the~SR! ZORA result.

SR ZORA-4 ZORA-4

A B C D E A B C

HI 24.8 23.2 22.6 22.6 21.9 22.9 22.5 22.3
I2 24.8 23.2 22.7 22.6 21.9 22.8 22.5 22.2
IBr 24.8 23.3 22.7 22.7 22.0 22.7 22.4 22.2
ICI 24.9 23.3 22.7 22.7 22.0 22.7 22.4 22.1
IF 24.9 23.3 22.7 22.7 22.0 22.8 22.4 22.2
e or copyright; see http://jcp.aip.org/about/rights_and_permissions



g
a
-
t

si
on

n
n
F
th
s

e

S
RA
th
th
ha
sh
e
in

SR
a

e
he
t

at

rg

d

.
-

d

-
re

e
et
al
e
a

e
N

t
sult
R,
ed
the
r,

oks

the
er,
e

tly
the
in

nd

ef.
s in
ter-

it
re is
re
nd
he
en
a-
ted

is
ing

the
n

ff-
ar-
ill
g in
-

an-
e

.

lo-

the
le,
an
lts

he

8287J. Chem. Phys., Vol. 112, No. 19, 15 May 2000 DFT for nuclear quadrupole coupling

Down
the valence orbitals are more than 20%. This is much lar
than the ca. 6% error coming from freezing the core. App
ently the single-z description of the core wiggles of the va
lence orbitals in basis setE is thoroughly insufficient, at leas
the double-z level of basis setC is required. The ZORA
results including SO coupling exhibit even for the large ba
B deviations larger than 1%, so if results of high precisi
~below 1%! are required, basisA is to be recommended.

Table V shows that the effect of the small compone
density~picture-change correction! for these molecules is a
almost systematic lowering of the absolute values of the E
at the iodine nucleus. As was found in the atomic case
effect of the small component is larger in the SR ZORA ca
~4.8%! than in the ZORA case including SO coupling~ca.
2.8%!. In the atomic case, with only the effect of the 5p
taken into account~Table III! the effect is close to that in th
present molecular case~in fact slightly larger!: 5.1% for the
SR ZORA case, compared to 4.8% here, and 3.2% for Q
ZORA, to be compared to ca. 2.8% here for the SO ZO
case. Also the reduction in the effect when going to
smaller basis sets as given in Table V is actually close to
similar reduction of the effect in the smaller basis sets t
may be deduced from the data given in Table III. If we wi
to have a precision in the results of better than 1%, Tabl
shows that the reduction in the picture-change effect in go
from basisA to a smaller basis is too large, at least in the
ZORA case. Remembering that the small components
directly generated by relation~17! from the ZORA wave
function C i , we infer that for an accurate description of th
small component density, which is relatively large in t
core region, one needs the tight 2p STOs present in basis se
A in order to describe very accurately the core tails ofC i .

The overall conclusion from Tables IV and V is th
even a basis set as extended as basis setB cannot guarantee
precision of better than 1%. We will therefore use the la
basis setsA throughout.

VI. ELECTRIC FIELD GRADIENTS IN DIATOMIC
HALIDES

In Tables VI and VII results are given of calculate
nuclear quadrupole coupling constants~NQCC! of some di-
atomic molecules. The EFG at a certain nucleus in a.u
converted to the NQCC in MHz by multiplying the calcu
lated EFG~zz-component! in a.u. by a factor of 234.9647 an
the nuclear quadrupole moment~NQM! of that nucleus in
barns~1 barn510228m2!. Thus the calculated NQCC is pro
portional to the used NQM. The values of the NQM a
taken from the literature for35Cl,7 27Al, 9 and 69Ga,11 and
they are fitted for79Br, 127I, and115In; see the last part of this
section.

In Table VI calculated halogen~Cl, Br, I! nuclear quad-
rupole coupling constants are given for the hydrogen halid
the interhalogens, and some metal halides, where the m
are Al, Ga, In, Tl, Cu, and Ag. In Table VII calculated met
~Al, Ga, In! nuclear quadrupole coupling constants are giv
for the metal halides. In both tables calculated values
compared with experimentally observed values.

The tables show that the scalar relativistic effect, defin
as the difference between the SR ZORA-4 result and the
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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result, in most cases is~much! larger than the spin–orbi
effect, defined as the difference between the ZORA-4 re
and the SR ZORA-4 result. In Figs. 1 and 2 calculated N
SR, ZORA-4, and ZORA-4 iodine NQCCs are compar
with observed experimental values. For the interhalogens
scalar relativistic effects are around 1% for Cl, 6% for B
and 14% for I. As was discussed by Pyykko¨ and Seth,38 for
example, such effects can already be understood if one lo
at the scalar relativistic effect on the valencep-shells in neu-
tral atomic calculations. For the copper and especially
silver halides the scalar relativistic effects are much larg
ranging up to more than 40% for the EFG at I in AgI. Larg
~scalar! relativistic effects were also found at F~and at Cu! in
CuF by Pernpointneret al.12 in ab initio calculations. In
these cases it is the copper or silver atom which indirec
causes the large scalar relativistic effects on the EFG at
halogen center. The scalar relativistic effect for the metals
the metal halides is small for Al, around 2% for Ga, a
around 7% for In.

We now turn to the effect of spin–orbit coupling~SOC!.
The discussion of this effect follows the one given in R
42, where the SOC effects on some molecular propertie
closed shell molecules were discussed. The spin–orbit in
action is treated as a modification of a scalar relativistic~LS
coupled! starting point. The first-order effect of spin–orb
coupling for these closed shell molecules is zero, and the
only a net effect of off-diagonal spin–orbit coupling if the
is off-diagonal spin–orbit interaction between occupied a
unoccupied orbitals. It is therefore not surprising that t
spin–orbit coupling effect on the calculated EFG is oft
small. There is, however, a large effect in the thallium h
lides, where the spin–orbit effect increases the calcula
EFG, namely 17% for Cl in TlCl, 20% for Br in TlBr, and
25% for I in TlI; see for TlI also Fig. 1. To understand th
effect we can look at the molecular bonding and antibond
orbitals coming from the valence atomicp-orbitals of the
thallium and the halogen. In the scalar relativistic case
bonding moleculars- and p-orbitals have more haloge
character, whereas the unoccupied antibondings- and
p-orbitals have more thallium character. Due to the o
diagonal spin–orbit coupling some antibonding orbital ch
acter will be mixed into the occupied spinors, which w
reduce the charge on the halogen. For the EFG the mixin
of the antibondings-orbital is more important than the mix
ing in of the antibonding p-orbital. The antibonding
s-orbital has relatively more halogen character than the
tibonding p-orbital and it mixes more strongly with th
bondings-orbital. As a result thes-density on the halogen is
decreased and thes-density at the thallium is increased
Thus the spin–orbit coupling increases thes-hole at the
halogen, resulting in a larger EFG at the position of the ha
gen nucleus.

It is important to use a large enough basis set for
calculation of the effect of spin–orbit coupling. For examp
the spin–orbit effect on the EFG at iodine in HI is less th
0.1% if basis setC is used, whereas the more precise resu
in Table VI using the large basis setA show a spin–orbit
effect of 2.6%.

We do not find a simple general picture to explain t
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE VI. Calculated halogen NQCC~MHz! and comparison with experiment. Nuclear quadrupole mome
used~Q in barn!: Q(35Cl)520.08165~Ref. 7!, Q(79BR)50.30 ~fitted!, Q(127I) 520.69 ~fitted!.

NR
SR

ZORA
SR

ZORA-4 ZORA ZORA-4 Observed

AlCl 35Cl 27.967 28.073 28.045 28.075 28.060 28.8290a

GaCl 35Cl 212.54 212.77 212.72 212.80 212.78 213.20b

InCl 35Cl 213.06 213.52 213.47 213.74 213.72 213.3b

TlCl 35Cl 213.41 214.17 214.12 216.58 216.56 215.752b

CuCl 35Cl 239.90 244.13 243.95 244.15 244.02 232.125a

AgCl 35Cl 236.36 246.30 246.12 246.31 246.19 236.441a

HCl 35Cl 267.22 268.35 268.07 268.35 268.17 267.4605c

ICl 35Cl 287.59 289.47 289.12 287.25 287.01 285.8c

BrCl 35Cl 2102.40 2103.96 2103.55 2103.58 2103.30 2102.378c

Cl2
35Cl 2111.29 2112.91 2112.46 2112.90 2112.60 2115.0c

ClF 35Cl 2144.63 2146.71 2146.12 2146.69 2146.28 2145.871 82c

AlBr 79Br 68.34 74.06 72.77 74.22 73.75 78.7064d

GaBr 79Br 94.0 101.5 99.6 101.9 101.1 105.78b

InBr 79Br 98.6 107.6 105.6 109.5 108.6 110.38b

TlBr 79Br 100.2 110.6 108.5 130.3 129.7 126.061b

CuBr 79Br 300.5 352.5 345.6 352.4 348.6 261.17e

AgBr 79Br 276.1 369.8 362.7 369.5 365.7 296.82b

HBr 79Br 496.2 537.0 526.6 537.8 531.7 532.239 77c

IBr 79Br 662.3 716.0 701.9 704.6 696.2 696.85b

Br2
79Br 760.4 818.0 801.9 815.8 806.5 810.0c

BrCl 79Br 820.9 883.4 865.9 880.1 870.1 875.078c

BrF 79Br 1016.5 1092.1 1070.3 1085.7 1073.2 1086.891 9c

AlI 127I 2235.6 2288.7 2275.8 2291.7 2283.9 2307.407b

GaI 127I 2289.7 2352.1 2335.7 2355.4 2346.1 2369.35b

InI 127I 2306.6 2372.2 2354.8 2380.5 2371.5 2386.4b

TlI 127I 2307.7 2374.8 2357.2 2451.6 2445.7 2438.123b

CuI 127I 2960 21255 21196 21247 21215 2938.07e

AgI 127I 2888 21318 21256 21307 21272 21060.85b

HI 127I 21555 21880 21791 21892 21838 21828.059c

I2
127I 22137 22561 22438 22517 22446 22452.5837c

IBr 127I 22403 22869 22730 22812 22735 22731.0c

ICl 127I 22566 23063 22915 22981 22900 22929.0c

IF 127I 23020 23599 23422 23483 23386 23440.748c

aReference 50.
bValue taken over from Ref. 48.
cValue taken over from Ref. 28.
dReference 51.
eValue taken over from Ref. 52.
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often subtle spin–orbit effects on the calculated EFG in m
calculated molecules. On the other hand, our results sho
clear difference in the effect of the small component in sca
relativistic calculations and calculations including spin–or
coupling. The effect of the small component on the cal
lated NQCC in the SR ZORA case is an almost system
decrease of approximately 0.4% for Cl, 1.9% for Br, 4.8
for I, 0.2% for Al, 1.5% for Ga, and 4.0% for In. In th
ZORA case the effect of the small component on the ca
lated NQCC is always smaller than in the SR ZORA ca
but it is less systematic. For the interhalogens this effec
the ZORA case is approximately 0.3% for Cl, 1.1% for B
and 2.8% for I, and for the metals in the metal halides
effect is approximately 0.2% for Al, 1.1% for Ga, and 3.0
for In. For iodine we have discussed the differences that e
with respect to the effect of the small component betwe
ZORA and SR ZORA calculations. This was demonstra
for atomic I, and holds similarly for the other atoms.

The effect of the small component on the results in
 to 130.37.129.78. Redistribution subject to AIP licens
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SR ZORA calculations can be compared with the same ef
in spin-free Dirac–Hartree–Fock~SFDHF! calculations by
Visscheret al.15 of the hydrogen halides. They calculated
effect of 0.2% for Cl, 1.3% for Br, and 2.8% for I, which i
smaller than the effect of the small component in our
ZORA calculations of the same molecules. They also cal
lated the effect of spin–orbit coupling on the calculat
EFG, which was defined as the difference between
Dirac–Hartree–Fock~DHF! value and the SFDHF value
and found that it decreases the EFG at the halogen cent
the hydrogen halides. On the other hand, we find for
same molecules an increase in EFG at the halogen ce
due to the spin–orbit effect, which we define as the diff
ence between the ZORA-4 result and the SR ZORA-4 res
The differences may be related to the fact that there is
unique spin-free Dirac equation,31 which means that there i
also no unique effect of spin–orbit coupling. Vissch
et al.15 used the spin-free Dirac equation proposed
Dyall,46 whereas we use the SR ZORA equation, which i
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE VII. Calculated metal NQCC~MHz! and comparison with experiment. Nuclear quadrupole mome
used~Q in barn!: Q(27Al) 50.1466~Ref. 9!, Q(69Ga)50.165~Ref. 11!, Q(115In)50.74 ~fitted!.

Nr
SR

ZORA
SR

ZORA-4 ZORA ZORA-4 Observed

AlF 27Al 238.00 238.23 238.15 238.23 238.16 237.75a

AlCl 27Al 231.30 231.44 231.37 231.44 231.38 230.410b

AlBr 27Al 229.06 229.00 228.94 228.98 228.93 228.006c

AlI 27Al 227.09 226.74 226.69 226.62 226.57 225.547a

GaF 69Ga 2101.72 2106.06 2104.45 2106.29 2105.11 2107.07a

GaCl 69Ga 288.65 292.37 291.00 292.58 291.60 292.1d

GaBr 69Ga 284.15 287.26 285.98 287.44 286.50 286.68a

GaI 69Ga 279.86 282.06 280.82 281.98 281.03 281.29a

InF 115In 2650.6 2731.5 2703.1 2741.2 2720.5 2727.127a

InCl 115In 2593.6 2667.6 2641.4 2677.3 2657.7 2659.6a

InBr 115In 2573.2 2641.9 2616.7 2651.7 2632.3 2634.7a

InI 115In 2553.8 2615.6 2590.9 2624.1 2604.2 2607.5a

aValue taken over from Ref. 48.
bReference 50.
cReference 51.
dValue taken over from Ref. 53.
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good approximation to the SR Eq.~4! proposed in Refs. 29
30.

In Figs. 3, 4, and 5 the ZORA-4 calculated NQCCs f
35Cl, 79Br, and 127I are compared with experimentally ob
served values. The ZORA-4 calculated results for the NQ
of 35Cl of the interhalogens and HCl are in very nice agre
ment with experiment. The calculated values for AlCl, Ga
InCl, and TlCl, which are an order-of-magnitude smaller, a
relatively less accurate, but they are still in reasonable ag
ment with experiment; see also Table VI. The results
CuCl and AgCl, on the other hand, are not very accurate.
these molecules the used density functional fails to desc
the electric field gradient with sufficient accuracy. Schwer
feger et al.18 showed that many of the presently used fun
tionals, with the exception of some hybrid functionals, gi
poor results for CuCl. They showed that the results are e
worse for the calculation of the EFG at the copper nucle

FIG. 1. Nonrelativistic~NR! and ~SR! ZORA-4 calculated127I NQCCs vs.
experimentally observed127I NQCCs. In the calculations the fitted NQM
Q(79I) 520.69 barn is used.
 to 130.37.129.78. Redistribution subject to AIP licens
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They also showed that highly correlatedab initio calcula-
tions can give very accurate results for CuCl.

The ZORA-4 results for79Br in Fig. 4 and those for127I
in Fig. 5 are not accurate even for the interhalogens if
NQMs given in Ref. 47 are used. On the other hand, th
figures show that if different NQMs for79Br and 127I are
chosen than those given in Ref. 47, one can get the same
agreement with experiment as was found for35Cl in Fig. 3.
For the fitting procedure the calculated EFGs of the inte
alogens and the hydrogen halides were compared with
perimental NQCCs. The fitted value was rounded to two s
nificant numbers. The ZORA-4 calculated results with the
fitted Q~79Br!50.30 barn and~127I!520.69 barn are now
within 2% of experiment for the interhalogens and the h
drogen halides; see also Table VI. They are in reasona
agreement for the aluminum, gallium, indium, and thalliu
halides. The agreement with experiment is comparable to

FIG. 2. Nonrelativistic~NR! and ~SR! ZORA-4 calculated127I NQCCs vs.
experimentally observed127I NQCCs. In the calculations the fitted NQM
Q(79I) 520.69 barn is used.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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one obtained for35Cl. Again, the copper and silver bromide
and the copper and silver iodides are somewhat anomal

The ZORA-4 calculated results for27Al in Table VII are
only slightly higher than the experimental values, where
the ZORA-4 results for69Ga are only slightly lower than
experiment. Note that recently two values for the NQM
69Ga were recommended, namelyQ~69Ga!50.173 barn in
Ref. 10 andQ~69Ga!50.165 barn in Ref. 11. Of the two rec
ommended values for the NQM of gallium,Q~69Ga!
50.165 barn is more in line with our results, and we ha
used this value in Table VII. With the fitted
Q~115In!50.74 barn our ZORA-4 results in Table VII are a
in very close agreement with experiment. The ZORA-4 c
culated results for115In would be almost systematically 9%
too high if the value ofQ~115In!50.81, that is listed in Ref.
47, is used.

FIG. 3. Calculated ZORA-4 vs. experimentally observed35Cl NQCCs. Used
NQM Q(35Cl)520.081 65 barn~Ref. 7!.

FIG. 4. Calculated ZORA-4 vs. experimentally observed79Br NQCCs.
Crosses are calculated withQ(79Br)50.331 barn~Ref. 47!. Dots are calcu-
lated with a fittedQ(79Br)50.30 barn.
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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Our ZORA-4 DFT calculations suggest th
Q~79Br!50.30~1! barn, Q~127I!520.69~3! barn, and
Q~115In!50.74~3! barn. These values are based on fitting
the experimental NQCCs using the calculated EFGs. T
used molecules in the fitting procedure are the interhalog
and the hydrogen halides for the NQM of79Br and127I, and
the indium halides for the NQM of115In. With the use of the
fitted NQMs for these molecules the calculated and exp
mental NQCCs are within 2% of each other. To some ext
this gives an idea for the error bars of the fitted NQM
However, it does not give an estimate for any systema
error. The error bars given are estimated due to sev
sources of errors. One source is the basis set error, which
believe to be below 1%. A second source of errors is due
the fact that we used a point electric charge and point elec
quadrupole for the nucleus instead of a more realistic fin
size, and that we did not include vibrational corrections
the calculated nuclear quadrupole coupling constants. We
timate these errors to be in the order of 1%; see also Ref.
A different kind of error is due to the used density function
in our calculations. In order to give an estimate for this er
we use the fitting procedure also for the evaluation of
NQMs of 35Cl, 27Al, and 69Ga. The selected molecules i
this fitting procedure are the interhalogens and hydro
chloride for the evaluation of the NQM of35Cl, and the
metal halides for the evaluation of the NQMs of27Al and
69Ga. Note that in our fit we completely neglect the anom
lous results for the copper and silver chlorides. The resul
the fit gives approximately Q~35Cl!50.081 barn,
Q~27Al !50.142 barn, andQ~69Ga!50.166 barn. These fits
can be compared with recent values ofQ~35Cl!
520.081 65~80! barn,7 Q~27Al !50.1466~10! barn,9 Q~69Ga!
50.1650~8! barn,11 andQ~69Ga!50.173~3! barn,10 that were
derived from highly correlatedab initio calculations in com-
parison with results from experiment. These values are o
a few percent different from our density functional estimat
which gives us an idea of the accuracy of the used den

FIG. 5. Calculated ZORA-4 vs. experimentally observed127I NQCCs.
Crosses are calculated withQ(79I) 520.789 barn~Ref. 47!. Dots are calcu-
lated with a fittedQ(129I) 520.69 barn.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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functional. Together with the previously mentioned erro
we estimate our total error bars to be approximately 4%.

In agreement with our resultsab initio correlated
Douglas–Kroll calculations49 suggest a smaller NQM fo
79Br and 127I than those given in Ref. 47. However, as w
remarked in Ref. 25, picture-change effects may change
recommended NQM values of Ref. 49. It is desirable t
future highly correlatedab initio relativistic calculations will
give us more accurate NQMs of79Br, 127I, and 115In.

VII. SUMMARY

In this article relativistic effects on electric field grad
ents have been calculated using the zeroth-order in the r
lar approximation~ZORA! to the Dirac equation. It has bee
demonstrated that the proper evaluation of the EFG in
ZORA method requires that the small-components density
taken into account: taking the derivative of the energy w
respect to the strength of the nuclear quadrupole field, wh
is being done numerically in actual applications with vario
quantum chemical methods12,11,25,9,10 is equivalent in the
ZORA method to using the so-called ZORA-4 density in
expectation value evaluation. Although most of the pictu
change correction from a two-component to a fo
component formalism is thus covered, this is not yet the c
completely. A derivation has been given of the full pictur
change correction to order 1/(2c22V), which demonstrates
that the difference with the use of the ZORA-4 density
small.

The intrinsic precision of the ZORA calculations, wit
full Dirac results as reference, has been investigated in b
set free~fully numerical! atomic calculations. In the case of
one-electron hydrogen-like atom exact relations exist
tween the results of the calculation of the electric field g
dient ~EFG! at the nucleus using the ZORA-4 electron de
sity and those using the fully relativistic Dirac electro
density. We have considered scalar relativistic as well
quasiscalar relativistic calculations. In the latter that com
nation of spin–orbit split spinors is taken that would yield
( lml) orbital, if those components had identical radial beh
ior. For valence orbitals the ZORA-4 results are very close
the full Dirac results. It was shown for instance that t
ZORA-4 results for the EFG due to a valencep-electron in
neutral iodine, represented by the quasiscalar relativi
combination ofp1/2 andp3/2 spinors, were within 0.1% of the
fully relativistic ~Dirac! results. Deep core orbitals yiel
somewhat larger differences~for instance 3% for 2p in
Xe531!. It has been verified that these larger differences
core orbitals are not important since the core contribution
the EFGs are small~in the order of 5% of the valence con
tribution!. This is a consequence of the small polarization
the spherical core densities, as could be demonstrated
comparisons with frozen core calculations. As a further t
on the precision of the calculations extensive basis set va
tions have been carried out. It was shown that it is possibl
obtain reasonable EFGs with relatively small basis sets,
in order to get below one percent accuracy very large b
sets are needed. In particular the core wiggles of the vale
orbitals need to be described accurately, also in frozen c
calculations. A single-z representation of the core wiggle
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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for instance leads to large errors~ca. 20%! in the calculated
EFGs. The test results taken together demonstrate tha
ZORA-4 method in conjunction with a large STO basis s
affords an approximation to full Dirac values to within 1%

Accurate ZORA-4 DFT results employing such a lar
STO basis set have been obtained for the EFGs at the h
gen nuclei in the diatomic interhalogens, the hydrogen
lides, and the Al, Ga, In, Tl, Cu, and Ag halides. The~scalar!
relativistic effects are almost always too large to be ignor
For the interhalogens they vary from 1% for Cl to 14% for
They are of course largest at I~for instance 40% in AgI!, but
even for Cl they can be significant, as in AgCl~27%! or even
CuCl ~8%!. As expected for these closed shell molecules,
effect of spin–orbit coupling is typically much smaller tha
the scalar relativistic effects. However, it can be significa
as in the thallium halides where it ranges from 17% for Tl
to 25% for TlI.

The calculations suggest that some of the current e
mates for the nuclear quadrupole moments need to be
justed, namely to Q~79Br!50.30~1! barn, Q~127I!
520.69~3! barn, and Q~115In!50.74~3! barn, instead of
those given in Ref. 47. The values should be checked
future highly correlatedab initio relativistic calculations.
With these adjusted NQMs the calculated EFGs at the h
gen ~Cl, Br, I! centers of the investigated diatomics are
good agreement with experimentally determined NQCCs
cept for the Cu and Ag halides. This is also true for t
calculated EFGs at the metal centers of the metal halide
the metals are aluminum, gallium, and indium. On the ot
hand, the calculated EFGs at the halogen centers in the
and Ag halides are not in good agreement with experime
which confirms the results previously found in Ref. 18 f
CuCl. Since the discrepancy cannot be due to ‘‘technic
problems~ZORA, basis sets! it is to be attributed to defi-
ciency of the used density functional: LDA plus gradie
corrections due to Becke~Becke88!19 and Perdew.20 On the
other hand, this functional does give reasonable results
the calculated EFGs in all the other discussed diatomics.
may hope that improved density functionals may remedy
situation for the copper and silver halides, without worsen
the results for the other halides.
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