
The Knowledge Engineering Review, Vol. 14:2, 1999, 153±173
Printed in the United Kingdom
Copyright # 1999, Cambridge University Press

A software architecture for knowledge-based
systems

D I E T ER F EN S E L 1 and R I X GROENBOOM 2

1University of Karlsruhe, Institut AIFB, D-76128 Karlsruhe, Germany. Email: fensel@aifb.uni-karlsruhe.de
2University of Groningen, Department of Computing Science, P.O. Box 800, 9700 AV Groningen, The Netherlands. Email:

rix@cs.rug.nl

Abstract

The paper introduces a software architecture for the speci®cation and veri®cation of knowledge-

based systems combining conceptual and formal techniques. Our focus is component-based

speci®cation enabling their reuse. We identify four elements of the speci®cation of a knowledge-

based system: a task de®nition, a problem-solving method, a domain model, and an adaptor. We

present algebraic speci®cations and a variant of dynamic logic as formal means to specify and verify

these di�erent elements. As a consequence of our architecture we can decompose the overall

speci®cation and veri®cation task of the knowledge-based systems into subtasks. We identify

di�erent subcomponents for speci®cation and di�erent proof obligations for veri®cation. The use of

the architecture in speci®cation and veri®cation improves understandability and reduces the e�ort

for both activities. In addition, its decomposition and modularisation enables reuse of components

and proofs. Therefore, a knowledge-based system can be built by combining and adapting di�erent

reusable components.

1 Introduction

Knowledge is situated and its usefulness for di�erent situations is limited. The brittleness of

Knowledge-Based Systems (KBSs) creates serious problems when trying to reuse it outside the

context in which it evolved. When developing a knowledge model for a single application, the

developer may have a good intuition about which assumptions can be made so as to deal with his

problem adequately. In this case, hidden assumptions become apparent in cases where the system

fails. The KBS may not be able to process a given input, or it returns a result that is not the solution

as it is required. Using error situations and system breakdowns is the most common (implicit) search

method for assumptions. However, this ``method'' may also cause signi®cant damage. Reliable

systems require the explication and formalization of their assumptions as an explicit part of their

development process. In addition, contexts have the problematic feature that they change over time.

As a consequence, the knowledge-based system must be maintained. A speci®cation of the

functionality of the systems and the assumptions it makes are essential for answering the questions

as to whether it is necessary to change the system and how this can be done without losing other

necessary properties. Finally, the problem of context-dependency is immediately present for

knowledge models which are intended to be sharable and reusable. In this case they cannot be

designed to intuitively ®t to a given context because they must be applicable to a broad range of

problems not known beforehand.1

During the last few years, several conceptual and formal speci®cation techniques for KBSs have

1For a discussion of the general pros and cons of using formal methods, see van Harmelen and Fensel (1995).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15461594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

been developed (see Studer et al. (1998), Fensel and van Harmelen (1994) and Fensel (1995c) for

surveys) to deal with these problems. The main advantage of these modelling or speci®cation

techniques is that they enable the description of a KBS independent of its implementation. This has

two main implications. First, such a speci®cation can be used as a gold standard for the validation

and veri®cation of the implementation of the KBS. It de®nes the requirements the implementation

must ful®l. Secondly, validation and veri®cation of the functionality, the reasoning behaviour, and

the domain knowledge of a KBS is already possible during the early phases of the development

process of the KBS. A model of the KBS can be investigated independently of aspects that are only

related to its implementation. Especially if a KBS is built up from reusable components, it becomes

an essential task to verify whether the assumptions of such a reusable building block ®t to each

other, and to the speci®c circumstances of the actual problem and knowledge.

In the paper, we discuss a conceptual and formal framework for the speci®cation of KBSs

composed of reusable building blocks. Our conceptual framework is derived from the Common-

KADSmodel of expertise (see Schreiber et al. (1994)) because this model has become widely used by

the knowledge engineering community. We re®ned this model to describe KBSs that are built up by

combining and adapting di�erent components. The formal techniques applied are based on

combining variants of algebraic speci®cation techniques (see Bidoit et al. (1991) and Wirsing

(1990)) and dynamic logic (see Harel, 1984). As a consequence of our modularised speci®cation, we

identify several proof obligations that arise to guarantee a consistent speci®cation. The overall

veri®cation of a KBS is broken down into di�erent types of proof obligations reducing the e�ort of

the overall proof process, and enabling reuse of proofs as consequence of reusing components.

Our conceptual and formal model can be viewed as a software architecture for a speci®c class of

systems, i.e. KBSs. A software architecture decomposes a system into components and de®nes their

relationships (cf. Garlan and Perry (1995) and Shaw and Garlan (1996)). This recent trend in

software engineering works on establishing a more abstract level in describing software artefacts

than was common before. The main concern of this new area is the description of generic

architectures that describe the essence of large and complex software systems. Such architectures

specify classes of application problems instead of focusing on the small and generic components

from which a system is built up. In the comparison section of this paper, we will take a closer look on

analogies and di�erences between our work and this recent line of research in software engineering.

The paper develops ideas introduced in Fensel et al. (1996b). This is achieved by adding details

and formal strength and by focusing on one of its various aspects. Basically, Fensel et al. (1996b)

introduced the ideas of the four component architecture as presented here, the use of KIV (cf. Reif

(1995)) for verifying such architectural speci®cation, the use of assumptions for characterising and

developing knowledge-based systems, and a method, eventually called inverse veri®cation, for

®nding and constructing such assumptions. These various lines of research have been further

worked out in a number of related papers covering the di�erent aspects in more detail and precision.

Most of them were triggered by a case study in parametric design problem-solving (Poeck et al.,

1996) and its analysis in Fensel (1995a).

Here we focus on the di�erent speci®cation elements and their corresponding proof obligations.

That is, we focus on the overall system architecture, but not on the process that establishes or uses

such an architecture. The work we present here introduces the backbone that is used by other

publications that focus on its speci®c aspects. The relationships of this paper to other publications of

the authors is as follows:

. Fensel and van Harmelen (1994), Fensel (1995b, 1995c), van Harmelen and Fensel (1995), Angele

et al. (1998) and Fensel et al. (1998a) describe pioneering work on how to combine conceptual

models of knowledge-based systems with formal speci®cations. In this paper, we build on this work,

however, re®ne some of the formal means and introduce a component-based framework (i.e.

conceptual model) enabling knowledge and software reuse.

. Our architecture makes use of some re®nements of existing formal methods that were introduced

by the languages MLPM (Fensel & Groenboom, 1996) and MCL (Fensel et al., 1998b) that

d . f en s e l and r . gro enboom 154

provide a more suitable means for specifying the dynamic aspects of the reasoning process of

knowledge-based systems (as worked out in Groenboom (1997)). An analysis of existing

approaches for specifying these dynamics can be found in van Eck et al. (1998).

. The use of our framework for structuring the veri®cation process of knowledge-based systems is

described in Fensel and SchoÈ negge (1997) and Fensel et al. (1998c). We follow and re®ne a

proposal made by van Harmelen and Aben (1996).

. Describing reusable components requires the explicit formalization of their underlying assump-

tions. Otherwise, reusing a component in a new context may cause serious damage. Therefore,

assumptions and explicit adaptation play a prominent role in our architecture. More detailed

material on assumptions of problem-solving methods and their role and purpose in systems

development and characterisation can be found in Fensel (1995a), Benjamins et al. (1996), Fensel

and Straatman (1996, 1998) and Fensel and Benjamins (1998b). Fensel and SchoÈ negge (1998)

introduce the inverse veri®cation method as an approach for ®nding such assumption in a semi-

automatic manner.

. The development process of knowledge-based systems that makes use of our architecture (i.e., the

architectural guidelines of our methodology) is described in Fensel et al. (1996a, 1997a, 1997),

Fensel andMotta (1998) and Fensel and SchoÈ negge (1998). Still, there is further work required to

use our approach in practice.

. The architecture described in this paper currently forms the basis for the Uni®ed Problem-solving

Method development Language (UPML) (cf. Fensel et al. (1999a, 1999b)). UPML re®nes the

generic adapter concept by distinguishing re®ners (that take one speci®cation element as input

and provide an adapted version as output) and bridges (that connect two di�erent component

types). In addition, UPML introduces ontologies as a separate speci®cation element that

supports the reusable speci®cation of data structures. UPML speci®cations are used by a

internet-based brokering service (Fensel, 1997b; Benjamins et al., 1998; Fensel & Benjamins,

1998a) to support the combination, adaptation and distributed execution of knowledge

components from di�erent libraries.

In this paper, we focus on the di�erent products of the speci®cation and veri®cation process. The

discussion of the process of establishing such speci®cations, the di�erent roles of the system

developer (i.e., domain expert, knowledge engineer, programmer, etc.) as well as the available tool

support in veri®cation is beyond the scope of the paper. That is, this paper provides the backbone

for a large number of other papers that extend it in di�erent directions. In general, a software

architecture covers the following aspects:

. a component model for decomposing the system description;

. architectural constraints that constrain meaningful combinations of components;

. and a process model (called design guidelines) that guide the process of developing systems

following a speci®c component model.

Our paper focuses on the ®rst aspect and sketches out the second one. The third aspect (i.e. the

process model) is still under development, and we refer the reader to Fensel et al. (1996a, 1997a,

1997), Fensel and Motta (1998) and Fensel and SchoÈ negge (1998).

The paper is organised as follows. In section 2, we discuss the di�erent conceptual elements of a

speci®cation of a KBS, and in section 3 we sketch the di�erent kinds of proof obligations that arise

in our context. Section 4 introduces our formal means to specify the di�erent elements using a

simple example for illustrating the formalisations. Section 5 compares our architecture with related

work, and Section 6 summarises the paper and de®nes objectives for future research.

2 A formal framework for the speci®cation of knowledge-based systems

Our framework for describing a KBS consists of four elements (see Figure 1): a task that de®nes the

problem that should be solved by the KBS; a Problem-Solving Method (PSM) that de®nes the

A software architecture for knowledge-based systems 155

reasoning process of a KBS; and a domain model that describes the domain knowledge of the KBS.

Each of these three elements are described independently to enable the reuse of task descriptions in

di�erent domains (see Breuker & Van de Velde, 1994), the reuse of PSMs for di�erent tasks and

domains (Puppe, 1993; Breuker & Van de Velde, 1994; Benjamins, 1995), and the reuse of domain

knowledge for di�erent tasks and PSMs (cf. Gruber (1993), Top and Akkermans (1994), van Heijst

et al. (1997)). Therefore, a fourth element of a speci®cation of a KBS is an adapter that is necessary

to adjust the three other parts to each other and to the speci®c application problem. This new

element is used to introduce assumptions and to map the di�erent terminologies.

2.1 The task

The description of a task speci®es goals that should be achieved to solve a given problem. A second

part of a task speci®cation is the de®nition of requirements on domain knowledge. For example, a

task that de®nes the derivation of a diagnosis requires causal knowledge explaining observables as

domain knowledge. Axioms are used to de®ne the requirements on such knowledge. A natural

candidate for the formal task de®nition are algebraic speci®cations. They have been developed in

Figure 1 The four elements of a speci®cation of a KBS.

d . f en s e l and r . gro enboom 156

software systems (cf. Bidoit et al. (1991), Wirsing (1990)) and have already been applied by Spee and

in`t Veld (1994) and Pierret-Golbreich and Talon (1996) for KBS. In a nutshell, algebraic

speci®cations provide a signature (consisting of types, constants, functions and predicates) and a

set of axioms that de®ne properties of these syntactical elements.

2.2 The problem-solving method

The concept of a problem-solving method (PSM) is present in many current knowledge-engineering

frameworks (e.g., GENERIC TASKS (Chandrasekaran, 1986); ROLE-LIMITING METHODS

(Marcus, 1988; Puppe, 1993); KADS (Breuker & Van de Velde, 1994) and CommonKADS

(Schreiber et al., 1994); the METHOD-TO-TASK approach (Eriksson et al., 1995); COMPO-

NENTS OF EXPERTISE (Steels, 1990); GDM (Terpstra et al., 1993); MIKE (Angele et al., 1998)).

Libraries of PSMs are described in Benjamins (1995), Breuker and Van de Velde (1994),

Chandrasekaran et al. (1992), Motta and Zdrahal (1996) and Puppe (1993). In general, a PSM

describes which reasoning steps and which types of knowledge are needed to perform a task. Besides

some di�erence between the approaches, there is strong consensus that a PSM:

. decomposes the entire reasoning task into more elementary inferences;

. de®nes the types of knowledge that are needed by the inference steps to be done; and

. de®nes control and knowledge ¯ow between the inferences.

In addition, Van de Velde (1988) and Akkermans et al. (1993) de®ne the competence of a PSM

independently of the speci®cation of its operational reasoning behaviour. A competence of a PSM is

a logical theory that characterises the solutions provided by it. It corresponds to what is called a

speci®cation of the functionality in software engineering. Proving that a PSM has some competence

has the clear advantage that the selection of a method for a given problem and the veri®cation of

whether a PSM ful®ls its task can be done independently from details of the internal reasoning

behaviour of the method.

The description of a PSM consists of three elements in our framework: a competence description,

an operational speci®cation, and requirements on domain knowledge.

The de®nition of the functionality of the PSM introduces the competence of a PSM independently

from its dynamic realisation. As for task de®nitions, algebraic speci®cations can be used for this

purpose.

An operational description de®nes the dynamic reasoning of a PSM. Such an operational

description explains how the desired competence can be achieved. It de®nes the main reasoning

steps (called inference actions) and their dynamic interaction (i.e., the knowledge and control ¯ow)

to achieve the functionality of the PSM. We use a variant of dynamic logic (cf. Fensel et al., 1998b)

to express procedural control over the execution of inferences. The de®nition of an inference step

could recursively introduce a new (sub-)task de®nition. This process of stepwise re®nement stops

when the realisation of such an inference is regarded as an implementation issue that is neglected

during the speci®cation process of the KBS.

The third element of a PSM introduces requirements on domain knowledge. Each inference step,

and therefore the competence description of a PSM, requires speci®c types of domain knowledge.

These complex requirements on domain knowledge distinguish a PSM from usual software

products. Pre-conditions on valid inputs are expanded to complex requirements on available

domain knowledge. Again, we will apply abstract data types for the speci®cation of the

requirements of a PSM.

The competence description of the PSM as well as the task de®nition are declarative speci®ca-

tions. The former speci®es the actual functionality of the KBS (given that the domain knowledge

ful®ls the requirements of the PSM), and the latter speci®es the problem that should be solved by

applying the KBS. We make a distinction between both for two reasons:

. First, a PSM introduces requirements on domain knowledge in addition to the task de®nition.

A software architecture for knowledge-based systems 157

This knowledge is not necessary to de®ne the problem, but is required to describe the solution

process of the problem.

. Secondly, we cannot always assume that the functionality of the KBS is strong enough to

completely solve the problem. Most problems tackled with KBSs are inherently complex and

intractable (cf. Bylander et al. (1991) and Motta and Zdrahal (1996)). PSMs needs to introduce

assumptions that reduce the problem to a size they can deal with (see Fensel and Straatman

(1998)). The later discussed adapters are the speci®cation elements that contain the assumptions

that have to be made to bridge the gap between both speci®cations.

A simple example may clarify these two points. The task of ®nding a global optimum is de®ned in

terms of a preference relation. First, a PSM based on a local search technique requires in addition a

local neighbourhood relation to guide the search process. This knowledge is not necessary to de®ne

the task but to de®ne the problem-solving process and its competence. Depending on the properties

of this neighbourhood relation, di�erent competences of a method are possible (cf. Gamma et al.

(1995) and Fensel and SchoÈ negge (1998)). Secondly, the task of ®nding an optimal solution could

easily de®ne an NP-hard problem. The PSM based on a local search technique may provide

solutions in polynomial time. However, it derives only a local optimum. Therefore, one must either

put strong requirements on domain knowledge (each local optima must also be a global one) or one

must weaken the task to local instead of global optima (cf. Fensel and Benjamins (1998b)) to

establish the correspondence of PSM and task.

For the same reasons, we include a speci®cation of the reasoning process of the PSM (called

operational speci®cation). In software engineering, the distinction between a functional speci®ca-

tion and the design/implementation of a system is often discussed as a separation of what and how.

During the speci®cation phase, what the system should do is establish in interaction with the users.

How the system functionality is realised is de®ned during design and implementation (e.g., which

algorithmic solution can be applied). This separationÐwhich even in the domain of software

engineering is often not practicable in the strict senseÐdoes not work in the same way for KBSs: a

large amount of the problem-solving knowledge, i.e., knowledge about how to meet the require-

ments, is not a question of e�cient algorithms and data structures, but exists as heuristics as a result

of the experience of an expert. For many problems which are completely speci®able, it is not possible

to ®nd an e�cient algorithmic solution. Often they are easy to specify, but it is not necessarily

possible to derive an e�cient algorithm from these speci®cations; heuristics and domain-speci®c

inference knowledge are needed for the e�cient derivation of a solution. One must not only acquire

knowledge about what a solution for a given problem is, but also knowledge about how to derive

such a solution in an e�cient manner. Already at the knowledge level there must be a description of

the domain knowledge and the problem-solving method which is required by an agent to solve the

problem e�ectively and e�ciently. In addition, the symbol level has to provide a description of

e�cient algorithm solutions and data structures for implementing an e�cient computer program.

As in software engineering, this type of knowledge can be added during the design and implementa-

tion of the system. Therefore, a speci®cation language for KBSs must combine non-functional and

functional speci®cation techniques: on the one hand, it must be possible to express algorithmic

control over the execution of substeps. On the other hand, it must be possible to characterise the

overall functionality and the functionality of the substeps (i.e., the inference actions) without

making commitments to their algorithmic realisations.

2.3 The domain model

The description of the domain model introduces the domain knowledge as it is required by the PSM

and the task de®nition. Ontologies are proposed in knowledge engineering as a means to represent

domain knowledge in a reusable manner (cf. Gruber (1993), Top and Akkermans (1994) and van

Heijst et al. (1997)). Our framework provides three elements for de®ning a domain model: a meta-

d . f en s e l and r . gro enboom 158

level characterisation of properties of the domain model, assumptions of the domain model, and the

domain knowledge itself.

The domain knowledge is necessary to de®ne the task in the given application domain and

necessary to carry out the inference steps of the chosen problem-solving method. Properties and

assumptions di�er in their state of truth. Properties can be derived from the domain knowledge,

whereas assumptions are properties that have to be assumed to be true, i.e., they have not been

proven or they cannot be proven. Assumptions capture the implicit and explicit assumptions made

while building a domain model of the real world. Properties and assumptions are both used to

characterise the domain knowledge. They are the counterpart of the requirements on domain

knowledge introduced by the other parts of a speci®cation. Some of these requirements may be

directly inferred from the domain knowledge (and are therefore properties of it), whereas others can

only be derived by introducing assumptions about the environment of the system and the actually

provided input. For example, typical external assumptions in model-based diagnosis are: the fault

model is complete (no fault appears that is not captured by the model); the behavioural description

of faults is complete (all fault behaviours of the components are modelled), the behavioural

discrepancy that is provided as input is not the result of a measurement fault, etc. (cf. Fensel &

Benjamins, 1998b).

2.4 The adapter

Adapters are of general importance for component-based software development. Gamma et al.

(1995) introduce an adapter pattern in their textbook on design patterns for object-oriented system

development. Such adapters enable reusable descriptions of objects, and make it possible to

combine objects that di�er in their syntactical input and output descriptions. In our architecture,

adapters are used to introduce further requirements and assumptions that are needed to relate the

competence of a PSM to the functionality given by the task de®nition (cf. Fensel (1995a) and Fensel

and Benjamins (1998b)). We have already mentioned the fact that an adapter usually introduces new

requirements or assumptions because in general, most problems tackled with KBSs are inherently

complex and intractable. A PSM can only solve such tasks with reasonable computational e�ort by

introducing assumptions that restrict the complexity of the problem or by strengthening the

requirements on domain knowledge. Task, PSM and domain model can be described independently

and selected from libraries because adapters relate the three other parts of a speci®cation together

and establish their relationship in a way that meets the speci®c application problem. Their consistent

combination and their adaptation to the speci®c aspects of the given applicationÐsince they should

be reusable they need to abstract from speci®c aspects of application problemsÐmust be provided

by the adapter.

3 The main proof obligations

Following the conceptual model of the speci®cation of a KBS, the overall veri®cation of a KBS is

broken down into four kinds of proof obligations (see Figure 1):

(PO-i) Task consistency. The consistency of the task de®nition ensures that a model exists.

Otherwise, we would de®ne an unsolvable problem. The requirements on domain knowl-

edge are necessary to prove that the goal of the task can be achieved. Such a proof is

usually achieved by constructing a model via an (ine�cient) generate and test like

implementation.

(PO-ii) PSM consistency. We have to show that the operational speci®cation of the PSM

describes a PSM for which termination can be guaranteed,2 and that the PSM has the

2In fact, that excludes non-terminating methods like those used for monitoring tasks from our framework. For
such tasks, a richer formal framework based on temporal logic would be required. In our case, we assume

terminating programs that can be represented as input-output pairs.

A software architecture for knowledge-based systems 159

competence as speci®ed. This proof obligation recursively returns for each non-elemen-

tary inference action of a PSM. In addition to termination, one may also want to include

some thresholds for the e�ciency of the method by including it as part of the competence

description (cf. Shaw (1989), Fensel and SchoÈ negge (1998) and van Harmelen and ten

Teije (1998)).

(PO-iii) Domain consistency. We have to ensure internal consistency of the domain model. The

overall domain knowledge does not need to be consistent, but it must be dividable into

consistent parts. In addition, we have to prove that given its assumptions the domain

knowledge actually implies its meta-level characterisation.

(PO-iv) Overall system consistency. We have to establish the relationships between the di�erent

elements of the speci®cation:

(a) APT-consistency. We have to prove that the requirements of the adapter imply the

knowledge requirements of the PSM and the task.

(b) PT-consistency. In addition to the already existing requirements, an adapter may need

to introduce new requirements on domain knowledge and assumptions (properties

that do not follow from the domain model) to guarantee that the competence of the

PSM is strong enough to process the task.

(c) AD-consistency. We have to prove that the requirements of the adapter are implied by

the properties and assumptions of the domain model.

Notice that PO-i deals with task de®nition internally, PO-ii deals with the PSM internally, and PO-

iii deals with the domain model internally, whereas PO-iv deals with the external relationships

between task, PSM, domain knowledge and adapter. Thus, a separation of concerns is achieved that

contributes to the feasibility of the veri®cation (cf. van Harmelen and Aben (1996)). The conceptual

model applied to describe KBSs is used to break the general proof obligations into smaller pieces,

and makes parts of them reusable. As PSMs can be reused, the proofs of PO-ii do not have to be

repeated for every application. These proofs have to be done only when a new PSM is introduced to

the library. Similar proof economy can be achieved for PO-i and PO-iii by reusable task de®nitions

and domain models. The application speci®c proof obligation is PO-iv.

Assumptions concerning the input cannot be veri®ed during the development process of a KBS.

However, their derivation is very important because they de®ne preconditions for the validity of

inputs that must be checked for actual inputs to guarantee the correctness of the system.

More details on the formalisation of these architectural constraints can be found in Fensel et al.

(1999b).

4 The formal speci®cation of the di�erent components

In this section we characterise the di�erent elements of a system architecture in more detail.

4.1 Formalising tasks

We use a simple task to illustrate our approach. The task abductive diagnosis receives a set of

observations as input and delivers a complete and parsimonous explanation (e.g., see Bylander et al.

(1991)). An explanation is a set of hypotheses. A complete explanation must explain all input data

(i.e., observations) and a parsimonious explanation must be minimal (that is, no subset of hypotheses

explains all observation). Figure 2 provides the task de®nition for our example. Any explanation that

ful®ls the goal must be complete and parsimonious. The input requirement ensures that there are

observations.

The task does not introduce any requirements on domain knowledge by axioms but the domain

model must provide sets to interpret the sorts datum and hypothesis and an explanation function

expl. We will see how the signature mapping is achieved by the adapter.

d . f en s e l and r . gro enboom 160

4.2 The problem-solving method

Finding a complete and parsimonious explanation is NP-hard in the number of hypotheses

(Bylander et al., 1991). Therefore, we have to apply heuristic search strategies. In the following, we

characterise a local search method which we call set-minimiser. The discussion of whether other

methods would be more suitable or how we have selected this method is beyond the scope of this

paper (see Fensel (1997a) and Fensel and Motta (1998) for more details). In the following, we ®rst

provide the black box speci®cation of the method. That is, we specify the competence provided by

the method and the knowledge required by the method. Then, we provide a white box speci®cation

of the operational reasoning strategy, which explains how the competence can be achieved. The

former is of interest during reuse of PSMs whereas the latter is required for developing PSMs.

4.2.1 The black box description: competence and requirements

The competence description of the PSM as well as the task de®nition are declarative speci®cations.

In consequence, we apply the same formal means for their speci®cations: the task speci®es the

problem that should be solved by applying the KBS and the PSM speci®es the actual functionality

of the KBS (given that the domain knowledge ful®ls the requirements of the PSM). A PSM

introduces additional requirements on domain knowledge and may weaken the task de®nition.

However, both aspects can directly be covered by algebraic data types.

The competence theory in Figure 3 de®nes the competence that we call set-minimiser. Set-

minimiser is able to ®nd a correct and locally minimal set. Local minimality means, that there is no

correct subset of the output that has only one less element. The method has one requirement: it must

receive a correct initial set (cf. Figure 3). The competence as well as the requirements illustrate the

additional aspects that are introduced by the PSM:

. The task of ®nding a parsimonious set is reduced to local parsimonious sets.

. Constructing an initial correct set is beyond the scope of the method. It is assumed as being

Figure 2 The task de®nition for abduction.

A software architecture for knowledge-based systems 161

provided by the domain knowledge, by a human expert or by another PSM. The method only

minimises this correct set.

The PSM does not make any assumptions what a correct set is. This has to be determined by the

domain a PSM is instantiated for. In general, a PSM could add additional axioms that restrict the

valid interpretations of a domain theory. The predicate correct can be understood as a generic

parameter that will be replaced by an actual parameter when connecting the PSM to a domain.

4.2.2 The operational speci®cation

Our method set-minimiser uses depth-®rst search through a search space that it structured by set

inclusion. The entire method is decomposed into the following two steps: the inference action

generate generates all successor sets that contain one less element. The inference action select selects

one correct set from the successors and the predecessor. The inference structure of this method is

given in Figure 4 roughly following the conventions of CommonKADS (Schreiber et al., 1994). It

speci®es the main inferences of a method (i.e., its substeps), the data¯ow between the inferences (i.e.,

the knowledge ¯ow and the dynamic knowledge roles) and the knowledge types (i.e., the static

knowledge roles) that are required by them. In the following, we will de®ne each of these elements in

more detail. In addition, we will have to de®ne the control ¯ow between the inference steps. The

latter introduces a strong new requirement on our means for formalisation requiring a logic of

changes.

Inference actions and knowledge Roles

Again we use algebraic speci®cations to specify the functionality of inference actions and knowledge

roles. Dynamic knowledge roles (dkr) are means to represent the state of the reasoning process and

axioms can be used to represent state invariants. They correspond roughly to state schemas in Z

(Spivey, 1992). The interpretation of constants, functions and predicates may change during the

problem-solving process. Static knowledge roles (skr) are means to include domain knowledge into

the reasoning process of a problem-solving method. Our method set-minimiser requires knowledge

about correct sets and an initial set. This is modelled by the static knowledge roles. Figure 5 provides

the de®nitions of the two inference actions and the knowledge roles. Basically, generate derives all

subsets that have one element less and select selects a successor (one of these reduced sets) if a correct

successor exists. Otherwise its selects the original node.

Figure 3 The competence and requirements of the PSM.

d . f en s e l and r . gro enboom 162

Figure 4 Knowledge ¯ow diagram of set-minimiser.

Figure 5 The speci®cation of the inference actions and the knowledge roles.

A software architecture for knowledge-based systems 163

Control ¯ow

The operational description of a PSM is completed by de®ning the control ¯ow (see Figure 6) that

de®nes the execution order of the inference actions. The speci®cation in Figure 6 uses the Modal

Change Logic (MCL) (Fensel et al., 1998b), which was developed in to combine functional

speci®cation of substeps with procedural control over them. MCL is a generalised version of the

Modal logic of Creation and Modi®cation (MLCM, see Groenboom and Renardel de Lavalette

(1994) and Groenboom (1997)) and theModal Logic for PredicateModi®cation (MLPM) (Fensel &

Groenboom, 1996). Each of these languages are variants of dynamic logic. Dynamic logic and

(Harel, 1984) was developed to express states, state transitions, and procedural control of these

transitions in a logical framework. Dynamic logic uses the possible-worlds semantics of Kripke

(1959) for this purpose. A state is represented by a possible world through the value assignments of

the program variables. MCL extends the representation of a state. A state is represented by an

algebra following the states-as-algebras paradigm of abstract state machines (Gurevich, 1994). A

state transition is achieved by changing the truth values of a predicate or the values of a term. MCL

provides the usual procedural constructs such as sequence, if-then-else, choice and while-loop to

de®ne complex transition.

A complete introduction to MCL is beyond the scope of this paper (see Fensel et al. (1998b) and

Fensel and Groenboom (1996) for more details). We will only mention some features required to

understand our example. Dynamic logic is often presented with the variable assignments x:=t as its

atomic programs and value assignments of a number of free variables as state representation. MCL

provides a more structured state representation. The interpretation of constants, function and

predicates model a state. For example, an array can be model by an unary function array where

array(i) denotes the i-th element of the array. In di�erent states, array(i) may refer to di�erent

values. MCL provides more powerful constructs to express an inference of a KBS as an elementary

state transition. For example, in MCL we have

f:=lx.t and p:=lx.A

that changes the interpretation of a function or predicate such that f�x� � t�x� and p�x� � A�x�, and
[x:�

that performs � for a non-deterministically chosen x for a given program �. This is necessary to

implement an inference and return non-deterministically one of its solutions. These atomic programs

generalise the state transitions as introduced by the KADS speci®cation languages KARL (Fensel

et al., 1998a) and (ML)2 (van Harmelen & Balder, 1992). Besides the atomic programs, MCL has

the normal imperative statements for sequential composition, choice and repetition.

In Figure 6, we apply p:=lx.A to express that Nodes is updated by all successor sets of the set

contained by Node and [x:� to express that New node is updated (non-deterministically) by one

correct successor set if it exists or the predecessor if not.

Figure 6 The speci®cation of dynamics.

d . f en s e l and r . gro enboom 164

4.3 The domain model

A domain model consists of three main parts: the domain knowledge, its properties, and its

assumptions. In addition, a signature de®nition is provided that de®nes the common vocabulary of

the other three elements.

The medical domain model we have chosen for our example is a subset of a large case-study in the

formalisation of domain knowledge for an anesthesiological support system. The support system

should diagnose a (limited) number of hypotheses, based on real-time acquired data. This data is

obtained from the medial database system Carola (de Geus & Rotterdam, 1992), which performs

on-line logging of measurements. The formal model includes knowledge of how to interpret these

raw measurements (quantitative data) and causal relations between qualitative data (see Renardel

de Lavalette et al. (1997) for details).

Some of the simpli®cations we have made include:

. In this simpli®ed domain we have a ``one step'' causal relation R. In practice we have the

transitive and irre¯exive closure R+. Note that we do not have the re¯ective transitive closure

R*, since a symptom cannot be a hypothesis for itself. In a more complex version of this domain

model, a symptom can be the hypothesis for another symptom. This kind of reasoning is left out

for expository reasons (see Renardel de Lavalette et al. (1997) for details).

. To obtain a complete model, we restricted the number of possible hypotheses. Although this

seems a major restriction, it is the same as we have to employ to the larger knowledge base. In

consultation with the physician, we restrict the number of diagnoses (hypotheses) we want the

system to detect. Then we design a system to detect these hypotheses, leaving the ®nal diagnosis

to the physician. This is also the main reason why the system is a support system; the goal of the

system is not to replace a physician, only to support him.

. A last simpli®cation is the abstraction from time. Although the quantitative data is measures a

certain time-points, we model causal-knowledge as non-temporal. The notion of time is handled

elsewhere in the domain (see Groenboom (1997) and Renardel de Lavalette et al. (1997) for

details).

In this domain we deal with abstract notions, derived from interpretations of measurements. The

exact meaning of HighPartm (which stands for a High mean arterial blood-pressure) is de®ned

elsewhere in the formal domain model (see Groenboom, 1997). Another technical term is

ToolowCOP, which refers to a too low Cellular Oxygen Pressure. Figure 7 sketches the causal

knowledge and Figure 8 de®nes the signature and axioms of our domain model. It contains

hypotheses and symptoms and a causal relationship between them. The properties make explicit

Figure 7 The domain knowledge.

A software architecture for knowledge-based systems 165

that there is a cause for each symptom and hypotheses do not con¯ict. That is, di�erent hypotheses

do not lead to an inconsistent set of symptoms. In our domain this is guaranteed by the fact that we

do not have knowledge about negative evidence (i.e., a symptom may rule out an explanation).

Assuming more causes only leads to a larger set of symptoms that can be explained. The complete-

fault-knowledge assumption guarantees that there are no other unknown faults like hidden diseases.

Only under this assumption we can deductively infer causes from observed symptoms. However, it is

a critical assumption when relating the output of our system to the actual problem and domain (cf.

Fensel & Benjamins, 1998b).3

3Notice that we do not assume complete knowledge of symptoms.

Figure 8 The domain model.

d . f en s e l and r . gro enboom 166

4.4 Two adapters

An adapter has to link the di�erent signatures of task, PSM and domain, and has to add further

axioms to guarantee their proper relationships. We use abstract data types for this purpose. First we

demonstrate how to link task and PSM by the TPAdapter. Then we discuss their relations with the

domain model de®ned by the DAdapter.

4.4.1 Connecting task and PSM

Combining task and PSM requires three activities: establishing of syntactical links between di�erent

terminologies by mapping (see Reif (1992) for more details), establishing of semantic links between

di�erent predicates, and the introduction of new assumptions and requirements to establish that the

goals of the task are implied by the output of the method.

In our case study, we have to link the sort object and objects and the predicate symbol correct of

the PSM by renaming. The appropriate interpretation of predicates has to be ensured by axioms if

they cannot be linked directly. The necessity that the output of the method implies the goal of the

task is stated as proof obligation (see Figure 9).

The TPAdapter contains the collection of the requirements introduced by task and PSM. This

includes: any application problem provides at least one observation and the set of hypotheses

delivered by Init must be a complete explanation of all observations (see Figure 9). These

requirements must be ful®lled by the domain knowledge and the input to ensure that the task is

well-de®ned and the inference steps of the PSM work properly.

Finally, we have to introduce new assumptions and requirements to ensure that the competence

of the PSM implies the goal of the task (i.e., to ful®l the proof obligation of the adapter). We already

know that Output contains a locally-minimal set. Each subset of it that contains one less element is

not a complete explanation. Still this is not strong enough to guarantee parsimonity of the

explanation in the general case. There may exist smaller subsets that are complete explanations. In

Fensel and SchoÈ negge (1998), we have proven that the global-minimality of the task de®nition is

implied by the local-minimality if we introduce the monotonic-problem assumption (see Bylander et

al. (1991)):

H(H'? expl(H)(expl(H')

For details on how to ®nd such assumptions with an interactive theorem prover see Fensel and

SchoÈ negge (1997, 1998).

Figure 10 provides the intermediate adapter that contains the ful®lled proof obligation and the

new assumption. Whether the monotonicity property must be stated as an assumption or whether it

can be formulated as a requirement on domain knowledge in the ®nal version of the adapter can be

decided when specifying the second aspect of the adapter, its connection with the domain knowl-

edge.

Figure 9 The initial version of the TPAdapter.

A software architecture for knowledge-based systems 167

4.4.2 Connecting with the domain model

Finally, we have to link the domain model to the other components using the DAdapter (see Figure

11). We have to map the di�erent terminologies, to de®ne the logical relationships between domain

knowledge and the other parts of the speci®cation by axioms, and to prove the requirements on

domain knowledge. For our example, most of these requirements follow straightforwardly from the

meta-knowledge of the domain model. Therefore, the monotonicity of hypotheses can be stated as a

requirement, because it follows from the speci®cation of the domain knowledge. If a requirement

cannot be derived from the domain knowledge it must be stated as an assumption. In our example,

the requirement

Ax (x [observables)

cannot be derived from the domain knowledge because it is concerned with the input. However,

assuming an input for deriving a diagnosis is not a critical assumption.4 It remains to ensure that Init

Figure 10 The intermediate version of the TPAdapter.

Figure 11 The initial DAdapter.

4For example, a more serious assumption would be the single-fault assumption (cf. Davis (1984)). Formulating
it as a requirement on domain knowledge enforces that each possible fault combination is represented as a
single fault by the domain knowledge. Therefore, it is often used as an assumption that limits the scope of the
problems that can be handled correctly by the system. Cases where a single fault is the actual cause can be

solved correctly by the system. Situation with more complex error situations must be solved without support by
the system. In general, formulating a property as a requirement increases the demand on domain knowledge
and formulating a property as an assumption decreases the application scope of the system (cf. Fensel and

Benjamins (1998b)).

d . f en s e l and r . gro enboom 168

delivers a correct set of hypotheses. An easy way to achieve this is to deliver the entire set of

hypotheses (given the monotony of the problem), i.e., Vh [Init.

5 Related work

The CommonKADS model of expertise (Schreiber et al., 1994) provides a conceptual model for

describing the di�erent knowledge types of a KBS. It distinguishes three layers: domain layer,

inference layer and task layer. The domain layer corresponds to the domain knowledge in our

architecture. We add assumptions that describe the relation the domain knowledge has with the

actual domain (i.e., which assumptions have been made during modelling a part of reality) and meta

knowledge that provide properties of these knowledge. These properties are essential when

connecting PSMs and tasks with a domain. The inference layer provides the inferences, knowledge

roles and data¯ow dependencies of a KBS. In our architecture they are part of the operational

speci®cation of a PSM. Again requirements (i.e., assumptions) and competence descriptions are

added to these descriptions to support the reusability of such reasoning strategies. Finally, the task

layer de®nes the goals a KBS should achieve, their decomposition into subgoals and the control that

regulates the order of execution of the inferences. In our architecture the latter two aspects are part

of the operational speci®cation of a PSM, and for the task remains to de®ne the goals that should be

achieved by the KBS. Again, requirements are added to expect the sort of domains a task can be

instantiated for.

Recently, the knowledge level (Newell, 1982) has been encountered in software engineering (cf.

Garlan & Perry, 1994; Shaw & Garlan, 1996). Work on software architectures establishes a higher

level to describe the functionality and the structure of software artefacts. The main concern of this

new area is the description of generic architectures that describe the essence of large and complex

software systems. Such architectures determine speci®c classes of application problems, instead of

focusing on the small and generic components from which a system is built up. Our conceptual

model ®ts into this recent trend. It describes an architecture for a speci®c class of systems:

knowledge-based systems. Usually, architectures are described by their components and connectors

that establish the proper relationships between the former. In our case, we have three types of

components (tasks, problem-solving methods and domain models) and adapters that connect them.

However, adapters do no deal with communication aspects as it is often the case with connectors (cf.

Yellin & Strom, 1997).

Work on formalising software architectures characterises the functionality of architectures in

terms of assumptions on the functionality of its components (Penix and Alexander, 1997; Penix et

al., 1997). This shows strong similarities to our work where we de®ne the competence of a problem-

solving method in terms of assumptions on domain knowledge (which can be viewed as one or

several components of a knowledge-based system) and the functionality of elementary inference

steps. However, Penix and Alexander (1997) and Penix et al. (1997) abstract from the operational

speci®cation of the architecture and keep its speci®cation and veri®cation separate. In our frame-

work, this is treated as an integrated piece of the speci®cation of the entire architecture. This is the

reason why we rely on a combination of algebraic speci®cations and dynamic logic for speci®cation

and veri®cation, whereas Penix and Alexander (1997) and Penix et al. (1997) use only algebraic

speci®cations.

An interesting architecture for the speci®cation of problem-solving methods in the area of model-

based diagnosis is presented by ten Teije (1997). The speci®cation of the competence of a problem-

solving method is parameterised by a ®xed set of component types. Changing the functionality of a

component by selecting a di�erent instantiation for one of the component types modi®es the

competence of the entire method. While it is a very interesting approach, we still wonder whether it

is really useful for specifying problem-solving methods. In our opinion, two key features of

problem-solving methods are missing:

A software architecture for knowledge-based systems 169

. Problem-solving methods describe how a pattern is solved, and the operational strategy is not

covered by the declarative speci®cation of its competence.

. A task introduces knowledge requirements to de®ne a problem in domain-speci®c terms. A

problem-solving method introduces additional knowledge requirements that are necessary to

solve the problem. A local search method needs a local structure that is not necessary to de®ne

the problem but to de®ne the problem-solving process. This type of knowledge is not present as a

parameter in her framework.

In consequence, we think ten Teije (1997) presents an interesting framework for a parameterised

speci®cation of model-based diagnosis tasks rather than problem-solving methods.

6 Conclusions and future work

In the paper, we introduce a formal and conceptual framework for specifying and verifying

knowledge-based systems. One can specify tasks, problem-solving methods, domain models and

adapters and can verify whether the assumed relationships between them are guaranteed, i.e., which

assumptions are necessary for establishing these relationships. Such an architecture improves the

understandability of speci®cation and veri®cation. The modularisation reduces the e�ort of

speci®cation and veri®cation by de®ning smaller contexts and enabling reuse of smaller parts in

new contexts. The idea of an adapter allows to combine and adapt reusable elements without being

forced to modify them. The speci®cation of the problem-solving methods is decomposed into

external and internal aspects. The speci®cation of the competence of the problem-solving method

provides all necessary aspects for relating it to the task that must be carried out. When specifying a

reusable problem-solving method it must be proven once, whether the operational speci®cation

speci®es a computational process that has the speci®ed competence. When reusing the method, it is

possible to abstract from all details of the internal operationalisation and refer only to the external

speci®cation of the competence. In the case of the domain model, such an encapsulation is not

possible because task and problem-solving methods need access to meta-knowledge and domain

knowledge. In the case of the task, such an encapsulation is not necessary because it does not have

an internal implementation. Its implementation is described by the problem-solving method.

Formal development of knowledge-based systems requires tool support for modularisation of

speci®cations and programs and for constructing, analysing and reusing proofs. We use the KIV

system (Karlsruhe Interactive Veri®er) (see Reif, 1995) for this purpose. Fensel and SchoÈ negge

(1997, 1998) and Fensel et al. (1998c) describe the veri®cation of our architectural speci®cations

using KIV. It is an advanced tool for the construction of provably correct software. KIV was

originally developed for the veri®cation of procedural programs, but it serves well for verifying

knowledge-based systems. Its speci®cation language is based on abstract data types for the

functional speci®cation of components and dynamic logic for the algorithmic speci®cation. It

provides an interactive theorem prover integrated into a sophisticated tool environment supporting

aspects like the automatic generation of proof obligations, generation of counter examples, proof

management, proof reuse, etc. Such support is essential for making the veri®cation of complex

speci®cations feasible. Currently, one has to manually translate parts of our architecture into the

more general module concept of KIV. Therefore, we are working on integrating our conceptual

models directly into KIV, and on proof tactics that make use of this conceptual model.

Algebraic speci®cations (®rst-order theories to be precise) were used in the project FAN

(described in Renardel de Lavalette et al. (1997)) to specify the domain knowledge of a KBS for

medical diagnosis in the area of anaesthetics. This formalisation of domain knowledge was done by

an expert on medical information technology (he functioned as a knowledge engineer) based on the

interviews with anaesthetists. A subset of this model is presented in section 4.3. Most of the

anaesthetists are not able to read the formal speci®cation directly, but they did understand and

provided feedback on choices made for the formal framework. The presented architecture assists the

knowledge engineer in establishing a proper framework for this type of formalisation.

d . f en s e l and r . gro enboom 170

The architecture we propose has been used in Fensel (1997a) and Fensel and Motta (1998) to

specify libraries of PSM. The adapter concept in particular turned out to be very powerful. Usually,

a PSM has many di�erent variants. Implementing a component for each variation of a search

method or each task- and domain-speci®c re®nement is intractable. A tractable and structured

approach for reusing (usable) components can only be achieved by performing re®nements via

adapters and implementing di�erent aspects or degrees of re®nement by di�erent adapters. Thus, a

re®ned method is achieved by connected to it a pile of adapters (cf. Fensel (1997a) and Fensel and

Benjamins (1998a)). The architecture has been used in the course of the IBROW project (Benjamins

et al., 1998) to develop the Uni®ed Problem-solving Method development Language (UPML)

(Fensel et al., 1999b) which is in the meantime being used by a number of groups for describing and

interchanging problem-solving methods. An extensive case study for parametric design problem-

solving is described by Motta et al. (1999). When implementing this library starting from its UPML

speci®cations it turned out that the implementation can be done straightforwardly when using an

object-oriented framework like Java. Both architectural styles match closely, which implies that

most of the programming e�ort can be done automatically.

Acknowledgements

We thank Richard Benjamins, Stefan Decker, Gerard Renardel de Lavalette, Arno SchoÈ negge,

Remco Straatman, Rudi Studer, Annette ten Teije, Frank van Harmelen, Maarten van Someren,

Bob Wielinga, Mark Willems and the anonymous reviewers for helpful comments on drafts of the

paper and Je� Butler and Nils Ramsauer for proof reading the manuscript.

References

Akkermans, JM,Wielinga, B and Schreiber, ATh, 1993. ``Steps in constructing problem-solving methods'' in N
Aussenac et al. (eds)Knowledge-Acquisition for Knowledge-Based Systems: Lecture Notes in AI 723 Springer-
Verlag.

Angele, J, Fensel, D and Studer, R, 1998. ``Developing knowledge-based systems with MIKE'' J Automated

Software Engineering 5(4) 389±418.
Bylander, T, Allemang, D, Tanner, MC and Josephson, JR, 1991. ``The computational complexity of

abduction'' Arti®cial Intelligence 49 25±60.

Benjamins, R, 1995. ``Problem solving methods for diagnosis and their role in knowledge acquisition''
International J Expert Systems: Research and Application 8(2) 93±120.

Benjamins, R, Fensel, D and Straatman, R, 1996. ``Assumptions of problem-solving methods and their role in

knowledge engineering'' Proc 12th European Conference on Arti®cial Intelligence (ECAI-96) Budapest,
Hungary, pp. 408±412.

Benjamins, VR, Plaza, E, Motta, E, Fensel, D, Studer, R, Wielinga, B, Schreiber, G and Zdrahal, Z, 1998. ``An

intelligent brokering service for knowledge-component reuse on the world-wide-web'' Proc 11th Workshop
on Knowledge Acquisition, Modeling and Management (KAW '98) Ban�, Canada.

Bidoit, M, Kreowski, H-J, Lescane, P, Orejas, F and Sannella, D (eds), 1991. Algebraic System Speci®cation
and Development: Lecture Notes in Computer Science (LNCS) 501 Springer-Verlag.

Breuker, J and Van de Velde, W (eds), 1994. The CommonKADS Library for Expertise Modelling IOS Press.
Chandrasekaran, B, 1986. ``Generic tasks in knowledge-based reasoning: high-level building blocks for expert

system design'' IEEE Expert 1(3) 23±30.

Chandrasekaran, B, Johnson, TR and Smith, JW, 1992. ``Task structure analysis for knowledge modeling''
Communications of the ACM 35(9) 124±137.

Davis, R, 1984. ``Diagnostic reasoning based on structure and behaviour'' Arti®cial Intelligence 24 347±410.

van Eck, P, Engelfriet, J, Fensel, D, van Harmelen, F, Venema, Y and Willems, M, 1998. ``Speci®cation of
dynamics for knowledge-based systems'' in B Freitag et al. (eds), Transactions and Change in Logic
Databases: Lecture Notes in Computer Science (LNCS), 1472 Springer-Verlag, pp. 37±68.

Eriksson, H, Shahar, Y, Tu, SW, Puerta, AR and Musen, MA, 1995. ``Task modeling with reusable problem-

solving methods'' Arti®cial Intelligence 79(2) 293±326.
Fensel, D, 1995a. ``Assumptions and limitations of a problem-solving method: a case study'' Proc 9th Ban�

Knowledge Acquisition for Knowledge-Based System Workshop (KAW '95) Ban�, Canada.

Fensel, D, 1995b. The Knowledge Acquisition and Representation Language KARL Kluwer Academic.

A software architecture for knowledge-based systems 171

Fensel, D, 1995c. ``Formal speci®cation languages in knowledge and software engineering'' The Knowledge
Engineering Review 10(4) 361±404.

Fensel, D, 1997a. ``The tower-of-adapter method for developing and reusing problem-solving methods'' in E
Plaza et al. (eds) Knowledge Acquisition, Modeling and Management: Lecture Notes in Arti®cial Intelligence

(LNAI), 1319 Springer-Verlag.
Fensel, D, 1997b. ``An ontology-based broker: making problem-solving method reuse work'' Proc Workshop

on Problem-Solving Methods for Knowledge-based Systems at the 15th International Joint Conference on AI

(IJCAI-97) Nagoya, Japan.
Fensel, D, Angele, J and Studer, R, 1998a. ``The knowledge acquisition and representation language KARL''

IEEE Trans Knowledge and Data Engineering 10(4) 527±550.

Fensel, D and Benjamins, VR, 1998a. ``Key issues for automated problem-solving methods reuse'' Proc 13th
European Conference on Arti®cial Intelligence (ECAI-98) Brighton, UK.

Fensel, D and Benjamins, VR, 1998b. ``The role of assumptions in knowledge engineering'' International J

Intelligent Systems 13(8) 715±748.
Fensel, D, Benjamins, VR, Decker, S, Gaspari, M, Groenboom, R, Grosso, W, Musen, M, Motta, E, Plaza, E,

Schreiber, G, Studer, R and Wielinga, B, 1999a. ``The Component Model of UPML in a nutshell'' WWW
Proc 1st Working IFIP Conference on Software Architectures (WICSA1) San Antonio, TX.

Fensel, D, Eriksson, H, Musen, MA and Studer, R, 1996. ``Conceptual and formal speci®cations of problem-
solving methods'' International J Expert Systems 9(4) 507±532.

Fensel, D and Groenboom, R, 1996. ``MLPM: De®ning a semantics and axiomatization for specifying the

reasoning process of knowledge-based systems'' Proc 12th European Conference on Arti®cial Intelligence
(ECAI-96) Budapest, Hungary.

Fensel, D, Groenboom, R and Renardel de Lavalette, GR, 1998b. ``MCL: Specifying the reasoning of

knowledge-based systems'' Data and Knowledge Engineering (DKE) 26(3) 243±269.
Fensel, D and van Harmelen, F, 1994. ``A comparison of languages which operationalize and formalize KADS

models of expertise'' The Knowledge Engineering Review 9(2) 105±146.
Fensel, D, van Harmelen, F, Reif, W and ten Teije, A, 1998c. ``Formal support for development of knowledge-

based systems'' Information Technology Management: An International Journal 2(4).
Fensel, D and Motta, E, 1998. ``Structured development of problem-solving methods'' Proc 11th Workshop on

Knowledge Acquisition, Modellng and Management (KAW '98) Ban�, Canada.

Fensel, D, Motta, E, Benjamins, VR, Decker, S, Gaspari, M, Groenboom, R, Grosso, W, van Harmelen, F,
Musen, M, Plaza, E, Schreiber, G, Studer, R, ten Teije, A and Wielinga, B, 1999b. ``The Uni®ed Problem-
solving Method development Language UPML''. ESPRIT project number 27169, IBROW3, Deliverable

1.1, Chapter 1.
Fensel, D, Motta, E, Decker, S and Zdrahal, Z, 1997. ``Using ontologies for de®ning tasks, problem-solving

methods and their mappings'' in E Plaza et al. (eds), Knowledge Acquisition, Modeling and Management:

Lecture Notes in Arti®cial Intelligence (LNAI), 1319 Springer-Verlag, pp. 113±128.
Fensel, D and SchoÈ negge, A, 1997. ``UsingKIV to specify and verify architectures of knowledge-based systems''

Proc12th IEEEInternationalConference onAutomatedSoftwareEngineering(ASEC-97) InclineVillage,NV.
Fensel, D and SchoÈ negge, A, 1998. ``Inverse veri®cation of problem-solving methods'' International J Human±

Computer Studies 49(4) 339±362.
Fensel, D, SchoÈ negge, A, Groenboom, R and Wielinga, B, 1996. ``Speci®cation and veri®cation of knowledge-

based systems'' Proc 10th Ban� Knowledge Acquisition for Knowledge-Based System Workshop (KAW '96)

Ban�, Canada.
Fensel, D and Straatman, R, 1996. ``The essence of problem-solving methods: Making assumptions for

e�ciency reasons'' in N Shadbolt et al. (eds), Advances in Knowledge Acquisition: Lecture Note in Arti®cial

Intelligence, LNAI 1076 Springer-Verlag, pp. 17±32.
Fensel, D and Straatman, R, 1998. ``The essence of problem-solving methods: Making assumptions to gain

e�ciency'' International J Human±Computer Studies 48(2) 181±215.

Gamma, E, Helm, R, Johnson, R and Vlissides, J, 1995. Design Patterns Addison-Wesley.
Garlan, D and Perry, D (eds), 1995. Special Issue on ``Software Architecture'' IEEE Trans Software

Engineering 21(4).
de Geus, F and Rotterdam, E, 1992. ``Decision Support in Anaesthesia'' PhD thesis, University of Groningen,

The Netherlands.
Groenboom, R, 1997. ``Formalizing Knowledge Domains ± Static and Dynamic Aspects'' PhD thesis,

University of Groningen.

Groenboom, R and Renardel de Lavalette, GR, 1993. ``Reasoning about dynamic features in speci®cation
languages'' in DJ Andrews et al. (eds) Proc Workshop in Semantics of Speci®cation Languages Utrecht.
Springer-Verlag.

Gruber, TR, 1993. ``A translation approach to portable ontology speci®cations'' Knowledge Acquisition 5 199±
220.

d . f en s e l and r . gro enboom 172

Gurevich, Y, 1993. ``Evolving Algebras 1993: Lipari Guide'' in EB BoÈ rger (ed) Speci®cation and Valid Methods
Oxford University Press.

Harel, D, 1984. ``Dynamic logic'' in DGabby et al. (eds)Handbook of Philosophical Logic: vol. II, Extensions of
Classical Logic Kluwer.

van Harmelen, F and Aben, M, 1996. ``Structure-preserving speci®cation languages for knowledge-based
systems'' J Human Computer Studies 44 187±212.

van Harmelen, F and Balder, J, 1995. ``(ML)2, a formal language for KADS conceptual models'' Knowledge

Acquisition 4(1).
van Harmelen, F and Fensel, D, 1995. ``Formal methods in knowledge engineering'' The Knowledge

Engineering Review 10(4).

van Harmelen, F and ten Teije, A, 1998. ``Characterising approximate problem-solving by partial pre- and
postcondition'' Proc 13th European Conference on Arti®cial Intelligence (ECAI-98) Brighton, UK.

van Heijst, G, Schreiber, AT and Wielinga, BJ, 1997. ``Using explicit ontologies in knowledge-based systems

development'' International J HumanComputer Interaction 46(6).
Kripke, SA, 1959. ``A completeness theorem in modal logic'' J Symbolic Logic 24 1±14.
Marcus, S (ed), 1988. Automating Knowledge Acquisition for Experts Systems Kluwer Academic.
Menzies, T, 1999. ``Knowledge maintenance: The state of the art'' The Knowledge Engineering Review 14(1) 1±

46.
Motta, E, Gaspari, M and Fensel, D, 1999. ``UPML Speci®cation of a Parametric Design Library'' Deliverable

D4.1., Esprit Project 27169, IBROW3, 1999.

Motta, E and Zdrahal, Z, 1996. ``Parametric design problem solving'' Proc 10th Ban� Knowledge Acquisition
for Knowledge-Based System Workshop (KAW '96) Ban�, Canada.

Newell, A, 1982. ``The knowledge level'' Arti®cial Intelligence 18 87±127.

Penix, J and Alexander, P, 1997. ``Toward automated component adaptation'' Proc 9th International
Conference on Software Engineering & Knowledge Engineering (SEKE-97)Madrid, Spain.

Penix, J, Alexander, P and Havelund, K, 1997. ``Declarative speci®cations of software architectures'' Proc 12th
IEEE International Conference on Automated Software Engineering (ASEC-97) Incline Village, NV.

Pierret-Golbreich, C and Talon, X, 1996. ``An algebraic speci®cation of the dynamic behaviour of knowledge-
based systems'' The Knowledge Engineering Review 11(2).

Poeck, K, Fensel, D, Landes, D and Angele, J, 1996. ``Combining KARL and CRLM for designing vertical

transportation systems'' International J Human±Computer Studies 44(3±4) 435±467.
Puppe, F, Systematic Introduction to Exper Systems: Knowledge Representation and Problem-Solving Methods

Springer-Verlag.

Reif, W, 1992. ``Correctness of generic modules'' in Nerode and Taitslin (eds) Symposium on Logical
Foundations of Computer Science: LNCS 620 Springer-Verlag.

Reif, W, 1995. ``The KIV approach to software engineering'' in M Broy and S JaÈ hnichen (eds) Methods,

Languages, and Tools for the Construction of Correct Software: LNCS 1009 Springer-Verlag.
Renardel deLavalette,GR,Groenboom,R,Rotterdam,EP, vanHarmelen, F, tenTeije, A anddeGeus, F, 1997.

``Formalisation of anaethesiology for decision support''Arti®cial Intelligence inMedicine 11(3) 189±214.
Schreiber, ATh, Wielinga, B, Akkermans, JM, Van De Velde, W and de Hoog, R, 1994. ``CommonKADS. A

comprehensive methodology for KBS development'' IEEE Expert 9(6) 28±37.
Shaw, A, 1989. ``Reasoning about time in higher level language software'' IEEE Trans Software Engineering

15(7) 875±889.

Shaw, M and Garlan, D, Software Architecture: Perspectives on an Emerging Discipline Prentice Hall.
Spee, JWand in `tVeld, L, 1994. ``The semantics ofKBSSF:A language forKBSdesign''KnowledgeAcquisition 6.
Spivey, JM, 1992. The Z Notation. A Reference Manual, 2nd ed Prentice Hall.

Steels, L, 1990. ``Components of expertise'' AI Magazine 11(2).
Studer, R, Benjamins, VR and Fensel, D, 1998. ``Knowledge engineering: methods and principles'' Data and

Knowledge Engineering 25(1±2).

ten Teije, A, 1997. ``Automated con®guration of problem solving methods in diagnosis'' PhD Thesis,
University of Amsterdam, The Netherlands.

Terpstra, P, van Heijst, G, Wielinga, B and Shadbolt, N, 1993. ``Knowledge acquisition support through
generalised directive models'' in M David et al (eds) Second Generation Expert Systems Springer-Verlag.

Top, J and Akkermans, H, 1994. ``Tasks and ontologies in engineering modeling'' International J HumanCom-
puter Studies 41 585±617.

Van de Velde, W, 1988. ``Inference structure as a basis for problem solving'' Proc 8th European Conference on

Arti®cial Intelligence (ECAI-88) Munich, Germany.
Wirsing, M, 1990. ``Algebraic speci®cation'' in J van Leeuwen (ed) Handbook of Theoretical Computer Science

Elsevier.

Yellin, DM and Strom, RE, 1997. ``Protocol speci®cations and component adapters'' ACM Trans Program-
ming Languages and Systems 19(2) 292±333.

A software architecture for knowledge-based systems 173

