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We investigate the Kelvin–Helmholtz instability occurring at the interface of a
shear-flow configuration in 2D compressible magnetohydrodynamics (MHD). The
linear growth and the subsequent nonlinear saturation of the instability are
studied numerically. We consider an initial magnetic field aligned with the shear
flow, and analyse the differences between cases where the initial field is unidirec-
tional everywhere (uniform case) and those where the field changes sign at the inter-
face (reversed case). We recover and extend known results for pure hydrodynamic
and MHD cases, with a discussion of the dependence of the nonlinear saturation
on the wavenumber, the sound Mach number and the Alfvénic Mach number for
the MHD case. A reversed field acts to destabilize the linear phase of the Kelvin–
Helmholtz instability compared with the pure hydrodynamic case, while a uniform
field suppresses its growth. In resistive MHD, reconnection events almost instantly
accelerate the build up of a global plasma circulation. They play an important role
throughout the further nonlinear evolution as well, since the initial current sheet is
amplified by the vortex flow and can become unstable to tearing instabilities, form-
ing magnetic islands. As a result, the saturation behaviour and the overall evolution
of the density and the magnetic field are markedly different for the uniform versus
the reversed-field case.

1. Introduction
The Kelvin–Helmholtz (KH) instability occurs at the interface between two fluids
or plasmas moving in opposite directions. Pioneering studies were made by Chan-
drasekhar (1961). As shear flows are present in many astrophysical situations, the
KH instability has received continuous attention in the astrophysics literature. In
solar coronal loops, shear flows arise in the vicinity of a resonant radius when the
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magnetized loop is perturbed at a frequency that matches the characteristic Alfvén
frequency at this radius. Recent studies have addressed the question whether these
shear flows are KH-unstable (Karpen et al. 1994; Poedts et al. 1997). In the helio-
sphere, the solar wind flows past planetary magnetospheres, and instabilities may
occur at bow shocks or further out in the magnetotails (see e.g. Uberoi 1984). Sim-
ilarly, KH instabilities are studied at the heliopause, where the solar wind is halted
and meets the interstellar medium (Chalov 1996). Numerous observations of ex-
tragalactic jets inspired research into the KH instability, taking relativistic effects
into account. A recent example is found in Hanasz and Sol (1996).

We investigate both the linear and the nonlinear regime of the KH instability
for compressible hydrodynamic (HD) and magnetohydrodynamic (MHD) cases.
Our numerical study makes use of the versatile advection code (VAC) for solving
the fluid equations, developed by Tóth (1996, 1997). This code can be used as a
convenient tool to handle hydrodynamic and magnetohydrodynamic one-, two-
or three-dimensional problems in astrophysics (see Keppens and Tóth 1998). We
perform all our calculations in two dimensions.

First, we briefly summarize important findings preceding and augmenting our
study. Theoretical studies of the KH instability started with the linear stability
analysis of Chandrasekhar (1961) for incompressible HD and MHD cases. It was
noted how a uniform magnetic field, parallel to the shear flow, completely stabilizes
the KH instability when the velocity jump across the shear layer is less than twice
the Alfvén speed. Blumen (1970) extended the linear study to the hydrodynamic
compressible case and found instability when the sound speed exceeds half the ve-
locity jump. We shall therefore restrict attention in our investigation to cases where
half the total velocity jump is below the sound speed but above the Alfvén speed.
The extension of these linear studies to compressible MHD cases is found in Miura
and Pritchett (1982). While the magnetic field was taken to be uniform, they al-
lowed for magnetic fields and wavenumbers with arbitrary orientations in the plane
perpendicular to the velocity gradient. Since we restrict ourselves to 2D configura-
tions, our linear results for uniform magnetic fields parallel to the shear flow recover
their findings. In particular, we similarly study variations with wavenumber, sound
Mach number and magnetic field strength. We extend their findings by discussing
the further nonlinear evolution as well. In addition, we simulate the KH instability
when the initial field is antiparallel (or reversed) in both oppositely flowing plasma
layers.

Recently, Frank et al. (1996) carried out nonlinear 2D MHD calculations for two
cases. They took the field parallel to the shear flow and compared the KH evolution
of a ‘weak’-field case with a ‘strong’-field case. The velocity jump across the shear
layer was equal to the sound speed, and amounted to 5 and 2.5 times the Alfvén
speed respectively. It was found that the magnetic tension also stabilizes the non-
linear regime for these two cases. We confirm and extend this result for the uniform
field over a wider range of Alfvén and sound Mach numbers. Frank et al. (1996)
found that numerical dissipation, mimicking viscous and resistive effects, eventu-
ally led to similar end states consisting of a stable laminar flow with dynamically
aligned velocity and magnetic fields.

A systematic numerical study of the 2D uniform case in MHD was made by
Malagoli et al. (1996). They varied the ratio of the Alfvén speed to the sound
speed, and could generally identify three stages in the instability. They referred to
these stages as the linear stage, the dissipative transient stage with intermittent
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reconnection events, and the saturation stage where small scale turbulent motions
decay to form aligned structures. Their final stage is qualitatively similar to the
laminar flow end state of Frank et al. (1996). We focus attention to the two stages
preceding turbulence, where the amplification and the dynamic influence of the
magnetic field grows and eventually halts the KH instability.

The main extension presented here is a consideration of the reversed-field case
in 2D compressible MHD. There, new physical effects emerge, since reconnection
can occur earlier in the evolution of the KH instability. We compare this reversed
case with the pure hydrodynamic and uniform magnetohydrodynamic case. Inde-
pendent investigations by Dahlburg et al. (1997) studied similar ‘current-vortex’
sheets where both the initial velocity and the magnetic field are given by hyper-
bolic tangent profiles. By considering relatively strong fields, these authors could
investigate resistive instabilities, modified by the KH flow. We show how the KH
instability in the presence of an initially weak reversed field can induce tearing in-
stabilities. Their study was performed in incompressible visco-resistive MHD, so we
extend their results by adding compressibility. Another important difference is that
we take a discontinuous field reversal at the shear-flow interface, while Dahlburg
et al. (1997) took the ratio of the magnetic shear width to the velocity shear width
to be around unity. We have therefore investigated the dependence on the initial
magnetic field configuration. This also allows a more detailed comparison with
the incompressible studies of ‘current-vortex’ sheets. The most recent study by
Dahlburg (1998) considers nonlinear effects analytically, under the assumptions of
incompressibility, while neglecting higher harmonics and the distortion of the fun-
damental disturbance. Our numerical study allows us to relax these assumptions
to fully 2D compressible situations.

This paper is organized as follows. In Sec. 2, we list the conservation laws, sum-
marize the initial conditions, and give a brief discription of the KH instability. The
numerical method is outlined in Sec. 3. The results are split into a discussion of the
linear regime (Sec. 4) and an in-depth study of the nonlinear saturation behaviour
(Sec. 5). We end with a discussion and conclusions in Sec. 6.

2. Conservation laws and initial configuration
The MHD equations are written in conservation form. The conservative variables
are density ρ, momentum ρv, energy density E and magnetic field B. The conser-
vation of mass is simply written as

∂ρ

∂t
+∇ · (ρv) = 0. (2.1)

The evolution equation for the momentum density ρv reads

∂(ρv)
∂t

+∇ · (ρvv + ptotI− BB) = 0, (2.2)

where ρvv is the Reynolds stress tensor, ptot = p + 1
2B

2 is the total pressure, and
I is the unit tensor. The thermal pressure p is related to the energy density by
p = (γ − 1)(E − 1

2ρv
2 − 1

2B
2). We set the adiabatic gas constant γ equal to 5

3 . The
magnetic part of Maxwell’s stress tensor is 1

2B
2I− BB. Magnetic units are defined
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such that the magnetic permeability is unity. The induction equation is

∂B
∂t

+∇ · (vB− Bv) = η∇2B. (2.3)

Ideal MHD corresponds to a zero resistivity η and ensures that magnetic flux is
conserved. In resistive MHD, field lines can reconnect. The energy equation that
we use is

∂E

∂t
+∇ · (Ev) +∇ · (ptotv)−∇ · (v · BB) =∇ · [B× η(∇× B)]. (2.4)

In resistive MHD (η > 0), the right-hand side contains the Ohmic heat term η(∇×
B)2, which is a source of internal energy.

We solve the above set of nonlinear ideal-MHD equations as an initial-value prob-
lem in two spatial dimensions. We consider a Cartesian two-dimensional rectangular
grid with 0 6 x 6 Lx and −Ly 6 y 6 Ly. We take Ly as our unit of length. The
initial pressure p0 and density ρ0 are set equal to unity throughout the domain,
and thus define our normalization.

We distinguish between the following three cases:

(i) a purely hydrodynamic case with B = 0 at all times;

(ii) a ‘uniform’ MHD case where the magnetic field at t = 0 is set equal to B0x̂
everywhere;

(iii) a ‘reversed’ MHD case where the magnetic field at t = 0 is −B0x̂ for y > 0 and
B0x̂ for y < 0.

The reversed case must be seen as a limiting case of a continuous field reversal, where
Bx = B0 tanh(y/b) and b → 0. We shall explicitly discuss this connection with an
initially smooth current sheet. Note that when b� 0, we have a non-constant initial
pressure p(y) from total pressure equilibrium.

We apply a shear velocity in the x direction with amplitude V0, of the form
vx = V0 tanh(y/a). The width of the ‘inner’ region where the velocity reverses is
always set to a = 0.05. In order to guarantee instability (Chandrasekhar 1961;
Blumen 1970; Miura and Prichett 1982) we vary the amplitude of the shear such
that

B0

ρ0
1/2
≡ va < V0 < cs ≡

(
γp0

ρ0

)1/2

. (2.5)

The sound speed cs and the Alfvén speed va are used to define the sound Mach
number Ms ≡ V0/cs and the Alfvénic Mach number Ma ≡ V0/va respectively. We
perturb this initial configuration with a velocity component perpendicular to the
background shear velocity of the form

δvy = vy0 sin(kxx) exp
(−y2

σ2

)
.

We take the amplitude of this velocity perturbation vy0 = 0.0001, which is always
much smaller than the shear velocity V0. The Gaussian component of the velocity
perturbation δvy has a parameter σ, representing the decay of the amplitude vy0

in the outer region |y| > a, and the ratio σ/a is set equal to 4 in our calculations.
With these initial conditions and the use of periodic boundary conditions in the

x direction, we can simulate the development of a KH instability at certain Mach
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Figure 1. The structure of the KH instability. The inner region containing the background
shear velocity is |y| < a = 0.05. We show the density perturbation resulting from the
initial velocity perturbation (bright is higher density, dark corresponds to lower density).
Also shown is the induced pressure-gradient force field that enhances the initial vertical
displacement in the centre of the layer.

number and wavenumber kx = 2π/Lx. The driving force behind the KH instability
and its resulting spatial structure is easily understood from Fig. 1 (see also the
schematic Fig. 2 in Miura and Prichett 1982).

Consider first what happens in the inner region |y| < a containing the back-
ground shear velocity. When we impose a sinusoidal perturbation δvy ∝ sin(kxx)
at y = 0, the velocity shear v′x = dvx/dy in the equilibrium flow produces a force
−ρv′xδvy in the x direction, such that acceleration of the plasma in the peaks of
the sine wave is antiparallel to the one felt in the throughs. The resulting density
perturbation is a periodic depletion and enhancement as shown in Fig. 1, which is
horizontally displaced from the imposed velocity perturbation. The pressure per-
turbation follows the density perturbation, and sets up a pressure gradient force
that enhances the initial vertical displacement within |y| < a. The pressure gra-
dient force is indicated by the arrows in Fig. 1. Note how in the inner region the
pressure gradient is in phase with the initial velocity disturbance (from bottom to
top in the left half of the figure, and from top to bottom in the right half). Hence
the situation is inherently unstable.

The situation is different in the outer region |y| > a. There, the imposed sinusoidal
perturbation is damped by exp(−y2/σ2), and the background flow is essentially uni-
form. The pressure-gradient force is out of phase with the initial flow perturbation.
The net result is a clockwise plasma circulation around the central density deple-
tions. Matter pushed out by the excess pressure created in the central layer that
reaches y = +a becomes entrailed to the right by the background flow and is pulled
towards the central layer again at the troughs of the initial perturbation.
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3. Numerical method
All calculations are performed with the versatile advection code (VAC, see Tóth
1996, 1997). VAC is a general code for solving systems of conservation laws such
as the HD and MHD equations. Although several spatial and temporal discretiza-
tions are implemented in VAC, we consistently use the explicit TVD scheme, which
is a one-step total variation diminishing (TVD) scheme employing a Roe-type ap-
proximate Riemann solver (Roe 1981). This shock-capturing, second-order-accurate
scheme limits the jumps allowed in each of the characteristic wave fields to ensure
the TVD property. In the uniform MHD cases, we used the slightly diffusive min-
mod limiter. Our method is then essentially identical with that used by Frank et al.
(1996). For all hydrodynamic and reversed MHD cases, we used the sharper Wood-
ward limiter (see Tóth and Odstrčil 1996). For the uniform case, the use of this
limiter occasionally caused numerical problems. However, the evolution of the uni-
form case in ideal MHD is not affected much by the actual choice of limiting, as
long as numerical dissipation does not play a role. We apply a projection scheme at
every time step to remove any numerically generated divergence of the magnetic
field.

Previous authors have considered very high grid resolutions. Frank et al. (1996)
went up to 512 × 512 cells, while Malagoli et al. (1996) used 256 × 512 cells. To
investigate the linear growth phase and determine the way in which the equilibrium
parameters influence the nonlinear saturation, we found it sufficient to use a grid
resolution of 150× 300 cells. The discussion of the nonlinear behaviour is based on
calculations with grid size 400 × 800, to ensure convergence. In all cases, the grid
is surrounded by two layers of ghost cells used to impose the boundary conditions.
The boundary conditions are periodic in the x direction, while all quantities are
extrapolated continuously into the ghost cells at y = ±1. The evolution of the
instability is not influenced by the boundary conditions at y = ±1, since these
boundaries are sufficiently far away from the central region of shear flow.

4. Linear results: growth rates
The initial phase of the evolution is one of exponential growth in accord with
Fig. 1. A plasma circulation sets in, forming a periodic pattern of density deple-
tions and enhancements. We determine the growth rate Γ of the KH instability by
monitoring the vertical kinetic energy Ey =

∫ ∫
dx dy 1

2ρv
2
y. The saturation level

Emax is determined as the first maximum in Ey(t), which is reached at time tmax

(see Fig. 2). We then fit Ey(t) with an exponential exp(2Γt) in the time interval
t ∈ [0.25tmax, 0.4tmax]. As we always initiate the instability using a small velocity
perturbation δvy = O(10−4), this time tmax is typically within tmax ∈ [6, 11]. Owing
to our normalizations, time is essentially measured in units of the transverse sound
travel time Ly/cs.

We introduce a reference hydrodynamic case with wavenumber kx = 2π and V0 =
0.645, such that the sound Mach number is Ms = 0.5. With the above procedure
to determine its growth rate, we find Γa/V0 = 0.134. Adding an initially weak
(uniform or reversed) magnetic field B0 = 0.129 provides us with reference cases for
MHD situations where Ma = 5.0 and the plasma beta β = 2p0/B

2
0 ≈ 120. Under

these parameters, the uniform case has a growth rate of Γa/V0 = 0.131, while the
reversed case yields Γa/V0 = 0.185. Figure 2 corresponds to the uniform reference
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Figure 2. The time evolution of the (logarithm of the) total vertical kinetic energy Ey(t).
This quantity is used to determine the growth rate Γ and the saturation level Emax, which is
reached at time tmax. The growth rate is determined by the linear fit in this semilogarithmic
plot to the time interval [0.25tmax, 0.4tmax], shown by the dashed line.

Table 1. Parameters, growth rates and saturation levels for the reference cases.

V0 a vy0 σ kx Ms B0 Ma β Γa/V0 2Emax/ρ0V
2

0

0.645 0.05 10−4 0.2 2π 0.5 0 ∞ ∞ 0.134 0.038
0.645 0.05 10−4 0.2 2π 0.5 +0.129 5.0 120.2 0.131 0.025
0.645 0.05 10−4 0.2 2π 0.5 ±0.129 5.0 120.2 0.185 0.033

case. Consistently with the results of Miura and Pritchett (1982) and Malagoli et al.
(1996), a uniform magnetic field stabilizes the KH instability. Interestingly, starting
from a reversed magnetic configuration, we find an accelerated growth. We list all
parameters specifying the reference hydrodynamic, uniform MHD, and reversed
MHD cases and their calculated growth rates and saturation levels in Table 1. In
addition to the listed values, we have Ly = 1 = Lx, ρ0 = 1, p0 = 1 and γ = 5

3 .
We determined the dependence of the growth rate on the wavenumber kx, and the

results are summarized in Fig. 3. We took kx = [π, 2π, 2.5π, 3π, 4π] with all other
parameters as in the reference cases. The values for the HD case and the uniform
MHD case can be fitted perfectly by a parabola, as expected from Fig. 4 in Miura
and Pritchett (1982). The only difference with their Fig. 4 is a difference in scaling.
Two effects are immediately apparent from our Fig. 3. First, the KH instability is
stabilized at small and large wavelengths, so that a maximum growth rate, here at
kxa = 0.4, is observed. Reasoning from Fig. 1, at small wavenumbers, the distance
between the periodic depletions and enhancements of the density widens, leading
to a smaller vertical pressure gradient and a more stable situation. In the other
limit of large-wavenumber perturbations, the resulting small circulations of matter
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Figure 3. Growth rate Γ versus wavenumber kx. Five calculated growth rates (‘+’ and ‘∗’)
are fitted by a parabola for each case: pure hydrodynamic (dotted), uniform MHD (dashed)
and reversed MHD (solid). Note the stabilizing effect of a uniform magnetic field, while a
reversed field destabilizes.
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Figure 4. Growth rate versus Alfvén Mach number for uniform MHD (‘+’ and dashed line)
and the reversed MHD case (‘∗’ and solid line). Both reach the hydrodynamic growth rate
(dotted line) at right, in the limit of weak initial magnetic field.
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Figure 5. Growth rate Γ versus sound Mach number. A parabolic fit connects four data
values for each case: pure hydrodynamic (dotted), uniform MHD (dashed) and reversed
MHD (solid). Beyond Ms > 1, the KH instability is stabilized.

cover only a part of the inner region |y| < a, so the driving force of the instability
becomes less effective. A stable situation is reached again. Secondly, while a uniform
magnetic field reduces the instability at all wavenumbers, the reversed field acts to
destabilize. This is consistent with the results in the incompressible case given by
Dahlburg et al. (1997) and Dahlburg (1998).

This effect is even more apparent when we fix the wavenumber to kx = 2π, and
gradually increase the magnetic field, as shown in Fig. 4. For low field strength (we
took B0 = 0.071, corresponding to an Alfvén Mach number Ma = 9 at very high
β = 397), the hydrodynamical limit of the growth rate at kxa = 0.314 (reference
case) is reached at the right edge of the figure. On increasing the magnetic field
strength toB0 = 0.43, whereMa = 1.5, we clearly demonstrate the stabilizing effect
of a uniform magnetic field and the destabilizing effect of a reversed initial field. In
fact, for B0 = 0.645 or Ma = 1, the uniform case is completely stabilized, while the
reversed case is not. The stabilizing effect of a uniform magnetic field parallel to
the shear flow is due to magnetic tension: in ideal MHD, the imposed perturbation
δvy, which is perpendicular to the initial field lines, entrails the field lines and builds
up the restoring magnetic tension. At the same time, field lines are pushed closer
together in those regions at the interface where the flow converges and thereby
enhances the density. It is this effect that, in turn, destabilizes the reversed-field
case. Indeed, when forcing antiparallel field lines towards one another, (numerical)
diffusion will allow for reconnection in those places, so that the magnetic tension in
the reconnected field lines adds to the pressure-gradient force indicated in Fig. 1.
Therefore a faster growth ensues. At the grid resolution 150×300 used to determine
these growth rates, the numerical diffusion inherent in the scheme used is similar
to a resistivity of about η = O(10−5). This value is found by comparing the ideal-
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MHD calculations with resistive-MHD runs with η = 10−4, 3 × 10−5 and 10−5.
In the high-resolution nonlinear calculations discussed below, we shall therefore
solve the resistive MHD equations with a non-zero resistivity of η = 10−5. Since
the resistivity is physically significant in the reversed-field cases, we must address
the limitations associated with the initial discontinuous magnetic field profile. We
conducted experiments with an initial tanh(y/b) profile for Bx, with b = 0.01, in
combination with a grid accumulation about y = 0. For the reference magnetic field
strength of B0 = 0.129, the growth rate found when starting from this continuous
initial current sheet then reduces to Γa/V0 = 0.127, which is even lower than the
reference uniform MHD case! This reduction is stronger for larger field strengths.
This stabilization is related to the fact that for this continuous case, the initial
thermal pressure profile necessarily peaks at the shear layer in proportion to 1+ 1

2B
2
0 .

This has a significant influence on the development of the KH instability, as can
be expected from Fig. 1. However, the linear behaviour in the limit of b→ 0 is well
represented by Fig. 4, at least for field strengths comparable or weaker than the
reference case. Indeed, the initial discontinuous profile rapidly smears out over a
few grid cells by the numerical method, so it effectively reduces to the continuous
case for small b. Moreover, the nonlinear behaviour of the reference reversed case
for b = 0 versus b = 0.01 is almost unaltered, as discussed below.

To conclude the linear results, we show the dependence of the growth rate Γ on
the sound Mach number in Fig. 5. Starting from the reference cases, we considered
values for the background shear flow given by V0 = [0.325, 0.645, 0.771, 0.975]. Note
that this also results in variations of the Alfvén Mach number for the MHD cases
from Ma = 2.5 up to Ma = 7.6. Again, we can see the extra elastic properties
of the uniform background magnetic field causing the overall decrease in growth
rate, and the destabilizing effect of a reversed field. In all cases, the growth rate
decreases for increasing sound Mach number. As we increase the background shear
flow, the amount of kinetic energy in the perturbation becomes smaller, relative to
the basic flow energy. A more stable situation results, since less energy is available
to do work for compressing the fluid. The dotted curve for the hydrodynamic case
is analoguous with Fig. 1 in Blumen (1970). It corresponds to the dotted line in
that figure, connecting the isolines of the growth rate.

5. Nonlinear results: saturation and further evolution
We have explained how we determined growth rates by fitting the phase of expo-
nential growth in the vertical kinetic energyEy(t). This quantity eventually reaches
a maximum Emax, which we now use as a measure of the saturation of the KH in-
stability (see Fig. 2). We normalize Emax with the kinetic energy corresponding to
the initial shear flow, 1

2ρ0V
2

0 . Note that additional, possibly higher, maxima in Ey(t)
may occur later on. In practice, a low value for the first maximum (say < 0.01)
clearly indicates that the KH instability is strongly suppressed by nonlinear effects.

Figures 6, 7 and 8 show the dependence of the saturation level Emax on the
wavenumber, Alfvénic Mach number and sound Mach number respectively. Note
how the saturation level for the hydrodynamic and the uniform MHD cases mono-
tonically increases with decreasing wavenumber in Fig. 6, while we demonstrated in
Fig. 3 that the growth rate has a pronounced maximum in the range of wavenum-
bers considered. As a consequence, the linearly fastest growing mode does not nec-
essarily correspond to the dominant mode in the nonlinear evolution. However, the
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Figure 6. Saturation level Emax versus wavenumber kx for the pure hydrodynamic (dotted),
uniform MHD (dashed) and reversed MHD (solid) cases. Compare with the dependence of
the linear growth rate shown in Fig. 3.
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Figure 7. Saturation level versus Alfvén Mach number for the uniform MHD (dashed)
and reversed MHD (solid) cases. A similar pure hydrodynamic case saturates at
2Emax/ρ0V

2
0 ≈ 0.038 (horizontal dotted line), so a uniform magnetic field is nonlinearly

stabilizing.
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Figure 8. Saturation level versus sound Mach number for the pure hydrodynamic (dotted),
uniform MHD (dashed) and reversed MHD (solid) cases. For kx = 2π and B0 = 0.129,
both MHD cases saturate below the pure hydrodynamic case for the range of shear flows
0.325 6 V0 6 0.975.

stabilizing effect of a uniform magnetic field persists in the nonlinear regime (see
Frank et al. 1996; Malagoli et al. 1996), since we find saturation levels that are
always lower than in a pure HD case. Part of the available energy must be used
to compress and stretch the field lines, leading to a lower Emax. For the reversed-
field case, no clear trend with wavenumber is apparent, and the KH instability can
saturate at intermediate, lower or higher levels when compared with pure HD or
uniform MHD cases. We point out that the reversed case is most susceptible to
the inherent numerical diffusion. By calculating reversed cases on larger grids, and
by investigating the limiting η → 0 behaviour, we are confident that the observed
variation is real. Nevertheless, the absolute values for the saturation level for the
reversed-field cases are less certain than those shown for the hydrodynamic and
uniform MHD cases. The saturation levels for the reversed case are fairly insensi-
tive to the specific initial Bx profile: the reference case with an initial discontinuity
at y = 0 saturated at 2Emax/ρ0V

2
0 ≈ 0.033, while, starting from a tanh(y/b) with

b = 0.01, the saturation was reached at about 0.039. The qualitative nonlinear
behaviour is identical.

The dependence of the saturation level on Alfvénic Mach number at fixed kx = 2π
is shown in Fig. 7. The hydrodynamic saturation level is situated at 2Emax/ρ0V

2
0 ≈

0.038 (horizontal dotted line), and the uniform MHD case approaches this value
from below when the initial field strength is decreased. However, the reversed case
saturates sooner than the uniform MHD case at initial field strengths B0 > 0.18,
while for B0 6 0.1 it saturates above the HD limit. Varying the shear flow V0 at
fixed wavenumber kx = 2π as in Fig. 5 leads to a similarly complicated dependence
of the saturation level on the sound Mach number Ms. Figure 8 demonstrates how,
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Figure 9. Evolution of the density at times t = 4 (top), t = 5 (middle) and t = 6 (bottom),
for the cases of a uniform (left frames) and a reversed field (right frames). We took kx = 2π,
V0 = 0.645 and B0 = 0.129. The nonlinear development differs markedly.

at this wavenumber and for fixed initial field strength B0 = 0.129, both the uniform
and the reversed MHD cases saturate at a lower level than a pure hydrodynamic
situation.

To gain insight into the nonlinear behaviour of the KH instability in both uniform
and reversed MHD cases, we compare in Fig. 9 time series of the density patterns for
both. We took the initial parameters as in the reference cases (kx = 2π, V0 = 0.645
and B0 = 0.129), but, since our interest is now in the nonlinear regime only, we took
vy0 = 0.01 so that the nonlinear stage can be reached at a lower computational cost.
The uniform case on the left was calculated in ideal MHD on a 300×600 grid, while
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the reversed case on the right was done in resistive MHD with η = 10−5 and the
use of 400 × 800 grid points. We show the part of the grid in the range −0.3 6
y 6 0.3. The contour levels differ from frame to frame, since we renormalized
individual colour ranges by the instantaneous extremal values of the density to
bring out all detail. The actual range of density values over all frames plotted is
0.58 6 ρ(x, y, t) 6 1.15.

The frames for the uniform MHD case are in good agreement with Malagoli et al.
(1996). These authors concluded that the evolution of the KH instability in the
presence of an initially uniform field consists of three phases. First, the instability
grows exponentially, very much as in Fig. 1. Secondly, the density pattern becomes
completely controlled by the magnetic field, which is strengthened in the process
and becomes dynamically important. Indeed, field lines are pushed away from the
centre of the layer and are stretched by the vortical flow. The first snapshot shown
in Fig. 9 corresponds to the time of saturation, where the dark lanes in the regions
of enhanced density (bright) outline these stretched and compressed field lines.
From the moment where the gradient scales across these field lines diminish to
trigger (numerical) dissipation in this ideal-MHD run, reconnection events occur.
The second and third snapshots show the density pattern in the first stages of this
regime. At that point, the magnetic energy has already reached its maximum value,
and starts to decay in an oscillatory manner. The third and final phase is one where
small-scale turbulence develops, until a new statistically steady flow sets in. We
have continued our calculation, and, in agreement with Malagoli et al. (1996), we
end up with an enlarged, mixed layer directed along the initial shear flow, aligned
with the magnetic field (not shown).

The frames on the right in Fig. 9 for the reversed case are dramatically different.
We already mentioned that, even in the linear regime, flux cancellation at y = 0 sets
in almost instantly. In fact, the reversed MHD case starts to resemble a pure HD
case more closely: the top right panel (t = 4) shows how a central density depletion
(dark) forms, since the dissipated field there no longer controls the dynamics. The
effects of the magnetic field are most pronounced at some distance away from the
initial interface at y = 0, and in those regions where field lines are pushed together.
Already in the first frame shown at t = 4, an island structure is evident within
the region of enhanced density (bright). In contrast to the uniform case, now anti-
parallel field lines are pushed together there. Such a situation is tearing-unstable
in resistive MHD, and leads to the formation of a magnetic island, which influences
the density dynamically to form the pattern shown. This process continues along
the current sheet, as can be seen in the second frame, where more, smaller islands
are evident. Reconnection and tearing thus occur all along the current sheet as it
is amplified by the KH vortical flow.

Naturally, the initially reversed field is thereby dissipated faster than in the
uniform MHD case. A crude monitor for this is given by the time evolution of the
total magnetic energy

Emag(t) =
∫ ∫

dx dy 1
2 (B2

x +B2
y)

for both cases. This is shown in Fig. 10 where the uniform case is compared with
the reversed case. Note how the maximum magnetic energy reached in the reversed
case is much lower than for a uniform background field of equal strength. The inset
shows the result of a convergence study in resistive MHD for the reversed case
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Figure 10. Evolution of the magnetic energy Emag(t) for the cases of a uniform (dashed) and
a reversed (solid) field. The uniform case is calculated in ideal MHD on a 300 × 600 grid.
The reversed case is a resistive MHD run with 400 × 800 grid points. The inset shows the
evolution of the vertical kinetic energy Ey(t) for resistive η = 10−5 MHD runs on 150× 300,
300× 600 and 400× 800 grids.

only: fixing η = 10−5, we compare calculations on grids of size 150×300, 300×600
and 400 × 800. The time evolution of the vertical kinetic energy Ey(t), used to
determine the saturation levels earlier, is clearly captured on all grids up to t = 5.
The magnetic field pattern at t = 5 for the reversed case is shown in Fig. 11. The
islands coincide with the density perturbations visible in Fig. 9 (middle right panel).
Beyond this time, small-scale turbulence sets in. This is evident from the last panel
(time t = 6) shown in Fig. 9.

To demonstrate that the island formation correctly represents the nonlinear de-
velopment of combined current-vortex sheets (initial tanh profiles for both vx and
Bx), we show in Fig. 12 the amplification of an initial continuous current sheet
with b = 0.01 by the developing vortex flow. All other parameters are as in the
reference reversed case shown in Fig. 9, but now we took a 150×300 grid with grid
accumulation about y = 0. The last frame shown corresponds to the top right panel
of Fig. 9. The island structure is cospatial with the pronounced current maximum.

6. Discussion and conclusions
We have studied the KH instability both in hydrodynamics and in magnetohydro-
dynamics with the versatile advection code (VAC). We have investigated the linear
and nonlinear saturation regime by varying wavenumbers, sound Mach numbers,
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Figure 11. Island formation due to tearing instability for a reversed MHD case. We show
the magnetic field structure at t = 5, corresponding to the middle right frame of Fig. 9.

and, for the uniform and reversed-field MHD case, the Alfvénic Mach number. While
nonlinear results for the hydrodynamic and uniform MHD cases confirm and ex-
tend results by previous authors, we have demonstrated that novel physical effects
appear when a reversed magnetic field is imposed.

The linear results clearly show the stabilizing effect of the uniform magnetic
field, leading to smaller growth rates than in the hydrodynamic case. This stabiliz-
ing effect is also present in the nonlinear regime, since the strengthened, initially
uniform field eventually halts the exponential growth sooner. This phase where
the magnetic field controls the density pattern eventually decays into a turbulent
regime, as previously pointed out by Malagoli et al. (1996). We have focused on the
saturation behaviour of the KH instability, and have discussed its dependence on
wavenumber and Mach numbers.

When the shear flow coincides with a field reversal, reconnection takes place right
away, so our results for the reversed case are applicable in resistive MHD. We started
from a situation where the field reversal is modelled as a discontinuity, seen as the
limiting case of cospatial current-vortex sheets where the region of field reversal is
completely contained within the region of velocity shear (see also Dahlburg et al.
1997; Dahlburg 1998). In the linear regime, we find an overall larger growth rate
than in the hydrodynamic and uniform MHD cases. Hence a reversed field desta-
bilizes the KH instability, and when the strength of the reversed magnetic field
decreases, we approach the hydrodynamic growth rate from above. Comparisons
with cases where the field reversal is a continuous tanh profile revealed that this lin-
ear destabilization is sensitive to the initial condition. Only for moderate magnetic
fields (like our reference reversed case) does the destabilizing effect persist when the
region of magnetic shear is significantly narrower than the region of velocity shear.
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Figure 12. The amplification of an initially continuous current sheet in a KH unstable shear
flow. Apart from the finite extent of the current sheet at t = 0, parameters are identical to
our reference reversed case shown on the left in Fig. 9.

The role played by the initial pressure profile is crucial for stronger and wider cur-
rent sheets. Such strongly magnetized, wide current sheets have been the subject of
analytic studies of current-vortex sheets in incompressible MHD (Dahlburg et al.
1997). There the ratio of the magnetic shear width to the velocity shear width (b/a
in our terminology) was typically taken to be around unity, and the Alfvén Mach
number was varied from 0.6 to 1.2. We have restricted our study to cases where
b� a and Ma > 1, since it is known that the uniform MHD case is fully stabilized
when Ma = 1. Our study indicates (cf. the evolution of the density in Fig. 9) that
compressibility plays an important role in current-vortex sheet dynamics. We have
focused on KH unstable configurations where the magnetic effects are secondary.
To make the connection with the results of Dahlburg et al. (1997) more explicit,
we have also calculated one case with b = 0.2a and Ma = 1, setting η = 10−3, very
much like case I of their study. In our compressible simulation, the density varied
locally up to 40% during the development and the saturation of the then-dominant
tearing instability. A quantitative comparison with the incompressible simulations
is therefore fairly complicated.

In our reversed case study, reconnection sets in almost instantly at the shear-
flow interface, and the reconnected field lines act to enforce the KH instability.
Flux cancellation at y = 0 clearly alters the field structure earlier than in a similar
field-strength uniform case. While the uniform magnetic field effectively prevented
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the build up of a central density perturbation, by dynamically influencing the flow
pattern throughout the inner region, the field in the reversed case changes the flow
and density most markedly at some distance away from y = 0. Reconnection is
also important in those regions where antiparallel field lines are pushed together,
thereby amplifying the initial current sheet. We have shown how the KH flow
may thus in turn drive this sheet unstable. Resistive tearing modes form magnetic
islands and influence the density pattern by isolating blobs of enhanced density.
Decay to a turbulent regime sets in sooner than for a uniform MHD case of equal
field strength.

The temporal evolution of the total magnetic energy shows a much lower maximal
energy level in the case of the reversed field compared with the uniform field case.
The saturation as measured by the first maximum in the vertical kinetic energy
indicates that the reversed field can saturate at a lower, a higher or an intermediate
level between a pure hydrodynamic and a uniform MHD case. The temporal evolu-
tion of the density in the reversed-field case initially resembles the hydrodynamic
case more closely.

The plane-parallel configuration that we have investigated here is relatively sim-
ple; however, we expect that the basic features of the KH instability are described
well in our model. Meaningful extensions would model the evolution in three di-
mensions. A first step is found in Miura (1997), where a magnetic field in the plane
perpendicular to the velocity gradient is considered. There it was found that the
vortex train formed by the KH instability is further susceptible to vortex pair-
ing following the nonlinear saturation. For fluid applications, the surface tension
cannot be ignored. For certain astrophysical situations, an accurate treatment of
the KH instability must include the influence of viscosity, gravity, and relativistic
flows.
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